ANL-6212 Physics (TID-4500, 16th Ed.) AEC Research and Development Report

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois

SOME PHYSICS CALCULATIONS ON THE PERFORMANCE OF LARGE FAST BREEDER POWER REACTORS

by

S. Yiftah* and D. Okrent Reactor Engineering Division

December 1960

*On leave from the Israel Atomic Energy Commission

Operated by The University of Chicago under Contract W-31-109-eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

:

· ·

-

		Page
ABST	TRACT	7
I	INTRODUCTION	7
II.	METAL, OXIDE AND CARBIDE PLUTONIUM FUELS	9
III.	EFFECT OF ISOTOPIC COMPOSITION OF PLUTONIUM	9
IV	EFFECT OF VARIOUS STRUCTURAL MATERIALS	12
V.	SODIUM REACTIVITY COEFFICIENT	13
VI.	LEAD-BISMUTH EUTECTIC AS COOLANT	17
VII.	COMPARISON WITH PREDICTIONS OF ELEVEN GROUP SET.	18
VIII.	REMARKS ON U ²³³ -THORIUM SYSTEMS	19
IX.	CONCLUSIONS	21
Х.	APPENDIX - TABULATION OF DETAILED RESULTS	23
REFI	ERENCES	32
ACK	NOWLEDGMENT	32

LIST OF FIGURES

No.	Title	Page
1.	Reactivity Change Effected by Removal of 40% of Sodium from Plutonium Metal-fueled Cores with Steel or Niobium Structure	15
2.	Reactivity Change Effected by Removal of 40% of Sodium from Plutonium Oxide- and Plutonium Carbide-fueled Cores with Steel or Niobium Structure	15
3.	η as a Function of Neutron Energy for 1500-liter Plutonium Carbide-fueled Reactors with Steel or Niobium Structure	16

•

LIST OF TABLES

<u>No.</u>	Title	Page
1.	Effect of Isotopic Composition of Plutonium in 800, 1500 and 2500-liter Reactors Fueled with Metal, Oxide and Carbide Fuels Having Sodium Coolant and Steel Structure	10
2.	Effect of Various Structural Materials on 800-liter Plutonium-metal-fueled Reactors	12
3.	Effect of the Structural Material Niobium Replacing Iron in 800, 1500 and 2500-liter Plutonium Reactors Fueled with Metal, Oxide and Carbide Fuels	13
4.	Reactivity Change upon Removing 20, 40, and 60 Per Cent of Sodium from 800-liter Cores Fueled with Metallic Plutonium (Stainless Steel Structure)	14
5.	Reactivity Change upon Removing 20, 40 and 60 Per Cent of Sodium from 1500-liter Cores Fueled with Plutonium Oxide (Stainless Steel Structure)	14
6.	Reactivity Change upon Removing 40 Per Cent of Sodium from Cores of Various Sizes Fueled with Metal, Oxide or Carbide Plutonium Fuel with Steel and Niobium Structures	15
7.	$\overline{\eta}$, the Neutrons Emitted per Absorption in the Core	17
8.	Effect of the Coolant Lead-Bismuth Replacing Sodium in 800, 1500 and 2500-liter Plutonium Reactors Fueled with Metal, Oxide and Carbide Fuels	18
9.	Reactivity Changes upon Removing 40 Per Cent of Lead- Bismuth Coolant from 800, 1500 and 2500-liter Cores Fueled with Metal, Oxide and Carbide Plutonium Fuel (Stainless Steel Structure)	18
10.	Comparison of Performance Predictions for Large Metal, Oxide and Carbide Reactors Using New 16-Group Set (YOM) and Older Eleven Group Set (LO)	19
11.	Performance of Large Reactors Fueled with U ²³³ -Thorium Mixture as Metal, Oxide or Carbide Fuel, Having Sodium Coolant and Steel Structure	20

LIST OF TABLES

:

No.	Title	Page
12.	Reactivity Change upon Removing 40% of Sodium Coolant from 800, 1500 and 2500-liter Cores Fueled with Metal, Oxide, or Carbide U ²³³ -Th Fuel (Stainless Steel Structure).	20
A-1.	Study of 800-liter Spherical Reactors Fueled with Metal, Oxide and Carbide-Plutonium Fuels with Different Isotopic Compositions of Plutonium	25
A-2.	Study of 1500-liter Spherical Reactors Fueled with Metal, Oxide and Carbide-Plutonium Fuels with Different Isotopic Compositions of Plutonium	26
A-3.	Study of 2500-liter Spherical Reactors Fueled with Metal, Oxide and Carbide-Plutonium Fuels with Different Isotopic Compositions of Plutonium	27
A-4.	Effect of Various Structural Materials on Performance of 800-liter, Plutonium-U ²³⁸ -Metal-Fueled Reactors	28
A-5.	Study of 800, 1500 and 2500-liter Spherical Reactors Fueled with Metal, Oxide and Carbide Plutonium Fuels with Niobium as the Structural Material in the Core	29
A-6.	Study of 800, 1500 and 2500-liter Spherical Reactors Fueled with Metal, Oxide and Carbide Plutonium Fuels with Lead-Bismuth Eutectic Alloy as Coolant	30
A-7.	Study of 800, 1500 and 2500-liter Spherical Reactors Fueled with U ²³³ -Thorium as Metal, Oxide or Carbide. Having Steel Structure and Sodium Coolant	31

SOME PHYSICS CALCULATIONS ON THE PERFORMANCE OF LARGE FAST BREEDER POWER REACTORS

by

S. Yiftah and D. Okrent

ABSTRACT

Critical mass, spectrum, breeding ratio and coolant removal coefficients have been calculated for a series of large, $Pu-U^{238}$ -fueled, sodium-cooled, fast breeder, power reactors, using a new 16-group cross section set based in part on recent, microscopic cross-section measurements. The parameters studied include reactor size, plutonium isotopic content, and type of structural material. Reactors cooled with Pb-Bi eutectic and those containing U^{233} -Th fuel were also examined.

I. INTRODUCTION

The recent completion of a new 16-group set of fast reactor cross sections by Yiftah, Okrent and Moldauer(1) has made it of interest to examine the change in previous predictions(2) of performance and to study various additional characteristics of large, fast breeder, power reactors. The limited series of calculations reported herein* was used to study some large, sodium-cooled, metal, oxide and carbide-fueled systems, paying particular attention to the effect of plutonium isotopic content on critical mass, breeding ratio, and sodium reactivity coefficient. Also examined are reactors with the nonmoderating lead-bismuth coolant, reactors with various structural materials other than stainless steel, and a few reactors having a fuel alloy of U^{233} -thorium.

All the calculations were made in spherical geometry by means of diffusion theory. Each reactor was assumed to consist of three regions, namely, core, blanket, and external reflector. The core size and composition were varied while maintaining the same thickness and composition for all blankets and reflectors. Only a small fraction of the possible permutations of parameters were calculated, since only trends were sought.

^{*} These calculations were made with the set of cross sections of Reference 1 prior to some final numerical corrections of a relatively minor nature in the cross sections of several materials. As a consequence, the group fluxes and performance predictions may differ slightly (~1%) from the results of calculations made with the final cross sections.

The specifications of the systems studied are as follows:

Core Volume:

800, 1500 or 2500 liters

:

(where necessary, some additional core volumes were used.)

Core Volume Fractions:	Fuel and Fertile Material	0.25
	Structural Material	0.25
	Coolant	0.50

Fuels:	Density, g/cc	
$Pu-U^{238}$	19	
PuO2-UO2	8.4	
PuC-UC	11.39	
U ²³³ -Th	18.57 (for U ²³³)	
	11.58 (for Th)	
U ²³³ O ₂ -ThO ₂	8.4	
$U^{233}C-ThC$	11.39	

Plutonium Composition:	Atom Per cent						
Type	Pu ²³⁹	Pu ²⁴⁰	Pu ²⁴¹	Pu ²⁴²			
А	100	0	0	0			
В	74.7	10.2	12.4	2.7			
C	40	10	25	25			
Coolants	Liquid Se	odium		0.84 g/cc			
	The liqu: (44.5 wt-	id lead-bisr ·% Pb - 55.	nuth eutecti 5 wt-% Bi), 1	c .0.46 g/cc			
Structural Materials:	Stainless Titaniu Vanadi Zircon Niobiuu Molybo Tantalu	Steel and um ium m lenum um	1				
Blanket Thickness:	45 cm (U 54 cm (T	Iranium) Thorium)					
Blanket Volume Fractions:	U ²³⁸ or	Th	0.6				
	Na or F	b-Bi	0.2				
	Fe		0.2				
Reflector Thickness:	30 cm						
Reflector Volume Fractions:	Fe		0.6				
	Na or F	b-Bi	0.4				

II. METAL, OXIDE AND CARBIDE PLUTONIUM FUELS

The comparative performance of fast reactors fueled with metal, oxide, and carbide fuels is shown in Table 1. It is seen that the critical masses (M_C) of oxides are 15-20% lower than those of the corresponding metal systems, whereas the critical masses of carbides lie between those of the metals and oxides. For plutonium "A" the breeding ratio with metallic fuel is about 1.8. With oxide, it is about 20% lower, whereas values for the carbides again lie between the two.

The reduced breeding ratio with ceramic fuels can be traced partly to the reduced fast fission bonus in U^{238} which accompanies a reduction in the U^{238} content of the core, and partly to the increased alpha $(=\sigma_c/\sigma_f)$ which accompanies the softened neutron spectrum resulting from increased moderation and reduced overall low energy absorption.

Details of the neutron energy spectrum and the neutron balance for these reactors are given in the Appendix in Tables A-1, A-2 and A-3. It should be noted that the fluxes listed are the integrals over the core or blanket, and that they have been normalized to an average fission neutron source in the core of unity.

