1099

X

7 af a i

.
-~

> Bt

DECEMBER 1974 MATT-1099

NUMERICAL STUDY OF THE
MAGNETOHYDRODYNAMIC SPECTRA
IN TOKAMAKS USING GALERKIN'S
METHOD

BY

R. L. DEWAR, J. M. GREENE,
R. C« GRIMM AND J. L. JOHNSON

PLASMA PHYSICS
LABORATORY

S| VET |NOV. |-
TES|TA-
B MEN|[TUM | 8

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

This work was supported by U. S. Atomic Energy Commission Contract AT (11-1)-3073. Reproduction, transla-
tion, publication, use, and disposal, in whole or in part, by or for the United States Government is permitted.

By v Py T AR SRS O TAIN S IN T



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



5

" Numerical Study of the Magnetohydrodynamic Spectra

in Tokamaks Using Galerkin's Method

R. L. Dewar¥;, J. M. Greene,
R. C. Grimm, and J. L. Johnsont
Princeton University
Plasma Physics Laboratory

Princeton, New Jcrocy

NOTICE

This report was prepared ‘as an account of work
sponsored by the United States Government. Neither
the United States nor lhe Umled Slnlu Encrgy
and Dy nor any of
thw employees, nor any nl’ their  contractors,
or their ployces, makes any | -

warranty, express or implied, or assumes any legal
tiability or ity for the ’
or usefulness of any information, nppm(ux productor |
process disclosed, or represents that its use would not I
infringe privately owned rights,

Now at the Australian National University, Canberra, A.C.T.,

Australia. ' ’ )

+0n loan from Westinghouse Research Laboratories.

Submitted: .
32 pages of manuscript including references
3 tables :
1 page of figure captions
2 pages of symbols
4 figures

DISTRIBUTION OF THIS DOCUMENT UNLIMIT&D



Send galley proofs to:
| , J. L. Johnson :
Princeton University Plasma Physics Laboratory

P. O.. Box 451 ‘
Princeton, New Jersey 08540

|

"Running Title

MHD SPECTRA IN TOKAMAKS -



-3-
_ABSTRACT

A computational téchniéue is described-for de;erminiﬁg
the ideal magnetohydrqdynamic spectrum‘andlits assoéiated
eigenfunctions. The method is suitable for axisymmetric
toroidally confined plasmas with arbitrary cross sections.
Using the speéial case of a long, straight, elliptical plasma -
column with low pressure and uniform axial cq;rent whére analytic
results are available, a study is made of the efficacy of two
different choices of expaﬁsion functions. Thefuse of a finite-
element represenﬁation, keeping only a sméll number of terms,

is shown to provide a good description of the system.
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I. INTRODUCTION

Because of the renewéd'interest in tokamak configurations
with nohéircglar crqés seétions, it is essential that.cdmputa— .
tional techniques'be developed with which one can study the
magnetdhydrodynamic stability properties of the system. Although -
several such pfograms have been written [1-9] and have shown
promisevfor the study of specific configurations, it seems
apprbpriate and indeed probably necésséry for low-pressure
systems to construct éne in which the coordinate systeﬁ_ié
chosen to conform to the physical system. Here we descfibe such
a program and present a specific application to a simple configu-
ration where analytic results are available.[10] This provides
an excellent test for comparing different computational procedures
~against exact resulté. Further, it provides understanding of the v
spectrum for a system in which the coupling is relatively
complicated.

In Séction IT we formulate the model problem with sufficient
generality that it can be applied to nearly arbitrary axisymmetric
configurations. After posing the variational problem we introduce
our coordinate system and describe how_we project the displace-
mentAvectorﬂ We then discuss oﬁr choices of expansion functions
which reduce the problem to one of matrix diagonalizatioh.

In Section III we restrict ourselves to the special case of
a long, straight, uniform axial current carrying, low pressure
plasma column with an elliptic cross section, embedded in a
vacuum. This provides a reasonably good representation of a v
tokamak. We describe-the equilibrium. configuration and evaluate
expressions for the matrix eleménts. We compare finite-element.

with Fourier-Bessel expansions for this model.



The néture of the magnetohydrodynamic spectrum has been the
subject of considerable recent interest,[11-14] both because of
its‘usefulness in understanding fhe instability problem and
because of its relevance to the problem of heating a plasma.

One application of a code such aé this is to study this spectrum.
Such work is also useful, in the context of this paper, because

it prqvides a good meaéure of the efficacy of different techniques.
For this reason we provide in Section IV a discussion of the
behavior near a singular surface of the eigenfunctions associated
with the continuous spectrum.

We present some results for this model in Segtion V. We
study the rate of.convergence of the eigenvalues as a function
of‘the“number of expansion functions for both Fourier-Bessel and
finite-element expansion functions. We also investigate héw
well the two techniques describe thé behévior of an eigenfunction

of the continuous spectrum near the singular surface.

II. FQRMULATION
The problem of determining the magnetohydrodynamic. spectrum
of toroidal systems can be posed as that of finding estimates
of the eigenvalues Qz and eigenfunctions E that make the
Lagrangian

L = 0’k (E*,8) - ow(E*,?) (1)

stationary with respect to variations of {. Here Re[g(f) exp (-iwt)]

is the disglacement of a fluid element from its eqﬁilibrium

position f( and,sz and &W are the'kinetic and potential energy



functlonals [15]

2K = fp dt p[glz, : ’ ' S (2)

-+->‘
26W = fp dt[|Q-B 5

> Pk >
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-2 [ Vp & *k + yp|V-E

¥
()

. s
+/, art lyxa] <,
-> > - > :
with p the plasma density, Q = V x (£ x B) the perturbed magnetic
field, pa= (E/B).G(E/B) the local magnetic field line curvature,
Y the fatio af specific heats, and Z the perturbed‘vector poteﬁtial
in the vacuum region. The admissible vafiational functions are
those for which the diéplacement has a finite kinetic energy norm .
and the normal component of the perturbed magnetlc field is con-

tlnous at the plasma-vacuum 1nterface and vanishes at the vacuum

wall.

