ARGONNE NATIONAL LABORATORY
 9700 South Cass Avenue
 Argonne, Illinois 60439

THE EFFECTIVENESS OF CONTROL-ROD MATERIALS

by

H. P. Iskenderian

Reactor Physics Division

Abstract

LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implled, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract disseminates, or provides access to, any information pursuant with the Commission, or his employment with such contractor.

CRETI PRICRS '

H.C: $\$ 2.00 \cdot \mathrm{MN} \cdot 605$

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

Page
I. INTRODUCTION 5
II. THE REACTIVITY WORTH OF A CONTROL-ROD SLAB 6
A. Integration of Numerator in Eq. 5 7
B. Experimental Check of Method of Determining the Reactivity Worth of Control-rod Slabs 15
C. ZPR-1 Data. 19
D. GEAP-3201 Data 19
E. FPR-13 Data 20
F. FPR-11 and FPR-12 Data 21
G. Conclusions. 22
APPENDIX A.. Proof That Isotropic and Cosine Distributions of Incident Flux Are Attenuated Nearly Equally by a Heavy Absorber 24
APPENDIX B: Absorption of $1 / E$ Neutron Flux by a $1 / \mathrm{v}^{\mathrm{n}}$ Absorber ($n>0$) 25
ACKNOW LEDGMENT 28
REFERENCES 29

LIST OF FIGURES

No. Title Page

1. Neutron Flux Incident on Slab 6
2. $\quad F_{1}(y)$ Absorption of Neutrons Having a Maxwellian Distribution by a $1 / v$ Absorber 11
3. $\mathrm{F}_{2}(\mathrm{x})$ Absorption of Neutrons Hąving a l/E Distribution bya 1/v Absorber 11
4. $\beta(y)$ Neutron Depletion Factor. 12
5. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in ZPR-1 19
6. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in GEAP-320l Critical Assembly 20
7. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in FPR-13 21
8. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in FPR-11 22
9. $\cdot \delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in FPR-12 22
LIST OF TABLES
No. Title Page
I. $\overline{\phi_{\text {epi }}^{+}} / \overline{\phi_{\text {th }}^{+}}$in Central Region of Core for Various Critical Assemblies 14
II. Nuclear Data on Control-rod Materials Studied 15
III. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, Measured in ZPR-l 16
IV. Ratios of Calculated Effectiveness over Measured Reactivity Worths, Reported in GEAP-3201 for Various Poison Slabs. 16
V. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, Measured in FPR-l3 17
VI. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, Measured in FPR-ll 18
VII. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, Measured in FPR-l2 18

by

H. P. Iskenderian

I. INTRODUCTION

Considerable work has been done on the evaluation of the worth of control-rod materials. Some of this is listed in Refs. l-5.

References 1 and 2 describe a method of determining the "effectiveness" of control-rod materials, with experimental checks from the ZPR-1 critical assembly. The method consisted of the evaluation of the absorption integral for neutrons incident on a slab obeying the Breit-Wigner, single-level absorption characteristics. This report is an extension of Refs. 1 and 2 with some modifications and more detailed analysis, and greater verification of calculations with experimental data.

This report indicates that the "effectiveness" of an absorbing slab is proportional to its "reactivity worth," under some simplifying assumptions (which have facilitated the evaluation of the "effectiveness"). These assumptions are as follows:

1. The neutron flux has an isotropic distribution at the surface of the slab.
2. This incident neutron flux has a Maxwellian distribution at thermal energies and a l / E tail at epithermal energies.
3. The slab absorber obeys the single-level, Breit-Wigner law for absorption, with negligible scattering, and allowance is". made for overlap of resonance levels.

The above assumptions have facilitated the evaluation of the absorption integral. We deal with single-collision effects, resulting in a general depletion of neutron flux incident at the slab. The justification of these assumptions is as follows:
l. For a heavy absorbing slab, such as encountered in control-rod work, the isotropic P_{0} component and the cosine P_{1} component (or higher terms in the Legendre expansion of the neutron flux) are nearly equally attenuated by the absorber.
2. In our model of the neutron spectrum, we have neglected small scattering effects by the absorber, and assumed the thermal flux incident on the slab to be a depleted Maxwellian with a kT_{n} equal to that of the reactor core.
3. Neglect of scattering by the slab is expected to result in small effect, except for materials such as cobalt with $\Gamma_{\mathrm{n}} / \Gamma_{\gamma}$ near unity at its first resonance level of 132 eV . Ordinarily, this ratio is quite small at low-energy resonance levels of control-rod materials.

II. THE REACTIVITY WORTH OF A CONTROL-ROD SLAB

The reactivity loss due to the insertion of a poison slab in a reactor may be obtained from

$$
\begin{equation*}
-\delta \rho=\frac{\int_{\psi^{+} \delta \Sigma_{\mathrm{a}} \mathrm{P} \psi \mathrm{~d} \dot{\tau}}^{\int \dot{\psi}^{+} \chi \vee \Sigma_{\mathrm{f}} \psi \mathrm{~d} \tau}}{\frac{\mathrm{P}^{2}}{}} \tag{1}
\end{equation*}
$$

where the adjoints are nonperturbed, the real fluxes are the perturbed values of the fluxes, $\delta \Sigma \mathrm{P}$ refers to the poison slab, χ refers to fission spectrum, and $d \tau=d E d V$.

In Eq. l, the ψ 's have angular distributions of neutron velocity vectors $\psi(r, v, \mu)$ and satisfy Boltzmann's transport equation.

For a P_{1} approximation outside the slab, the directional fluxes incident to the slab surface will be (see Fig. l)

112-8164
Fig. 1. Neutron Flux Inci dent on Slab

$$
\begin{equation*}
\psi(\mu)=\frac{1}{2} \phi+\frac{3}{2} j \mu \quad \text { for } 0<\mu \leq 1 \tag{2}
\end{equation*}
$$

where' ϕ is the integrated over angle flux, and j is the net current into the slab from the adjacent media. These two terms of Eq. 2 represent also the isotropic P_{0} and cosine-dependent P_{1} components of the neution flux.