III. EFFECT OF ISOTOPIC COMPOSITION OF PLUTONIUM

The plutonium feed material for fueling fast reactors in a power economy may in principle come from different sources:

a) Natural uranium-fueled thermal reactors whose fuel elements can be run only to relatively small burnups before reprocessing and separation of built-in plutonium from the uranium takes place.

b) Thermal reactors fueled with either natural uranium or enriched uranium, where plutonium is produced as a byproduct to the electric power, should provide a considerable source in the future whose size is proportional to the number of thermal power reactors. The bigger the volume of a nuclear power industry based on thermal reactors, the larger will become the quantities of plutonium produced.*

^{*}It has been estimated by Sir John Cockcroft of Britain (in a talk during the dedication of the Plutonium Fuel Fabrication Facility at the Argonne National Laboratory, May 14, 1959), that by the end of the 1960's the United Kingdom will produce from its commercial reactors about <u>five</u> tons of plutonium per year, which, if not used, will constitute a waste of about seventy-five million dollars per year (\$15 per gram of Pu).

Table 1

			Pu "	A" ^(a)			Pu	"B" ^(a))			Pu	"C" ^(a))	
Reactor Size	Fuel	м	(c)		(b)	M _c	(kg)				м _с	(kg)			
(liters)		(kg)	IBR(C)	BR(C)	ā	Total Pu	Pu ²³⁹ + Pu ²⁴¹	IBR	Br	ā	Total Pu	Pu ²³⁹ + Pu ²⁴¹	IBR	Br	a
800	Metal Oxide Carbide	431 372 396	0.73 0.31 0.46	1.82 1.55 1.62	0.188 0.230 0.224	458 392 417	399 341 363	0.79 0.35 0.51	1.93 1.65 1.73	0.173 0.209 0.204	533 452 480	346 294 312	0.86 0.37 0.55	2.12 1.81 1.90	0.150 0.178 0.174
1500	Metal Oxide Carbide	686 562 613	0.91 0.44 0.61	1.79 1.47 1.56	0.198 0.251 0.241	729 590 645	635 514 562	0.97 0.48 0.66	1.90 1.57 1.67	0.182 0.228 0.218	849 680 743	552 442 483	1.05 0.51 0.71	2.08 1.72 1.82	0.156 0.192 0.185
2500	Metal Oxide Carbide	1025 806 897	1.04 0.54 0.73	1.76 1.42 - 1.52	0.205 0.267 0.253	1089 845 943	949 736 821	1.11 0.59 0.79	1.87 1.52 1.62	0.187 0.240 0.229	1269 973 1086	825 632 706	1.21 0.64 0.85	2.05 1.65 1.77	0.161 0.203 0.192
(a) 1 1	Pu "A" Pu "B" Pu "C"	23 100 74	$\frac{9}{0}$ $\frac{240}{0}$	$\frac{241}{0}$ 2 12.4	242 0 2.7			(b) ā =	Pu ²³⁹ Pu ²³⁹	and Pu ² and Pu ²	⁴¹ Captu ⁴¹ Fiss	ires ions			

EFFECT OF ISOTOPIC COMPOSITION OF PLUTONIUM IN 800, 1500 AND 2500-LITER REACTORS FUELED WITH METAL, OXIDE, AND CARBIDE FUELS HAVING SODIUM COOLANT AND STEEL STRUCTURE

(c) As defined herein the breeding ratio is the rate at which Pu^{239} and Pu^{241} are being formed to the rate at which they are being destroyed, that is

Breeding Ratio = $\frac{U^{238} \text{ and } Pu^{240} \text{ Captures in Reactor}}{(Pu^{239} \text{ and } Pu^{241}) \text{ Captures + Fissions in Reactor}}$ Internal Breeding Ratio = <u>Production of Thermally Fissionable Isotopes in Core</u> <u>Destruction of Thermally Fissionable Isotopes in Entire Reactor</u>

The isotopic composition of plutonium from source (b) will depend on the kind of reactor and, in general, on the irradiation history of the fuel, before it reaches the plants for plutonium extraction.

c) In the future, if many fast breeders are in operation, a third source will become the blankets of the fast reactor themselves. Such plutonium, again, is likely to be low in higher isotopic content.(3)

In addition to the variation in isotopic content of plutonium resulting from the core feed material, the recycling of core plutonium in the reactor will result in changing isotopic concentrations approaching an equilibrium condition which is a function of core design, feed material, and fuel-cycle characteristics.

To examine the effect of higher plutonium isotopes on reactor performance, three representative isotopic compositions were chosen so as to bracket the range of interest.

Plutonium A is pure Pu²³⁹.

Plutonium B corresponds to the composition of the recycled plutonium extracted from a thermal reactor fueled with enriched uranium, in this case the pressurized-water, oxide-fueled Yankee reactor, as calculated by Jaye, Bennett and Lietzke.(4)

Plutonium C corresponds to the plutonium which might result from not one, but several, recycles in a thermal reactor with large burnup, and provides some sort of extreme condition of potential feed material.

The comparative results obtained with the different types of plutonium are summarized in Table 1. When one charges himself only for the thermally fissionable isotopes Pu^{239} and Pu^{241} , one finds that the "dirtier" the plutonium, the smaller the critical mass and the higher the breeding ratio. These are both a direct consequence of the fact that Pu^{240} is preferable to U^{238} as a fertile material, due to its larger fission cross section, and that Pu^{241} is preferable to Pu^{239} , at least within the assumptions made in developing this set of cross sections. In particular, the alpha of Pu^{241} itself has been taken to be considerably lower than that for Pu^{239} , automatically yielding an average alpha which decreases as the content of higher isotopes increases.

Details of the neutron balance and the neutron energy spectra for all these systems are given in Tables A-1, A-2 and A-3.

IV. EFFECT OF VARIOUS STRUCTURAL MATERIALS

The effect of substituting titanium, vanadium. zirconium, niobium, molybdenum, and tantalum for steel as the structural material in the 800-liter plutonium-metal-fueled reactors is shown in Table 2.

Table 2

			
Structural Material	Critical Mass, kg	Breeding Ratio	Alpha
Fe (Stainless Steel)	431	1.82	0.188
Tì	425	1.92	0.180
v	456	1.68	0 222
Zr	415	1.89	0.181
Nb	494	1.51	069
Mo	502	1.46	0.185
T	716	1.02	0.170

EFFECT OF VARIOUS STRUCTURAL MATERIALS ON 800-LITER PLUTONIUM-METAL-FUELED REACTORS

The effect of substituting niobium for steel in metal, oxide, and carbidefueled reactors of all three core sizes is shown in Table 3. The neutron energy spectra and the neutron balances obtained for the various structural materials are given in the Appendix in Table A-4, and similar data for the niobium-containing reactors of various sizes are given in Table A-5.

For the 800-liter, metal-fueled core, there is only a small difference in performance between iron, zirconium, and titanium. The higher inelastic scattering cross section in vanadium apparently reduces the fast fission bonus and increases the alpha of plutonium enough to reduce the breeding ratio appreciably. Niobium and molybdenum show a still lower breeding ratio. due particularly to the significant parasitic capture in these materials. The niobium shows slightly better performance than the molybdenum for an 800-liter, metal-fueled core. For larger, ceramic-fueled cores, however, the softer spectrum is expected to accentuate the higher capture in niobium at low neutron energies, leading to a slightly higher critical mass and lower breeding ratio for this structural material than for molybdenum.

Table 3

Reactor	E I	Critical Mass		T.B.R	L.	α(Pu ²³⁹)		
(l)	Fuei	Niobium	Iron	Niobium	Iron	Niobium	Iron	
800	Metal	494	431	1.51	1.82	0.169	0.188	
	Oxide	462	372	1.23	1.55	0.195	0.230	
	Carbide	480	396	1.29	1.62	0.194	0.224	
1500	Metal	809	686	1.43	1.79	0.180	0.198	
	Oxide	739	562	1.09	1.47	0.205	0.251	
	Carbide	786	613	1.17	1.56	0.201	0.241	
2500	Metal	1247	1025	1.36	1.76	0.183	0.205	
	Oxide	1109	829	0.99	1.42	0.212	0.267	
	Carbide	1178	946	1.09	1.52	0.208	0.253	

EFFECT OF THE STRUCTURAL MATERIAL NIOBIUM REPLACING IRON IN 800, 1500, AND 2500-LITER PLUTONIUM REACTORS FUELED WITH METAL, OXIDE, AND CARBIDE FUELS

The breeding ratio drops nearly to unity with tantalum as the structural material, in spite of a slight reduction in the average alpha for Pu^{239} . The latter is the result of a hardening of the spectrum by the rapid absorption of neutrons of lower energy in tantalum.

With niobium as the structural material, the breeding ratio drops appreciably below that of steel, and a sharp falloff with reactor size is also noted. For the largest oxide system the breeding ratio falls just below unity.

V. SODIUM REACTIVITY COEFFICIENT

Positive sodium reactivity coefficients for some large fast reactor designs were first reported by Nims and Zweifel⁽⁵⁾ and have since been calculated by others.⁽⁶⁾ These calculations were done rather crudely, with improper allowance for the effects on spectrum due to elastic scattering resonances in sodium. New, more powerful techniques to treat the problem more adequately are under development.⁽⁷⁾

However, there is some information to be gained by rough calculations of this effect, and some such results are reported herein. In most instances, the effect was calculated by removing uniformly 40% of the sodium originally present in the core. This was augmented by calculations with 20 and 60% removals on occasion. The reactivity change is reported in terms of $\delta M_c/M_c$, the fractional increment in critical mass which would produce the same reactivity effect as the removal of the sodium. (The constant of proportionality, $\delta k/k/\delta M_c/M_c$, was observed to be between 0.5 and 0.7 for these reactors.)