‘We adopt the Galerkin method: [16] 5 is appeox1mated by’ E(M)

linear superposition of M linearly independent'eXpansion functions

o d .
Q(M), viz.,
m' —

M M) 5 (M)

Zam @m.~"‘,‘(4>

m=1

After substltutlon of Eq. (4) into Eq. (1), variation with respect

to‘ame) leads to the matrix eigenvalue problem

M | 2 T ' - |
> [w Mo M g1 o M5 _co M* 5y o M >]a M 5 (s

m=lu ) m' o : m m' : m ‘m

(M) 2 (M) > (M)

for w and ay . We assume, without proof that g converges

to a solution of Eq. (1) in "the 11m1t as Moo, Thls is a
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reasonable assumption since we know from the work of Mikhlin [17,18]
that convergence will certainly. hold when §W is poéitiveb ﬁ
definite, -which it is when the plasma is stéble. Noté that
Rayleigh's principle [15] implies that, if lg - E(M) | is 0 (e ),
then w?- w(M)z is o(ez) where €+0 as Mr*w . This provi&es 1i££lé‘
help towards choosing the sets of expansion functions that ‘
optiﬁise convergence in a practical sense.

The E(M) that give the most répid'convergence are the
actual eigenfunctions of the system which,'of course, we do not
know. An obvious approach is to use the exact analytic eigen-
functions of a simpler but similar physical model. Usually,
this leads to a global expansion set: one in which the
(M)

support of all the ¢

n is the entire plasma volume. This

approach has been successfully applied. [1,3,19] There are some
objections to this attractive scheme. The‘firét is that it is
not very flekible; a considerable amouht'of effort is required
to findAa good comparison'SYStem.“ Of special relevance is the
treatment of localized modes which occur near singular magnetic
surfaces. Since these-are'pooriy représented by glbbal expansions:
with a relatively small nﬁmbef of terms, they hight affect the
accurécy of all the modes. A further practical difficulty
results from the extensiveAnumerical integration required to
evaluate the matrix elements. Since all the integrals extend
over the plasma volume and the higher eigenfunctions are
generally oscillatory, considerable care must be exercised to
avoid a rapid'deterioration of numerical accuracy as the set of
trial functions is inéréased.

-+
(M)'s is to use a finite-

An alternative way of choosing the Qm
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. . > M
element expansion: one in which the support of each-@é )

is
only a smali region in the plasma. This approach has also been
' useful. [2,8,9]1 At first sight, its most serious drawback appears
to be that one is forced to work with 1érge matrices. On the‘
'other hand, as the system being studied departs from the
comparison system it is by no means clear that more expansion
functions are required than in a global expansioh set.

Since our interest centers on axially symmetric configura-
tions, it is appropriéte to describe the equilibrium magnetic
field by

>

B=8 [£ (W) VoxVy+RrRg ) Vol (6)

Here the azimuthél angle ¢ is the ighorable coordinate and the
magnetic field lines form‘surfaces labeléd by constant values

of Y. The poloidal flux inside a éurface is given by |
27B,/fdy. The function g associated with the toroidal field
must depend on y alone so that the current lies in the magnetic
surfaces.

I£Ais obvious that ¢ should be used as a coordinate.

Since cufrent can flow freely along field lines, and fluid
can not cross them, it is clear that plasma behavior is quite
anisotropic. Mathematically, our equatiéns, are higﬁer‘order
in derivatives within magneti¢ surfaces than in derivatives
across them. To represent‘this with good numerical accuracy, it
seems necessary to use Yy as a coordinate. 1In this system ﬁhe'
plasma-vacuum interface is a coordinate surface.: fhis makes it
easy to use Green's function techniques to express the extremized
‘contribution to 8W from the vacuuﬁ region outside the plasma in

terms of the components of an arbitrary g-ﬁw on this surface.



It is not clear what one should choose to label the third
coordinate. Ohé obvious choice would be to construét an' orthogonal
system sé as to simplify the analysis. Unfortunately,_this
formal simplification doesn't guafantee'practical imérovement.

A second possible choice would be to determine the coordinate
© in such a way that the magnetic field lines are straight, so.
that
. > > > >
B*V = B-VO (3/3 O + q(y) 3/3¢)
since this particular operator enters the calculation in many

places. This choice makes the Jacobian

—
Hi

' <2 .
(VY x VO-V9) = == f =

where X is the distance from the majpf axis. Here we normalize
w_to-unity on the plasma-vacuum,inte;face. A third possibility
would be to choose © to make the Jacobian a function of ¢.alone.\
We adopt the idea associated with Eg. (7) since it provides a-
natural representation of the physics associated with behavior
near a closed magnetic field line and has proven useful for
many.appliéations.. For. the special éonfiguration discussed in
Section IIi, this also makes J a constant.

