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The usual perturbative Field thenfy, while useful as a guide ro some aspects of
hndrnn.ic pllwsics-, does not provide a computational framework for discussing strong inter-
action .pharmmenu. The quanta ohtained from quantizing free fialds, which are the lowest
approximation in perturbation theory, are simply too far removed from real Hadruns 1o serve
as a reasonable First approximation. Receatly there has been renewed interest-in
ml:;lkl'ng quite a different connection between hodronic physics ond field theory. In this
appmadn“_} che attempts fo .relute the porticle=like solutions of ¢lassical non-linear field
equations with physical hadrons. Of course in order. to make such a connaction, these class-
ical particle<like solutions must be carried over inke quantum Field theory and a computa=- -
tional scheme must be provided, It is such o mal‘hod{z' 3) for giving quuntu‘n. mechanical
meaning to particle-like (or soliton) classical sclutions which T would like to describe,

The mathod was developed in eollaboration with T. D. Lee.
Let us begin by considering a Lagrange densify depending on an N-Immponent real

scalar field ;p' _
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If the potential g_z"'u"(gip'} is expanded in a power series in qvl about its minimum, the
paramater g will anter anly temms of cubic or higher power in cpl ; thus g plays the role

of a l:wpling.tonstunh Assume that -
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“reprasents a family of equal energy solutions, depending on tha K parameters z.lﬂ- . ig ‘
for which we would like to find a quantum mechanical interpretation. ' The function
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and hence is chosen independent of g . The parameters z? T zg will always be chosen
so that translation of our solution in space or Fime can be accomplished by chonging the
K-

parameters z? e Z Therefore, there will exist values zk{f, z? 22} satisfying

b=, 0 0y Q- 0 0 0 .0
' ﬂ'l[rr i, 1] T ZK] = l'-"| [r:nl Z-I{rr zt T ZK}"' ZK“!‘ z"i tee zl{ }] « @)

H we wish to discuss a single soliton in D dimension space, then we will introduce D
[Im_rﬂmelers Z) o 2y cnne;pnnding to the position of the ._:enl-er of mass of the soliron.

In rnuni.r cases, the classical solution for @ single soliton af rest is time independent and no
further parometers cre needed, Even if such a soliten is moving, the only time dependence
corresponds 1o si;np!a translation of the center of mass so that again only [ parameters ore
necessary, For example, in the case of o single moving soliton solution to the 1-dimen-

sional sine-Gorden equation,

2 2 .
-a; + 3; -pzsin:r = 0 , {5)
at ax
we choose’ 2
-1 (x=2z)p
ol,z) = 4fan [el 1. )

depending on the single parameter z . This is a solution te Eq. {5) if z(t, ID) = zu + ut

where u = l-'ru-z

is the soliton velocity, However, we intend also to include more
complicated situations. For o chorged seliton the classical wlution will have on additional
time-dependent phase factor®™ while other periedic solutions, as wds seen in the sine-Gordon
case, 3 may correspond 10 soliton-antisoliton bound states, Similarly, it is possible to
discuss soliton=-soliton scottering if for ui{T, by z:] . "_ZE;) we use a classical solu-

tion containing fwo moving selitens, In this case ot least 2D porameters z, are intro-

duced comesponding asymptotically to the center-of-mass positions of the two solitens.
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We now turn to a quantum=mechanical exponsion which opproaches the original
classical solution u'{-r: z]{r}, tee, zK(’r]J in the limit of small coupling g . First we
expand the classical field ¢(r) about our classical solution glu{?, Z " zK}

e
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where z_... z are treated as coordinates and the N=component

1 K* gy Ige2 °°°

functions ?r:{?, z ZI{} form a complete set of real functions subject to the constraints
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We propose to yse the ysual canonical methods to quantizs the field theory described by

L

the Lagronge density (1) using the new coordinares Tyttt s Gyttt - In terms of

these coordinates the Lagrangian sakes the form
1, . . ] n
L = " Mkk' 2L + 2K Mkn 9 + N Mnn' qn'
gr{lrls, Ty 2+ 1 i p! 10
-f 'E[Q_?U *qn(vn]] ?V{u+gqn n] (10)

where repeated indices have been summed over: k or k' from 1 to K: n or n' from

K+1 ko w; and 7 frem 1 1o N, The mass mn:llrix M is given by
. i
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and



The momenta conjugofs to Z, o q are
aL

4 e Mg 20 + M a
“k
w = aL = M .z + M ' q ' {‘2}
n 24 nk “k np' 'n
(1]

The coordinates 2,0 8 and conjugate moments p , T con all be identified os operators

in the standard way and the resulting quantum-mechanical Homiltonian is
- =1 -1 -1
H =13 ] [Pk{w" }"kl J P + PE{M ]I-cn J M + ﬂn(M }hk ka
-1 J + o2 [de E{ui-t- '-Ili] (13)
M 1'nr'«'---l 9 99% "'n’ -

where

V(E) V) +3(TE . (14)

The Jacobion factor J ..
. fz

1
Jo= [det (M. -M M )] . (15)
is introduced so that the resulting ordering of non-commuting foctors defines an operator

H squal to the usual quantum Homiltonion

Ho=f d'r{-li[“if?ﬂz"'izvfsﬂ?] 1o (16)

-t

where ‘I'I‘i (r) is the momentum operator conjugate to the local field q»i(r) .