For strongly absorbing slabs, such as encountered in control-rod work, the attenuation of the P_{0} and P_{1} terms in the slab is nearly the same (see Appendix A). There should, therefore, result only small errors in assuming an isotropic distribution of neutron flux incident to the surface of the slab. Equation 3 may be justified also if we consider that the adjoints ψ^{+}of Eq. l are nearly space-isotropic, and hence, because of the
orthogonality properties of the Legendre's polynomials, we need to consider only the isotropic component of flux, $\phi(\mu)$. Equation 1 may be written, then, in the form

$$
\begin{equation*}
-\delta \rho=\frac{\int \phi^{+} \delta \Sigma_{\mathrm{a}}^{\mathrm{P}} \phi \mathrm{~d} \tau}{\int \phi^{+} \chi \nu \Sigma_{\mathbf{f}} \phi \mathrm{d} \tau} . \tag{3}
\end{equation*}
$$

Using matrix notation, and three-group theory, we can put Eq. 3 in the form

$$
-\delta \rho=\frac{\int_{\text {slab }}\left\{\left[\phi_{1}^{+} \phi_{2}^{+} \phi_{3}^{+}\right]\left[\begin{array}{ccc}
\delta \Sigma \mathrm{a}_{1} & 0 & 0 \tag{4}\\
0 & \delta \Sigma_{\mathrm{a}_{2}}^{\mathrm{P}} & 0 \\
0 & 0 & \delta \Sigma \mathrm{a}_{3}
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right]\right\} \mathrm{d} \tau}{\int_{\text {core }}\left\{\left[\phi_{1}^{+} \phi_{2}^{+} \phi_{3}^{+}\right]\left[\begin{array}{ccc}
0 & \chi_{1} \nu_{2} \Sigma_{\mathrm{f}_{2}} & \chi_{1} \nu_{3} \Sigma_{\mathrm{f}_{3}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right]\right\} \cdot \mathrm{d} \tau}
$$

We assume for the fast group $1, \Sigma_{a_{1}}=0, \chi_{2}=\chi_{3}=0$, and $\nu_{2}=\nu_{3}$. Equation 4 becomes; then,

$$
\begin{equation*}
-\delta \rho=\frac{\left.\overline{\phi_{2}^{+}}(\mathrm{slab}) \int_{\mathrm{Slab}} \delta \Sigma_{\mathrm{a}_{2} \phi_{2} \mathrm{~d} \tau+\bar{\phi}_{3}^{+}}^{\mathrm{P}} \mathrm{slab}\right) \int_{\text {slab }} \delta \Sigma_{\mathrm{a}_{3} \phi_{3}}^{\mathrm{P}} \mathrm{~d} \tau}{\overline{\phi_{1}^{+}}(\text {core }) \int_{\mathrm{core}} \chi_{1}\left(\nu \dot{\Sigma}_{\left.\mathrm{f}_{2} \phi_{2}+\nu \Sigma_{\mathrm{f}_{3} \phi_{3}}\right) \mathrm{d} \tau}\right.} \tag{5}
\end{equation*}
$$

where $\overline{\phi_{2}^{+}}$(slab) and $\overline{\phi_{3}^{+}}($slab $)$are defined as

$$
\overline{\dot{\phi}_{\mathrm{i}}^{+}}(\mathrm{slab})=\frac{\int_{\text {slab }} \phi_{\mathrm{i}}^{+} \delta \Sigma_{\mathrm{ai}}^{\mathrm{P}} \phi_{\mathrm{i}} \mathrm{~d} \tau}{\int_{\text {slab }} \delta \Sigma_{\mathrm{ai}}^{\mathrm{P} \phi_{\mathrm{i}} \mathrm{~d} \tau}}
$$

A. Integration of Numerator in Eq. 5

The integral expressions in the numerator of Eq. 5 may be determined from an evaluation of the absorption integral,

$$
\begin{aligned}
& A_{t}=N \int_{0}^{\infty} \int_{0}^{\mathrm{t}} \int_{0}^{1} \mu \phi(E, z, \mu) \sigma(E) \mathrm{e}^{-\mathrm{N} \sigma \mathrm{z} / \mu} \mathrm{d} \mu \frac{\mathrm{~d} z}{\mu} \mathrm{dE} \\
& \mathrm{~A}_{\mathrm{t}} \equiv \text { "effectiveness" of the rod, }
\end{aligned}
$$

where

$$
\mu \phi(E, \Omega) \mathrm{dE} \mathrm{~d} \Omega=\mu \phi(E, \mu) \mathrm{dE} \mathrm{~d} \mu
$$

denotes the number of neutrons contained in an element of solid angle $d \Omega$ with energies between E and $E+d E$, which cross at right angles a unit area of the slab, per second (see Fig. 1). The factor $e-N \sigma z / \mu$ denotes the number of these neutrons that penetrate the purely absorbing slab to a depth z, and the factor $N \sigma d z / \mu$ gives the number of neutrons absorbed in the layer dz .

In Eq. 6, scattering has been neglected, and depletion of incident neutrons allowed for by the use of depletion factors β_{i}, where i refers to energy group.

The integration of Eq. 6 is carried out for an isotropic spatial distribution of neutrons incident on a face of the slab, where the energy distribution of the neutrons is assumed to be Maxwellian with an appended $1 / E$ tail. That is,
where $k T_{n}$ refers to the most probable value of effective neutron energy for a Maxwellian distribution of neutron flux.

In Eq. 6, $\sigma_{a}(E)$ is assumed to obey (as already stated) the singlelevel Breit-Wigner law, ${ }^{6}$

$$
\begin{equation*}
\sigma_{\gamma}(E)=\pi \star^{2} g \frac{\Gamma_{\mathrm{n}} \Gamma_{\gamma}}{\left(E-E_{0}\right)^{2}+(\Gamma / 2)^{2}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda=\frac{\lambda}{2 \pi}, \\
& \lambda=\text { neutron wavelength }=\frac{2.86 \times 10^{-9}}{\sqrt{E}},
\end{aligned}
$$

and $\mathrm{g} ; \Gamma_{\mathrm{n}}, \Gamma_{\gamma}$, and E_{0} have their usual meanings.
At resonance energy E_{0},

$$
\begin{equation*}
\sigma_{\gamma}\left(E_{0}\right)=\frac{2.6 \times 10^{6}}{\sqrt{E_{0}}} \mathrm{~g} \frac{\Gamma_{\mathrm{n}}^{0} \Gamma_{\gamma}}{\Gamma^{2}} \text { barns } \tag{9}
\end{equation*}
$$

where

$$
\Gamma_{\mathrm{n}}^{0}=\Gamma_{\mathrm{n}} / \sqrt{\mathrm{E}} .
$$

For $\mathrm{E} \ll \mathrm{E}_{0}$, and $\Gamma \ll \mathrm{E}_{0}$, Eq. 8 yields

$$
\begin{equation*}
\sigma_{\gamma}(E)=\frac{0.65 \times 10^{6}}{E_{0}^{2}} \mathrm{~g} \frac{\Gamma \gamma \Gamma_{\mathrm{n}}^{0}}{\mathrm{E}^{1 / 2}} . \tag{10}
\end{equation*}
$$

