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·ABSTRACT 

A computational technique is described·for determining 

the ideal magnetohydrodynamic spectrum and its associated 

eigenfunctions. The method is suitable for axisynµnetric 

toroidally confined plasm.as wi "t:h arbitrary cr~ss sections. 

Using the special case of a long, straight, elliptical plasma · 

column with low pressure and_ uniform axial c~rrent where analyt_ic 

results are available, a study is made of the efficacy of two 

different choices of expansion functions. The use of a finite-

element representation, keeping only a small number of terms, 

is shown to provide a good description o.f the system. 
~ . . . . 



I. INTRODUCTION 

Because of the ren~wed interest in tokamak configurations 

with noncircular cros.s sections, it is essential that computa-

tional techniques be developed with which one can study the 

magnetohydrodynamic stability properties of the system. Although· 

several such programs have been written [1-9] and hav,e shown 

promise for the study of specific configurations, it seems 

appropriate and indeed probably necessary for low-pressure 
I 

systems to construct one in which the 'coordinate system_is 

chosen to conform to the physical system. Here we describe such 

a program and present .a specific application to a simple configu-

ration where analytic results are available.[10] This provides 

an excellent test for comparing dif f ererit computational procedures 

against exact results. Further~ it provides understand~ng of the 

spectrum for a system in which the coupling is relatively 

complicated. 

In Section II we formulate the model problem with sufficient 

generality that it can be applied to nearly arbitrary axisymmetric 

configurations. After posing the variational problem we introduce 

our coordinate system and describe how we project the displace-

ment vector. We then discuss our choices of expansion functions 

which reduce the problem to one of matrix diagonalization. 

In Section III we restrict ourselves to the special case of 

a long, straight, uniform axial current carrying, low pressure 

plasma column with an elliptic cross section, embedded in a 

vacuum. This provides a reasonably good representation of a 

tokamak. We describe.the equilibrium.configuration and evaluate 

expressions for the matrix elements. We compare finite-element 

with Fourier-Bessel expansions for this model. 

.. 

.. 
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The nature of the magnetohydrodynamic spectrum has been the 

subject of co.nsiderable recent interest, [11-14] both because of 

its usefulness in understanding the instability problem and 

because of its relevance to the problem of heating a plasma. 

One application of a code such as this is to study this spectrum. 

Such work is als·o useful, in the context of this paper, because 

it provides a good measure of the efficacy of different techniques. 

For this reason we provide in Section IV a discussion of the 

behavior near a singular surface of th~ eigenfunctions associated 

with the continuous spectrum. 

We present some results for this model in Section v·. We 

study the rate of convergence of the eigenvalues as a function 

of the .. number of expansion functions for both Fourier-Bessel and 

finite-element expansion functions. We also investigate how 

well th.e two techniques describe the behavior of an eigenfunction 

of the continuous spectrum near the singular surface. 

II. FORMULATION 

The problem of determining the magnetohydrodynamic. spectrum 

of toroidal systems can be posed as tha't of finding estimates 

of the eigeqvalues w2 and e.igenfunctions t that make t.he 

Lagrangian 

(1) 

stationary with respect to variations of S· Here Re[t(r) exp (-iwt)] 

is the displ~cement of a fluid element from its equilibrium 

position: r, and.w2K and oW are the kinetic and potential energy 



functic;>n~Js: [15.]. 

2K 

·+ + 
+ + ~·'ilp 

2ow = r P a-r c IO-:-B - 2-· 
B 

+ + +* + + + 2 
-2 t·'ilp t •K + YPl'il·~I ] 

+ + + + .. 

(2) 

with p the plasma density, Q - 'i7 x (~ x B) the perturbed magnetic 
+ + + + 

field, K = (B/B).'il(B/9) the local magnetic field line curvature, 
+ 

y the ratio of specific heats, and A the perturbed vector potential 

in the vacuum region. The admissible variational functions are 

those for which the displacement has a finite kinetic energy norm 

and the normal component of the perturbed magnetic field is con-

tinous at the plasma-vacuum interface and vanishes at the vacuum 

wall. 

·We adopt the Galerkin method: [16] t is appeoximated by t<M~a 
. 

linear superposition of M linearly independent expansion functions 

viz., 

+(M) 
~ = 

M 

L 
m = 1 

a 
m 

(M) 
(4) 

After substitution of Eq. (4) into Eq •. (1), variatiori with respect 

to a (M)* lea.as. to the matrix eigenvalue bl m' ~o ~ 

M 

[ w_ 
(M) 2 (M) * <P . (M) > - ( <P (M)*lowl >]am (Ml . I: <P IKI (M) < <P = 0 (5) 

m=l m I m I . m m . .. ... 

(M) 2 (M) + (M) for w and a . We assume, without proof, that ~ converges m 

to a solution of Eq. ( 1 )· in.the limit as M+oo~ This is a .· .. .: 
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reasonable assumption since we know from the work of Mikhlin [17,18] 

that convergence will certainly. hold when oW is positive 

definite, ·which it is when the plasma is stable. Note that 
·+- + (M) 

Rayleigh's principle[l5] implies that, if I~ - ~ I is O ( E), 

then w2- w(M)
2 

is 0(£ 2) where E+O as M+oo. This provides little 

help towards choosing the sets of expansion functions that 

optimise convergence in a practical sense. 