The reactivity effects upon partial sodium removal from an 800liter, metallic plutonium core with steel structure are given in Table 4, and the effects for a 1500-liter oxide core, again with steel structure, are given in Table 5. The results in both cases were negative, and the reactivity effect changed somewhat more rapidly than linearly with sodium removal.

Table 4

REACTIVITY CHANGE UPON REMOVING 20, 40, AND 60% OF SODIUM FROM 800-LITER CORES FUELED WITH METALLIC PLUTONIUM (STAINLESS STEEL STRUCTURE)

Percentage of Sodium Removed from Core	$\delta M_c/M_c$ to Produce Same Reactivity Change
20	-0.0021
40	-0.0047
60	-0.0080

Table 5

REACTIVITY CHANGE UPON REMOVING 20, 40, AND 60% OF SODIUM FROM 1500-LITER CORES FUELED WITH PLUTONIUM OXIDE (STAINLESS STEEL STRUCTURE)

Percentage of Sodium Removed from Core	δM _c /M _c to Produce Same Reactivity Change
20	-0.0067
40	-0.0140
60	-0.0222

The sodium removal reactivity effects for a series of reactors of differing sizes, with metal, oxide, and carbide fuel (Type A plutonium), and with both steel or niobium structural material, are given in Table 6, and are plotted in Figs. 1 and 2. The following observations can be made from these results:

a) All the reactors calculated with niobium structure exhibited a positive reactivity effect. Extrapolations of the curves in Figs. 1 and 2 suggest a threshold size for the positive effect of about 400 liters for the metal-fueled system chosen, namely, 700-800 liters for the oxide and carbide systems.

b) All reactors having steel as the structural material exhibit a threshold size for a positive effect which is three or four times that of niobium for the reactor models chosen.

Table 6

REACTIVITY CHANGE UPON REMOVING 40% OF SODIUM FROM CORES OF VARIOUS SIZES FUELED WITH METAL, OXIDE, OR CARBIDE PLUTONIUM FUEL WITH STEEL AND NIOBIUM STRUCTURES

Core	Me	tal	Oxic	le	Carbide			
(<i>l</i>)	Steel	Niobium	Steel	Niobium	Steel	Niobium		
800	-0.0047	+0.0057	-0.0211	+0.0003	-0.0143	+0.0022		
1500	+0.0041 (+0.0014)	+0.0144	-0.0140 (-0.0162)	+0.0260	-0.0058 (-0.0076)	+0.0210		
2000			-0.0094	+0.0136				
2500	+0.0120	+0.0306	-0.0056	+0.0168	+0.0022	+0.0176		
3000			-0.0025	+0.0194	+0.0051	+0.0200		
3500			+0.000048	+0.0215	+0.0076	+0.0220		

$\delta M_c/M_c$ To Produce Same Reactivity Change

The "wiggle" observed in the curves for niobium structure with oxide or carbide fuel is thought to be real. However, detailed justification based on microscopic cross-section data has not been attempted.

The sodium reactivity effects were also computed for the 1500-liter reactors fueled with Plutonium "C" in the metallic, oxide, and carbide forms, with steel structure. The results are given in parentheses in Table 6. In all cases the contents of the higher plutonium isotopes made the reactivity change upon removal of 40% of the sodium initially present in the core more negative.

For the 800-liter, metal-fueled reactor, sodium reactivity coefficients were also computed for the other structural materials. Tantalum was similar to niobium, molybdenum was positive but much less so, whereas zirconium, vanadium, and titanium gave negative coefficients of the same size as obtained for stainless steel.

The sodium reactivity coefficients for niobium-containing reactors were calculated using an early set of capture cross sections for niobium, which were too low at very low energies. When these cross sections were corrected upwards to provide agreement with recent experimental microscopic data [that is, using the final niobium cross sections assigned in

Reference (1)], the sodium reactivity coefficients for the niobiumbearing systems were found to become more positive by 10-20% in the few cases tested.

For a specific oxide-fueled reactor design, Nims and Zweifel(5) have broken the sodium reactivity coefficient into several components, showing that both elastic moderation and inelastic scattering in sodium were producing spectral effects leading to a gain in reactivity upon sodium removal. The manner in which hardening of the spectrum can add reactivity is well illustrated in Fig. 3, wherein $\eta(E)$, the average number of neutrons

emitted per absorption in all core materials, is plotted versus energy for two 1500-liter, plutonium carbide reactors, one using stainless steel structure, the other niobium.

The average $\overline{\eta}$ has also been computed for most of the reactor types considered herein, and this k_{∞} -like parameter is presented in Table 7.

Table 7

$\overline{\eta}$, the neutrons emitted per absorption in the core

Core	Structural	η							
(l)	Material	Metal	Oxide	Carbide					
800	Iron Niobium Tantalum Molybdenum Zirconium Vanadium Titanium	1.525 1.406 1.263 1.387 1.545 1.438 1.566	1.796 1.552	1.662 1.480					
1500	Iron Niobium	1.390 1.323	1.611 1.527	1.498 1.387					
2500	Iron Niobium	1.301 1.238	1.479 1.315	1.386 1.269					

 $(\overline{\eta} = \int \eta(\mathbf{E})\sigma_{\mathbf{a}}(\mathbf{E})\phi(\mathbf{E})d\mathbf{E}/\int \sigma_{\mathbf{a}}(\mathbf{E})\phi(\mathbf{E})d\mathbf{E})$

VI. LEAD-BISMUTH EUTECTIC AS COOLANT

The effect of substituting the heavy coolant, lead-bismuth eutectic, for sodium was calculated for the 800, 1500 and 2500-liter core reactors fueled with metal, oxide, and carbide. The results are shown in Table 8, taking iron as the structural material. The results with sodium as the coolant are also presented for comparison purposes.

The critical mass with the heavy coolant is always slightly less, ranging from 6 to 12%. The breeding ratios are almost identical, despite small shifts in alpha.

The group-wise neutron energy spectra and the neutron balance for the heavy coolant systems can be found in the Appendix in Table A-6, which provides more details on these reactors.

The changes in reactivity on removing 40% of the coolant in the core were computed for the lead-bismuth systems. As can be seen in Table 9, the reactivity effect was substantially negative in all cases calculated.

Table 8

	WITH METAL, OXIDE, AND CARBIDE FUELS													
Reactor		Critical	l Mass	T.B	.R.	a								
Size (l)	Fuel	Lead- Bismuth Sodium		Lead- Bismuth	Sodium	Lead- Bismuth	Sodium							
800	Metal	403	431	1.79	1.82	0.173	0.188							
	Oxide	337	372	1.52	1.55	0.217	0.230							
	Carbide	363	396	1.59	1.62	0.211	0.224							
1500	Metal	642	686	1.76	1.79	0.181	0.198							
	Oxide	508	562	1.45	1.47	0.237	0.251							
	Carbide	564	613	1.54	1.56	0.226	0.241							
2500	Metal	962	1025	1.74	1.76	0.186	0.205							
	Oxide	730	829	1.40	1.42	0.252	0.267							
	Carbide	828	946	1 50	1.52	0.237	0.253							

EFFECT OF THE COOLANT LEAD-BISMUTH REPLACING SODIUM IN 800, 1500, AND 2500-LITER PLUTONIUM REACTORS FUELED WITH METAL, OXIDE, AND CARBIDE FUELS

Table 9

<u>REACTIVITY CHANGES UPON REMOVING 40% OF LEAD-BISMUTH</u> <u>COOLANT FROM 800, 1500 OR 2500-LITER CORES FUELED WITH</u> <u>METAL, OXIDE AND CARBIDE PLUTONIUM FUEL</u> (STAINLESS STEEL STRUCTURE)

Core Volume	$\delta M_c/M_c$ To Produce Same Reactivity Change									
(£)	Metal	Oxide	Carbide							
800 1500 2500	-0.0249 -0.0165 -0.0083	-0.0519 -0.0449 -0.0360	-0.0398 -0.0309 -0.0222							

VII. COMPARISON WITH PREDICTIONS OF 11-GROUP SET

To compare the performance predictions of the newer. 16-group set with the l1-group set utilized by Loewenstein and Okrent in their 1958 Geneva Conference paper, (2) a series of reactors were calculated with both sets. Using steel as the structural material, and plutonium- U^{238} in the metallic, oxide, or carbide form, reactors having core volumes of 1500 and 2500 liters were examined. The critical masses and breeding ratios predicted by the two sets of cross sections are compared in Table 10. It can be seen that the older 11-group set gives consistently higher critical masses, ranging from 10% for the metal-fueled systems to 3% for the oxides.

Table 10

COMPARISON OF PERFORMANCE PREDICTIONS FOR LARGE METAL, OXIDE AND CARBIDE REACTORS USING NEW 16-GROUP SET (YOM)* AND OLDER ELEVEN GROUP SET (LO)**

		1500-li	ter Co	re		2500-liter Core						
Criti Mas	cal ss	B.R. a			ι	Criti Ma	.cal ss	B.1	R.	α		
YOM	LO	УОМ	LO	YOM	LO	УОМ	LO	YOM	LO	үом	LO	
Plutonium Metal												
686	755	1.79	1.60	0.198	0.221	1025	1139	1.76	1.58	0.205	0.228	
			·		Plutoni	ium Oxid	e					
562	577	1.47	1.33	0.251	0.287	806	829	1.42	1.28	0.267	0.304	
]	Plutoniu	ım Carbi	de					
613	643	1.56	1.41	0.241	0.271	897	946	1.52	1.37	0.253	0.284	

*Yiftah, Okrent and Moldauer, Reference 1

** Loewenstein and Okrent, Reference 2

The breeding ratios are consistently higher in the 16-group calculations. This is mainly attributed to the higher value of ν for U²³⁸ in the newer 16-group set.

