. ATL-A-105 -
INFORMAL AEC RESEARCH.
AND DEVELOPMENT REPORT
UC-34, Physics and Mathematics

- .SPECIAL DISTRIBUTION

Final Report . .
DMM: A MULTIGROUP, MULTIREGIO%*I ,
ONE-SPACE-DIMENSIONAL COMPUTER PROGRAM
'USING NEUTRON DIFFUSION THEORY

Part I - The Theqry
31 December 1960
ATL Job.65031

Prepared Under
Contract AF33(616)-—6097
 Project No. 3161 = -
Task No. 30450
for U. S. ‘Air Force
Wright Air Development. Division
Air Research and Development Command -

Written by
. Edward J., Leshan
Devereux L. Kavanagh
Programmed by
: M. J. Antchagno
-Elaine K. ‘Egawa . =~ . t‘i .~ ‘Mark 1. Temme
Michael J._Starratt o Roy I. Sutton -.

ADVANCED TECHNOLOGY LABORATORIES
A Division of American-Standard
369 Whisman Road
Mountain.View, California




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



LEGAL NOTICE-

This report was prepared as an‘account. of Government
.- sponsored work. Neither the United’States, nor the. Commission,
nor.any person acting on behalf of the.Commission: ‘

A, Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness, or
_usefulness of the information contained in this report, or
that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights;
or oo -

B.  Assumes any liabilities with respect to'the use of,
or for damages resulting from the use of any information,

apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the

.Commission" includes any employee or contractor of the Commission,

or.employee .of such contractor, to the extent that such employee
or contractor of the Commission, or employee of such contractor
prepares disseminates, or provides access to, any 1nformat10n

pursuant to his_employment or contract with the Comm1ss1on, or
his employment with such contractor. : :

AN




CONTENTS

Foreword

Acknowledgement

Abstract

I. Introduction

II. The Diffusion Equation

. General Discussion
The Multigroup Method
The Spatial Integration

Boundary Conditions

MY ow p

Numerical Procedures
III. The Nuclear Constants
A. General Discussion
B. Flux Weighting
.C. Microscopic Group Constants
D. The Basic LibraryA
IV. .Self Shielding
V. Xenon and. Samarium Addition
VI. Burnup |
A. General
B. Solution of the Differential Equation
C. Qhanging the Time Interval
D. Matrix Elements
VII. The Adjoint Equation
VIII.Criticality C oﬁtrol
IX. Neutron Balance

X., 'Flow Charts

® 1 O U b b o o M

O W N O DN N N N D D ke e
B S © O AW NN O © QB N ok




. FOREWORD -

" This document is submitted in partial fulfillment of the final technical report require-
ments of Part I, para. E. 3., item III, of the Statement of Work of U. S. Air Force.Contract
AF33(616)-6097. The report is presented in three parts: I - "The Theory," confained herein;
IT - "DMM Program Description;'" the third part consists of the Uniservo tape(s) and two
copies of the program on IBM cards. ,

A basic library of cross sections for DMM has been developed by D. L. Kavanagh and
is presented in American-Standard Report ATL A-106, "Cross Section Library for DMM:
A Multigroup, Multiregion, One-Space-Dimensional Computer Program Using Neutron

Diffusion Theory'" (Secret-Restricted Data).
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ABSTRACT 7
DMM is a pi“ogrém using one—space—difnensiongl multigroup diffusion theory to calculate
the .reactivity or critical conditions and flux distribution of a multiregion reactor. Calculations
of fis’sion—produced._xenon and.samarium and time.variation due:to productibn and depletion
of isotopes are.an essential part of this program. The adjoint fluxes may also be computed,. )
and the program includes the calculation of the nuclear constants from fairly simple input
combined with a library of cross sections: The preéent 'ché.is written for the Remington

Rand 1103A: 4Operating instructions are presented in Part II of this report.




I. INTRODUCTION

DMM is a computer program whose primary purpose is the calculation.of the spatial
arid energy élistribution of the flux of neutrons in-a spherical, cylindriéal, or slab reactor
.and of the reactivity of this system. As auxiliary programs. intimately associated with this
purpose, DMM includes:. ’ A

-1)  The calculation of multigroup cross sections, using interpolated estimates of the
flux within an energy group to weight what is essentially a point cross section table.