The ;<M) that give the most rapid_ convergence are the 

actual eigenfunctions of the system which, of course, we do not 

know. An obvious approach is to use the exact analytic eigen-

functions of a simpler but similar physical model. Usually, 

this leads 

support of 

to a global expansion set: one in which the 

all the ;(M) is the entire plasma volume. This 
.m 

approach has been successfully applied. [1,3,19] There are some 

objections to this attractive scheme. The first is that it is 

not very flexible; a considerable amount of effort is required 

to find a good comparison system ... Of special relevance is 'the 

treatment of localized modes which occur near singular magnetic 

surfaces. Since these -are poorly represented by global expansions. 

with a relatively small number of terms, they might affect the 

accuracy of all the modes. A furth~r practical difficuity 

results from the extensive numerical integration required to 

evaluate the matrix elements. Since all the integrals extend 

over the plasma volume and the higher eigenfunctions are 

'generally oscillatory, considerable care must be exercised to 

avoid a rapid deterioration of numerical accuracy as the set of 

trial func~ions is increased. 

An alternative way of choosing the ~(M) 's is to use a finite­m 
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element expansion: one· in which the support of each ;<M) is . m 

only a small region in the plasma. This approach has also been 

useful. [2,B,9'] At first sight, its most serious drawback appears 

to be that one is forced to work with large matrices. On the 

other hand, as the system being studied departs from the 

comparison. system it is by no means clear that more expansion 

functions are required than in a global expansion set. 

Since our interest centers on axially symmetric conf igura-

tions, it is appropriate to describe the equilibrium magnetic 

field by 

B = B [f (~) v ¢xv~+ R g (~) V¢]. 
0 

Here the azimuthal angle ¢ is the ignor~ble coordinate and the 

magnetic field lines form surfaces labeled by constant values 

of ~- The poloidal flux inside a surface is given by 

2:rrB0 ffdlji. The function g associated with the toroidal field 

(6) 

must depend on ~ alone so that the current lies in the magnetic 

surfaces. 

It is obvious that ¢ should be used as a coordinate. 

Since current can flow freely along field lines, and.fluid 

can not cross them, it is clear.that plasma behavior is quite 

anisotropic. Mathematically, our equations are higher order 

in derivatives within magnetic surf aces tl1an in derivatives 

across them. To represent this with good numerical. accuracy_, it 

seems necessary to use ljJ as a coordinate. In this system the 

plasma-vacuum interface is a coordinate surface. This makes it 

easy to use Green's function techniques to express. the extremized 

·contribution to 6W from the vacuum region outside the plasma in 

f f 
. + + 

terms o the components o an arbitrary ~-~~ on this surface. 

· •. 
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It is not clear what one should choose to label the third 

coordinate. One obvious choice would be to constru6t a·n · orthogonal 

system so as to simplify the analysis. Unfortunately,. this 

formal simplification doesn't guarantee practical improvement. 

A second possible choice would be to determine the coordinate 

e in such a way that the magnetic field lines are straight, so 

that 
+ + + + 
B·V' = B·Ve ca;a e + q(lji) a/a<P> 

since this particular operator enters the calculation in many 

places. This choice makes the Jacobian 

. + + + -1 x2 
J::: (Vlji ,x V0•V<I>) =. -

·47f2 (7) 

where xis the distance from the major axis .. Here we normalize 

ljJ to unity on the plasma-vacuum interface. A third possibility 

would be to choose 0 to make the Jacobian a functibn of ljJ alone. 

We adopt the idea associated with Eq. (7) since it provides a· 

natural representation of the physics associated with behavior 

near a closed mag~etic field line and has proven useful for 

many applications •. For the special configuration discussed in 

Section III, this also makes J a constant. 

We now consider the decompo.si tion of the displacement 

vector in the plasma region. Keeping in mind the fact that the 

Lagrangian is diagonalized by the normal modes of the physical 

system, we should choose components of the perturbations that 

represent the polarizations of the various modes, at least in 

the low pressure, long wave length limit that is reas.onable for 

present day devices. This is also likely to be the most 

troublesome regime, since the range between the highest and 



lowest eigenvalu_es .is most exaggrerated here. Indeed, _the 

frequency range spans many orders of magnitude. The lowest 

frequency, or sound, modes consist of flow along the magnetic 

field lines. The next branch, that of shear-Alfven waves, _has 

a divergencefree motion perpendicular to the field. The fast 

magnetosonic mode is primarily due to this' perpendic~lar 

compressibility. Since.the frequencies of these diffe~ent 

branches ,can be widely separated, it is.important to se.lect 

the representation so that evaluation of the spectrum does not 

rely on cancellation of larg.e terms for its accurate calculation. 

The sound waves are well treated by the projection 

(8) 
.... 

while, at least in the long wavelength limit, the shear Alfven 

and compressional branches are decoupled by the transformation 

We next consider the treatment of the vacuum region. We 

see from Eqs.(l) and (3) that the Lagrangian Lis extremized 
-+ -+ -+ -+ -+ -+ 

if V x (V x A) = O, or V x A = V x. Taking the divergence of 

·this latter expression, we find that 

Further, multiplying Eq. (10) by x and integrating over the 

vacuum region, we see that 

(9) 

(10)' 

>;· .~· ~ ~l 
·' 

• 



2 + + 
-2n[ TI d01X* V X'Vl/J 

0 
(11) 

evaluated over the plasma-vacuum interface. The contribution 

to cSW from the outer wall vanishes because the nortnal component 

of the perturbed field must be zero there. Since this component 
+ + + 2 . 

of the perturbed field is equal to Q•V'l/J/I V'l/J I on the 1n.terface, 

the vacuum problem reduces to one of evaluating X.(0) on this 

boundary. This is accomplished by wri tin_g a Green.' s function 

solution of Eq. (10) which enables us to ·determine x in terms of 

Ql/J on the interface. If toroidal effects are negligible, this 

reduces to 
l ' 

x (s) =TI:/". dt[x(t) a~g (kr) - Ko(kr) ax Ct>. 
an 1 ' (12) 

+ -+ 
wher-e r ::I r(s) - r(t) I, a;an is the normal. derivative; and the 

contour is· taken over both the plasma-vacuum interface and an 

arbifrarily placed conducting wall.· Marder[20] used this tec&nique 

for straight systems with very long periodicity length such that 

the Bessel function K
0 

could be represented by a log function. 

