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The usual perturbative f ie ld theory, while useful as a guide to some aspects of 

hadronic physics, does not provide a computational framework for discussing strong inter­

action phenomena. The qudntd obtained from quantizing free fields, which are the lowest 

approximation in perturbation theory, are simply too far removed from real hadrons to serve 

as a reasonable first approximation. Recently there has been renewed interest in 

making quite a different connection between hadronic physics and f ie ld theory. In this 

approach^ ' one attempts to relate the par t ic le- l i ke solutions of classical non-l inear f ie ld 

equations with physical hadrons. Of course in order to make such a connection, these class­

ical par t ic le- l ike solutions must be carried over into quantum f ie ld theory and a computa-

(2 3) t ional scheme must be provided. It is such a method ' for giv ing quantum mechanical 

meaning to par t ic le- l ike (or soliton) classical solutions which I would l ike to describe. 

The method was developed in collaboration with T. D. Lee. 

Let us begin by considering a Lagrange density depending on an N-component real 

scalar f ie ld <J> 

'£ = - i Z (^-)Z- o"2vW) • 0) 

If the potential g V(g<}> ) is expanded in a power series in <p about its minimum, the 

parameter g w i l l enter only terms of cubic or higher power in <|> ; thus g plays the role 

of a coupling constant. Assume that 

L V K t ) ] d * g~V(7, t, z ° . . . zK°) (2) 

represents a family of equal energy solutions, depending on the K parameters z 1 • • • z^. , 

for which we would l ike to f ind a quantum mechanical interpretation; The function 

a ( r , t, Z j • • • z K ) obeys . e 

do 9V(a) = 0 

1~7 do* (3) 
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and hence is chosen independent of g . The parameters z . • • • z w i l l always be chosen 
I i\ 

so that translation of our solution in space or time can be accomplished by changing the 

parameters z 1 • • • 7. . Therefore, there w i l l exist values z, ( t , z 1 . . . z „ ) satisfying 

i 1 - - 0 On i r n , 0 0 \ - 0 O.-i 
a [ r , t , Z ] • • • Z | < ] = a L r , 0 , Z ] ( t , Z ] • • • Z ) < ) - - . Z ) < ( t , Z ] • • • Z | < ) J . (4) 

If we wish to discuss a single soliton in D dimension space, then we w i l l introduce D 

parameters z 1 • • • z n corresponding to the position of the center of mass of the soliton. 

In many cases, the classical solution for a single soliton at rest is time independent and no 

further parameters are needed. Even i f such a soliton is moving, the only time dependence 

corresponds to simple translation of the center of mass so that again only D parameters are 

necessary. For example, in the case of a single moving soliton solution to the 1-dimen-

sional sine-Gordon equation, 

2 2 
3 a , 3 a 2 . _ / c. 

3 r 3 x 

we choose ^ 

a (x , z ) = 4 t a n " 1 [ e ^ x " z ^ ] , (6) 

depending on the single parameter z . This is a solution to Eq. (5) i f z ( t , z ) = z + ut 

/ zr 
where u = v 1 - y is the soliton ve loc i ty . However, we intend also to include more 

complicated situations. For a charged soliton the classical solution w i l l have an addit ional 

time-dependent phase factor^ whi le bther periodic solutions, as was seen in the sine-Gordon 
15) 

case, v may correspond to sol i ton-antisol i ton bound states. Similarly, i t is possible to 

discuss soli ton-soli ton scattering i f for a (r , t ; z • • • z ) we use a classical solu-
1 K 

t ion containing two moving solitons. In this case at least 2D parameters z, are in t ro­

duced corresponding asymptotically to the center-of-mass positions of the two solitons. 



We now turn to a quantum­mechanical expansion which approaches the original 

classical solution a (r, z . ( t ) , • • ♦ , z^O") ) in the l imit of small coupling g . First we 

expand the classical f ie ld (|>(r) about our classical solution p r t f (
r
/

 z
i " * *

 z
« ' ) 

1 i ­ °° i ­
V ( r , t ) = g " ' a ' ( r , z • • • z ) + £ q (t) «P ( r , z • • • z ) (7) 

n=K+l 

where z . • . • z , q , q 0 • • • are treated as coordinates and the N­component 
1 K K+l K+z 

functions V ( r , z • . . T. ) form a complete set of real functions subject to the constraints 
n 1 K 

N ^ . „ i 

(8) £ f<—
 dT = ° 

i=l "
 n 3 z

k 

and the orthonormality relation 

N . 