We now'consider the decomposition of the displacement
vector in the plasma region. Keeping in mind the fact that the
Lagrangian is diagonalized by the normal modes of the physical
system, we should choose components of the perturbations that
'reprgsent the polarizations of the various modes, at least in
the 16& pfessure,,long wave length limit that is reasénable for
present day devices. This is also'likely to be the mbst

troublesome regime, since the range between the highest and



lowest eigehvaldes.is moét exéégerated here. Ihdegd,:the
frequency range spans many orders of magnitude. Tﬁe'ioWest
frequenéy, or sound, modes consist of flow along the magnetic
field lines. The ne#t branch, that of shear-Alfven waves, has
a divergencefree motion perpendicular to the field.‘ The fast
magnetosonic mode is primarily due to this' perpendicular
compreséibilify. Since. the frequencies of these different

' bfanches can be widely separated, it is important to select
the representation so that evaluation of the spectrum does not

rely on cancellation of large terms for its accurate calculation.

The sound waves are well treated by the projection

e 2 s 2 : , .
& = g, /9R%B,) Vo x B + 1005 /9R%B) B x Fy+ i(/B B,
‘ (8)

while, at least in the long aneléngth limit, the shear Alfvéh

and compressional branches are decoupled by the transformation

£, =8 - 2m i 3g/30,
' (9)

13 2w 3g/3y.

s

We next consider the treatment of the vacuum region. We

see from Egs. (1) and (3) that the Lagrangian L is extremized

L2 + > > > > '
if VX (V*xA) = 0, or Vx A =1V x Taking the divergence of

-this latter expression, we find that

v2x = o | | (10)

Further, multiplying Eq. (10) by X and integrating over the

vacuum region, we see that



A 27 > - ;
ZSWv = -2ﬂfb doJx* V xVy - ' ' (11)

evaluated over the plasma-vacuum interface. The contribution

to &wW fréh the outer wall vanishes because the normal component
of the perturbed field must be zero there. Since this component
of the perturbed field is equal to-6°$w/|$w|2 on the interface,
the vacuum problem reauces to one of evaluating x (©) on this
bdundary. This is accomplished by writing a Greenfs function
solution of Eq. (10) which enables us to determine X in termsjof
QW on tﬁe interface. If toroidal effects are negligible, this

reduces to

1, . | | .
x () =5 f actxe) B BB - g gy L, (12)
‘ . on o 3n ..
-> -> L
where T E] r(s) - r(t) |, 9/9n is the normal derivative; and the

contour-iS“takén over both the piasma-vacuum interface and an
arbitrarily placed conducting wall.” Marder[20] used‘fhis-teéﬁnique
for straight systems with very longvperiodicity length such that
the Bessel function K, could be represented by a log function.‘

Now that we have chosen our coordinates and described'tﬁé
polarizations of our perturbations, it is appropriate to continue
the discussion of the Choiée<of the expansion-functioné'géM).v It
is convenient to use Fourier series in 0 and ¢.

> > >

E(r) = ), E (V) exp i(%0 - nd). 13

.Ro,n l,n
The different terms in n decouple and we can drop this subscript

accordingly. Obviously, we can not expect decoupling in 0. It
is useful to note, however, that if the configuration possesses

sufficient symmetry, modco with even and odd values of 2 do not
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couple and we can treat them separately. In the numerical work

it is essential to truncate the series in 2.

In this paper we discuss two ways .of representing the
¥ dependence} We choose for our global expansion functions
the eigenmodes of a straight plasma column with circular cross

. section and uniform current and density profiles. Thus we set

g, ) = Z Coam ,L‘M’ OF | (14)
where
M) _ yle)s2
%6 = Y ,
g = 3, . v, m=1.o 2700 M (15)

~ with jz'm the m'th root of Jos and with similar expressions for
14 . .

6, and T,. The Bessel functions are a complete set of functions .

R
'Jfﬁat'vanish on the boundary ¥=1. 1In a.circular pinch with constant
axial current and density, they can represent the infinite
set of degenérate Alfvén modes. The algebraic term mﬁst be
. -added to complete the representation of functions with arbitrary

boundary values. This term is the eigenfunction for a‘kink

mode in a circular system. We must omit the C0’0 térm which
.wquld not contributé to the kinetic or potential energy.

We use for our finite-element approach a tent function
expansion , | o

Sy _ v - -
® pom = MUy () DOy VHW=d V(=)

(=, 1V E (V=0 VH (3, me1 ™91 | (16)
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The Heaviside functions H(p) = (p+|p|)/2p make the &'s vanish

except bgtween the nodal points wm-l and wm+l' where .y = m/M

/2

The function T (V) is one when 2 is even and wl when & is odd.

This function is introduced. for the odd modes because the

~analytic work[10] indicates that cz(w) = O(wlzl/z) as Y»0. Thus .

it improves the representation. It is necessary to set %y 0
14

and 62 0 to zero to avoid an infinite kinetic energy. - An elegant
. ’

way of removing the singularity in K resulting from the addition

of an arbitrary constant to ¢ is to add the projection matrix

(M) * (M) . : ' ,
P(Pgr e ®om ) 5 S0 800 ' (17)
to K(® (M) * ¢ (M)) This project h 4 i i
g ,m'’ %,m . projects onto the one-dimensional

‘'subspace spanned by the = constant solution and, thus, does not

affect the true eigenmodes of‘the sysﬁem. It makes ﬁhe

problem ﬁeil defined.by'replaCing the kiﬁetic energy with a
positive defiﬁite matrix. It introduces a.spurioué eigenmode
at w?=g which proviaes a check on the numerical accuracy of the
calculation.i Equation (16) provides a good basis fof expansion

of the Ci'é andlﬁis in Eq. (14). However, it is useful to

intrbduce another set of expansion functions for the Tis. We

chose it to be

M) _ -
¢~£,m'* H_('w'_'wmsl)H(wm_w)' ‘ . ' . (18)