Now that we have chosen our coordinates and described ·the 

polarizations of our perturbations, it is appropriate to continue 

the discussion of the choice of the expansion functions. :; (M) . It . m 

is convenient to use Fourier series in 0 and .•• · 

+ + 
~ <r> = L 

Q. 'n 

-+ 
~ (l/J) exp i(Q.0 - n~). 

Q., n 
(13) 

The different terms in n decouple and we can drop this subscript 

accordingly. Obviously, we can not expect decoupling in 0. It 

is useful to note, however, that if the configuration possesses 

sufficient symmetry, modco with even and oclcl values of .t do.not 
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couple and we can treat them separately. In the numerical work 

it is essential to truncate the series in i. 

In this paper we discuss two ways of representing the 

$ dependence~ We choose for our global expansion functions 

the eigerunodes of a straight plasma column with circular cross 

section and uniform current and density profiles. Thus we set 

where 

M 

r,;1 cw> = E r,; 1,m qi1!:> <w>, 

qi (M) 
R,' 0 

(M) 
~,m 

= 

= 

m=o 

' 

Jn (j ljJl/2) 
JV i ,m . . ' 

(14) 

m= 1, 2,···, M . (15) 

with ji,m the m'th root of J 1 , and with similar expressions for 

o
1 

and Ti· The Bessel functions are a complete_ set of functions 

t:P,at van~sh on the boundary l/J=l. In a circular pinch with cons·tant 

axial current and density, they can represent.the infinite 

set of degenerate Alfven modes. The algebraic term must be 

added to complete the representation of functions with arbitrary 

boundary values. This term is the eigenfunction for a kink 

mode in a circular system.· We must omit the r,; 0 , 0 term which 

would not contribute to the kinetic or potential energy. 

We use for our finite~element approach a tent function 

expansion 

qi (M) = 
i,.m 

(16) 
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The Heaviside functions H (p) = (p+ Ip I) /2p make the .IP' s yani:sh. 

except between the nodal .points ~m-l and ~m+l' where.~m = m/M 

1/2 h. n ' dd The function TJl (~) is one when Jl is even and ~ w en N is o. • 

This function is introduced for the odd modes because the 

analytic work[lO] indicates that z;Jl(~) = oc~IR.l/2 ) ·as ~70. Thus 

it improves the representation. It is necessary to set z;Jl,O · 

and o to zero to avoid an infinite kinetic energy. An.elegant 
. Jl, 0 

way of removing the singularity in K resulting from the add_ition 

of an arbitrary constant to z; is to add the projection matrix 

(M) * q, (M) 
p (tJ.e,' ,m':' n 

. (M) * 
to K (~ n, i' 

¥.. ,ffi 

¥.. ,m 

~ (M)). This projects onto the one-dimensional . Jl ,m 

(17) 

·subspace spanned by the ~= constant solution and, thus, does not 

affect the true eigenrnodes of the system. It makes the 

problem well defined by repla.cing the kinetic energy with a 

positive definite matrix. It introduces a spurious eigenrnode 
? 

at w'"'=o which provides a check on the numerical accuracy of the 

calculation. Equation (16) provides a good basis for expansion 

of the z; Jl ··s and. o;, s in Eq. (14). However, it is useful to 

introduce another set.of ~xpansion functions for the Ti,s· We 

chose it to be 

.(M) - . 
~ n - H (IP. 4 1 > H (~ -~) • ··N,m m- m ( 1.8) 

This is a reasonable choice. because, _unlike z;Jl and :·&-i, there are 
• l • • .• ~. •• • 

no ~ derivatives of TJl. As with many numerical problems, one 
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can either use lowest-order interpolat~ons or higher-order 

schemes. We have chosen the class with the lowest continuity 

properties consistent with a finite kinetic energy norm. 

When either the global or the local expansion scheme is 

substituted into Eq. (1), we are led to the matrix problem of 

Eq. (5). One might hope that when global expansion techniques 
\ 

are employed the matrices can be kept small such that standard 

matrix eigenvalue schemes are satisfactory. The matrices can 

be large, but sparse, when local expansions are made. Some 

progress has been made towards developing efficient techniques 

for obtaining the eigenvalues and eigenfunctions of large, · 

sparse systems by Lagrangian reduction .. [21] 

III. APPLICATION 

Our discussion has been very general until now. In order 

to be specific, we restrict considerat.ion to a special case 

which ·is amenable to analytic treatment[lO] and is therefore 

especially useful for testing the efficacy of different types 

of ex):>ansion functions. Results obtained from a generalization 

of this model to include the· effects of pressure gradients and 

finite axial length are forthcoming.{22] 

A. Model 

We consider a cylindrical column with an elliptic cross 

section confined in a uniform axial magnetic field Bz' carrying 

a uniform axial current .J z' · and embedded in a vacuum.. For 

simplicity, we assume that the. plasma pressure is negligible, the 

axial current is small, ·and the periodicity length L is large. 

j 

,. 
i 

! 
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This is the usual representation of a tokamak configuration to 

lowest order in the inverse aspect ratio. Thus, we assume that 

(p/B2 ) 112 _ B.1. / B - a/L:: e:<<l, where a measures the size of 
z z 

the elliptic cross section of the plasma. We set 

2 2 I 2 2 f ($) = b a LJ 4nB (b +a ) and g($) = 1. Then, from the 
z 0 

condition that j =~ x B, we find that, in the usual cartesian 

coordinates, $ = x2/a2+y2/b2 inside the plasma. The natural 

coordinate system (~ 1 e, z) is given by 

cos e, 

sin e. 