VIII. REMARKS ON U²³³-THORIUM SYSTEMS

A limited number of calculations have been performed on large reactors fueled with thorium- U^{233} in the metallic, oxide, and carbide form. The results for 800, 1500 and 2500-liter cores are presented in Table 11. Details of the spectra are given in the Appendix in Table A-7.

The breeding ratios for the thorium systems (using steel as the structural material) all lie well above unity, but considerably below the results obtained with corresponding plutonium- U^{238} systems. The critical masses for the two systems are very similar.

Table 11

Reactor Size (l)	Fuel	Critical Mass (kg)	Internal Breeding Ratio	Breeding Ratio	a
800	Metal	453	0.38	1.29	0.085
	Oxide	371	0.27	1.23	0.099
	Carbide	410	0.38	1.26	0.096
1500	Metal	679	0.50	1.28	0.089
	Oxide	539	0.39	1.21	0.106
	Carbide	616	0.52	1.24	0.102
2500	Metal	968	0.61	1.28	0.092
	Oxide	755	0.49	1.19	0.112
	Carbide	890	0.62	1.23	0.106

PERFORMANCE OF LARGE REACTORS FUELED WITH U²³³- THORIUM MIXTURE AS METAL, OXIDE OR CARBIDE FUEL, HAVING SODIUM COOLANT AND STEEL STRUCTURE

The thorium blanket had been taken to be somewhat thicker than the blanket of the uranium counterparts, due to the lower density of thorium. However, there was still a significant net leakage from the blanket. If one assumes that about 80% of the leakage neutrons could be captured in a more efficient blanket, all the breeding ratios for these systems would be enhanced by 0.03-0.05.

The sodium coefficients, which are tabulated in Table 12, are all negative.

Table 12

REACT	<u>'IVITY</u>	CHA	NGE	UPON	REMO	VING	40%	OF	SOD	IUM	<u>COO</u>	LANT
FROM	800,	1500	AND	2500-	LITER	CORE	CS F	UEL	ED	WITH	I ME	TAL,
OXIDE	, OR C	ARBI	DE U	²³³ - Th	FUEL	(STAI	NLE	SSS	ree	LST	RUCI	rure)

Core Volume	$\delta M_c/M_c$ To Produce Same Reactivity Effect									
(1)	Metal	Oxide	Carbide							
800 1500 2500	-0.0437 -0.0387 -0.0323	-0.0506 -0.0436 -0.0339	-0.0415 -0.0336 -0.0246							

IX. CONCLUSIONS

The recent 16-group set of cross sections developed by Yiftah, Okrent, and Moldauer predicts somewhat higher breeding ratios for U^{238} plutonium-fueled fast reactors than were calculated by Loewenstein and Okrent in 1958. This effect is attributed primarily to the higher ν (E) values now used for U^{238} .

The addition of higher isotopes of plutonium to the fuel raises the breeding ratio and apparently makes the sodium reactivity coefficient more negative (or less positive). However, for all the structural materials studied in the particular reactor configuration chosen, the sodium coefficient becomes more positive as reactor size is increased and attains a positive value upon 40% removal of sodium coolant from the core, if the fuel is plutonium. The threshold core volume for a positive sodium coefficient with niobium as the structure in the metal-fueled reactor was found to be only of the order of 400 liters for the reactor composition studied. Thus, a considerable likelihood of difficulties of this type can be anticipated for large, central-station reactors having metal fuel elements jacketed in niobium, molybdenum, or other strongly absorbing materials. If positive sodium coefficients are to be avoided for metal-fueled reactors, it would appear that titanium, vanadium, or zirconium offer the best alternates to steel for structure and cladding from the physics point of view. Also, one might surmise that a somewhat reduced volume fraction both of structure and of fuel alloy, with a corresponding increase in sodium volume fraction above the 0.5 used herein, might help to keep the sodium coefficient negative.

Negative sodium coefficients were computed in all sizes for U^{233} -thorium systems using steel for structure Negative coolant coefficients were also calculated for plutonium- U^{238} -steel systems using lead-bismuth as coolant.

APPENDIX

- Table A-1:Study of 800-liter Spherical Reactors Fueled with Metal,
Oxide, and Carbide Plutonium Fuels with Different Isotopic
Compositions of Plutonium.
- Table A-2:Study of 1500-liter Spherical Reactors Fueled with Metal,
Oxide and Carbide Plutonium Fuels with Different Isotopic
Compositions of Plutonium.
- Table A-3:Study of 2500-liter Spherical Reactors Fueled with Metal,
Oxide and Carbide Plutonium Fuels with Different Isotopic
Compositions of Plutonium.
- Table A-4:Effect of Various Structural Materials on Performance of
800-liter, Plutonium-U²³⁸-metal-fueled Reactors.
- Table A-5:Study of 800, 1500 and 2500-liter Spherical Reactors Fueled
with Metal, Oxide and Carbide Plutonium Fuels with Niobium
as the Structural Material in the Core.
- Table A-6:Study of 800, 1500 and 2500-liter Spherical Reactors Fueledwith Metal, Oxide and Carbide Plutonium Fuels with Lead-
Bismuth Eutectic Alloy as Coolant.
- Table A-7:Study of 800, 1500 and 2500-liter Spherical Reactors Fueled
with U²³³-Thorium as Metal, Oxide or Carbide, Having Steel
Structure and Sodium Coolant.

-, ,

									·
Fuel		Pu A			Pu B			Pu C	
1001	Metal	Oxide	Carbide	Metal	Oxide	Carbide	Metal	Oxide	Carbide
Ratio of Fuel Atoms to Diluent Atoms (Pu/U ²³⁸) Critical Mass of Fuel (kg)	0 128 431	0 336 372	0 222 396	0 137 399 (458) ^a	0 360 341 (392) ^a	0 237 363 (417) ^a	0 163 346 (533) ^a	0 439 294 (452) ^a	0 283 312 (480) ^a
Flux Integrals									
Group Energy Interval (Mev)	Core Blanket	Core Blanket	Core Blanket	Core Blanket	Core Blanket	Core Blanket	Core Blanket	Core Blanket	Core Blanket
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 13 0 30 4 37 0 56 8 00 1 18 11 02 2 86 16 30 6 83 18 93 9 75 19 80 10 43 17 7 87 11 73 5 77 10 26 7 35 5 5 3 12 6 79 4 00 3 50 1 65 193 0 70 112 0 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 13 0 29 4 38 0 56 8 02 1 18 11 00 2 85 16 24 6 81 18 98 9 74 20 07 10 47 17 53 9 94 12 02 5 83 10 47 7 43 5 68 3 16 6 94 4 06 3 53 1 67 1 91 0 71 1 11 0 34 1 56 0 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Neutron Balance Pu239 Fissions Pu239 Captures Pu240 Fissions Pu240 Fissions Pu241 Fissions Pu242 Fissions Pu242 Captures Pu242 Fissions Pu242 Captures U238 Fissions U238 Captures U38 Captures Structural Captures Internal Breeding Ratio Breeding Ratio Ratio Captures to Fissions In Pu239 Hu241 Scoper from Blanket Fissions	0 282 0 0532 - - 0 0583 0 0214 0 245 0 364 0 00144 0 000353 0 0149 0 00637 0 73 1 82 0 188 0 0118	0 313 0 0720 0 0264 0 0311 0 120 0 476 0 00502 0 000635 0 0179 0 00805 0 31 1 55 0 230 0 0143	0 301 - 0 0676 - 0 0379 0 0277 0 171 0 427 0 00433 0 000555 0 0179 0 00728 0 46 1 62 0 224 0 0135	0 224 0 0424 0 00690 0 00599 0 0469 0 00473 0 00177 0 00158 0 0578 0 0578 0 0578 0 0214 0 244 0 366 0 00142 0 000353 0 01047 0 000353 0 01639 0 79 1 93 0 173 0 0118	0 247 0 0570 0 00702 0 00768 0 0549 0 00629 0 00177 - 0 00199 0 0259 0 0311 0 119 0 479 0 0250 0 000637 0 0200 0 000637 0 0200 0 000610 0 35 1 65 0 209 0 0144	0 238 - 0 0536 0 0 00594 0 0 0524 0 0 00591 0 0 0180 - 0 00193 0 0 0375 0 0276 0 0 170 0 429 0 0 0431 0 000556 0 0 180 1 0 00731 0 0 51 1 73 0 204 0 0133	0 140 0 0266 0 00786 - 0 00686 - 0 110 0 0111 - 0 0191 0 0366 0 0214 0 240 0 366 0 00139 0 000353 0 0150 0 000541 0 86 2 12 0 150 0 0118	0 153 0 0355 - 0 00788 - 0 128 - 0 128 - 0 127 - 0 0147 - 0 0191 - 0 0217 - 0 0245 0 0310 - 0 113 0 480 - 0 0495 0 000637 0 2020 2 0 00813 - 0 37 1 81 - 0 178 0 0143 -	0 148 0 0333 0 00782 0 122 - 0 122 - 0 0138 0 0190 - 0 0205 - 0 0362 0 0276 0 165 0 430 0 00027 0 000556 0 0182 0 00933 0 55 1 90 0 174 0 0134

Table A-1

.