This is a reasongble choice because, unlike ;2 andf5£, there are

no ¢ derivatives of Ty e As With'many numerical problems, one
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can either use lowest-order interpolations. or higher-order
schemes. We have.choseﬁ the class with the lowest continuity
propertiesACOnsistent with a finite kinetic energy norm. |
. When either the global or the local expansion scheme is
substituted.into Eq. (1), we are led to the matrix problem of
Eq. (5). One might hope that when global expansion techniéues
\ :
are employed the matrices can be kept small such that standard
matrix eigenvalue‘schemes are satisfactory. The matrices can
be large, but sparse, when local expansions are made. Some
-‘progress has been made towards developing efficient techniques
for obtaining the—eigenvalues and eigenfunctionsiof large, -

sparse systems by Lagrangian reduction..[21]

III. APPLICATION
Our dispussioﬁ has been very.general until now. In order
to be specific, we restrict consideration'tb'a special éése
which is amenable to analytic treatment[10] and is therefére
' especially useful for testing the efficacyfof different-types
of expansipn functions. 'Results obtained frbmva generalization
of this mddel to include the'effects‘of pressuré gradients and

finite axial length are forthcoming. {22]

A. Model
‘We consider a cylindrical column with an elliptic cross

section confined in a uniform axial magnetic field B,, carrying

Ao apaninas S e L

a uniform axial current,Jz,'and embedded in a vacuum. For
simplicity, we assume that thé,plasma pressure is negligible, the
axial current is small, ‘and the periodicity length L is large.

4

Abmr— s s v et i e s i
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This is the usual representation of a tokamak configuration to

lowest order in the inverse aspect ratio. Thus, we assume that

(p/Bi) vz Bl_/ B, ~ a/L = e€<<l, where a measures the size of

the elliptic cross section of the plasma. We set
f (p) = bzazLJz/4nBo (b2+52) and g(y) = 1. Then, from the ;
condition that F =V x ﬁ, we find that, in the usual cartesién
coordinates, ¢ = xz/a2+yz/b2 inside the plasma. The natural
coordinate system (¢,0, z) is given by

X = awl/z cos 0, (19)

1/2

y = by sin ©O.

In this model

B -V = (kB /q) [0/30 + (g/k) 3/dz] ' (20)
and

J = baL/4m - < (21)
‘with k = 27/L and the safety factor q = ba/2f a constant throughout

 the plésma. .

Dewar gﬁ gl.[lO] showed that the frequencies of the magneto;
sonié wéves.are iarge, of orderAe_z, compared to those associatea
with kink modes and shear Alfvén waves. We set 62=0 to make-x
v -'El = 0 and thus eliminate the fast magnetosonic modes.. ;Weﬂalso

take Ty, = 0 to remove the sound waves. This reduces Eq. (1) to
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- MOIT oy, (B), Ty () ]
bal g~ %,

3. 2 | |
41°B : 2 1 .
p R 5 [y o
L w 0o . "Fo
a L ‘
| 1 o |
- (genq) (@'=na) [Tav Molz ), gy )]
0 - '
+ [ 2ona) (b%+a?)-[e] (-n@)® ba 1 |z, |2 62;2} (22)

with”

iM[c;.(w), cgw)’] (-bzfaz).[lPlCl wy|? + i—w,”z“"”z]»%-,g

22
(b"-a®)y )

=

"% [ ' o
ﬂ' CQ(IP) C 2; ("p) + W gln(‘p)] 62|’9'+2

EAS

11

2y

+ .
=

NI ok L' * : |

2 2 '
v ocalb "”g[cg(w)-

(23) .

Here w, = k B, / P a", where p_ = J

S = Ig plb) av, is a poloidal Alfvén

'fréquency and'primes denote derivatives with respect to y. The
last term in Eqg. (22) enters through Egq. (11) which can be
evaluated analytically in this model. The problem, then, is to .

" determine the functions Z, (¥) that extremize Eq. (22).

y
B. Expansioﬁ Functions

We first use the global expansion -functions defined in
Eq.‘(15). CIf the plasma denéity'as-well,as the axial cﬁrrent is
uniform_inside the plaSma, the integrals in.Eq. (22) can be |

evaluated analytically; thus
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~

1 . : .
. /0 dlp M [CQ;' (‘1’), Cz(lp) ] = mzm' az‘l ,ml le’ml'z ’m aﬂ/,m (24)
: R 7 .
where
2,2
~ (b“+a“) . 2 2 . _
MQ,',m',R,,m - [Jz,m J|IL|+1 (Jz,m) Gm',m (1 Gm,o)
+ 2|2|6m,,o dm,o] 62,',2,
(b2-a2) [ DI eIy om . |
3 (_2 __2 ) Jlg‘il_'_l (lelmu)
le’mu JSL,m _ .
J|z|+1 (jz,m) (l-Gm.,o) (l—ém’o)
2(8" | |2+1] ' : -
+ I H O (2+1) J|,Q.|+l (Jl,m) Gm',o (1 Gm,o)
- I
2! ‘ :
2(-1)" [o][e+1] o : _
* Jgv,me Ho(-2-1) Jll'l+1 (32',m') (1 6m',o) %m, 0
3 lm .2 ,. ' | ‘
+ [ sm,'o+ —— J0 (jl'm) (l-am.,o) ] Gm,’m 62'_1 }62,’“_2
2__2. (R'+1) 5 .3 '
(b ca ) A2 Al 72 Y PR
2 (32 - 52 |2 |+1 Y2 m
J%,m Jg‘l'ml) -
J|SZ,|+1 (JIL m) (l—sm',o) (l-am,o)
© 2] +1] 2] ,
+ — H(L'+1l) J : -
J.Q',m' ( ) IZ'I'*']. (J,Q,"m ) Gm',o) Gm,o
L
2(-L)7 ] | |a'+1].. -
+ 2 -L'= -
+ + ! J s - .
[ m,0 Yo Op,m -8, ) ] St m Sg0,-1 } Sor, -2 (25)
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with H (p) = (p+[p|) /2p. It is easily seen that M

A ) . 0,0,0,0
is zero, corresponding, as previously noted, to the fact that
one can add an arbitrary constant to ¢ in Eq. (9) without
changing £. Analytic expressions for the kinetic energy term
K cannot be found if the density varies and the integrals must
be evaluated nﬁmérically.