In this model 

B • ~ = CkB
0
/q) [a/ae + (g/k) a/az1 

and 

(19) 

(20) 

] - baL/4TI (21) 

with k - 2n/L and the safety factor q = ba/2f a constant throughout 

the plasma. 

Dewar et al. [10] showed that the frequencies of the magneto-

-2 sonic waves are large, of order e: , compared to those associated 

with kink modes and shear Alfven waves. We set oi=O to make· 

~ • · t.1. = 0 and thus eliminate the fast magne.tosonic modes ... we· ·also 

take Ti = 0 to remove the sound waves. This reduces Eq. (1) ·to 
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L = 
41T

3
B 

2 
2 1 * 

--'--o-=- L: ·{ ~ r . qlji p. p<w) M er; JI,, 

L .2 nl 2lno ba q JI., ;v wa o 
(lji), r;i(lji) ] 

(01 * - (i-nq) (i'..;nq) Jri dlji M [r;i, (lji), r;JI. (lji) l 

with'· 

<b2-a2)lji [/;~($) ;$ 1;!($) ][ i; 
I * JI, I * ] 

/ + 2 JI.' 
(lji) + 2lji r;i, (lji). 051,1 Jl.+2 . , 

(b2-a2)lji 
[ r;~ (lji) JI, . J[ 

., 
* JI.' * J + . + 2lji~ r;JI, (lji) r; JI, I ( ljJ) - 2lji r;i,(lji) . 0 

2 i',i-2• 

(23) 

Here w; = k2B~ / p
0

q 2 , where p
0

,,;, f; p(lji) dlji, is a poloidal Alfven 

frequency and primes denote derivatives with respect to lji. The 

last term in Eq. (22) enters through Eq. (11) which can be 

evaluated analytically in this model. The problem, then, is to 

determine the functions r; JI. ( ljJ) that extremi ze Eq. (2 2) • 
/ 

B. Expansion Functions 

We first use the global expansion functions defined in 

Eq. (15) •. If the plasma density as well as the axial current is 

uniform inside the plasma, the integrals in Eq. (22) can be 

evaluated analytically.: thus 

,. 

' 
. " 

. j; 
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L· 
rn,rn' 

* 
a.t, ,rn' M.t' ,rn' ,.t ,rn a.t,rn 

M.t' ,rn' ,.t,rn 

+ 21.tlo I 0 0 1 On, n rn , rn,o x, ,x-

+ 21~' 11.t+ll H (.t+l) JI.ti+! (j.t rn) om' ,o (1-orn,o> 
JR_ ffi I 

I 

2c-1>.t' I.ti !R.+1! + . 
JR.' ,rn' 

. 2 

[ 
J 1 rn 2 

+ 0rn,~+ 4
1 

Jo 

(b 2-a2 ) { (.t'+l)j.t',rn'j.t,rn 
2 .2 .2 

(J.t,rn - J.e. 1 ,rn') 
J I R, ' I + 1 (j .t ' ' rn ' ) 

. 2 

+ rlo + J1,rn J2 (j > (1-o > J rn,o ~4- 0 l,rn rn,o 

(24) 

(25) 



with H (p) = (p+IPI> /2p. 

-1s-

It is easily seen that M o,o,o,o 

is zero, corresponding, as previously noted, to the fac€ that 

one can add an arbitrary constant to ~ in Eq. (9) without 

changing ~. Analytic expressions for the kinetic energy term 

K cannot be found if the density varies. and the integrals must . 

be evaluated numerically. 

Introducing the expansion functions of Eq. (16) leads to 

matrix elements with 

Mn 1 1 n 
11.- ,m ,11.-,m ( 

R, 2.p ( 1 ) + 4 p ( 3 ) ) 0 
m' ,m m' ,m JL' ,JL 

- (b2-a2) ( Jl, I Jl,p (1) - 2JL'P.( 2) + 21P . ( 2 ) , - 4 P ( 3 ) ) cl t ' t+ 2 
/ ·a m' ,m m,m' . m' ,m m' ,m ' - · 

(b2.:.a2) ( Jl, I Jl,p (1) + 2i'P (2) 2JlP (2) - 4P (J) ) oJL',JL-2 8 m' ,m m,m' m' ,m m' ,m 

(26) 

for even Jl, with 

diJJ * 
~ ~Jl',m' (iJJ) ~Jl,m (1") 

J [ -2m+ (m-1) 21n 
) 

= ( m/ (m~l)) +· (m+l) 2ln (cm+l) /m)] 0 m' ,m 

[ 1 
( (m+l) /m ) J + 2 (2m+l)- m (m+l) ln 0 m' ,m+l 

[ 1 
( m/ (m-1) ) J om, ,m-l} 

+ 2 (2m-l) - m (m-1) ln 

x c1-o o > c1-o , M o M> m',o m,o m , m, 

+ [ 1 ( 3-2M) + 2 . 
( M/ (M-1) ) J 2 (M-1) ln om' ,M 0m,M (27) 

•.·-. 

