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A STUDY OF THE EFFECT OF THE EVAPORATIVE EROSION 
ON THERMOELECTRIC ELEMENTS 

ON THE PERFORMANCE OF THERMOELECTRIC GENERATORS 

Introduction 

A mode of performance degradation in some thermoelectric generators is the 

erosion of mater ia l from the thermoelectr ic elements that comprise the generator. 

In pressur ized generators using an inert gas to re tard sublimation of the thermo­

electr ic material , this erosion resul ts from diffusive mass transport of vapor from 

the elements due to naturally occurring concentration gradients in the surrounding 

cover gas. The erosion occurs pr imari ly at the hot end of the elements and dimin­

ishes the area of contact between the element and its e lec t r ica l connection. This 

report presents an analysis of the effect erosion has on generator performance. 

Model Description 

Figure 1 depicts a longitudinal section of the configuration chosen for analysis, 

i. e . , one element of a thermoelectr ic couple, typically a PbTe couple, surrounded 

by thermal insulation. Referring to this figure, the annular region between the 

cylindrical PbTe thermoelectr ic element and the surrounding thermal insulation is 

gas filled, and as a resul t of the element residing in the temperature gradient, 

(T, - T ) / i , concentration gradients of PbTe vapor exists in the annular region, h c / 

These gradients promote the diffusion of mater ia l through the cover gas away from 

the hot end of the element, z = 0. Steady state equilibrium is supported by material 

subliming from the element to replace that which diffuses away. Hence, the element 

erodes. 

The configuration of Figure 1 represents well only those generator designs, 

such as the SNAP-19, which use a molded insulation around the thermoelectric 

element and have a relatively uniform gas filled annular region. However, the 
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Gas filled annular region 

-Thermal insulation 

Figure 1. Configuration of thermoelectric element 
and thermal insulation used for analysis 



general t rends revealed by the analysis can apply to more i r regular geometries 

such as might occur on the SNAP-27 where the insulation has been powdered and 

lightly tamped around the thermoelectr ic elements, but where diffusion through 

the cover gas remains the dominant mode of mass transport . 

Determining the deviation in total generator performance due to element 

erosion is accomplished by first developing an expression for predicting the contour 

of the thermoelectr ic element after t ime, t, and secondly by using this informa­

tion in thermoelectr ic generator computer design codes to a s sess the performance 

of couples with eroded elements relative to their performance with whole elements. 

An expression for the profile history of the thermoelectr ic element depicted 

in Figure 1 is developed by considering the time rate of change in the radius of the 

element due to erosion. This is given as 

dr /d t = - 1 / P (1) 

r 

where 

r = radius of the thermoelectr ic element 

j = steady state radial component of mass flux at the surface of 

the elenaent, i. e . , mass flux evaluated at r = r . 
p = density of thermoelectr ic material 

Assuming the mass t ransport due to temperature gradients and bulk motion of 

the cover gas is negligible, and the total system pressure is spatially constant, 

the general form of the radial component of mass flux, j , can be expressed as 

C(m, t) „ 1^ -2 -1 ,„ , 
J = —p^— 9p / 9 r gm • cm • sec (2) 
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where 

C(m, t) = constant depending on the gas species and temperature , 

-1 -1 
gm • cm • sec 

p = part ial p ressure of the vapor of the thermoelectr ic mater ial , 

a tmospheres. 

P = total p ressure in system, atmospheres 

A complete development for the constant, C(m, t), can be found in a previous 

report by the author on this subject. 

Neglecting the slight spatial dependence of C(m, t) in Equation (2) and solving 

Laplace's equation for p for the part icular geometry of Figure 1 will give the 

required expression for j . In other words, one must determine a solution to the 

following equation for appropriate boiindary conditions. 

a^p^/8r^ + - 9 p j / a r + O^p^/az^ = 0 (3) 

where 

r = radial coordinate of Figure 1 

z = axial coordinate of Figure 1 

The expression for p which satisfies Equation (3) is then used in Equation (2). The 

boundary conditions best describing the environment of the couple in Figure 1 a r e : 