‘ Introducing the expansion functions of Eg. (16) leads to

matrik elements with

~ 2, 2 o
- (b™+a™) 2 (1) o (3) ,
Mev,m',2,m = = 4 <’L Pneom F 4 Pnen ) Ser g

2 2 ' : :
- (b -a ) [ (1) - [ . (2) ‘(2) ‘_ (3) 6
-8 < 2P ;e 22 Pymt * 2P0 4 Povom /) Lt ht2

2. 2 ' - _ '
- b7=a") [ 4% (1) o (2) (2) (3)\ s,, -
<z PP ot o2ete 00 - 24P - 4P > L', 8-2

8 - ' . ' m',m m',m
(26)
for even 2, with
W f1 ody o+
Pm',m “fo ﬂ)— q)zl’ml (‘p) (I)!Z,,m (\P)
_ . ' R . Y
= '{3[—2m+(m—1)21n ( m/(m—l)) +~(m+l)21n ((m+1)/m>fla .
. . _ ’ : J m (m
+ [ : (2m+1)- (m+1) 1 | '
> ‘ m (m+l) 1n ( (m+1) /m ) J 6m',m+1
+ [ > (2m-1) (m-1) 1 '. ’ |
e w0 (wimn) ] o)
X (1_6m'<o %m0 (1-6m',M S, 0
L+ = - - -
[ 7 G-20 + oD n (w/o 1))] S mt o Smom C en
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[Should one wish to include the trivial perturbation associated
(1)

m',m with m' or m

with Eq. (17), it is useful to note that P
"zero does not need consideration since it is always multiplied

. by 2'2 in Eq. (26).],

(2) fl '-,;;'W‘)“%,;n (V)
=1/2 (Gm',ﬁll -lsm';mfl) (i-ém,;o Gm,o) (l-Bm,’ﬁAém'M)
S /28, S+ L2688 ) (28)
and
2, O j AWy ) 8y o )
= [2me, o - 12 rene, - 172 (2mel) nt me |
* (=65 o Gm,o):(;-am',M~6m,M) o
+ 1/2 sm,’.o Spyo ¥ 1/2 (ML) 8, 8 | (29)
For odd & |
gﬂ,',m',ﬂ.,m _ ‘(b +a?) [ WP o (It) ¢ 20, @ 4 2q @

v aq, G ] s,
‘kbz-az) - 1
'—5—[(2+1)(21)Q(m)+2(21)Qm(2)

- 2(8 +l) Q (2) - (3)] 6 2+2

+ 2(2 -1) Qm ) ,_ (3) , 6 =2, (30)
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with
%t =/;1 3 e @) S @
- L { (8,0 o * Snv me1 * Sme me1) (0p0 o S o)
8 ‘I-Fm',M S, * 28,0 Sm0 * 2ot ,m 6m,M} ’ (31)
o, (2 -=fol % ay | a2 Ogr e 0))/aV | o )
= - %ﬁ { [zam’m'+ (3m+1)‘6m,,m+l -(3m-1) 6m',m—l] .
x (=8 o S0 I-8n m S,
/ + 8 o Su o - (ML) S 8y } , (32)
and

-1/2 * -1/2
(3) =fl Pay @ %oy, o)) AT e, ()
0 av v

1 2 _ 2 . a2
= §M‘[2(3m 1) 80 1= (BmPa3ml) S, Lo - (3mP-3mel) sm.'m_l]
X (1_6m',o Gm,o) (1-6m',M am,M)
+ 6 5 + (3M%-3M+1) & 5 . . (33)

m',0 m,o m',M m,M

IV SPECTRAL PROPERTIES
Although our major interest lies in detérmining the nature
of the unstable modes that are possible in a specific configura-
tion, it is worthwhile to investigate the full spectrum of the

system.
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Analytic determination of the spectrum is quite difficult
to accomplish in general. However, considerable understanding
of the nature and numbér of continuous and‘discrete spectra that
are present can be obtained from a study .of speciai cases. Here
we sketch such a calculation to indicate what should be expected.
Continuous spectra are characterized by eigenfunctions having
singular behavior somewhere inside the plésma. .For example, if
the métrix associated with terms with the highest derivative with
respect to ¥y in the Lagrangian has a vanishiﬁg determinant on

some surface inside the plasma, then the eigenfuctions can have

a local [1n (w-wo) + constant] behavior. At suchfpoints the consfént
can have an arbitrary finite discontinuiﬁy. This provides the
possibility of satisfying the boundary cénditions for a band of
eigenvalues and leads to.a continuous spectrum.