'· 
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[Should orte ~ish to include the trivial perturbation associated 

with Eq. (17), it is useful to note that P , (l). with~' or m m ,m 

·zero does not need consideration since it is always multiplied 

by t't in Eq. (26).], 

p ~ (.2) =f ·1 
m ,m 0 

I * 
dl/J<I>n 1 ,·(I/I) <I>n (l/J) N ,m N,m 

= l/2 <0m1 ,m11 o · ) c1-o o > c1 -0 6 m' ,m'.""1 m' ,o m,o · -um' ,M m,M> 

(28) 

arid 

p ( 3 ) =f 1 d 11111\ cp I * . ( 111 ) . ( 111 ) 

m' , m 0 . '+' '¥ .1 ' , m' . '+' ~. t , m '+' 

: [ 2mom I ,m - 1/2 (2m-1) Om I ,m+l - 1/2 (2ffi+l) Om I ,m-l J 

x c1-o , o > :(1-0 , o > . m ,o m,o . m ,M · m,M 

+ 1/2 0 I . 0 + 1/2 (2M-1) 0 I M. 0 m ,o . m,o · m , m,M• (29) 

For odd t 

Mn 1 1 n 
JV ,m 1lVim r ("1

2 
+l) Q (l) ~ 2Q I <2 >· + 2Q . <2 > 

m',m . m ,m m,m' 

+ 4Q <3 > 1 · 0 · m' ,m t', t 

(30) 
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with 

o ,Cl) =Jldiµ ~n• *, (IJ!) ~ (~) -m ,m 
0 

lJi }t., ,m t ,m 

= ], ( 
6M ~ l 

·Q c2> =J1,,,1;2 diJi [d<iJi-1;2 ~ * <iJi>>idiJi] ~ <iJi> m' ,m If' t' ,m' t,m . . 0 

- - ~M { [ 26m,m, + (3m+l) 6m, ,m+l - (3m-l) 6m, ,m-l J 

x c 1-o , o > c 1-o , M o M> . m ,o m,o m , m, 

+ 0 I 0 - (3M-l) 0 I M 0 M m ,o m,o m , m, } . (32) 

and 

d c···-112~ * <iJi» 
Q 

1 
(3) =J iL IJ!2dlJ! If' t' ,m' 

m ,m 0 dlJ! 

d(IJ!-1/2~ (IJ!)) 
t ,m 

dlJ! 

x c1-o , o > c1-o , M o M> m ,o m,o m , m, 

+ 0 I 0 + ( 3M2-3 M+-1) 0 I M 0 • m ,o m,o m , m,M (33) 

IV SPECTRAL PROPERTIES 

Although our major interest lies in determining the nature 

of the unstable modes that. are possible in a specific conf igura­

tion, it is worthwhile to investigate the full spectrum of the 

system. 
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Analytic determination of the spec:trum is q:uite d.ifficult 

to accomplish in general. However, considerable understanding 

of the nature and number of continuous and discrete spe.cti;-a that 

are present can be obtained from a study.of special cases. Here 

we sketch such a calculation to indicate what should be expected. 

Continuous spectra are characterized by eigenfunctions having 

singular behavior somewhere inside the plasma. _For exarnple,.if 

the matrix associated with terms with the highest derivati.ve with 

respect to ~ in the Lagrangian has a vanishing determinant on 

some surface inside the plasma, then the eigenfuctions can have 

a local [ln (~-~ ) + constant] behavior. At such points the constant 
0 

can have an arbitrary finite discontinuity. This provides the 

poss~bility of satisfying the boundary conditions for a band of 

eigenvalues and leads to a continuous spectrum. 

For definiteness, consider the model treated in Sect. III. 

We see from Eq. (22), or from Eq. (25) of Dewar et al., [10] that 

the set of Euler-Lagrange equations that makes the Lagrangian, 

Eq. (1), stationary can be.written in the form 

L (z;;) = Tz;;' I (~) + (T'+T/~ + W/~) z;; I(~) 

(34) 

where primes denote derivatives with respect to ~' T, w, and x are. 

the infinite tridiagonal matrices 

T (~) - (G~-1, 2Fi cosh 2lJo, Gi+l>' 

w (~) - ( - (i-1) Gi-1, 0 I (i+l) Gi+l) 



-22-

()5) 

and~ is the vector {~ 1 }.with 1 odd. 

Clearly, the set of modes with 1 even can be treated 

similarly. As in the earlier work,(10] 

and 

_ (1-nq) - . P /P w , [ 
2 2 . 2] 

. o a . 

G
1 

- [ ·(1+1-nq). (1-1-nq) _pw 2 
/P w 

2 J o a 

Note that T and X are symmetric matrices and W is antisymmetric. 

·We approximate this system by working with finite matrices of 

order 2N+l. 
2 . 

We choose a tJ>=tJ> s and .w such .that .the determinant of 

T ::T(ljJ ) is zero. This eigenvalue problem for w2 is equivalent 
0 s 

to the eigenval~e problem 

1~~1 2 J· t' '(tJ> e> = o . s, (36) 

. -+ 2 
when IVtJ>I is expressed in the ljJ,8 coordinate system of Sect. II. 

. . 2 
. The possible eigenvalues w form a continuum as tl>s ranges from 0 

to 1. 

The system of Eqs. (34) is singular at y = tJ>-tJ> =O, and we s 

seek solutions that vary as yP. ·We calculate the e~genvalues and 

eigenvectors of T
0

, 

. k = - . N , ••• IN I (37) 

and arrange the counting so that A
0 

is the nonde~ener~te vanish~ng 
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eigenvalue. For simplicity, we assume that (~01 T0 ' ~0 ) +q. -The 

modifications of the ensuing discussion that would otherwise be 

necessary are straightforward but tedious. 