(1) 9p j / a r = 0 at r = r 

(2) 9pj/9z = 0 at z = 0 

(3) p = 0 at z = i 

(4) p = f(z) at r = r where f(z) is the equilibrium vapor p re s su re 

of the thermoelectr ic mater ia l along the surface of the element. 
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Model Solution 

The solution of Equation (3) for the preceding boundary conditions is 

* F(X r -A r) 
2 

n= 
Pi H/^ F(x r cos A. z / f(z) cos A z dz (4) 

n^2 'Vl^ ""Jo 

where 

F(x;y) = L(x)K (y) +K.(x) I (y) 1 o 1 o 

I = modified Bessel function of the first kind of order v 
V 

K = modified Bessel function of the second kind of o rder v 
V 

i = length of annular segment depicted in Figure 1 

A^ = ( 2 n - l )7r /2i 

The function, f(z), generally has the form 

f(z) = A exp [- B/T(z)] (5) 

where 

A and B are constants of the thermoelectr ic material 

T(z) = surface temperature along axial coordinate of the element, " K 

Assuming the distribution of tempera ture along the surface of the thermoelectr ic 

element is l inear, T becomes 

T = T^ - (T^ - T ) z / i (6) 
h h e ' 



where 

T = thermoelectr ic element hot junction temperature , K 

T = thermoelectr ic element cold junction temperature , " K 

Substitution of Equation (5) and (6) into Equation (4) completes the solution of p . 

For this analysis , 

A = exp (16. 23) 

B = 25. 97 X 10^ 

(2) 
which a r e values taken from work by D. Northrup . A more complete discussion 

of the above developments can be found in Reference (1) 

Assuming the se r i e s expression for p as given in Equation (4) converges 

uniformly, the part ial derivative, 9p /9 r , and thus j can be numerically evaluated 

for values of the dimensionless variables r / i and z/jf, with the exception of the 

point (z = 0, r = r ) which, in this case, is the intersection of two incompatible 

boundary conditions, (2) and (4). Figure 2 plots 9p /9 r at r = r as a function of 

z / i for a typical set of pa ramete rs . Fo r example, the parameters r / i = 0.380 

and r / i = 0.580 of Figure 2 would be representat ive of a cylindrical thermo­

electr ic element of 0, 380" diameter and 0.500" length separated from the surround­

ing insulation by an annular gap of 0.100 inch. 

Using an expression from Reference (1) to evaluate C(m, t) of Equation (2) 

for a mixture of Argon gas and PbTe vapor at T = 600 C gives 

C(m, t) = 0. 0 0 1 9 g m ' cm • sec 

This value of C(m, t) and the values of 9p /9 r from Figure 2 defines j (for the 
^1 

above parameters ) for various p res su res of cover gas. Assume, for the following 

analysis, that the generated pressure is constant with t ime. Substituting Equation 

(2) for r = r into Equation (1) and integrating will give 
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r^ - J^ t / p (7) 

where 

r = initial radius of thermoelectr ic element, cna o 

t = t ime, sec 

_3 
p = density of thermoelectr ic mater ial , gm • cm 

Figure 3 shows the profile, after one year , of a PbTe thermioelectric element as 

calculated from Equation (7) for one atmosphere generator p ressure of Argon and 

the configuration paramete rs stated in Figure 2. Values of j near z = 0 were 
^1 

determined by evaluating 9p / 9 r for points in the annular region slightly outside 

the boundary, r , where the discontinuity at z = 0 could be avoided. Note the 

rounding of element near the hot end due to diffusion of mater ia l away from the 

element. The element also shows a region of mater ia l deposition immediately 

below the eroded section. Almost all of the redistribution of mater ia l occurs 

within the first 40 to 50 percent of the element. The profile of Figure 3 is typical 

of the deterioration resulting from the part icular configuration and boundary condi­

tions of Figure 1. Increasing o r decreasing the boundary r„ of Figure 1 r e spec ­

tively increases and decreases the part ial p ressure gradients, 9p /9r , and thus 

the severi ty of erosion; but the shape of the element remains generally the same. 