'2) A burnup routine, using the fluxes _calculéted by the main program to compute the
consumption and production of reactor materials in finite time steps. After calcu-
lating the amount of an absorbing material that must be added to maintain the '
multiplicationatunity, the program computes new group.constants and returns to
the main program to compute new fluxes and a new reactivity. . »

3) The calculation of the xenon.and samari}lm distribution. from the fluxes, recompu-
fation of the group_.constants using these added materials, folldwed by return to. the
main program to calculate new fluxes and multiplication with the new group constants.
The xenon and samarium di_stributions are computed for equilibrium or for a given
time after shutdown. )

4) Calculation of the adjoint fluxes, using the main flux program with altered_nucléar
constants. ‘ | ‘ ' ‘ '_ . |

.5) Iteration on ény one .of several reactbr parameters, such as.concentration of aﬁy

one of the elements in any one .of the regions, .size of one of the regions, and.
transverse leakage. This procedure.obtains the value of the chosen pérameter at

which the reactivity is equal to a given value. - -

The program is written in such a way that the various separate routines may be linked

‘together in any one of several ways to satisfy the requirements of a particular problem.
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II. THE DIFFUSION EQUATION

‘A. General Discussion

The principal calculation is the solution of a diffusion theory approximation for the

multiplication and neutron flux in a nuclear system:

V{D(r, E) V¢(r, E)] -‘Zt(r,E) ¢(r,E)

~max’ ’ . dE"
+§¥.inA(.r’E)/ : »ZinA(r,E) VinA(_r’E) ¢(r.?E) XinA(r’E')
E .
mm(E/cv ) ,
(I‘ EY) ¢(r E') dE!
+Z
(1-0,)E
' Emax‘ :
%) . | -
=- = D ¢ (LEY v (TE) ¢ (r,ENAE' . (1)
. . A E ‘ A A . )
' “min

In addition to the dlffusxon approxxmatlon several other assumptmns have been made in

wr1tmg equatlon 1.

The second term covers inelastic scattering and implies that Xin (r, E)dE, the piﬁobability

.t'hat a neutron absorbed at a higher energy E' will be emitted with an enex;gy between E and

E +dE (1f an inelastic collision takes place), is dependent on E' only in that it is zero for"

-E > E'. The divisor X (R,E") is given by

A E!

X (r,E') = f X, (r,E")dE" S 2)
i, ‘ Iy | |
min

“and is included to normalize the truncated X (r, E).

A
The third term covers elastic scattering and is exact except for the assumption that

scattering is isotropic in the center of mass system. In the rare cases where- this is -
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significant, nonisotropic components can be included by replacing the scatterer with several
scatterers of different atomic weight. |
The terms in equation 1 not described:above may be defined as follows:

. T = the single spatial coordinate over which the integration of equation 1 is
performed in detail. In the case of a sphere, r is the distance from the
center; in c’ylindrical calculations it is the perpendicular distance from
the axis. Finally, in the case of slab geometry, it is the single Cartesian
coordmate being 1nvest1gated ~

E = the energy of the neutrons.

D(r,E) ' = the neutron diffusion coefficient,

o(r, E)‘ = the neutron flux density.

Zt(r,E) = the macroscopic total cross sectlon plus a leakage cross sectxon accounting

for leakage in d1rect10ns other than r.

(r,E)= the macroscopic inelastic scattering cross section. An inelastic event is

A defined as a collision of the types (n,n'), (n,2n), (n, 3n), etc.
‘ ' th
in (r,E) = the number of neutrons emitted per inelastic collision with the A" isotope.
i A
‘ th
@, = the maximum fractional energy loss for a neutron colhdmg with the A
-isotope.
_ th
ZS = the macroscopic elastic scattering cross section for the A isotope. .
A ' :
v xf(r, E)dE = the probability that a neutron emitted after a fission has energy in tlié»»range
E to E + dE.
# = the effective multiplication.
= £V < the macroscopic fission cross sectien and the number of neutrons emitted

A A per fission, respectively, for the Ath isotope.

B. The Multigroup Method

o .+ .
If we define energy ranges El to El 1 fori=1, 2,.... I and integrate equation 1 over

these ranges, we obtain a set of equations, one for each energy group.