Introducing the projection operator 

(Po) ij = <~o) i (~o) j (38) 

so that. 

p ~o = ~o; p ~k = o, kf O, 
0 0 

we can express r,; in a series 

00 

r,; = ~ ( 3.9) 

m=o 

where 

p+m-1 p+m ) 
1"m = Y Po am + Y (l-Po am (40) 

with p to be determined and the am a set of vector constants. 

Introducing Eq. (40) into Eq. (34) yields 

. ( 41) 

where 

H (p) = p (p-1) T
0 

+ [ (p-1) 
2 

T
0 

1 + (p-1) w~:/$sl p 
o. ( 42). 

Thus -Eq. '(34) is converted, by equating powers of y, into a set 

of equations for a in terms of a with n < m. In order that m n 
these equations can be solved successively, it is necessary that 

H (p) not have a vanishing determinant. This is the case, as can 

\ 

be seen in the representation where T
0 

is diagonal, because we have 

assumed that. A.
0
. is not degenerate, ( ~ , T '~- ) f o', and we can observe 

. 0 0 0 

that (~ , W~ ) = o since w is antisymmetriq. 
0 0 . 
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The equation for a
0

.is homogeneous. In order for it to have 

.a solution, the determinant of H (p), which is proportional to 

p2N (p-1) 2N+2 , must vanish. When p=O, Ha = O has 2N. independent 
0 

solutions that can be expressed as 

a = (1 - P
0

) u 
0 0 

( 4 3) 

where u is an arbitrary vector. When p=l, it has 2N+l independent 
0 

solutions 

(44) 

with u
1 

arbitrary. The remaining solution for p=l is logarithmic; 

it can be expressed as 
co 

z; = z; ln y -+: E 
m=l . ( 45) 

where z; is the particular p=l solution of Eq. (34) for which a
0 

satisfies 
aH(p) 

ap lp=l 

w p 
= (T + ~) 0

o o '" . '¥ s 
(46) 

Thus 

r; = ~ ln ( 1jJ-1jJ ) + o ( 1) • ( 4 7) 
0 s 

The natural conditions for matching across the singularity are 

that the 2N p=O s?lutions, the 2N p=l solutions orthogonal to ~o' 

and the logarithrriic.terrn should be continuous, while the.p=l solu­

tion proportional to a 
0 

can have an arbitrary jump,, since the 

con,starit of proportionality may be hidden by the logarithm. This 

provides an extra free.dam and permits w2 to .be an eigenvalue of 

Eq. · (1) regardless of boundary conditions • 

. Since the eigenfunction· associated with Eq·. ( 4 7) is dominant · 

near 1jJ = 1jJ
5 , comparison of the behavior of the different.components 

l;R, (in the 0 decomposition) can provide a strong indication of how 

well the numerical program deterniin'e"s the eigenfunctions. 
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It is instructive to note th~t in .this model there is only· 

one continuous spectrum which is associate¢! with the propagation 

• of shear Alfven waves. The low-pressure assumption has caused 

th.e. sound branch to coalesce into an infinite degeneracy at w2=o, 

while the incompressibility condition has pushed the discrete 

fast magnetosonic modes to w2=00 • Another relatively simple model 

is the diffuse linear pinch, in which the different modes in e 

ri~ well as in ~ deeouple. In this case the eigenvalue problem 

associated with T
0

, analogous to Eq. (36),. and including the 

coupling to o and 
2 

[ (R.-nq} 2 pw 

T, is 

2 (R.-nq} r - (48) 

with r = yp/B • Following the general lines of the above calcu-

lation, we see that there are two distinct continuous spectra, 
/.'. 

one corresponding to each of the two roots of Eq. (48). This is 

in agreement with the results of Appert et al. (23'].. and Of others •. [24] 

We are at .present developing p·rograms that will illustrate these 

continua in more complicated systems. 

V. NUMERICAL RESULTS 

The computer program as presently operating is applicable to 

the special case described in Sect. III. Dewar et al.(10]. reported 

the results of the study of the spectrum as a function of nq which 

measures the net axial current inside·the plasma for various 'plasma 

density distributions. In this paper we concentrate on the 

convergence properties of the method, comparing eigenvalues and 

eigenfunctions in. discrete and continuous branches of the spectrum · 

for both gl~bal. and local expansion functions. 
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2 
We first consider how the eigenvalue w varies as we 

increase the number of expansion functions. For constant 

density elliptical equilibria, the results can be compared 

directly with analytic solutions, [10] so that this case consti-

tutes a valuable nontrivial test of the numerical method. We 

consider a system with nq = 1.5 and b/a = 2, such that the 

configuration is unstable to the R, = 2 kink mode. In Table I 

we tabulate numerical estimates of the values of w 
2 

for several 

normal modes of the system versus the number of expansion 

functions. The results of both the Fourier-Bessel expansion 

of Eqs. (15) and (25) and the finite elements of Eqs. (16), (26), 

and (30) are given, together with the analytical result. With 

both expansions convergence to the correct result is rapid, good 

accuracy being achieved over the entire spectrum considered with 

very few terms. The rather special mode coupling demonstrated by 

the analytic calculation for this constant density case enables 

an exceptionally good representation of the lower Fourier modes, 

while as more modes couple when we consider higher mode numbers 

the convergence is understandably slower. Of course truncation 

of the Fourier series expansion will always lead to somewhat 

incorrect values for the frequencies of those modes with R,-numbers! 