For $E \gg E_{0}$, and $\Gamma \ll E_{0}$, similarly we obtain

$$
\begin{equation*}
\sigma_{\gamma}(E)=0.65 \times 10^{6} \mathrm{~g} \frac{\Gamma_{\gamma} \Gamma_{\mathrm{no}}}{E^{5 / 2}} . \tag{11}
\end{equation*}
$$

Since σ_{γ} varies rapidly with E, we use the modified form of the Breit-Wigner law; i.e.,

$$
\sigma_{\gamma}=\frac{\sigma_{0}}{1+x^{2}}
$$

where

$$
x=\frac{E-E_{0}}{\Gamma / 2},
$$

and

$$
\sigma_{0}=4 \pi \lambda_{0}^{2} \mathrm{~g} \frac{\Gamma_{\mathrm{n}} \Gamma_{\gamma}}{\Gamma^{2}}\left(\frac{E_{0}}{\mathrm{E}}\right)^{1 / 2} .
$$

The integral of Eq. 6 may be evaluated as the absorption of
a. Maxwellian flux by a $1 / \mathrm{V}$ absorber.
b. $\quad 1 / E$ flux by a $1 / V^{n}$ absorber, where $n>0$.
c. $\quad 1 / E$ flux by a resonance absorber.
J. Ernest Wilkins, Jr., (in 1946) integrated Eq. 6 and his work is assembled in Ref. 7. A few minor corrections are to be made in the latter report. Also, some of our results are different in form from those given in Ref. 7. Appendix B gives details of our calculations for the absorption of $1 / E$ neutron flux by a $1 / V^{n}$ absorber.

The evaluation of the integral of Eq. 6 for absorption of neutrons from both surfaces of the poison slab per unit area of a large slab yields (from Ref. 7 and Appendix B)
$A_{t}=\beta_{1} F_{1}(y)+C\left[\frac{\beta_{2} F_{2}(x)}{n}+\beta_{3} \frac{\sqrt{\pi}}{2} F_{3}(X) \cdot \sqrt{N t} \sum_{j} \sum_{i} \frac{\overline{C_{j} \sigma_{0}^{1 / 2}} \Gamma_{\gamma i j}}{E_{0 i j}}\right]$,
where

$$
\begin{aligned}
& \beta_{i} \text { 's are depletion factors of neutron flux incident on the slab, } \\
& y=N t \sigma_{a}\left(k T_{n}\right), x=N t \sigma_{a}\left(E_{1}\right) \text {, and } E_{1}=0.625 \mathrm{eV}, \\
& C_{j}= \\
& \\
& \text { the isotopic concentration and } j \text { refers to the number of } \\
& \text { isont, }
\end{aligned}
$$

and

$$
\begin{aligned}
F_{1}(y)= & \text { fraction of thermal neutrons incident on surface of slab, } \\
& \text { that is absorbed. }
\end{aligned}
$$

For large y
$F_{1}(y)=1-2.05\left(\frac{y}{2}\right)^{1 / 3} \exp \left[-3\left(\frac{y}{2}\right)^{2 / 3}\right]\left[1+\frac{5}{36}\left(\frac{y}{2}\right)^{2 / 3}-\frac{35}{2592}\left(\frac{y}{2}\right)^{4 / 3}\right] \ldots$.
For small y
$F_{1}(y)=\sqrt{\pi} y\left[1+\frac{y}{\sqrt{\pi}}(\ln y)\left(1+y^{2} / 12\right)+0.1307 y-\frac{y^{2}}{3}-0.006954 y^{3}\right]$

Figure 2 is a plot of $F_{1}(y)$ vs y.
$\frac{C F_{2}(x)}{n}=$ absorption of epithermal $1 / E$ flux by a $1 / V^{n}$ absorber ($\mathrm{n}>0$) (see Appendix B).

$$
F_{2}(x)=1.077+\ln x+E_{1}(x)-E_{3}(x)
$$

112-8166
Fig. 2. $F_{1}(y)$ Absorption of Neutrons Having a Maxwellian Distribution by a $1 / \mathrm{v}$ Absorber

Figure 3 is a plot of $F_{2}(x)$ vs x.

112-8165
Fig. 3. $\mathrm{F}_{2}(\mathrm{x})$ Absorption of Neutrons Having a 1/E Distribution by a $1 / \mathrm{v}$ Absorber
$\beta_{1}(y)$ is a function of $y ; \beta_{2}(x)\left(\alpha_{1}\right)$ is usually of little importance since $\beta_{2} \mathrm{~F}_{2}(\mathrm{x})$ is ordinarily small. $\beta_{3}(\mathrm{x})$ depends on strength of resonance. From practical considerations, the above depletion factors may be lumped into one, given by

$$
\overline{\beta(y)} \approx \frac{\beta_{1} F_{1}(y)+C\left[\beta_{2} F_{2}(x)+\beta_{3} 1.08 \sqrt{N t} \sum_{j} \sum_{i} \frac{\left.{\overline{C_{j}} \sigma_{0}^{1 / 2} \Gamma_{\gamma i j}}_{E_{0_{i j}}}\right]}{A_{t}},\right.}{}
$$

where $\overline{\beta(y)}$ may be obtained empirically (see Fig. 4).

112-8158 Rev. 1
Fig. 4. $\beta(y)$ Neutron Depletion Factor

$$
F_{3}(X)=\frac{4}{3}-\frac{1}{10 X}-\frac{3}{224 X^{2}} \approx \frac{4}{3} \text { for heavy resonance absorbers, }
$$

where

$$
\mathrm{X}=\frac{1}{2} \mathrm{~N} \sigma_{0} \mathrm{t} .
$$

The integral expression in the denominator of Eq. 5 may be put in the form

$$
\begin{equation*}
\nu\left(\bar{\Sigma}_{\mathrm{f}_{3}}+\frac{\overline{\phi_{2}}}{\bar{\phi}_{3}} \bar{\Sigma}_{\mathrm{f}_{2}}\right) \mathrm{V}_{\mathrm{c}} \bar{\phi}_{\text {(core })} \tag{13}
\end{equation*}
$$

where

$$
\bar{\Sigma}_{\mathrm{f}_{\mathrm{i}}}=\frac{\int_{\operatorname{core}} \phi_{\mathrm{i}} \Sigma_{\mathrm{f}} \mathrm{dV}}{\int_{\text {core }} \phi_{\mathrm{i}} \mathrm{dV}}
$$

and

$$
\bar{\phi}_{\mathrm{i}}=\frac{\int_{\text {core }} \phi d V}{\int_{\text {core }} d V}
$$