For definiteness, consider the model tréated in Sect. III.
We see from Eq. kéZ), or from Eq. (25) of Dewar et ‘al.,[10] that
the set of Euler-Lagrange equations that makes the Lagrangian,

Eq. (1), stationary can be written in the form
L (zy = 1¢'"" (W) + (T'+T/% + W/Y) ' ()
W' /204 X /803 Ty =0, o (34)

where primes denote derivatives with respect to ¥, T, W, and X are.
the infinite tridiagonal matrices

" T () = (Gl-l, 2F, cosh 2uo' G2+1)’

(-(2-1) Gy 0, (241) G

W) , “1‘) :
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2

X (¥) = ( 260G, _; +2(%-2) G,_, - 2L°F) cosh 2u_

14

Gy, (42 Gy ) (35)

and ¢ is the vector {Ci}.with % odd.
Clearly, the set of modes with & even can be treated

- similarly. As‘in the earlier work,[10]

. F

11

2 2, 2
% [ (z-ng) - f /P w, .],

@
n

| | -9 2
. [ (1+1-nq) (4-1-nq) - .pu /°owa'] .
and . | .

cosh 2u_ = (b2+a?) / (b%-a%).

Néte that T and X are symmetric mafricés and W is antisymmetric.
-WéAapproximaté this system by,workiﬁg with finite matrices of
‘order 2N+1.

We choosela w=ws andﬂw2 such that the determinant of
T éf(ws) is zero. This eigenvalue problem fo_r.w2 is equivalent

to the eigenvalue problem

: . 2
P _ 1 > 2 P s Pw % 2 ) ' -
[(3@ ing) |[V9|° (55 -inq) + —— [Vy| .] L' (Wg @) = 0 (36)
. _ : o%a ,
“when valz is expressed in the ¥,0 coordinate system of Sect. II.
AThe possible eigenvalues w2 form a continuum as ¢s'ranges from 0
to 1. |
The system of Egs. (34) is singular at y = w-ws=o, and we
seek solutions that vary as'yp. " We calcuiate‘the eigenvalues and
éigenvectors of To;

and arrange the counting so that Xo is the nondegenerate vanishing
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eigenvalue. For simplicity, we assume that (g T,' &) $#0. . The

. , _
modifications of the ensuing discussion that would otherwise be
necesséry are straightforward but tedious.

Introducing the prdjection'operator~'

so that.
‘P, E, =8 i Py g =0 k$ 0,
we can express [ 'in a series
r= 2  Too (39)
=0
where
- p+m-1 | p+m : ‘ N
T =Y P o +Y (;-Po) O (40)

m o 'm
with p to be determined and the o a set of vector constants.

Introducing Eq. (40) into Eq. (34) yields

pt+m-2 p+m-1

L (1) =Y H (p+m) o + O (v y (41)

where
H (p) = p(p-1) T_ + [(p-1)% T, ' + (p-1) W/ 1 P, (42)

Thus Eq. (34) 1is converted, by equating powers of Y, into a set

of equétions for'c:m in terms of S with n <m. In order‘ﬁhat w

these equations can be solved successively, it is necessary that

H (p) not have a vanishingideterminant.- This is the case, as can

be seen in the representation where To is diagonal, because we havé
assumed that-Aé is not degenerate, (Eo, To'go) F o, andee can observe

that (go, WEO) = O since W is antiSymmet:ic.
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The equation for do-is'homogeneous. In order for it to have

a solution, the determinant of H (p), which is proportional to

p2N (p~-1) 2N+2, must vanish. When p=0, Hoo =0 has 2N. independent

solutions that can be expressed as
0, = (1 Po) no | (43) |
where Uo’is an_arbitrary vector. When p=1, it has 2N+l independent

solutions _
Oy = Vg o - o (44)
‘ wi;h vy arbitrery. The remaining solution for p=1 is logarithmic;
it can be expressed as |
r =71 ln y + éé& Tﬁ, : | (45)

-

where 7 is the particular p=1l solution of Eq. (34) for which.36

satisfies :
. _—— . . .
dH(p) = _ oo, = _
5 |p=l _do e (T° + Vs ) Oy = Q- (46)
Thus ‘ -
C= g, In (b)) 0. (47)

' The natural condltlons for matchlng across the singularity are
that the 2N p=0 solutlons, the 2N p=1 solutlons orthogonal to E
and the loqar;thmlc.term‘should be qontlnuous, whlle the_p=llsolu-
tionvpropoftional to 36 ean_have en arbitrery jump,”sinCe ;he*
constant of proportionality may be_hidden by the logarithm. -This
providesAen extra:freedom'and permits wz tolbe an eigenvalne of
Eq;«(l)wregardiess of bonndary conditibns.l

uSinee the eigenfunetiendaSchiated witn Eqﬂ (47) is‘dominant'

near ¥y = Y, comparison of the behavior ef'the-different'COmponentse
Ci (in the G'dedompositiqn)lean previde a sﬁrong indication of how

well the numerical program determines the eigenfunctions.
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It is instructive to note that in this model there is only
one continuous spectrum which is associated with the'propagation
of shear Alfvén waves. The low-pressure assumption has caused
the sound branch to coalesce into an infinite degeneracy at”w2=0(
while the incompressibility cpndition has pushed the discrete
fast magnetosonic modes to-w2=9. Another relatively simple medel
is the diffuse linear pinch, in which the different modes in O
as well as in g decouple. " In this case the eigenvalue problem
associated with T, analogous to Eq. (36) , and including the

coupling to 6 and T, is

2 2.
2 2 1+T '
[ @-nq)? - &8 3 [ (2en?r - B2 GF) 3 2y ) =0 (a8
Po¥a 9 Poa 9
with~r'5 Yp/B . Following the general lines of the above calcu-.

iation, we see that there are two distinct continuous sgectra,
one'eorresponding to each of the two roots of.Eq. (48). This is

in agreement with the results of: Appert et a1 [23]. and. of others. [24]
We are at present developing programs that will 1llustrate these

contlnua in more complicated systems.