E f *n *n'
 dT = 8

nn' ' (
9
) 

*—; <v n n nn
 v ' 

i = l 
We propose to use the usual canonical methods to quantize the f ie ld theory described by 

the Lagrange density (1) using the new coordinates z • • • z , q, . _ • • • . In terms of 
1 K K+1 

these coordinates the Lagrangian takes the form 

L = 1 \ M
kk' \' + K M

kn % + % M
nn' V 

­/
dr

{U^"'
+
"n^n»3 ♦yV+g,^)] (10) 

where repeated indices have been summed over: k or k' from 1 to K ; n or n' from 

K + 1 to co ; and i from 1 to N . The mass matrix M is given by 

M
u u ­ = /

d T
( 9 — + q „ ( g — + q_i J 

kk . J V 3­k
 n 3z

k / V
 9z

k'
 n 9z

k­ / 
i 

q . ­ i L q ­ ' d r (11) 
n az.

 n 

34V« -. 
M, = M 

kn nK J n g z 
and 

M , = 6 , 
nn nn 
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The momenta conjugate to z, and q are 

3L 
Pk

 = T T - = M kk ' Zk' + M k n qn ' 
9 z k 
9 L M * + KA ' ( 1 2 ) 

TT = = M . z. + M , q , 
n g- nk k nn nn 

Mn 

The coordinates z, , q and conjugate momenta p, , TT can all be identified as operators 

in the standard way and the resulting quantum-mechanical Hamiltonian is 
H = i J " 1 [ p k ( M - \ k , J Pk. + P k ( M " \ n J irn + ^ ( M " 1 ) ^ J Pk 

+ V M " \ n ' J l T n ' ] + 9 " 2 / d T ^ U i + 9 q n * n ) ' ( « ) 

where 

V ( 0 = V ( 0 + 5 ( ^ ) 2 . (14) 

The Jacobian factor J , . 

1/2 
J = [ d e t ( M k k , - M k n M n | < , ) ] , (15) 

is introduced so that the resulting ordering of non-commuting factors defines an operator 

H equal to the usual quantum Hamiltonian 

H = y , d r ^ [ T T i ( ? ) ] 2 + - ^ V ( g 4 > ( 7 ) ) ] (16) 

where TT (r) is the momentum operator conjugate to the local field <p ( r ) . 

In order to develop a systematic perturbation expansion of the eigenstates of H in 

-2 -1 

powers of g we must first deal with the terms of order g and g which appear in H . 

We exploit the close connection between g and Planck's constant h by writing an arbi­

trary quantum-mechanical state T ^ in the WKB form 

WV-^v^ • (,7) 
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Here quantum states are written as wave functions depending on the variables z, and q 

If the function Xa(z, , q ) is assumed to be regular at g =0 , then the terms of order g 

in the product H Hk reduce to a diagonal form -K- £ ^ ^ if S (z • • • z ) is chosen 
gZ I K 

to satisfy the Hamilton-Jacobi equation 

I §rk <Mo>"kk' 1 4 + f *<°T<7- z i • • • Z K > ' d r - * " 8 > 
where 

0 kk- y 9 Z k 9 Z k , (19) 

Furthermore, the terms of order g can be completely eliminated from the product H ̂  , 

if the solution S is chosen to generate precisely the classical time dependence 

z , ( t , z1 ••• z „ ) specified by Eq. (4), i .e. 

dTk
(\(i' V " Z K ) } = ^ k k ' d F V ^ ' Z l • • • Z K ) * <20) 

These equations can be integrated, completely determining S up to an additive constant, 

provided they are consistent with the identity 

3 / 3S \ = _9_ /as \ 

3zk VazkJ " 3zk, [ d z j ' W 

This requirement wi l l be obeyed, at least for most cases of interest if we make a suitable 

choice of parametrization of the classical solution. For example, if a is a classical so­

lution describing the scattering of 2, solitons in D dimensional space, then Lagrange's 

equations can be shown to imply the consistency of Eqs (20) and (21) provided we introduce 

parameters z. which develop in time as 

z k ( t , Z ] . . . Z | < ) = u k t + Z|< (22) 

and which correspond asymptotically to the Jl x D center-of-mass coordinates of the 

solitons. 
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­2 
Thus, i f we remove the factor e x p ( i g S) from all quantum states, the transformed 