From Eqs. 6, 12 , and 13, it follows that

where

$$
\begin{aligned}
S_{\text {eff }}^{\text {slab }}= & \text { effective surface area of slab, allowing for variation of } \\
& \text { neutron flux in directions parallel to the surface of the } \\
& \text { slab, }
\end{aligned}
$$

and

$$
V_{c}=\text { volume of core. }
$$

For a given reactor with different absorbing slabs of the same dimensions, the quantity

$$
\begin{equation*}
\frac{\overline{\phi_{3}^{+}}(\text {slab })}{\overline{\phi_{1}^{+}}(\text {core })} \frac{S^{\text {slab }}{ }_{\text {eff }_{3,0}}}{\nu\left(\Sigma_{f_{3}}+\frac{\overline{\phi_{2}}}{\overline{\phi_{3}}} \Sigma_{f_{i}}\right) \vee_{c} \overline{\phi_{3}}(\text { core })}=\frac{1}{\mathrm{Z}} \tag{15}
\end{equation*}
$$

is a constant. It follows from Eqs. 14 and 15 that

$$
\begin{equation*}
\frac{\bar{\beta}\left\{F_{1}(\mathrm{y})+\left(\frac{\overline{\phi_{2}^{+}}}{\overline{\phi_{3}^{+}}}\right)_{(\mathrm{slab})} \mathrm{C}\left[\frac{F_{2}(\mathrm{x})}{\mathrm{n}}+1.18 \sqrt{\mathrm{Nt}} \sum_{j} \sum_{\mathrm{i}} \frac{\overline{\mathrm{C}_{\mathrm{j}} \sigma_{0_{i j}}^{1 / 2} \Gamma_{\gamma \mathrm{ij}}}}{\mathrm{E}_{0_{i j}}}\right]\right\}}{\delta \rho} \tag{16}
\end{equation*}
$$

is also nearly constant.
The ratio $\overline{\phi_{2}^{+}} / \overline{\phi_{3}^{+}}$has been evaluated for a number of thermal to intermediate reactors, at or near the axis of the reactor, and was ≈ 0.9 (see Table I). In the present work, this ratio is taken to be l.0. Equation 16 becomes, then,
$\frac{\bar{\beta}\left\{F_{1}(y)+C\left[\frac{F_{2}(x)}{n}+1.18 \sqrt{N t} \sum_{j} \sum_{i} \frac{\overline{C_{j} \sigma_{0_{i j}}^{1 / 2} \Gamma_{\gamma i j}}}{E_{0_{i j}}}\right]\right\}}{\delta \rho} \equiv \frac{\beta A_{t}}{\delta \rho} \simeq$ Const. Z,
where

$$
\begin{equation*}
A_{t}=F_{1}(y)+C\left[\frac{F_{2}(x)}{n}+1!18 \sqrt{N t} \sum_{j} \sum_{i} \frac{\bar{C}_{j} \sigma_{0_{i j}}^{1 / 2} \Gamma_{\gamma i j}}{E_{0_{i j}}}\right] \tag{17}
\end{equation*}
$$

$A_{t} \equiv$ "effectiveness" of the rod.
TABLE I. $\overline{\phi_{\text {epi }}^{+} / \overline{\phi_{\text {th }}^{+}} \text {in Central Region of }}$ Core for Various Critical Assemblies ${ }^{\text {a }}$

EBWR Loading with	Critical Assemblies ${ }^{\text {b }}$		
$\mathrm{Pu}+1$ or 2 Shim Zones	FPR-13	FPR-11	FPR-12
0.863	0.915	0.894	0.875

aThe above values refer to central region of the core and are nonperturbed values.
$\mathrm{b}_{\text {Adjoint }}$ flux data obtained using the MACH code and three-group crosssection data from KAPL-1961.4

The value of the constant, Z, is specific to a given reactor and depends on dimensions and location of the slab being tested in the reactor, as defined in Eq. 15.

It follows from the foregoing analysis that the worth of a control slab is proportional to $\bar{\beta} A_{t}$, or $\bar{\beta} \times$ effectiveness. A_{t} may be evaluated readily with the aid of curves $\mathrm{F}_{1}(\mathrm{y})$ and $\mathrm{F}_{2}(\mathrm{x})$ (Figs. 2 and 3) and crosssection data (see Table II).

TABLE II. Nuclear Data on Control-rod Materials Studied

Element	Nuclei/cm ${ }^{3}$	$\sigma_{a}(0.025 \mathrm{eV})$	$\sum_{j} \sum_{i} \frac{{\overline{C_{i j}}}_{\sigma_{0}^{1 j}}^{1 / 2} \Gamma_{\gamma i j}}{E_{0_{i j}}}$
Hf	0.0439×10^{24}	105	11.4 (c)
Au	0.0590×10^{24}	98.8	5.7
In	0.0382×10^{24}	196	10.7
Ag	0.0586×10^{24}	63	4.4
Co	0.0909×10^{24}	37	0.1
Eu ${ }^{(a)}$	0.0152×10^{24}	4300	17.8
$\mathrm{B}_{\text {Nat }}$	(b)	755	-
Cd	0.0438×10^{24}	2450	-

(a) N Eu obtained for density of $\mathrm{Eu}_{2} \mathrm{O}_{3}$ of $4.44 / \mathrm{gm} / \mathrm{cm}^{3}$; resonance data exclude resonance lines at 0.327 and 0.461 eV .
(b) $\mathrm{gm} / \mathrm{cm}^{2}$ data given in GEAP -3201^{3} and KAPL-1961 for each slab tested.
(c) Overlapping effect of resonance lines only $\sim 3 \%$ for slab thickness of 0.05 to 0.25 in .

It now remains to show that experimental data agree well with the above results on the basis of measurements obtained in a number of reactors.
B. Experimental Check of Method of Determining the Reactivity Worth of Control-rod Slabs

The simplicity of the absorption integral method of determining the rod worth makes it of practical value in determining the relative worth of control-rod materials for specific reactors.