STUDY OF 800 LITER SPHERICAL REACTORS FUELED WITH METAL OXIDE AND CARBIDE PLUTONIUM FUELS WITH DIFFERENT ISOTOPIC COMPOSITIONS OF PLUTONIUM

^aThe figures of critical mass represent the critical mass of the two fissionable isotopes Pu²³⁹ and Pu²⁴¹ The values in parentheses give the total mass of all four plutonium isotopes Pu²³⁹ Pu²⁴⁰ Pu²⁴¹ and Pu²⁴²

Table A-2

STUDY OF 1500-LITER SPHERICAL REACTORS FUELED WITH METAL, OXIDE, AND CARBIDE PLUTONIUM FUELS WITH DIFFERENT ISOTOPIC COMPOSITIONS OF PLUTONIUM

		Pu A						Pu B					Pu C						
	Fuel	M	etal	Ox	ide	Car	bide	Me	etal	0	xide	Car	bide	Me	tal	0	xide	Ca	rbide
Ratio o Dilue Critica	f Fuel Atoms to nt Atoms (Pu/U238) I Mass of Fuel (kg)	0. 6	106 86	0. 5	253 62	0. 6	176 13	0. 635 (113 729) ^a	0. 514	.269 (590)a	0. 562 (187 645) ^a	0. 552 (135 849) ^a	0. 442	0.323 0 442 (680) ^a 483		.222 (743) ^a
Flux Ir	ntegrals																		
Group	Energy Interval (Mev)	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket
1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.68 3.28 5.95 10.23 17.84 22.85 21.21 17.66 7.84 9.23 4.13 4.96 1.94 0.86	0.15 0.28 0.60 1.67 4.38 6.70 7.07 6.60 3.68 4.72 1.92 2.36 0.90 0.35 0.16	2.24 4.62 8.61 12.06 18.19 21.63 23.38 20.90 14.69 13.22 7.38 9.54 5.14 2.94	0.22 0.42 0.90 2.20 5.31 7.67 8.38 8.08 4.82 6.21 2.68 3.57 1.52 0.67 0.23	2.00 4.10 7.63 11.52 17.47 21.15 20.52 18.00 12.55 11.43 6.47 7.91 4.33 2.50	0.19 0.37 0.79 2.05 4.95 7.24 7.60 7.16 4.21 5.42 2.33 3.02 1.28 0.56 0.28	1.68 3.28 5.96 10.22 17.83 22.90 21.35 17.81 9.93 9.31 4.17 4.99 1.94 0.85	0.15 0.28 0.60 1.67 4.38 6.70 7.09 6.63 3.69 4.74 1.94 2.37 0.90 0.35	2.24 4.62 8.62 12.07 18.21 21.69 23.54 21.10 14.85 13.37 7.46 9.65 5.17 2.94	0.22 0.42 0.90 2.20 5.31 7.68 8.41 8.12 4.85 6.25 2.70 3.59 1.53 0.67 0.22	2.00 4.10 7.64 11.52 17.48 21.22 20.65 18.16 12.68 11.55 6.54 7.99 4.36 2.50	0.19 0.37 0.79 2.05 4.96 7.25 7.62 7.19 4.24 5.45 2.35 3.04 1.28 0.56	1.68 3.28 5.96 10.19 17.74 22.88 21.47 18.00 10.05 9.41 4.21 5.02 1.94 0.83 0.37	0.15 0.28 0.60 11.67 4.37 6.69 7.09 6.65 3.71 4.76 1.94 2.38 0.90 0.35 0.16	2.24 4.63 8.63 12.04 18.15 21.69 23.66 21.31 15.03 13.53 7.56 9.76 5.20 2.93	0.22 0.42 0.90 2.19 5.30 7.67 8.42 8.14 4.87 6.29 2.72 3.62 1.53 0.67 0.34	2.01 4.10 7.65 11.50 17.43 21.22 20.77 18.34 12.83 11.69 6.62 8.08 4.38 2.49	0.19 0.37 0.79 2.05 4.94 7.63 7.21 4.25 5.47 2.36 3.06 1.29 0.56 0.28
16	0.0005-0.0021	0.31	0.062	2.76	0.21	1.98	0.16	0.31	0.061	2.79	0.21	2.00	0.16	0.30	0.061	2.82	0.21	2.01	0.16
Neutro	n Balance	}	ł	1									ł		ł	{	}		
Pu239 Pu239 Pu240 Pu240 Pu240	Fissions Captures Fissions Captures	0.278 0.0553 - -	- - - -	0.310 0.0780 - -	- - - -	0.299 0.072 - -	-	0.222 0.0441 0.00631 0.00614		0.244 0.0616 0.00615 0.00816		0.236 0.0569 0.00621 0.00758		0.139 0.0276 0.00719 0.00705		0.151 0.0383 0.00691 0.00923		0.146 0.0354 0.00701 0.00861	
Pu241 Pu242 Pu242 U238	Captures Fissions Captures Fissions			-	- - - 0.0235			0.00471 0.00490 0.00162 0.00162 0.0617	0.0159	0.00679 0.00156 0.00212 0.0296		0.00628 0.00162 0.00202 0.0413		0.0115 0.0175 0.0176 0.0606		0.0158 0.0168 0.0230 0.0284	- - - 0.0235	0.0147 0.0170 0.0215 0.0402	0.0208
U238 Coolan Struct Intern	Captures t (Na) Captures ural Captures al Breeding Ratio	0.302 0.00192 0.0178 0.9	0.295 0.000303 0.00513	0.169 0.00774 0.0251 0.	0.404 0.000606 0.00673 44	0.226 0.00629 0.0220 0.6	0.354 0.000507 0.00595 1	0.302 0.00194 0.0179 0.9	0.297 0.000303 0.00515 7	0.168 0.00772 0.0253 0.	0.406 0.000608 0.00676 48	0.225 0.00628 0.0221 0.6	0.355 0.000509 0.00598	0.297 0.00171 0.0180 1.05	0.297 0.000303 0.00516	0.162 0.00767 0.0255 0.1	0.407 0.000609 0.00678 51	0.220 0.00623 0.0223 0.7	0.357 0.000509 0.00599 1
Bree	ding Ratio	1.7	9	1.	47	1.5	6	1.9	0	1.	57	1.6	7	2.08	3	1.	72	1.8	2
in Pi	J239 + PU24I	0.1	.98	0.	251	0.2	41	0.1	82	0.	228	0.2	18	0.15	56	0.	192	0.1	85
Escape	from Blanket	0.0	0865	0.	0104	0.0	0972	0.0	0866	0.	0104	0.0	0974	0.00)865	0.	0104	0.0	0971

.

٠

^aThe figures of critical mass represent the critical mass of the two fissionable isotopes Pu²³⁹ and Pu²⁴¹. The values in parentheses give the total mass of all four plutonium isotopes, Pu²³⁹, Pu²⁴⁰, Pu²⁴¹, and Pu²⁴².

·.