Hamiltonian « ~ 

H' = e "
i S / g H e

i S / g (23) 

can be writ ten as a power series in g 

H' = H'(­2) + H'(0) + H'( l ) + • • • . (24) 

­2 2 
With our choice of S the term of order g , H ' ( ­ 2 ) , is simply a constant £ / g , just 

the energy of our classical solution. After some algebraic rearrangement H'(0) can be written 

H' (0) = p y/~T + 7! TT TT + ­r q F , q , + ­ (ir G , q , ­ q G , TT ,) 
/—

 r
K 2 n n 2 n nn ^n 2 n nn

 n
n ^n nn n 

where 
. . 2 

F ■ = f [(VV
]
) ( V t V *' -U^L

 (
P

J
',1 dr + 3u

2
f . (M"

1
) f,,, , 

nn' J |_
v n ' n" n 9 ( y i 9 a j n J nk

v 0 'w n*k' 

f , = / * d r (26) 
n k J

 n 3 z k 3 z K
 l ; 

and 

G , = ­ G , = ­ u / * ' — 1 dT . 
nn n n J n 9 z 

K 

Here we have introduced the parameters z, so that Eq. (22) is obeyed with u, = 0 for 

k < K and u „ = u . Such a situation results i f we exp l ic i t l y choose one of the parameters, 

z^. , in Eq. (2) to correspond to time translation. 

The next step in our development requires diagonal izat ion of the zeroth order Ham­

i l tonian H' (0 ) . If our classical solution is time independent so that u „ = 0 , then H'(0) 
IN 

simplifies to 
H'(0) = i v + i q n F , q n , (27) 

2. n n z n nn n 

where F , can be ident i f ied in this case as the nn
1 matrix element of the operator 

nn
 r 
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' v 2 s . . + ' - ! ^ _ 
2 IJ 2 _ i j 

9a do 

Differentiation of the classical f ie ld equation (3) wi th respect to z, , reveals that when 

u = 0 the K functions do/dz, are eigenstates of (28) wi th eigenvalue zero. Thus i t 

is possible to choose the <!> orthogonal to 3 a / 3 z , and also eigenstates of (28) with 
1 2 eigenvalues — u . Consequently 

F , = 6 , l u 2 (29) 
nn nn 2 n v ' 

so that the operator H'(0) is easily diagonalized having the spectrum 

£ t t = Z ( N n + - 2 ) u , n (30) 
n 

where the N 's are occupation numbers N = 0 , 1,2, • • * . The u are simply the f re -
n r n ' n ' 

quencies for small osci l lat ion about the static classical solution a ( r, z . . . . z ) . For 
I K 

most cases of interest, the parameters z , • • • z . , appearing in such a family of static 

degenerate solutions can be interpreted as physical quantities on which the entire Hami l ­

tonian does not depend. Thus the eigenfrequencies u> w i l l not depend on the z, and 
2 0 

the constants £ / g + £ a are then eigenvalues of H accurate to order g . For exam­

ple when expanding about a static soliton solution to the sine-Gordon equation,. (5), we write 
2 - I r ^x-z^ - tan | e r 

g 

so that changing the parameter z corresponds to a space translation under which H is 

invariant. Hence H(0) and the frequencies u w i l l not depend on z . 

2 
cKx) = L r a n " 1 [ e ( x " z ^ ] + £ % f ^ x - z ) (31) 

n 

Finally let us consider the time-dependent case. Although H'(0) is st i l l quadratic 

in the q 's and TT 's , the situation is more complicated than the static case because n n n ' r 

their coefficients w i l l in general depend on z „ and H' (0) also contains a term linear 
K 
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in p . In fact, the eigenvalue condition 
K 

H ' P J X * = $„*« (32) 

can be compared to a time-dependent Schroedinger equation in which z ^ / u is inter-
Is 

preted as the time and the quadratic terms 

H 0 = -=\vTt+qF , q , + i G , q , - q G , TT , I (33) 
2 2 L n n n nn ^n n nn ^n ^n nn n J v 

as a time-dependent Hamiltonian. Thus the eigenstates Xfc can be written 

X a <Vt „> " - ^ r e ^ K - K U ^ X ^ . - z ^ O , ^ ) . (34) 

Here 6p„ is a constant, X^z. •• • z„ 1 , 0 , q ) is any function of z, , k < K 

and the q while U(z, ) is a " t ime" development operator obeying 

'lvJT U{zK> = " 2 ^ ' ( 3 5 ) 

U(0) = I . 