In order to develop a systematic pertutbation expansion of the eigenstates of H in
powers of g we must first deal with the terms of ordar 9-2 and g"l which oppearin H .
Weleyplait the close connection between g ond Planck's constant h by writing an arbi-

trary quantum-mechanical state ‘P'"_ in the WKB form

2.
IS )o
¥ (z,-9) = e k Kn{zk,qn} . “?)




Here quantum states are writteri as wave functions depanding on the varicbles z, and q .

It the function ){ﬂ_{zk ’ qn] is assumed to be regular ot g =0, then the terms of order 9-2

in the product HW, raduce to a diagonal form _]?- E¥, ifS (zy 77" 2} is chosen
a

to satisfy the Homilton-Jacobi equation

1 85 ., -1 85 S _
2 % Mo 7= + [V Y = 6 (18)
where i :
d¢ do
Mg) , = fdr 22 B2
(Mg = [ o om, ome (19)

Furthermere, the terms of order gul cun be completely eliminated from the product H %,

if the solution 5 is chosen to generate precisely the classical time dependance

zk{'l, z.lmI zg} specified by Eq. @), i.e.

%{zk{n 2yt zg)) = Mgl Eal 7y e B0 20)

These equations con be integrated, completely determining S up fo an additive constant,

crovided they are consistent with the identity

(). (&
azk Erzk. ﬂzku Ezk) ) {21}

This requirement will be obeyed, af least for most cases of interast if we make o svitable

choice of parometrization of the classical solution, For example, if o it a clawical so-
fution describing the scattering of € solitons in D dimensional space, then Lagrange's
equations can be shown to imply the consistency of Eqs (20} and (21) provided we introduce

parameters z, which develop in fime a5

zk{I', z?---z}u{} = ukf+zlfl {22}

and which correspond asymptotically to the £ x D center-of-mass coordinetes of the

solitons,




8,

Thus, if we remove the factor expli 9'2 5) from all quantum states, the transformed -

Hamiltenian 2 2
HI = E_'ng HEI 5{"9 aa]

can be written as o power series in g
HY = H(2) ¢ H@) + H() + oo @)

With cur choice of 5  the term of order 5|-2 . H'{=2), is simply o constant ﬁfgz . just

the energy of our clossical solution, After some algebraic rearrangement H'@} can be written

! = v 1 ] : 1 .
H m} - E PK ﬁ+ '2 'I'fn‘l‘n + E qn F“nl qn| + i{ﬂn Gnn| qn: - qn Gﬂﬂ' 'rrn,:l
25)
whara
2
- - - 1 a V{ﬂ':l j 9 | -1
= [ ["'wn) R T "’n'] dr + 30T F Mg fe
- . .2
'FI .= IJ,I ! a a d"r
nk n Bz a7 @8)
and

G . = =G, =- u/ ¥ dr
nn w'n n 3z
K
Here we have introduced the parameters z, 30 that Eq. (22} is obeyed with Y =G for

k< K ond u Such a sityation resislts if we axplicitly choose one of the parometers,

K =4,
0 . .
Zeo s I Eq. (Z} to correspend Fo fime translation,
The next step in our developmeni requires diogonalization of the zeroth order Ham-

iltonmian H' @) . If our classical solution is time ind=pendent so that U =Q, then H' {0)

simplifiesto . .

o) = % Tt % % an' Uy 27

n

where an'. can be identified in this case as the nn' wmatrix elemant of the operator




2
1 25 ¢ 1 8 ¥la) (28)
[P |
do do

Diffarentiation of the classical field equation (3) with respect to Z) s reveals that when
v =0 the K functions Ea'x"azk are eigenstates of 28) with eigenvolye zero, Thus it
is possible to choose the lllril orthogonal te ﬁ'cri,fazk and also eigenstates of (28) with

eigenvalues %un? . Consequantly

F,o= 8, pul (29)

nn 1]

so thot the operator H' (0} is easily diogonalized having the spectrum

o = L (N +3)u ao)

n

where the Nn's are occupation numbers Nn =0,1,2,-++. The v~ are simply the fra-
quencies for small oscitlation about the static classical salution o (r, z e zK} . For
most cases of interest, the porameters I e 2 appearing in such a family of static
degenerate solutions can be interprated as physical quantities on which the entire Hamil-
tonian does not depend, Thus the sigenfrequencies v will not depend on the 2 and
the constants & ;"92 + &4 ore then eigenvalues of H accurate to order gn . For exam-
ple when expanding about a static soliton solution to the sine=Gordon equatige, (3), we write
_ 4 -1 {x-z)pz
¢(x) = = tan ' [e 1+ E q, ¥ (x=z) @)
g n
30 that changing the parameter z corresponds to a spoce transfation under which H s
invariont.  Hence H{) ond the frequesncies o will not depend on z ,
Finally let us consider the time=dependent caose, Although H'{) is still quadratic

in the qn's and rrn's , the situation is more complicated thaa the static cose becouse 1

their coefficients will in general dependon z, and H'(D) also contains a tem linear