- 7

e 1 - 1

Fuel Metal Oxide Ratio Fuel Atoms to Diluent Atoms (Pu/U238) Critical Mass of Fuel (kg) 0 0945 1026 0 210 806 Flux Integrals Core Blanket Core Blanket I 3 668 -10 00 (Mev) 1 72 0 12 2 31 0 17 2 2 225 - 3 668 3 36 0 22 4 79 0 33 3 1 35 - 2 225 6 15 0 46 9 02 0 70 4 0 825 1 35 10 71 1 31 12 78 1 74 1 5 0 5 -0 825 18 98 3 45 19 53 4 22 12 6 0 3 0 5 24 77 5 33 23 58 6 16 2 7 0 18 0 3 23 41 5 69 26 05 6 82 2 8 0 11 - 0 18 19 81 5 37 23 78 6 67 2 9 0 67 0 11 11 18 3 01 17 03 4 03 1 10 0 025 0 091	Carbide Meta 0 152 0 10 897 949 (10 Core Blanket Core 2 06 0 15 1 72 4 22 0 29 36 7 96 0 62 10 70 12 16 1 62 10 70 18 68 3 93 18 97 22 96 5 79 24 82	Metal Oxide 0 100 0 223 49 (1089) ^a 736 (845) ^a e Blanket Core Blanket 0 17 0 22 4 79 0 12 2 31 0 22 4 79 0 46 9 03 0 70 1 31	Carbide 0 161 821 (943) ^a Core Blanket 2 06 0 15 4 23 0 29	Metal 0 119 825 (1269) ^a Core Blanket 1 72 0 12	Oxide 0 265 632 (973) ^a Core Blanket	Carbide 0 190 706 (1086) ^a Core Blanket
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 152 897 0 10 949 (10 Core Blanket Core 2 06 0 15 1 72 4 22 0 29 3 36 17 7 96 0 62 6 15 1 72 12 16 1 10 70 18 68 3 93 18 97 22 96 5 79 24 82 16 16	0 100 0 223 736 (845) ^a e Blanket Core Blanket 0 12 2 31 0 17 0 22 4 79 0 33 0 46 9 03 0 70 1 31 12 79 1 73	0 161 821 (943) ^a Core Blanket 2 06 0 15 4 23 0 29	0 119 825 (1269) ^a Core Blanket	0 265 632 (973) ^a Core Blanket	0 190 706 (1086) ^a Core Blanket
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Core Blanket Core 2 06 0 15 1 72 4 22 0 29 3 36 7 96 0 62 6 15 12 16 1 62 10 70 18 68 3 93 18 97 22 96 5 79 24 82	e Blanket Core Blanket 0 12 2 31 0 17 0 22 4 79 0 33 0 46 9 03 0 70 1 31 12 79 1 73	Core Blanket 2 06 0 15 4 23 0 29	Core Blanket	Core Blanket	Core Blanket
Group Energy Interval (Mev) Core Blanket Core Blanket 1 3 668 -10 00 1 72 0 12 2 31 0 17 1 2 2 225 -3 668 3 36 0 22 4 79 0 33 1 3 1 35 -2 225 6 15 0 46 9 02 0 70 1 4 0 825 1 35 10 71 1 31 12 78 1 74 1 5 0 5 -0 825 18 98 3 45 19 53 4 22 12 6 0 3 0 5 24 77 5 33 23 58 6 16 2 7 0 18 0 3 23 41 5 69 26 05 6 82 2 8 0 11 -0 18 19 81 5 37 23 78 6 67 2 9 0 067 0 11 11 18 301 17 03 4 03 1 10 0 0407 0 67 10 67 3 89 15 65 5 24 1 11 0 025	Core Blanket Core 2 06 0 15 1 72 4 22 0 29 3 36 7 96 0 62 6 15 12 16 1 62 10 70 18 68 3 93 18 97 22 96 5 79 24 82	e Blanket Core Blanket 0 12 2 31 0 17 0 22 4 79 0 33 0 46 9 03 0 70 1 31 12 79 1 73	Core Blanket 2 06 0 15 4 23 0 29	Core Blanket	Core Blanket	Core Blanket
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 06 0 15 1 72 4 22 0 29 3 36 7 96 0 62 6 15 12 16 1 62 10 70 18 68 3 93 18 97 22 96 5 79 24 82	0 12 2 31 0 17 0 22 4 79 0 33 0 46 9 03 0 70 1 31 12 79 1 73	2 06 0 15 4 23 0 29	172 012	0.01	_
Neutron Balance 0 41 0 034 4 03 0 21 Neutron Balance - - 0 308 - - Pu239 Fissions 0 276 - 0 308 - - Pu239 Captures 0 0568 - 0 0823 - - Pu240 Fissions - - - - - Pu241 Captures - - - - - Pu241 Captures - - - - - Pu242 Fissions - - - - - Pu242 Fissions - - - - - Pu242 Fissions - - - - - -	22 05 0 14 23 55 20 19 5 85 19 98 14 30 3 48 11 27 13 25 4 50 10 77 7 63 196 4 89 9 59 2 59 6 02 5 38 1 11 2 39 3 17 0 50 1 06 183 0 25 0 48 9	3 45 19 54 4 22 5 34 23 64 6 16 5 71 26 21 6 84 5 39 23 99 6 69 3 03 17 20 4 05 3 91 15 82 5 27 1 61 9 00 2 30 2 00 12 06 3 15 0 76 6 66 1 37 0 30 3 88 0 62 0 13 2 37 0 31	7 96 0 62 12 18 1 62 18 69 3 93 23 03 5 80 22 78 6 16 20 36 5 87 14 44 3 49 13 39 4 52 7 71 1 97 9 69 2 60 5 42 1 12 3 17 0 50 1 83 0 25	3 36 0 22 6 15 0 46 10 67 1 30 18 89 3 44 24 81 5 33 23 68 5 71 20 17 5 41 11 40 3 04 10 87 3 92 4 94 1 61 6 05 2 00 2 38 0 77 1 05 0 30 0 47 0 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PU/242 Captures - - - U238 Fissions 0 0646 0 0122 0 0323 0 0184 U238 Captures 0 347 0 242 0 212 0 342 Coolant (Na) Captures 0 00242 0 000259 0 0102 0 000558 Structural Captures 0 0200 0 00049 0 0298 0 000563 Internal Breeding Ratio 1 04 0 54 Total Breeding Ratio 1 76 1 42 Ratio Captures to Fissions 0 205 0 267 In Pu239 + Pu241 0 205 0 267	0 296 0 0 220 0 0750 0 0452 - - 0 00593 - 0 00625 - 0 00551 - 0 00501 0 00153 - 0 0442 0 0162 0 04742 0 00642 0 271 0 295 0 0 00802 0 000452 0 00240 0 0252 0 00491 0 0201	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 234 - 0 0593 - 0 0575 - 0 00575 - 0 00782 - 0 0534 - 0 0053 - 0 00208 - 0 0439 - 0 0439 - 0 0439 - 0 0493 - 0 0493 - 0 0493 - 0 0493 - 0 0493 - 0 0493 - 0 79 - 1 62 - 0 229 - 0 053 - 0 053 - 0 053 - 0 0150 - 0 053 - 0 0150 - 0 053 - 0 0150 - 0 0053 - 0 0150 - 0 0053 - 0 0150 - 0 0053 - 0 0050 - 0 0075 - 0 0050 - 0 0075 - 0 0050 - 0 0050 - 0 00050 - 0 000454 - 0 000454 - 0 000454 - 0 000454 - 0 000454 - 0 0029 - 0 0029 - 0 0029 - 0 0029 - 0 000454 - 0 000454 - 0 0029 - 0 79 - 1 62 - 0 279 - 0 270 - 0 2	0 138 0 283 0 00677 0 0077 0 111 0 111 0 118 0 111 0 0118 - 0 0179 - 0 0179 - 0 0179 - 0 0179 - 0 0172 0 342 0 244 0 00236 0 000258 0 00058 0 00058 00	4 15 0 21 0 150 - 0 0404 - 0 00962 - 0 131 0 0 0153 - 0 0310 0 0184 0 206 0 345 0 0102 0 000561 0 0299 0 00567 0 64 1 65 0 203 -	0 145 0 0368 0 00649 0 125 0 125 0 0153 0 0158 0 0158 0 0222 0 0428 0 0162 0 266 0 297 0 000454 0 0255 0 000454 0 0255 0 000454 0 0255 0 000454 0 0255 0 000454 0 0255 0 000454 0 0255 0 000454 0 0005 0 0005

Table A 3 STUDY OF 2500-LITER SPHERICAL REACTORS FUELED WITH METAL, OXIDE AND CARBIDE PLUTONIUM FUELS WITH DIFFERENT ISOTOPIC COMPOSITIONS OF PLUTONIUM

•

٠

^aThe figures of critical mass represent the critical mass of the two fissionable isotopes Pu²³⁹ and Pu²⁴¹ The values in parentheses give the total mass of all four plutonium isotopes, Pu²³⁹ Pu²⁴⁰ Pu²⁴¹ and Pu²⁴²

EFFECT OF VARIOUS STRUCTURAL MATERIALS ON PERFORMANCE OF 800-LITER PLUTONIUM-U²³⁸-METAL-FUELED REACTORS

Structu	ıral Material	F	e	Т	а	N	10	Z	ſr	N	Ъ		Ti		۷	
Ratio Fi Diluer Critica	uel Atoms to nt Atoms (Pu/U238) Mass of Fuel	0. 4	126 31	0.232 716		0. 152 502		0.122 415		0.149 494		0. 4:	125 25	0.1 45	136 56	
Flux In	tegrals															
Group	Energy Interval (Mev)	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.62 3.16 5.66 9.51 16.18 20.15 18.22 14.80 8.10 7.40 3.24 3.73 1.42 6.07 2.64 2.00	0.21 0.38 0.80 2.22 5.72 8.60 8.94 8.23 4.53 5.76 2.33 2.80 1.05 0.40 0.18 0.070	1.45 2.42 3.66 6.03 9.93 13.52 12.10 11.49 6.27 4.99 1.81 0.69 0.18 0.037 0.0070 0.0016	0.17 0.28 0.53 1.41 3.52 5.58 5.34 3.01 3.74 1.49 1.54 0.54 0.18 0.078 0.029	1.51 2.72 4.46 7.52 14.25 18.22 16.63 13.91 9.44 7.00 3.70 2.08 0.83 0.29 0.081 0.041	0.18 0.32 0.62 1.68 4.50 6.87 7.12 6.62 3.90 4.84 2.05 2.22 0.81 0.30 0.13 0.046	1.81 3.36 6.00 10.47 16.30 21.31 18.31 14.96 9.06 7.20 4.09 2.60 1.18 0.47 0.14 0.10	0.24 0.42 0.87 2.42 5.92 8.99 9.16 8.38 4.75 5.91 2.51 2.75 1.03 0.39 0.17 0.064	1.71 2.87 4.82 8.12 14.71 19.79 17.33 13.84 8.35 6.06 3.10 1.67 0.62 0.19 0.047 0.022	0.21 0.35 0.68 1.84 4.86 7.55 7.77 7.11 4.03 4.96 2.06 2.21 0.80 0.29 0.12 0.045	1.85 3.58 6.21 10.98 16.43 21.41 17.00 14.01 7.92 5.56 3.11 0.96 1.47 1.29 0.55 0.45	0.25 0.46 0.92 2.64 6.42 9.87 9.76 8.86 4.90 5.92 2.43 2.49 1.04 0.47 0.22 0.098	1.66 3.00 4.89 7.85 11.54 14.58 14.63 16.10 11.42 9.63 5.72 2.73 1.14 0.79 0.71 0.85	0.20 0.36 0.71 1.88 4.49 6.63 6.94 6.95 4.26 5.45 2.42 2.54 0.93 0.37 0.19 0.11	
Neutro	n Balance	2.00														
Pu239 Pu239 U238 U238 Coolant Structu	Fissions Captures Fissions Captures (Na) Captures Iral Captures	0.282 0.0532 0.0593 0.245 0.00144 0.0149	0.0214 0.364 0.000353 0.00637	0.299 0.0511 0.0390 0.133 0.000258 0.268	- 0.0152 0.224 0.000166 0.00401	0.292 0.0543 0.0478 0.211 0.000644 0.113	- 0.0173 0.296 0.0000670 0.00522	0.277 0.0503 0.0629 0.244 0.000949 0.0133	0.0236 0.373 0.000337 0.00659	0.282 0.0476 0.0520 0.194 0.000524 0.117	- 0.0192 0.308 0.000252 0.00548	0.274 0.0495 0.0654 0.235 0.00262 0.0102	- 0.0254 0.387 0.000425 0.00685	0.287 0.0640 0.0532 0.266 0.00320 0.0211	- 0.0196 0.325 0.000357 0.00563	
Interna Breed	al Breeding Ratio ing Ratio	0.7	3	0.38		0.6	1 6	0.7	'5 39	0.5) 1	0.7	3	0.76	5	
Ratio F	uel Captures to	0.1	.88	0.17	0	0.1	85	0.1		0.10	- 59	0.1	- 80	0.22	22	
Fuel I Escape	issions from Blanket	0.0	118	0.00	- 1757	0.0	0932	0.0	125	0.01	103	0.0	136	0.00		