~ V. NUMERICAL RESULTS
The computer program as presently operating is applicable to

the special case described in Sect. III. Dewar et al.[10]. reported
the results of the study of the spectrum as a function of nq which
measures the net axial current inside the plasma for various'plesma
density distributions. 1In this paper we concentrate on the
convergence properties of the method, comparing eigenvalues and
eigenfunctions in—discrete and continuous branches of the spectrﬁm‘

for both global and local expansion functions.
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We first consider how the eigenvalue w2 varies as we
increase the number of ‘expansion functions. For constant
density elliptical equilibria, the results can be compared
directly with analytic solutions, [10] so that this case consti-
tutes a valuable nontrivial test of the numerical method. We
consider a system with ng = 1.5 and b/a = 2, suﬁh that the
configuration is unstable to the i = 2 kink mode. 1In Table I
we tabulate numerical estimates of the values of w2 for several
normal modes of the system versus the number of expansion
functions. The results of both the Fourier-Bessel expansion
of Egs. (15) and (25) and the finite elements of Egs. (16), (26),
and (30) are given, together with the analytiéal result. With
both expansions convergence to the correct result is rapid, good
accuracy being achieved over the entire spectrum considered with
very few terms. The rather special mode coupling demonstrated by
the analytic calculation for this constant dénsity case enables
an exceptionally good representation of the lower Fourier modes,
while as more modes couple when we consider higher mode numbers
the convergence is understandably slower. Of course truncation
of the Fourier series expansion will always lead to somewhat
incorrect values for the frequencies of those modes with(Z—numbersf
near the limits of the expansion. The number of Fourier élements
required will also depend on the value of b/a, and in generél
this must be determined empirically in much the same manner as
M ié. The accuracy with which the 2 = + 4 modes are obtained
from this calculation, which used a relatively large value of
b/a, gives us reasonable confidence in the efficacy of the

Fourier expansion.
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With a nonconstant density we lose the<particularly_convepj
ieat_decoupling symmetries that lead to the analytic solutlcns'“
and to the excellent agreement shown in Table I. 1In Table 2 we
compare the convergence of the ¢ = 2 klnk mode for a system: w1th

identical parameters to the previous case but with p(¥) = 1.2 - 0. 4¢

i.e. a roughly parabolic density profile. Again the
~convergence is excellent, good accuracy being obtained with six
terms in either expansion. The comparison of Table 2 ls typical’
of our experience with runs with different values of b/a, nq, and
p(y); viz, the global ekpansions show no significant improvement
1n convergence over the finite- element expansion for the non-
lgcallzed magnetohydrodynamlc modes. As 1ndlcated by the analytlc
work, this result no doubt has its oflgln in the coupling through )
<ellibticity to highly localized continuous Alfvén modes. As we
shall see 1atei,'the finite-element expansidn gives a fa; more -
satisfactory representation of these modes. Since-considerably
more computation is involved in the Fourier-Bessel expansion than
with finite elements for theisame ngmber of terms, this comparison
indicates that the latter_expansion is more desirable. ‘ ,

One feature that emerges from a cafeful study of»the results
is that the convergence can not always be described empirically
as O(Mp). In any given calculation the value of p neceséary to
fit the data differs from one mode to-another so that extreme.
care is necessary in trying to extrapolate to exact results.

To show how well ‘the elgenfunctlons are approx1mated we
show in Fig. 1 the k = 2 compOnent of (g - ¢c(1) ] for the

unstable kink mode discussed in Table 2 as a function of y for
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several values of M in a finite-element expansion set. This
representation is so good that in order to show anything we must
scale out the dominant ¥ behavior. Even so, the diffe:ence
between ten and twenty elements cannot be seen on thé figure.
Another ﬁseful way of viewing results is to present the
spectrum as a function of the number of terms in the expansion.
We do this in Fig. 2 for the system of Table 2. Note that, due
to the truncation of the expansion functions, the continuous
spectrum is approximated by a band of regularly distributed
eigenvalues. This band fills in as the number of e#pansion
functions is increased. It is interesting to observe how the
wg's converge towards the limit pointg of the various continua

branches. Analytic approximations to these limit points are
2

= Qz/pﬁ, where 92 is an
= +

eigenvalue of the matrix TO of Eq. (35) (see Fig. (1) of Dewar

clearly given by the relatiohsuw

et al.[10]) and p; are the minimum and maximum densities within
the plasma column. At M = 20 agreement to within one per cent is
achieved between the analytic and computed limit points. ‘
Another study of the effiéacy of the code can be made by
examining the eigenfunctions of the céntinuous speétrum in the
vicinity of a singularity of the matrix T of Eg. (35). As shown
in Eq. (47), the eigenfunctions should vary as Eo ln Iw?wsl where
ws is the location of the singu}arity and Eo is the assqciated
eigenfunction of TO. From-this itlcan be deduced that the jumps
in the derivatives of the different Fourier components (in 0) for

the nonconstant density case should be proportional to the

ratios of these components in the eigenfunction o for the constant
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dénsity case. To test how well this is satisfied, we consider

such a mode. in the system of Table 2. Several components of a
singular eigenfunétién, determined by means of a fini;e—element
expénsion, are shown in Fig. 3 for this case. For the calculated
eigenvalue the singularity should occur analyticélly at ws = 0.51,
and the derivatives.can be approximated by differencing. A compare

ison of the numerical results with the analytical predictions for

this‘case with M = 6 is given in Table III. An analogous result
using the FoﬁrierfBessel expansion, is also given. - The finite-
element expansion provideé a. somewhat better description of the
'eigenfunctions.' It is useful to observe that in general the .
agreement is improved as M is increased in the finite element.
technique (good accuracy is achieved with‘M': 10 as demonstrafed
"in the last column of Table‘III), since increasing the value of M
localizes the evaluation of the dérivative closer to the surface -
where the ln Iw-ws1 term is dominant. In the Fourier-Bessel
treatment, however, extreme care must be taken to avoid truncation
errors in the evaluation of the matrix elements as the number of
expansion functions is‘incréased,Awith the result that it is
 praéfica11y impossible to expect really good agreement with the
theory for localized modes. This obse:vation provides a strong
argument -for the use of a finite-eigmenf expansion. l