K




in Pk * In fact, the sigenvalue conditien
HO) Xy = §, Xy 32

can be comporad to a Hime-dependent Schroedinger equation in which zK,.-" W ois inter-

preted as the time and the quadratic terms

1
H2 T2 th*n + “n an' e + T Gnn' G T W Gnn' T ] (33)

as a time~dependent Homiltonian. Thus the eigenstates X, caun be written

‘ 0,q) . B4

" IRl n

X, (s 0) = PK K U)X (2, -

Here EPK is a constant, Xu.{z] AR RY 0, q"} is any funchion of Z) ¢ k<K

and the q, while U{:k) is a "rime" development operator obeying

iv EiZKU{ZK} = Huiz) 35)

ug) =1 .
The energy eigenvalue of the state exp [i 5;"92] X 15 Efgg ¥ uEpK . Although
Eq. (35) has no general explicit solution even for the quadratic Hamiltenian H2 , Tt con
be solved quite eosily in certain cases,
For example if the classical solution u'il:;: B changes slowly compared to the
characteristic frequencies of H, , then Eg. (35) can be selved in the usual adiabatic
approximation. On the other hand, if ui{-r: t) is periodic with paried T, then the close

connection between H_ and the Homiltonian describing small oscillations about the class-

2
ical orbit allows us to find the operator for "time" development through one period, U{uT),

quite easily in rerms of the stability angles which appeoar in the clastical problem. In

Py
particular, U({T} is given by +
=i L (Ag A+ /D) B T

UEn =& * : e)




wheare.

A, = Gn‘fqn+ b:TI‘ (37

2 n

with . '
P P L B S
Hayby -Breg ) = BE!-'

The quantities arf , I:: and B, are related to the classical small oscillation problem |

in the following way. First porametrize small oscillations about the classicol solution

¢I=ukr+z£, qn=wn=ﬂ by writing

- s ; el
20 = 250550 , L p ) = ;}ﬁfzbszkwapkm
: (38)
qn{t}' = Eqn{f} r 'rr“{t] = Et“{ﬂ .
The quantities ur-f . I:-lf represent those initial conditions
69, = -b:'p. N su = af) | 39

which change only by an overoll phose e PeT Lhen time developed through o period

6q (M = -e-iﬁth“h o,
a'i‘BlTnnl . | @)

s, (7)

Throughout  this motion Epk is chosan zero and Ezk of order g while A is a small
proportionality constant, Knowledge of U{uT) is sufficient to determine the eigenvalues of
H'@©} . Because uri[-r-, 2 zK}' is periodic in zy with period IIuT , the coordinates

T kv T

! K+ 9ge1 """ ond z, +=- 2z + ul AT determilna the mmE'?unﬁgumrlcn

1 K r s

of our physical system, - Consequently, we must require that our wave function have the same

value at the ﬁnints Zy =0 ond L uT , The values of the wave function af these rwo puinrs'
are explicitly connected given - U{u‘l’] and Eq. {34], the allowed energies Efg + uﬂpK

are then fixed by fl-ne I'qul.llrerrlerlnl‘ thot

IS-PKUT +f PKde Z. fN + '!)ﬁ T = ZIfn 'H']}
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whera Pk = 13—5. . If applied to the breather mode of the sine-Gordon equation, this

z
condition gives I:xac’rly the spectrum found by Dashen, Hasslacher and Nevew., ™ In a sim=
ilor fashion, if we know the connection befween the small oscillations about a two-seliten
;5.0|uﬁmj long before and ong after the scattering, we con discuss soliton=soliton scattering
accurate o order gu .

The method deseribed above allows quantum mechanical description of various class=
icel solutions to nen-linear field equations. [f the Homiltonion H'{0), very closely related
to the classical small oscillation problem, can be diagonalized, then the effects of terms
higher order in g can be systematically culcuiuted vsing ordinary perturbation theory. The
method appears to be relatively simpla, vsing the Familiar canonical Hilbert space Formula-
tion of Quantum Mechanics, and hos bean applied to interpret quantum=mechanically bath

stotic and time-dependent classical particle=like solutions, [t is our hope that this gererol

approach will prove usaful in developing a realistic quuntum field theory of hadrons.,
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