Tables III-VII give the measured reactivity worth, $\delta \rho_{\text {meas }}^{\text {adj }}$, and calculated βA_{t} values and their ratio, $Z=\beta A_{t} / \delta \rho_{\text {meas }}^{\text {adj }}$, for a large number of slabs tested in water-moderated $Z P R-1$ and critical assembly described in GEAP-3201, ${ }^{3}$ and in three polyethylene-moderated critical assemblies described in KAPL-1961.4 The latter assemblies, FPR-13, FPR-11, and FPR-12, have values of

$$
C=\frac{\Sigma_{a}\left(k T_{n}\right)}{\xi \Sigma_{s}(\infty)}
$$

of 0.08 ., 0.396 and 0.71 , respectively. FPR-11 and FPR- 12 have loadings of intermediate reactors (with $\mathrm{N}^{H} / \mathrm{N}^{25}$ values of 54.6 and 30 , respectively) and should offer more of an acid test to the method used.

TABLE III. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, Measured in ZPR-1

(a) $\beta_{\text {eff }}=0.0075$.
(b) $\delta \rho_{\text {meas }}^{\text {adj }}=\delta_{\rho_{\text {meas }} \times \text { edge correctioń factor. }}$
${ }^{(c)} \beta$ refers to neutron-flux nondepletion factor at surface of poison slab.

TABLE IV. Ratios of Calculated Effectiveness over Measured Reactivity Worths, Reported in GEAP-3201 for Various Poison Slabs

Slab	Thickness, in.	Surface Density, $\mathrm{gm} / \mathrm{cm}^{2}$	(RW) corr $^{\text {(a) }}$	$y=\sum_{a}\left(k T_{n}\right) t$	$\beta^{(b)}$	At	βA_{1}	$Z=\frac{\beta A_{t}}{(\mathrm{RW})_{\text {corr }}}$
Hf	0.0250.0450.1030.2060.276	0.856	0.572	0.234	1.42	0.437	0.6205	1.084
		1.476	0.726	0.421	1.24	0.625	0.7744	1.067
		3.422	0.920	0.9642	1.115	0.883	0.9845	1.070
		6.833	1.051	1.9275	-1.050.	1.102	1.157	1.100
		9.175	1.106	2.582	1.025	1.191	1.220	1.103
$A u$	0.027	1.318	0.504	0.319	1.325	0.464	0.6178	1.095
	0.051	2.518	0.719	0.609	1.17	0.677	0.792	1.100
	0.101	4.926	0.868	1.192	1.10	0.871	0.959	1.103
	0.196	. 9.606	0.987	2.32	1.033	1.038	1.073	1.088
	0.297	14.531	1.038	3.52	1.00	1.142	:1.142	1.101
$\begin{gathered} B \\ \text { (B-glass) } \end{gathered}$	0.152	0.0335	0.7503	0.9706	1.115	0.778	0.8675	1.156
	0.101	0.0478 ;	0.8144	1.3847	1.082	0.866	0.938	1.152
	0.302	0.0664	0.8756	1.924	1.048	0.952	0.997	1.140
	0.200	0.0880	0.9282	2.5495	1.025	1.018	1.044	1.126
	0.275	0.1206	0.9728	3.494	1.00	1.079	1.079	1.110
	0.104	0.1575	1.0062	4.563	1.00	1.131	1.131	1.026
	0.206	-0.3026	1.0867	8.767	1.00	1.201	1.201	1.106
	0.290	0.4241	1.1326	12.287	1.00	1.235	1.235	1.090

TABLE IV (Contd.)

(a) Relative worth RW $=\left(\rho_{0}-\rho_{x}\right) /\left(\rho_{0}-\rho_{s t d}\right)$, with edge correction.
${ }^{(b)} \beta$ refers to neutron-flux nondepletion factor at surface of poison slab.

TABLE V. Ratios of Calculated Effectiveness over Measured Reactivity Worths of Various Poison Slabs, ${ }^{(a)}$ Measured in FPR-13.

Slab	Thickness, in.	Worth, dollars	$\begin{aligned} & \delta_{\text {pmeas }} \\ & \text { dollars } \times \beta_{\text {eff }}{ }^{(b)} \end{aligned}$	$\delta \rho_{\text {meas }}^{\text {adj }}(c)$	$y=\sum_{a}\left(k T_{n}\right) t$	$B^{(d)}$	A_{t}	$B A_{t}$	$z=\frac{\beta A_{t}}{\delta_{0}^{\text {adjeas }}}$
Hf	0.05	2.227	0.01703	0.01720	0.4935	1.20	0.6534	0.7841	45.6
	0.10	2.677	0.020479	0.020479	0.987	1.12	0.8648	0.9685	47.3
	0.15	2.968	0.022705	0.022470	1.480	1.075	0.9736	1.0467	46.6
	0.20	3.164	0.024204	0.023700	1.974	1.045	1.0760	1.124	47.4
	0.25	3.267	0.024992	0.02425	2.468	1.027	1.1382	1.1689	48.2
In	0.05	2.358	0.01804	0.01822	0.796	1.142	0.7584	0.8661	47.5
	0.10	2.781	0.02127	0.02127	1.592	1.067	0.9482	1.0117	47.5
	0.15	2.976	0.02276	0.02254	2.388	1.030	1.0534	1.0850	48.1
	0.20	3.117	0.0240	0.0235	3.184	1.008	1.1080	1.1168	47.5
$\mathrm{B}^{\text {Nat }}{ }^{(\mathrm{e})}$	0.10	2.442	0.01868	0.01868	1.2754	1.09	0.824	0.8981	48.0
Ag	0.05	1.881	0.01439	0.01453	0.3927	1.25	0.5461	0.6826	46.9
	0.10	2.423	0.018536	0.01853	0.7854	1.145	0.7435	0.8513	45.9
	0.15	2.711	0.02074	0.02053	1.1781	1.10	0.8596	0.9447	46.0
	0.20	2.922	0.02235	0.02191	1.5708	1.068	0.9374	1.0011	45.7
	0.25	3.066	0.02345	0.02283	1.9635	1.045	1.0002	1.0452	45.8
$\begin{aligned} & 13.85 \mathrm{w} / \mathrm{E} \mathrm{Eu}_{2} \mathrm{O}_{3} \\ & \text { in } \mathrm{SS} \end{aligned}$	0.10	2.789	0.02133	0.02133	3.2	1.00	1.039	1.039	48.7
							Average $Z=47.0$		
							Average Deviation $=\overline{\Delta Z}=0.8$ (1.8\%)		

[^0]TABLE VI. Ratios of Calculated Effectiveness over Measured Reactivity Worths
of Various Poison Slabs, ${ }^{\text {(a) }}$ Measured in FPR-11.