WITH NIOBIUM AS THE STRUCTURAL MATERIAL IN THE CORE																			
Fuel		Metal		Oxide		Carbide		Metal		Oxide		Carbide		Metal		Oxide		Carbide	
Core Volume (liters)		800		800		800		1500		1500		1500		2500		2500		2500	
Ratio Fuel Atoms to Diluent Atoms (Pu/U238) Critical Mass of Fuel (kg)		0.149 494		0.452 462		0.283 480		0.128 809		0.362 739		0.238 788		0.117 1247		0.314 1109		0.2 117	09 8
Flux Integrals																			
Group	Energy Interval (Mev)	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket
1	3.668 -10.00	1.71	0.21	2.28	0.31	2.04	0.27	1.78	0.15	2,41	0.23	2.14	0.20	1.82	0.12	2.50	0.18	2.21	0.16
2	2,225 -3.668	2.87	0.35	3.86	0.51	3.49	0.45	2.97	0.26	4.06	0.38	3.65	0.34	3.04	0.20	4.20	0,30	3.75	0.26
3	1.35 -2.225	4.82	0.68	6.47	0.98	5.90	0.88	5.04	0.50	6.89	0.74	6.23	0.66	5.18	0.39	7.16	0.58	6.46	0.51
4	0.825 -1.35	8.12	1.84	9.01	2.34	8.78	2.21	8.63	1.37	9.69	1.77	9.40	1.66	8.96	1.06	10.14	1.39	9.83	1.29
5	0.5 -0.825	14.71	4.86	14.29	5.71	13.98	5.38	16.03	3.67	15.67	4.37	15.25	4.10	16.89	2.85	16.61	3.44	16.15	3.21
0	0.3 -0.5	19.79	1.55	18.2/	8.42	18.0/	8.02	22.13	5.18	20.48	0.52	20.15	0.18	23.72	4.55	22.03	5.1/	21.0/	4.89
1	0.18 -0.5	17.00	7.11	18.72	0.95	10.75	8.20 7.42	19.70	0.UZ 5.57	21.22	1.03	19.04	6.45	21.44	4.11	25.55	5.05 5.42	20.74	2.12
0	0.11 -0.16	9 25	1.11	19.00	5.00	4.00	1.05	0.12	3.20	10.70	0.70	10.52	2.61	10.71	4.42	16 33	3.42	13.95	4.0Z 2.06
10	0.007 -0.11	6.06	4.05	8 26	6.23	7 57	4. <i>)</i>) 5.60	7 36	3.95	14.20	4.14 5.10	8 98	J.01 4 47	8.09	3 16	11 92	4 21	10.50	3.68
10	0.025 -0.0407	3.10	2.06	5.17	2.76	4.78	2.47	3.90	1.67	6.73	2.31	5.87	2.01	4.37	1.34	7.98	1.94	7.03	1.68
12	0.015 -0.025	1.67	2.21	3.15	3.01	2.98	2.71	2.10	1.78	4.18	2.54	3.72	2.21	2.36	1.44	5.03	2.14	4.52	1.86
13	0.0091-0.015	0.62	0.80	1.47	1.15	1.44	1.04	0.79	0.65	2.02	0.98	1.85	0.86	0.90	0.52	2.48	0.84	2.29	0.73
14	0.0055-0.0091	0.19	0.29	0.62	0.44	0.63	0.40	0.25	0.23	0.87	0.38	0.83	0.34	0.29	0.19	1.09	0.33	1.04	0.29
15	0.0021-0.0055	0.047	0.12	0.20	0.19	0.21	0.18	0.062	0.099	0.29	0.17	0.28	0.15	0.070	0.080	0.37	0.14	0.35	0.13
16	0.0005-0.0021	0.022	0.044	0.13	0.071	0.14	0.66	0.030	0.035	0.20	0.062	0.19	0.055	0.035	0.028	0.26	0.054	0.25	0.048
Neutror	Balance																		
Pu239 Pu239 U238 U238 Coolant Structu Interna Breedi Ratio Fu	Fissions Captures Fissions Captures (Na) Captures ral Captures I Breeding Ratio ng Ratio rel Captures to	0.282 0.0476 0.0520 0.194 0.000524 0.117 0.59 1.55	- 0.0192 0.308 0.000252 0.00548 9	0.317 0.0620 0.0213 0.0796 0.00118 0.162 0.2 1.2	- 0.0276 0.387 0.000373 0.00677 1 3	0.306 0.0595 0.0321 0.122 0.00118 0.151 0.3 1.2	- 0.0247 0.353 0.000344 0.00618 3 9	0.284 0.0514 0.0551 0.240 0.000622 0.138 0.71 1.43	- 0.0141 0.243 0.000202 0.00431	0.314 0.0647 0.0241 0.102 0.00159 0.201 0.27 1.09	0.0208 0.314 0.000321 0.00546	0.304 0.0609 0.0351 0.148 0.00129 0.190 0.4 1.1	- 0.0185 0.281 0.000278 0.00490 11 7	0.283 0.0521 0.0572 0.266 0.000619 0.157 0.79 1.37	0.0109 0.195 0.000161 0.00345	0.313 0.0664 0.0259 0.120 0.00193 0.231 0.33 0.99	0.0162 0.258 0.000274 0.00446 2	0.302 0.0631 0.0371 0.172 0.00184 0.208 0.47 1.09	0.0143 0.229 0.00244 0.00397
Fuel F	issions	0.10	69 103	0.1	0.195		94 106	0.18	0	0.20)5)979	0.200		0.184		0.212		0.208	
Escape from Blanket		0.0103		0.0120		0.0106		0.00727		0.00878		0.00820		0.00529		0.00000		0.00298	

, , , ,

STUDY OF 800, 1500 AND 2500-LITER SPHERICAL REACTORS FUELED WITH METAL, OXIDE AND CARBIDE PLUTONIUM FUELS WITH NIOBIUM AS THE STRUCTURAL MATERIAL IN THE CORE

Table A-5

•

Table A-6 STUDY OF 800, 1500, AND 2500-LITER SPHERICAL REACTORS FUELED WITH METAL, OXIDE, AND CARBIDE PLUTONIUM FUELS WITH LEAD-BISMUTH EUTECTIC ALLOY AS COOLANT																			
Fuel	M	Metal		Oxide		Carbide		Metal		Oxide		Carbide		Metal		Oxide		bide	
Core Volume, (liters)	8	800		800		800		1500		1500		1500		2500		2500		2500	
Ratio: Fuel Atoms to Diluent Atoms (Pu/U ²³ Critical Mass of Fuel (k	B) 0. J) 4	0.118 403		0.294 337		0.200 363		0.099 642		0.223 508		0.160 564		0.088 962		0.187 730		138 28	
Flux Integrals Group Energy Interva (Mev)	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.24 2.83 5.58 11.37 22.34 23.71 20.64 15.22 7.64 7.72 2.55 3.20 1.05 0.41 0.27 0.027	0.13 0.28 0.64 2.19 6.74 9.21 9.22 7.99 4.15 5.63 1.96 2.43 0.85 0.30 0.18 0.020	1.53 3.79 7.77 13.19 22.20 23.74 19.12 12.60 11.83 5.38 7.07 3.46 1.93 2.21 0.56	0.17 0.38 0.91 2.72 7.60 10.04 10.58 9.54 5.35 7.28 2.70 3.59 1.40 0.58 0.47 0.065	1.41 3.43 6.98 12.70 21.27 20.40 16.32 10.76 10.20 4.83 5.95 3.02 1.70 1.60 0.54	0.16 0.34 0.82 2.59 7.20 9.59 9.67 8.55 4.74 6.42 2.39 3.12 1.21 0.50 0.38 0.058	1.27 2.91 5.82 12.22 25.05 27.24 24.31 18.29 9.31 9.74 3.28 4.30 1.45 0.59 0.41 0.043	0.094 0.20 0.47 1.63 5.18 7.30 6.40 3.35 4.59 1.61 2.03 0.72 0.26 0.15 0.017	1.58 3.94 8.25 14.39 25.06 25.98 28.36 23.52 15.93 15.56 7.29 10.15 5.22 3.03 3.84 1.10	0.13 0.28 0.67 2.05 5.88 7.86 8.47 7.76 4.43 6.12 2.31 3.18 1.28 0.55 0.55 0.50 0.073	1.45 3.55 7.37 13.81 23.88 25.16 23.96 19.59 13.21 12.93 6.28 8.09 4.27 2.50 2.51 0.94	0.11 0.25 0.61 1.96 5.55 7.48 7.66 6.86 3.85 5.28 1.99 2.67 1.07 0.46 0.37 0.060	1.29 2.97 5.97 12.79 26.94 29.78 27.02 20.60 10.59 11.31 3.86 5.20 1.78 0.74 0.54 0.058	0.072 0.15 0.36 1.27 4.10 5.73 5.88 5.20 2.74 3.77 1.33 1.69 0.60 0.22 0.13 0.014	1.61 4.04 8.56 15.19 27.08 28.47 31.81 26.91 18.55 18.58 8.87 12.81 6.79 4.06 5.48 1.70	0.095 0.21 0.52 1.60 4.65 6.27 6.85 6.36 3.68 5.13 1.96 2.76 1.14 0.51 0.51 0.49 0.076	1.48 3.63 7.62 14.55 25.71 27.47 26.58 22.05 15.08 15.06 7.44 9.86 5.33 3.20 3.35 1.33	0.087 0.192 0.47 1.52 4.39 5.96 6.16 5.56 3.16 4.36 1.66 2.26 0.92 0.41 0.34 0.059	
Neutron Balance Pu239 Fissions Pu239 Captures U238 Fissions U238 Captures Coolant Captures Structural Captures Internal Breeding Breeding Ratio Ratio Fuel Fuel Fissions	0.286 0.0495 0.0544 0.255 0.00396 0.0156 0.0156 0.077 1.7 0.1	- 0.0163 0.347 0.000697 0.00615 76 79	0.315 0.0687 0.0245 0.132 0.00511 0.0218 0.3 1.5 0.2	- 0.0225 0.451 0.000857 0.00771 35 22	0.305 0.0645 0.0352 0.184 0.00458 0.0194 0.50 1.59 0.21	- 0.0204 0.404 0.000778 0.00695	0.283 0.0514 0.0574 0.313 0.00465 0.0187 0.9 1.7 0.1	- 0.0119 0.279 0.000554 0.00493 3 6 81	0.313 0.0745 0.0723 0.185 0.00632 0.0276 0.4 1.4 0.2	0.0166 0.379 0.000701 0.00637 18 15	0.302 0.0687 0.0381 0.242 0.00551 0.0237 0.6 1.5 0.2	- 0.0150 0.332 0.000626 0.00564 5 4 26	0.282 0.0526 0.0593 0.357 0.00516 0.0209 1.0 1.7 0.1	- 0.00917 0.228 0.000449 0.00401 6 4 86	0.312 0.0787 0.0290 0.231 0.00731 0.0323 0.5% 1.40 0.25	- 0.0127 0.319 0.000578 0.00528	0.301 0.0716 0.0399 0.288 0.00622 0.0272 0.77 1.54 0.2	0.0115 0.274 0.000509 0.00461 7 0 37	