9 9 

The energy eigenvalue of the state exp M S / g J X ^ is € / g + u 6 p „ . Although 

Eq. (35) has no general exp l ic i t solution even for the quadratic Hamiltonian H- , i t can 

be solved quite easily in certain cases. 

For example i f the classical solution a (r, t) changes slowly compared to the 

characteristic frequencies of H<- , then Eq. (35) can be solved in the usual adiabatic 

approximation. On the other hand, i f 0 (r, t ) is periodic with period T , then the close 

connection between H„ and the Hamiltonian describing small oscil lations about the class­

ical orbit allows us to f ind the operator for " t ime" development through one period, U(uT) , 

quite easily in terms of the stabi l i ty angles 0 which appear in the classical problem. In 

part icular, U(uT) is given by 
- i E (A£ A , + 1 /2 )8 T 

U(uT) = e L L (36) 



where 

A . = a ^ q + b
£

u (37) 
2 n ^n n n

 v ' 

with i . , * 
i ( a V ­ b ' a * ) = 6 n f l l . v n n n n fit 

The quantities a# , b^ and p ­ are related to the classical small osci l lat ion problem 

in the fol lowing way. First parametrize small oscillations about the classical solution 

z
k

 = u
k k '

 q
n

= 1 T
n

= b v w r , h n
g 

z k ( t ) = z k
d

( t ) + 6 z k ( t ) , p k ( t ) = ­ 4 ^ ^ ' + 6 ^ ) + 6 ^ ) 

9 " 08 ) 

qn(t) = 6q n ( t ) , irn(r) = 6 ^ ( 0 . 

The quantities & , b represent those in i t ia l conditions 

6 q = ­ l A , STT = a ^ X (39) 
M

n n ' n n 
which change only by an overall phase e" "& when time developed through a period 

6 q (T) = ­ e "
i | 3

£
T

b X , n
n

w n 

6TT (T) = e "
!
^

T
a X . (40) 

n
v n 

Throughout this motion 6p, is chosen zero and 6z. of order g whi le X is a small 

proport ionali ty constant. Knowledge of U(uT) is sufficient to determine the eigenvalues of 

H'(0) . Because a ( r , z . ■•• zj) is periodic in z. , with period uT , the coordinates 
I Is. K. 

z . • • • z „ , q • • • and z . • • • z„ + uT , q ^ , , • • • determine the same configuration 
I K K+l I l\ K + L 

of our physical system. Consequently, we must require that our wave function have the same 

value at the points z^. = 0 and z = uT . The values of the wave function at these two points 

2 
are exp l ic i t l y connected given ' U(uT) and Eq. (34); the allowed energies £ / g + u6p. , 

are then f ixed by the requirement that 
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3 S 
where p „ = 5 — . If applied to the breather mode of the sine-Gordon equation, this 

K 3z. , 

(5) 

condition gives exactly the spectrum found by Dashen, Hasslacher and Neveu. In a sim­

i lar fashion, i f we know the connection between the small oscillations about a two-sol i ton 

solution long before and long after the scattering, we can discuss soliton-soliton scattering 

accurate to order g . 

The method described above allows quantum mechanical description of various class­

ical solutions to non-l inear f ie ld equations. If the Hamiltonian H1 (0) , very closely related 

to the classical small osci l lat ion problem, can be diagonalized, then the effects of terms 

higher order in g can be systematically calculated using ordinary perturbation theory. The 

method appears to be relat ively simple, using the famil iar canonical Hilbert space formula­

tion of Quantum Mechanics, and has been applied to interpret quantum-mechanically both 

static and time-dependent classical par t i c le - l i ke solutions. It is our hope that this general 

approach w i l l prove useful in developing a realistic quantum f ie ld theory of hadrons. 
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