Şlab	Thickness, in.	Worth, dollars	$\stackrel{\delta_{\rho_{\text {meas }}}}{\text { dollars } \times \beta_{\text {eff }}(\mathrm{b})}$	$\delta_{\rho_{\text {meas }}}^{\text {adj }}(\mathrm{c})$	$y \doteq \sum_{a}\left(k T_{n}\right) t$	$\beta^{(d)}$	A_{t}	βA_{t}	$z=\frac{\beta A_{t}}{\delta_{p_{\text {meas }}}^{\text {adj }}}$
Hf:	0.05	1.040	0.008080	0.008161	0.4474	1.22	0.9648	1.177	144.2
.	0.10	1.378	0.01071	0.01071	0.8948	1.13	1.3696	1.5476	144.5
	0.15	. 1.576	0.01224	0.01212	1.342	1.085	1.623	1.761	145.2
	0.20	1.700	0.01320	0.0130	1.789	1.055	1.8405	1.9417	149.3
	0.25	1.815	0.01410	0.01373	2.3370	1.03	2.0227	2.085	152
In	0.05	1.005	0.00781	0.00789	0.725 .	1.15	1.034	1.191	151
	0.10	1.276	. 0.00991	$\because 0.00991$	1.45	1.075	1.362	1.464	147.6
	0.15	1.426	0.01108	0.01097	2.175	1.04	1.571	1.631	148.6
	0.20	1.535	0.01193	0.01157	2.90	1.015	1.719	1.745	150.8
$B^{\text {Nat }}$	0.10	0.950	0.00738	0.00738	1.306	1.09	0.990	1.0791	146.2
Ag	0.05	0:752	0.00584	0.00591	0.3583	1.25	0.7115	0.889	150
	0.10	1.065	0.00827	0.00827	0.716	1.155	1.0325	1.1925	144
	0.15	1.269	0.00986	. 0.00976	1.075	1.11	1.2408	1.3773	141
	0.20	1.433	0.01113	0.01091	1.433	1.083	1.394	1.5083	138
,	0.25	1.557	0.01210	0.01178	1.7915	1.055	1.5334	1.6177	137
$13.85 \mathrm{w} / \mathrm{E} \mathrm{Eu}_{2} \mathrm{O}_{3}$									
in SS	0.10	1:254	0.009743	0.009743	3.2	1.0	1.391	-1.391	145.2
							Average $Z=146$		
							Average Deviation $=\overline{\Delta \mathrm{Z}}=3.5$ (2.4\%)		

${ }^{(a)}$ Measurements data taken from KAPL-1961, ${ }^{4}$ for FPR-11 Critical Assembly.
(b) $\beta_{\text {eff }}=0.00777$.
(c) $\delta \rho_{\text {meas }}^{\text {adj }}=\delta_{\rho_{\text {meas }} \times \text { edge correction factor. }}$.
$\left.{ }^{(d)}\right)_{\beta}$ refers to neutron-flux nondepletion factor at surface of poison slab.
${ }^{(e)} 0.0368 \mathrm{gm} / \mathrm{cm}^{2}$ of $\mathrm{B}^{\mathrm{Nat}}$ in Al.

TABLE VII. Ratios of Calculated Effectiveness over Measured Reactivity Worths
of Various Poison Slabs, ${ }^{(a)}$ Measured in FPR-12.

${ }^{(a)}$ Measurements data taken from KAPL-1961, ${ }^{4}$ for FPR-12 Critical Assembly.
(b) $)_{\mathrm{Beff}}=0.0080$.
(c) $\delta_{\rho_{\text {meas }}^{\text {adj }}}=\delta_{\rho_{\text {meas }}} \times$ edge correction factor.
${ }^{(d)} \beta$ refers to neutron-flux nondepletion factor at surface of poison slab.
${ }^{(e)} 0.0368 \mathrm{gm} / \mathrm{cm}^{2}$ of $\mathrm{B}^{\mathrm{Nat}}$ in AI.

Our calculations of A_{t} do not allow for absorption by the edges of the slabs. Accordingly, measured reactivity data have been adjusted by the absorption-area technique.

To detect any possible errors in measured or calculated data, plots of $\delta \rho_{\text {meas }}$ and $\delta \rho_{\text {calc }}$ vs slab thickness were obtained. Values of $\delta \rho_{\text {calc }}$ were obtained (normalized) by making use of \bar{Z} values; i.e., $\delta \rho_{\text {calc }}=$ $\beta A_{t} / \bar{Z}$, where cross-section data used were obtained from BNL-325, ${ }^{6}$

$$
\bar{Z}=\frac{\sum_{i=1}^{n} z_{i}}{\text { number of slabs }=n} .
$$

C. ZPR-1 Data

These measurements have been reported previously. ${ }^{1,2}$
The average Z of 20 measurements on six slab materials was $\bar{Z}=$ 68.1 with an average deviation of $\overline{\Delta Z}=1.5(2.2 \%)$, and $\Delta Z_{\max }=6.3 \%$ (see Table III). Greater than average discrepancies occurred for cobalt slabs. This may have been due to anomalous scattering by cobalt; its first resonance at 132 eV has a $\Gamma_{\mathrm{n}} / \Gamma=0.92$. Resonance absorption in cobalt is not only small, but its scattering may actually result in reducing the worth of the rod. Figure 5 shows the $\delta \rho-v s-t h i c k n e s s$ characteristics of measured and calculated data.

112-8156
Fig. 5. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in $\mathrm{ZPR}-1$

D. GEAP-3201 Data

The measurements data were obtained from GEAP-3201. These are relative values referred to 0.20 -in. cadmium measurements, and
there is no need to correct them to absolute worth values, although this could be done readily if required. .

The average Z of 38 slabs for eight different slab materials was (see Table IV)

$$
\bar{Z}=1.126
$$

and

$$
\overline{\Delta \mathrm{Z}}=0.032(2.8 \%)
$$

with

$$
\Delta Z_{\max }=8.7 \% \text { for } \mathrm{Eu}_{2} \mathrm{O}_{3} .
$$

Figure 6 shows the $\delta \rho$-vs-thickness characteristics of calculated and measured.data for Hf, In, Au, Ag, and B.

112-8157
Fig. 6. $\delta \rho_{\text {calc }}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in GEAP-3201 Critical Assembly

E. FPR-13 Data

1
FPR-13 is a thermal reactor, hydrogen-moderated, with a neutron spectrum similar to the previous two reactors. The average Z of 16 measurements on six slab materials was (see Table V)

$$
\bar{Z}=47.0
$$

and

$$
\overline{\Delta \mathrm{Z}}=0.8(1.8 \%)
$$

with

$$
\Delta Z_{\max }=1.6(3.4 \%)
$$

Figure 7 shows the $\delta \rho$-vs-thickness characteristics of calculated and measured data for Hf, In, and Ag.