0.00831

0.00992

0.0115

0.0109

0.00684

Escape from Blanket

0.00766

0.00517

0.00624

0.00568

Fuel		Metal Oxide		ade	Carbide		Metal		Oxide		Carbide		Metal		Oxide		Carbide		
Core Volume (liters)		800 800		300	800		1500		1500		1500		2500		2500		2500		
Ratio Fuel Atoms to Diluent Atoms (Pu/U ²³⁸) Critical Mass of Fuel, (kg)		0 138 453		0 332 371		0 232 410		0 107 679		0 240 539		0 178 616		0 0909 968		0 194 755		0 149 890	
Flux Integrals																			
Group	Energy Interval (Mev)	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket	Core	Blanket
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 90 3 83 6 89 11 52 17 09 20 01 17 26 12 87 7 11 5 45 2 29 2 34 0 78 0 31 0 13 0 11	0 30 0 59 1 34 4 39 9 15 13 88 14 15 11 65 6 63 3 31 1 18 0 50 0 26 0 15	2 11 4 36 7 91 11 31 16 00 17 98 18 32 15 11 10 17 8 26 4 31 4 75 2 26 1 13 0 61 0 78	0 33 0 64 1 44 4 23 8 63 12 68 13 63 11 81 7 16 7 95 3 38 4 24 1 71 0 79 0 42 0 27	1 91 3 91 7 08 11 10 15 55 17 71 16 17 13 10 8 80 7 19 3 80 3 96 1 91 0 97 0 50 0 57	0 29 0 57 1 30 4 07 8 24 12 20 12 56 10 62 6 37 7 03 2 98 3 66 1 46 0 67 0 36 0 22	2 00 4 06 7 46 12 86 19 68 24 04 221 55 16 61 9 39 7 52 3 27 3 60 1 27 0 53 0 23 0 22	0 23 0 45 1 03 3 46 7 33 11 39 11 90 10 00 5 77 6 26 2 56 3 05 1 10 0 48 0 25 0 14	2 23 4 63 8 55 12 51 18 17 21 06 22 30 19 10 13 28 11 27 6 11 7 23 3 67 1 94 1 11 1 62	0 24 0 48 1 10 3 26 6 76 10 11 11 15 9 89 6 12 6 94 3 00 3 94 1 66 0 79 0 43 0 29	2 01 4 12 7 60 12 23 17 56 20 61 19 39 16 18 11 15 9 48 5 17 5 72 2 92 1 55 0 83 1 08	0 21 0 43 0 98 3 13 6 42 9 68 9 10 16 8 74 5 33 5 98 2 57 3 27 1 36 0 64 0 35 0 22	2 07 4 21 7 84 13 81 21 56 27 12 24 96 19 71 11 33 9 35 4 17 4 80 1 77 0 77 0 34 0 36	0 18 0 36 0 82 2 78 5 97 9 44 10 04 8 56 4 99 5 47 2 25 2 74 1 01 0 44 0 23 0 13	2 31 4 80 8 98 13 34 19 69 23 27 25 28 22 20 15 75 13 77 7 63 9 45 5 00 2 74 1 60 2 59	0 19 0 38 0 87 2 59 5 40 8 18 9 18 8 28 5 20 5 97 2 61 3 55 1 54 0 75 0 41 0 30	2 07 4 26 7 94 13 01 18 96 22 68 21 76 18 51 12 97 111 30 6 30 7 21 3 82 2 09 1 15 1 60	0 17 0 33 0 77 2 48 5 12 7 81 8 30 7 23 4 46 5 06 2 20 2 286 1 22 0 58 0 32 0 21
Neutron	Balance	011	010	078	0 21	100	0 22	0 22	0 14	1 02	0 29	1 08	0 22	0.00	015	2.54	0.0	100	0.21
U233 Fissions U233 Captures Thorium Fissions Thorium Captures Coolant (Na) Captures Structural Captures Internal Breeding Ratio Total Breeding Ratio Ratio Fuel Captures to Fuel Fissions		0 380 0 0322 0 00885 0 157 0 000876 0 0132 0 3 1 2 0 0	- 0 00414 0 377 0 000521 0 00905 8 9 847 264	0 385 0 0380 0 00550 0 115 0 00288 0 0168 0 2 1 2 0 0 0 0	0 00450 0 409 0 000788 0 00960 27 23 0986	0 383 0 0368 0 00782 0 161 0 00238 0 0150 0 3 1 2 0 0 0 0	0 00401 0 368 0 000678 0 00868 88 86 9962	0 380 0 0338 0 00972 0 208 0 00136 0 0169 0 5 1 2 0 0 0 0	0 00317 0 325 0 000486 0 00777 0 8 890	0 386 0 0411 0 00632 0 166 0 00498 0 0219 0 3 1 2 0 1	0 00340 0 353 0 000784 0 00818 9 21 .06	0 383 0 0392 0 00868 0 217 0 00382 0 0190 0 5 1 2 0 1	0 00301 0 309 0 000640 0 00723 2 4 02	0 380 0 0351 0 0102 0 252 0 00188 0 0200 0 6 1 2 0 0	0 00252 0 280 0 000444 0 00666 1 8 922	0 386 0 0433 0 00684 0 212 0 00709 0 0262 0 4 1 1 0 1	0 00267 0 303 0 000742 0 00695 9 9 12	0 383 0 0408 0 00923 0 264 0 00517 0 0221 0 6 1 2 0 1	0 00235 0 260 0 000582 0 00604 2 3 06
to Fuel Fissions Escape from Blanket		00	264	00	254	00)237	00	199	0 0	0187	00	173	0.0	155	00	143		0.0

Table A 7

· · · ·

• • •

STUDY OF 800, 1500 AND 2500 LITER SPHERICAL REACTORS FUELED WITH U²³³-THORIUM AS METAL OXIDE OR CARBIDE, HAVING STEEL STRUCTURE AND SODIUM CONTENT

· · · ·

REFERENCES

- S. Yiftah, D. Okrent, and P. A. Moldauer, <u>Fast Reactor Cross</u> Sections - A Study Leading to a 16-group Set, Pergamon Press (1960).
- W. B. Loewenstein and D. Okrent, <u>The Physics of Fast Power Reactors</u>, Proceedings of the Second United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, Vol. <u>12</u> 16 (1958).

1

- 3. S. A. Hasnain and D. Okrent, The Design and Management of Fast Reactor Blankets (to be published).
- 4. S. Jaye, L. L. Bennett, and M. P. Lietzke, <u>A Study of the Fuel Value</u> of Plutonium, ORNL-60-2-34, 49 (1960).
- 5. J. B. Nims and P. F. Zweifel, Sodium Temperature Coefficients in <u>Fast Reactors</u>, Trans. American Nuclear Society, Vol. <u>2</u>, No. 2 (1959); see also APDA-135.
- 6. D. Okrent, Proceedings of the Conference on the Physics of Breeding, ANL-6122 (1959).
- H. H. Hummel and A. L. Rago, <u>Calculation of Effect of Elastic</u> <u>Scattering by Light Elements in Fast Reactors</u>, Trans. American Nuclear Society, Vol. <u>3</u>, No. 1 (1960).

ACKNOWLEDGMENT

Considerable assistance in the numerical analysis of the results of the multigroup diffusion theory calculations was provided by Louis Kvitek.