To indicate how well the eigenfunctions can be represented
by a finite~element expansion, we show in Fig. 4 the imaginary

>

- :
part of £+« V) for the configuration of Table 2.
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SUMMARY

Here we have described the formalism for a numerical
program to determine the complete spectrum of general
axisymmetric toroidal configurations. We have applied it to
é:special simple model, for which analytic results are
available,[lO] in order to compare the efficacy of global versus
local e#pansion techniques. Especially in the case where there
are continuous spectra, the adoption of a finite-element

expansion is shown to be superior.
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10

Exact

2=0 Alfven

BF
2.83555
2.84768

2.85000

' 2.85076

2.85108

2.85124

2.85133
2.85138
2.85142

FE

2.85150

2.85150

=33-
Table I
.- 2=2 Kink

BF . FE
-0.552768 - -0.552896
-0.552870. "
~-0.552881" "
-0.552892 . "
-0.552894 "
-0.552895 "
-0.552896 "
-0.552896 "

-0.552896 . "o

-0.552896

£=4 Kink

BF- FE
7.06215  7.19253
7.29600 . 7.30292
7.34408  7.33751
7.36067  7.35274
7.36800  7.36080
-7.37178  7.36558
17.37393  7.36865
7.37525  7.37074
7.37610  7.37223

7.37851

Values of mz”fbr a constant density elliptic plasma cblumn

with a/b = 0.5. Estimates are given for both globai (BF) and

. finite-element (FE) expansions as a function of the number (M)

of expansion functions.

Exact results from reference [10] are

'given for comparison. (64 bit precision)
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Values of wz
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Table II

BF
~0.593664
~0.594632
~0.594872
~0.594953
-0.594980

-0.595010

density profile. (32 bit precision)

2= 2 Kink

FE
-0.594428
-0.594793
-0.594921
-0.594985
-0.594993

-0.594980

for the case of Table I, but with parabolic
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Table III
2 A (T, )
L)
Computed Computed
M=6 ' Theory " M=10
FE ' ~ BF FE -
-4 0.0035 0.0017 0.0045 0.0042
-2 - =0.0209 -0.0168 -0.0213 -0.0210
0o . 0.1512 0.1312 0.1522 0.1444
2 1.0 1.0 1.0 1.0
4 . =0.0465 -0.0271 -0.0584 -0.0553
‘ Estimates of the jump in the derivative across the singular

surface (Yg=0.51) of various Fourier components, evaluated using

‘finite-element expansions, Bessel functions, and according to the

theory of Section IV. Parameters for this case are thé‘éémé as

those of Table II. Computed results for both expansions were

.evaluated with a set of 6 expaﬁsion functions.

finite elements are included for comparison.

Results with 10
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Symbols used and page where they first occur:

p.5 above Eq. (1)
g xi (1.c.) " ' "o

& delta (l.c.) | " . Eq. (1)
T tau (l.c.) : p.6 , Eq. (2)
p rho (l.c.) | 4 " "

/ integral

k  kappa (l.c.) " Eq. (3)
y gamma (l.c.) " "
V del | | " "
¢ phi (u.c.) . " above Eq. (4)
L  summation [ sigma (u.c.) ] | " ' Eq. (&)
<> this bracket must be kept ' " Eq.k(S)

inviolate with whatever is enclosed

bottom line

o infinity

> 3

> epsilon .7 1line 4

v psi (lL.c.) .8 Eq. (6)

¢ phi (l.c.) " "

0 theta (u.c.) .9 above Eq. (7)

d - partial " "

J script J " Eq. (7)
pi (1.c.) " "

4 zeta (l.c.) .10 Eq.ﬁ(9)

X chi (1.c.) " above Eq. (10)

2 script L (1l.c.) .11 Eq. (13)
upsilon (u.c.) .12 Eq. (16)
M (u.c.) with caret .17 Eq. (24)
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Symbols used and page where they first occur:

L script L (u.c.)
A lambda (l.c.)

o sigma (l.c.)

v upsilon (l.c.)
z zeta (l.c.) with bar
¢ sigma (l.c.) with bar

T - gamma (u.c;)

‘omega (u.c.)

> 2

- delta (u.c.)

-

p.21 Eq. (34)
P.22 Eq. (37)
P.23 Eq. (40)
p.24 Eq. (43)"

" Eq. (45)

above Eq. (46)
P.25 Eq. (48)

P.28 line 14

table III

All vector quantities, denoted by a superscript +,(E), shoﬁId be

set-in bold face.
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Fig. 1. The %=2 component of z(y) - Yz(l) as a
function of ¥ in an elliptic plasma column with
b/a = 2.0, g = 1.5, and p = 1.2 -0.4 ¢y, showing
rapidity of convergence as the number of finite
elements is increased.
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Fig. 3. The &=0, 2, 4 components of ¢ for a stable
mode in the shear Alfvén continuum for the configuration
of Fig. 1. The logarithmic singularity being studied
occurs annalytically at ws = 0.51. '
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