112-8154
Fig. 7. $\delta \rho_{\mathrm{calc}}$ and $\delta \rho_{\text {meas }}$ vs Slab Thickness in FPR-13
F. FPR-11 and FPR-12 Data

These critical assemblies are in the intermediate range with $\mathrm{N}^{\mathrm{H}} / \mathrm{N}^{25}$ ratios of ~ 55 and 30 , respectively. The absorption of epithermal neutrons may exceed those of thermals in the FPR-11 and FPR-12 by factors of 1.2 and 2 , respectively.

With such heavy absorption of epithermal neutrons; our results should offer a good test of the simple method used.

The average $Z, \overline{\Delta Z}$, and $\overline{\Delta Z}_{\max }$ of these critical assemblies are as follows (see also Tables VI and VII):

	FPR-11	FPR-12
$\overline{\mathrm{Z}}$	146	243
$\overline{\Delta Z}$	3.5 (2.4\%)	9.3 (3.8\%)
$\overline{\Delta Z}_{\max }$	8.2 (5.6\%)	16 (6.5\%)

Figures 8 and 9 show the measured and calculated slab worth-vsthickness characteristics in FPR-11 and FPR-12.

112-8155
Fig. 8. $\delta \rho_{\text {calc }}$ and $\delta \rho$ meas vs Slab Thickness in FPR-11

112-8153
Fig. 9. $\delta \rho$ calc and $\delta \rho_{\text {meas }}$ vs Slab Thickness in FPR-12

G. Conclusions

We have shown that the reactivity worth of a control-rod slab in a reactor is proportional to the "effectiveness," A_{t}, multiplied by β (y) under some simplifying assumptions. The factor $\beta(y)$ accounts for depletion of incident neutrons.

The effectiveness of a heavy absorber is defined as the absorption integral, A_{t}, of the poison slabs.

The constancy of the ratio, $\beta A_{t} / \delta \rho$, has been verified for a variety of slab materials tested in three thermal and two intermediate-range reactors.

To determine the relative effectiveness of a simple (or composite) slab material in a given reactor, we need to evaluate the following parameters (see Table II):

$$
\begin{aligned}
& y=N t \sigma_{a}\left(k T_{n}\right) \cdot t \text {, then obtain } F_{1}(y) \text { from Fig. } 2 ; \\
& x=N t \sigma_{a}\left(E_{1}\right) \text { (where } E_{1}=0.625 e V \text {), then obtain } F_{2}(x)
\end{aligned}
$$

from Fig. 3. We also obtain

$$
\sqrt{N t} \sum_{j} \sum_{i} \frac{{\overline{C_{j}} \sigma_{0}^{1 / 2}}_{1 / 2} \Gamma_{\gamma i j}}{E_{0_{i j}}}
$$

where i refers to different resonance lines of an isotope, and j refers to different isotopes of the rod material.

We evaluate also the constant,

$$
C=\frac{\sum_{\mathrm{a}}\left(\mathrm{k} \mathrm{~T}_{\mathrm{n}}\right)}{\overline{\xi \sum_{S}\left(E_{1}\right)}},
$$

where $\mathrm{E}_{1} \approx 0.625 \mathrm{eV}$. We compute now A_{t} the "effectiveness". with the aid of Eq. 12 and curves of Figs. 2 and 3. The reactivity worth of the rod is proportional to $\bar{\beta}(y) A_{t}$, where $\bar{\beta}(y)$ is obtained from Fig. 4.

APPENDIX A

Proof That Isotropic and Cosine Distributions of Incident Flux

Are Attenuated Nearly Equally by a Heavy Absorber.
The fraction of neutrons absorbed by a slab with $\Sigma_{a} t=y$, for an isotropic distribution of incident neutrons, neglecting scattering by the slab, is given by

$$
\mathrm{F}_{0}(\mathrm{y})=1-2 \int_{0}^{1} \mu \mathrm{e}^{-\mathrm{y}} / \mu \mathrm{d} \mu=1-2 \mathrm{E}_{3}(\mathrm{y})
$$

The capture fraction for a cosine distribution of incident flux is given (neglecting scattering by the slab, again) by

$$
F_{1}(y)=1-3 \int_{0}^{1} \mu^{2} \mathrm{e}-\mathrm{y} / \mu \mathrm{d} \mu=1-3 \mathrm{E}_{4}(\mathrm{y})
$$

Values of $F_{0}(y)$ and $F_{1}(y)$ as functions of y are as follows:

$y=\Sigma_{\text {a }}{ }^{\text {t }}$	0.5	1.0	1.5	2.0	2.5	3.0	3.5
$\mathrm{F}_{0}(\mathrm{y})=1-2 \mathrm{E}_{3}(\mathrm{y})$	0.557	0.7816	0.8865	0.9397	0.9674	0.9821	0.9901
$F_{1}(\mathrm{y})=1-3 \mathrm{E}_{4}(\mathrm{y})$	0.5044	0.7418	0.8620	0.9250	0.9587	0.9770	0.9811
$\mathrm{F}_{0}(\mathrm{y})$							
$\overline{F_{1}(y)}$	1.104	1.0536	1.0284	1.0158	1.009 .0	1.0052	1.0030

It follows from the above that for a heavy absorber, the capture fraction of the isotropic component of neutrons is nearly the same (within a few percent) as that for the cosine distribution of neutrons.

APPENDIX B

Absorption of $1 / E$ Neutron Flux by a $1 / \mathrm{v}^{\mathrm{n}}$ Absorber $(\mathrm{n}>0)$
The absorption integral becomes"

$$
\begin{equation*}
A_{e p i}=C N c_{o} \int_{0}^{1} \int_{0}^{t} \int_{v_{1}}^{\infty} v^{-n-1} e^{-N c_{o} z / \mu v^{n}} d v d z d \mu \tag{18}
\end{equation*}
$$

where $c_{0}=\sigma_{0} v_{0}$, and v_{0} and v_{1} are the neutron speed at 0.0253 eV and the top of thermal group, respectively. If we set $\mathrm{Nc}_{\mathrm{o}} \dot{z} / \mu=\alpha$ and $\mathrm{v}^{-\mathrm{n}}=\omega$, Eq. 18 becomes

$$
A_{e p i}=C N c_{o} \int_{0}^{1} d \mu \int_{0}^{t} d z \int_{v_{i}^{-n}}^{0} e^{-\alpha \omega} \frac{d \omega}{-n}
$$