near the limits of the expansion. The number of Fourier elements 

required will also depend on the value of b/a, and in general 

this must be determined empirically in much the same manner as 

M is. The accuracy with which the R, = ± 4 modes are obtained 

from this calculation, which used a relatively large value of 

b/a, gives us reasonable confidence in the efficacy of the 

Fourier expansion. 
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With a nonconstant density we lose the particularly conven­

ient_ decoupling symmetries that lead to the analytic solutions 

and to the excellent agreement shown in Table I. In Table 2 we 

compare the convergence of the~= 2 kink mode for a system· with 

identical parameters to the previous case but with p{$) = 1.2 ~ 0.4$ 

i._g. a roughly parabolic density profile. Again the 

convergence is ex9ellent, good accuracy being obtained with six 

ternis in either expansion. The comparison of Table 2 is typical_ 

of our experience with runs with different values of b/a, nq, and 

p{$): viz, the global expansions show no significant improvement 

in convergence over the finite-element expansion for the non~ 

19calized magnetohydrodynamic modes. As indicate~ by the analytic 

work, this result no doubt has its origin in the coupling th~o~gh 

ellipticity to highly localized continuous Alfv~n modes. As we 

shall see later, the finite-element expansion gives a far more 

satisfactory representation of these mod~s. Since considerably 

more computation is involved in the Fourier-Bessel expa~sion than 

with finite elements for the same number of terms, this comparison 

indicates that the latter expansion i.s more· desirable. 

One feature that emerges from a careful study of the results 

is that the convergence can not always be described ·empirically 

as O{MP). In any given calculation the value of p necessary to 

fit the data differs from one mode. to· another so that extreme. 

care is necessary in tryini to extrapolate to exact results. 

To show how well the eigenfunctions are approximated we 

show .in Fig. 1 the~= 2 component of [~ - $~{1) ] for the 

unstable kink mode discussed in Table 2 as a function of $ for 
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several values of M in a finite-element expansion set. This 

representation is so good that in order to show anything we must 

scale out the dominant $ behavior. Even so, the difference 

between ten and twenty elements cannot be seen on the figure. 

Another useful way of viewing results is to present the 

spectrum as a function of the number of terms in the expansion. 

We do this in Fig. 2 for the system of Table 2. Note that, due 

to the truncation of the expansion functions, the continuous 

spectrum is approximated by a band of regularly distributed 

eigenvalues. This band fills in as the number of expansion 

functions is increased. It is interesting to observe how the 

w~ 's converge towards the limit point's of the various continua 

branches. Analytic approximations to these limit points are 

clearly given by the relations .wi = n2/p_, where Q~ is an 
- + 

eigenvalue of the m.atrix T
0 

of Eq. (35) {see Fig. (1) of Dewar 

et al. [10.]) and p are the minimum and maximum densities within 
~ ~ + 
the plasma column. At M = 20 agreement to within one per cent is 

achieved between the analytic and computed limit points. 

Another study of the efficacy of the code can be made by 

examining the eigenfunctions of the continuous spectrum in the 

vicinity of a singularity of the matrix T of Eq. (35). As shown 

in Eq. (47), the eigenfunctions should vary as s ln lw-w I where 
0 s 

ws is the location of the singularity and s is the associated 
0 . 

eigenfunction of T
0

. From this it can be deduced that the jumps 

in the derivatives of the different Fourier components (in 0) for 

the nonconstant density case should be proportional to the 

ratios of these components in the eigenfunction ~ for the constant 
·. Jl 
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density case. To test. how well this is satisfied, we consider 

such a mode in the system of Table 2. Several components of a 

singular eigenfunction, determined by means of a finite-element 

expansion, are shown in Fig. 3 for this case. For the calculated 

eigenvalue the singularity should occur analytically at tJi = 0.51, s 

and the derivatives can be approximated by differencing. A compar~ 

ison of .the numerical results with the analytical predictions for 

this case with M = 6 is given in Table III. An analogous result 

using the Fourier-Bessel expansion, is also given. ·The finite-

element expansion provides a.somewhat better description of the 

eigenfunctions. It is useful to observe that in general the 

agreement is improved as M is increased in the finite element. 

technique (good accuracy is achieved with M·= 10 as demonstrated 

·in the ·1ast column of Table III), since increasing the value· of M 

localizes the evaluation of the derivative closer to the surface·-

where the ln I tJi-tJi ·I term is dominant. In the· Fourier-Bessel s 

treatment, however, extreme care must be taken to avoid truncation 

errors in the evaluation of the matrix elements as the number. of 

expansion functions is increased,.with the result that it is 

practically impossible to expect really good agreement with the 

theory for localized modes. This observation provides a strong 

argument. for the use of a finite-element expansion. 

To indicate how.well the eigenfunctions can be represented 

by a finite-element expansion, we show in Fig. 4 the imaginary 
+ + 

part of ~· VtJi for the configuration of Table 2. 
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SUMMA.RY 

Here we have described the formalism for a numerical 

program to determine the complete spectrum of general 

axisyrnmetric toroidal configurations. We have applied it to 

a special simple model, for which analytic results are 

available, (10) in order to compare the efficacy of global versus 

local expansion techniques. Especially in the case where there 

are continuous spectra, the adoption of a finite-element 

expansion is shown to be superior. 
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Table I 

, 
Jl.=2 Kink R.=4 Kink M R.=O Alfven 

BF FE BF FE BF FE 

2 2.83555 2.85150 -0.552768 - -o. 552896 7. 0.6215 7.19253 

3 2.84768 II -0.552870 II 7.29600 7.30292 

4 2.85000 II -o. 552881 · II 7.34408 7.33751 

5· 2.85076 II -0.552892 II 7.36067 7. 35274 

6 2.85108 11· -0.552894 II 7.36800 7.36080 

7· 2.85124 II -0.552895 II ·7.37178 7.36558 

8 2.85133 II -o. 552.896 II 7.37393 7.36865' 

,.9 2.85138 II -0.552896 II 7.37525 7. 37074: 

10 2.85142 II -0.552896 II 7.37610 7.37223 . ,. 