Couple Behavioral Analysis 

Initial speculation on the effect of erosion on generator performance suggested 

that for constant heat input, the hot junction temperature would r i se due to increase 

in thermal resis tance of each elenaent and the power output would decrease due to 

increases in e lectr ical res i s tance . This prediction was essentially correct . This 

was shown by comparing the tempera tures and power outputs of whole couples with 

eroded couples as calculated by a computer design code, VINCE TOM-MOD. 1. 
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T = 200"C 

r Ji = 0.380 

r Jl • 0. 580 
' .3 

P ' 8. 24 gm-cm 
P • 1 atmosphere (Argon) 

Initial Profile 
of Element 
at t = 0 

0.500" 

Figure 3. Profile of thermoelectr ic element 
showing erosion after one year 

This code was originally developed by Martin Marietta, Inc. and is unique, in at 

least one feature, in allowing variable c ross sectional a reas for the elements. 

Using this code, the power outputs and hot junction temperatures of eroded couples 

were determined for constant heat input and cold junction temperature. Figure 4 

shows the plots, for selected intervals of t ime, of a normalized power output for 

ten couples, i. e . , the ratio of power output of the couples to their initial power; 

and the hot junction temperature . The power output in early life appears to be 

dictated by the combination of increasing hot junction temperature and electr ical 

res is tance . In la ter life, the behavior is dominated by the rapid increase in e lec­

t r ica l res is tance of the couples due to the advanced state of erosion. It is interest­

ing that for the par t icular pa ramete r s stated in Figure 4, this model predicts zero 

area for the " P " elements at thei r hot end contacts within approximately 2 years 

for P = 1 atmosphere. 
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In addition to the analysis in which the generator pressure was held constant 

in t ime, an analysis was made which allows for pressure decay as a function of 

t ime. This condition would be present in most gas filled generators operating in 

space. For this case, the generator p res su re , P, in Equation (2) was assumed 

to be of the form 

-TCt 
P = P e atnaospheres (8) 

where 

P = initial generator p res su re , atmospheres 

K = constant depending on the leak rate and volume of generator, sec 

t = t ime, sec 

Substitution of Equation (8) into j of Equation (1) and integrating resul ts in 

^1 

r - j (P ) (e^* - l ) /pK (9) 
o r o 

where i (P ) is i evaluated for the initial p ressure , P . This derivation r o r o 

assumes that the slow loss of generator p ressure does not perturb the steady state 

equilibrium of the gas system. Equation (9) can be used in the same fashion as 

Equation (7) to calculate the radius and hence the cross section area of the thermo­

electr ic elements as a function of t ime. Figure 4 shows couple performance for 

this condition as calculated by the aforementioned computer code, VINCE 

TOM-MOD. 1. Note that for P =2 atmospheres of Argon and K = 1. 0 x lO" s e c " \ 

the resulting deterioration in couple performance occurs ear l ie r for the same con­

figuration pa ramete r s , r / i and r _ / i , than in the preceding case. For the present 

case, the occurrence of zero contact a rea for the "P" element occurred at about 

0.8 year as compared to 2 years for the constant p ressure case. 
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Model Limitations 

There a re several deficiencies in the model that should be mentioned. The 

above analyses predicted complete erosion of the " P " elements at their hot end 

contacts. For spring loaded couples this is not real is t ic since the spring loading 

will keep the shortened element in contact with the hot shoe for a much longer 

period. However, this condition was not studied, and due to this uncertainty in 

couple behavior for severe erosion, only the first portion of the performance 

histories a re plotted in Figure 4. 

No account was taken of the increase in mater ia l loss that will occur due to 

the increases in hot junction temperature . Since the material flux, j , is highly 

dependent on temperature , this increase , even for small changes, may be signifi­

cant. 

This model, p , assumes in the solution for the part ial p ressure distribution 

a constant boundary, r = r . , with t ime. This, of course, is not the case. How­

ever, the changes in p and j due to boundary changes is not likely to be of such 
^ ^1 

significance as to change the conclusions of this analysis . 

Conclusions 

The preceding study, based on the model described, shows that there can be 

mater ia l loss from thermoelectr ic elements even in generators using a cover gas. 

This erosion of the elements could cause a significant portion of the degradation 

observed in current thermoelectr ic genera tors . It i s , however, not of such magni­

tude to account for all of the degradation. 
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