Integrating over ω, the above integral becomes

$$
A_{e p i}=\operatorname{CNc}_{0} \int_{0}^{1} \int_{0}^{t} \frac{1}{\alpha n}\left(1-e^{-\alpha v_{1}^{-n}}\right) d z d \mu
$$

Setting $\beta=N c_{o} v_{1}^{-n}$, we obtain $\alpha v_{1}^{-n}=\beta(z / \mu)$ and $C N c_{o} / \alpha n=(C / n)(\mu / z)$. Now Aepi becomes

$$
\begin{equation*}
A_{e p i}=\frac{C}{n} \int_{0}^{1} d \mu \int_{0}^{t} \frac{\mu}{z}\left(1-e^{-\beta(z / \mu)}\right) d z \tag{19}
\end{equation*}
$$

Introduce now ζ as variable, $\zeta=\beta(z / \mu)$. Equation 19 becomes

$$
\begin{equation*}
A_{\mathrm{epi}}=\frac{\mathrm{C}}{\mathrm{n}} \int_{0}^{1} \mathrm{~d} \mu \int_{0}^{\mathrm{x} / \mu} \mu \zeta^{-1}\left(1-\mathrm{e}^{-\zeta}\right) \mathrm{d} \zeta \tag{20}
\end{equation*}
$$

where $x=\beta t$.
To evaluate Eq. 20, the order of integration is changed. The field of integration consists of two parts, as shown below in shaded areas.

We have

$$
\begin{align*}
A_{e p i} & =\frac{C}{n} \int_{0}^{1} d \mu \int_{0}^{x / \mu} \mu \zeta^{-1}\left(1-e^{-\zeta}\right) d \zeta \\
& =\frac{C}{n} \int_{0}^{x} d \zeta \int_{0}^{1} \mu \zeta^{-1}\left(1-e^{-\zeta}\right) d \mu+\int_{x}^{\infty} d \zeta \int_{0}^{x / \zeta} \mu \zeta^{-1}\left(1-e^{-\zeta}\right) d \mu \\
& \therefore \frac{C}{2 n}\left\{\int_{0}^{x} \zeta^{-1}\left(1-e^{-\zeta}\right) d \zeta+x^{2} \int_{x}^{-\infty} \zeta^{-3}\left(1-e^{-\zeta}\right) d \zeta\right\} \tag{21}
\end{align*}
$$

From MT-1, ${ }^{9}$ we have

$$
\begin{equation*}
E_{n}(x)=\int_{1}^{\infty} \zeta^{-n} e^{-\zeta x} d \zeta=x^{n-1} \int_{x}^{\infty} \zeta^{-n} e^{-\zeta} d \zeta \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \zeta^{-1}\left(1-e^{-\zeta}\right) d \zeta=E_{1}(1)+\gamma \tag{23}
\end{equation*}
$$

where $\gamma=$ Euler's constant $=0.5772$.
From Eqs. 22 and 23, the first integral in Eq. 21 becomes

$$
\begin{align*}
\int_{0}^{x} \zeta^{-1}\left(1-e^{-\zeta}\right) d \zeta & =\int_{0}^{1}\{ \}+\int_{1}^{\infty}\{ \}-\int_{x}^{\infty}\{ \} \\
& =\left[E_{1}(1)+\gamma\right]+\left[\left.\ln \zeta\right|_{1} ^{\infty}-E_{1}(1)\right]-\left[\left.\ln \zeta\right|_{x} ^{\infty}-E_{1}(x)\right] \\
& =\gamma+\ln x+E_{1}(x) . \tag{24}
\end{align*}
$$

Similarly, the second integral of Eq. 21 yields

$$
\begin{equation*}
\int_{x}^{\infty} \zeta^{-3}\left(1-e^{-\zeta}\right) d \zeta=\frac{1}{2 x^{2}}-x^{-2} E_{3}(x) \tag{25}
\end{equation*}
$$

From Eqs. 21, 24, and 25, . \therefore

$$
A_{e p i}=\frac{C}{n}\left\{\gamma+\ln x+E_{1}(x)+\frac{1}{2}-E_{3}(x)\right\}
$$

or

$$
\begin{equation*}
\mathrm{A}_{\mathrm{epi}}=\mathrm{CF}_{2}(\mathrm{x}) / \mathrm{n} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{2}(x)=1.0772+\ln x+E_{1}(x)=E_{3}(x) \tag{27}
\end{equation*}
$$

The absorption of $1 / E$ neutron flux by a $1 / v^{n}$ absorber (where $n>0$) is $(l / n)^{\text {th }}$ of that for a $1 / \mathrm{v}$ absorber.

ACKNOWLEDGMENT

The w.riter wishes to acknowledge the cooperation of Dr. S. Krasner for work done in the initial stages of evaluation work at Argonne National Laboratory (Oct 1951).

REFERENCES

1. H. P. Iskenderian, Theory and Experiments on Rods Containing Rare Earth Metals, TID-7532 (Pt.•1), Reactor Control Meeting, Los Angeles, Calif. (1957).
2. H. P. Iskenderian; Effectiveness of Control Rod Materials; Nucleonics, Nov 1957, pp. 150-154.
3. R. A. Becker and "J. L. Russell, Jr., ReZative Effectiveness of Reactor Control-Materials, GEAP-3201*(1959):
4. D. R. Bach and M. E. Way, The Worth of Single Control Rods in Hydrogenous Reactors, KAPL-1961 (1958).
5. A. F. Henry, A Theoretical Method for Determining the Worth of control Rods, WAPD-218 (1959).
6. D. J. Hughes and J. A. Harvey, Neutron Cross Sections, BNL-325 (July 1955).
7. J. E. Wilkins, Jr., The Activations of Thick Foils, CP-3581 (1946).
8. R. P. Gillespie, Integration, p. 37, Oliver and Boyd Interscience Publishers, Inc., New York (1947).
9. G. Placzek, The Functions $E_{n}(x)=\int_{1}^{\infty} e^{-x u} u^{-n} d x$, MT-1, National Research Council of Canada, Division of Atomic Energy, Chalk River, Ontario.

[^0]:
 (b) $)_{\mathrm{Beff}}=0.00765$.
 (c) $\delta_{p_{\text {meas }}}^{\text {adj }}=\delta_{p_{\text {meas }}} \times$ edge correction factor.
 $(d)_{\beta}$ refers to neutron-flux nondepletion factor at surface of poison slab.
 $\left.{ }^{(e)}\right)_{0.0368} \mathrm{gm} / \mathrm{cm}^{2}$ of $\mathrm{BNat}^{\mathrm{Nat}}$ in .