Exact 2;05150 -0.552896 7.37851 

. . 2 . 
Values of w · for a constant density elliptic plasma column 

with a/b = 0.5. Estimates are given for both global (BF} and 

finite-element (FE} expansions as a function of the number (M} 

of expansion functions. Exact res.ul ts from ref ere nee [ 1 O] are 

given for comparison. (64 bit preci•ion) 
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Table II 

R.= 2 Kink 

M BF FE 

2 -0.593664 -0.594428 

3 -0.594632 -0.594793 

4 -0.594872 -0.594921 

5 -0.594953 -0.594985 

6 -0.594980 -0.594993 

7 -0.595010 -0.594980 

Values of w2 for the case of Table I, but with parabolic 

density profile. (32 bit precision) 

.. 



,. 

-35-

Table III 

!::. ( r,; 
1 

.t 

Computed Computed 
M==6 Theory M=lO 

FE BF FE 

-4 0.0035 0.0017 0.0045 0~0042 

-2 -0.0209 -0.0168 -0.0213 -0.0210 

0 0.1512 0.1312 0.1522 0.1444 

2 1.0 1.0 1.0 1.0 

4 -0.0465 -0.0271 -0.0584 -0.0553 

Estimates of the jump in the derivative across the singular 

sur~ace (~s=0.51) of various Fourier components, evaluated using 

finite-element expansions, Bessei functions, and according to the 

theory of Section IV. Parameters for this case are the same as 

those of Table II. Computed results for both expansions were 
. . 

.evaluated with a set of 6 expansion functions. Results with 10 

finite elements are included for comparison. 

- .-
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Symbols used anQ.page where they first occur: 

w 

T 

p 

l 

K 

y 

'i/ 

omega (1. c.) 

xi (1. c.) 

delta (1. c.) 

tau (1. c.) 

rho. (1. c.) 

integral 

kappa (1. c.) 

gamma (1. c.) 

del 

phi (u.c.) 

summation [. sigma· (u. c.) ] 

<> this bracket must be kept 

00 

ip 

<f> . 

0 

J 

'IT 

T 

inviolate with whatever is enclosed 

infinity 

epsilon 

psi (l.c.) 

phi (1. c.) 

theta (u.c.) 

partial 

script J 

pi (l.c.) 

zeta (1. c.) 

chi (1. c.) 

script' L (1. c.) 

upsilon (u~c.) 

M M (u.c.) with caret 

p.5 above Eq. (1) 

II 

II 

p.6 

II 

II 

II 

II 

II 

II 

II 

II 

II 

P.7 

p.8 

II 

p.9 
II 

II 

II 

p.10 

II 

p.11 

p.12 

p.17 

II 

Eq. (1) 

Eq. (2) 

II 

II 

Eq. (3) 

II 

II 

above Eq. (4) 

Eq. (4) 

Eq. (5) 

bottom line 

line 4 

Et!. (6). 

" 

above Eq. (7) 

II 

Eq. (7) 

II 

Eq. (9) 

above Eq. (10) 

Eq. ·(13) 

Eq. (16) 

Eq. (24) 

,-· 

. .,. 

' " 
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Symbols used and page where they first occur: 

L script L (u. c . .) p.21. Eq. (34) 

>. lambda (1. c.) p.22 Eq. (37) 

cr sigma (1. c.) p.23 Eq. (40) 

u upsilon (1. c.) p.24 Eq. (43) ·, 

z;; zeta (1. c.) with bar " Eq. (45) 

- sigma (1. c.) with bar ·" above Eq. cr 

·r gamma (u.c.) P.25 Eq. (48) 

Q ·omega (u.c.) P.28 line 14 

/::,. delta (u.c.) table .Ill; 

All vector quantities, denoted by a superscript+,(!), should be 
set, in bold face .. 

. '!•'. 

(46) 

' . . . '· 
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Fig. 1. The i=2 component of s(l/J) - l/Js(l) as a 
function.of ljJ in 3.n elliptic plasma column with 
b/a = 2.0, q = 1.5, and p = 1.2 -0.4 ljJ, showing 
rapidity of convergence as the number of finite 
elements is increased. 
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Fig. 2. Spectrum as .a function of the number of 
finite elements for the configuration of_ Fig. 1. Note 
how quickly the continuous spectrum fills in as the 
number of elements is increased. 
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Fig. 3. The i=O, 2, 4 components of s for a stable 
mode in the shear Alfven continuum for the configuration 
of Fig. 1. The logarithmic singularity being studied 
occurs annalytically at ~s = 0.51. 
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1''ig. 4. 'l'he imaginary part of ~ • 'ViJi for the mode 
studied in Fig. 3 on a constant z surface such that 
~iµ is largest at 8 =rr/4. 
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NOTICE 

This report was prepared as an account 
of work sponsored by the United States Gov­
ernment. Neither the United States nor the 
United States Atomic Energy Commission, nor 
any of their employees, nor any of their con­
tractors, subcontractors, or their employees, 
makes any warranty, express or implied, or 
assumes any legal liability or responsibility 
for the accuracy, completeness or usefulness 
of any information, apparatus, product or 
process disclosed, or represents that its 
use would not infringe privately owned rights. 