—VIDi(r)wi(r'n s T ') = H@) | @)
where H\(r) = Z Tt (r) ¢ (r) + x P(r), (4)
H
wi  Pw - L Y Fe o ' (5)
£ 5
_5 -



The nuclear constants D T T , xf , F Z £ and the flux ¢>1 are related to the
functlons in equation 1 by integration formulas as described in section III. Briefly,
they are ﬂux—weigﬁted averages of the en_ergy—dependent eross sections averaged over

- the range Ei to Ei+1'
C. The Spatial Integration

_— ' We further define N + 1 mesh points r o’ T 1 rz. .e rN at which t}le functions of equations
' 3, 4, and 5 are defined. These mesh points may be grouped into regions in each of which
the nuclear properties are independent of position That is, Ti-(r) = k'f‘l for Rk 1 =r= Rk’
etc., where Rk and Rk 1 each commde with some r and are the outer and inner points,
respectively, of some geometric region. In this program, the mesh spacing is constant
within each region but may vary from regio'n to region. That is, ‘rn+ 1" T = Taret ” Ty

if for some k, :
Rk—l =T < Th+l =T < Tl SRk' :
- There are R regions, where k=1, 2, 3....R.

Setting p = 0, 1, or 2 for planar, cylindrical, and spherical geometries, respectively, Awe

obtain:
i i i i A :
- + - = =
an ¢>n_1 bn ¢n cn ¢n+1 dn . n=0,1,2...N) \ (6)
P
r
i k-_i n-1/2
an - D Ar
n—
i i i P k--i. ., p K+, i
b =-a +.¢c + 1/2 r Ar T +1/2 r Ar T . >(n=1,2-...N—1)
- n n n n- n- n n+
' 7
) . (1)
- ci _ k+t i n+1/2
“n Ar
o n+
d=1/2r" ar H +1/22° ar H .
n n n- n- “'n T n¥ Tn+ )

* For a derivation of these equations, see "RBU: A Combined Monte Carlo Reactor Burnup
Program for the IBM 709, " Advanced Technology Laboratorles a Division of American-
Standard, ATL-A-101, 30 September 1959, pp 85-88.
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Here, 12 T 1/2(r r) ;
A = -
rn— rn rn—1 ;
Ar =r -r
n+ n+l1 n ;
8
i i k- ij j > o
H'n— " Z T eyt Xf Pn- ’
=1
i 1o k+, ij j i
H =), T ¢ +xP ;
n+ =1 n+ ’J
17 I k \
P = . Z ‘ F JJJ ;
n- AL n .
4 ji=1
> (8b)
I .
‘ 1 kt j . j
P = Z F° 9 ;
n+ 4 e n
* -

k- refers to the material at the left of mesh point n,
k+ refers to the material at the right of mesh point n,
For mesh points that do not cori‘espond to the boundaries between regions, (7) is somewhat
- simpler, since for these points . . -
- 3 H : . ) —. » - Y ) s . - 'S k+ .
Arn_ _ Arm_,k T = k+Tl, k+D1_= k _Dl’ k i - k+T'1]3‘ k - )

D. Boundary Condltlons

; i .
At the boundarles of the mesh r_and r_, the equatlons for a , -b1 , ¢, and d' are
0 N n’ n n n

modified to agree with the boundary conditions. These are

: i i 2
_ Ar
P11 ?17 % i 9 0
-[1- N + =
[1-5B,] Arg, *By9pg*PV e 0 5
(9)
R;"’N ¢N1 i 2‘-ArN2
[1—B] ——KITI;——+BN¢N+DV¢ 2 0 ;

. which correspond to the physical boundary conditions:

-[1- By(E)] D(0,E) V¢ (0,E)+ BO(E) ¢(0, E) + D(O,E)V2¢>(O,E) =0 ;
‘ S (10)

".[1- By(E)] DR, E) V4(N, E) + By (E) ¢(N, E) + D(R, E)V? (R, E) = 0



These equations permit solutions corresponding to flux zero at an extrapolated end
point, symmetrical or nonsymmetrical slabs an infinite nonmoderating reflector or to

other values of the logarithmic derivative at the boundary The most commonly used

boundary conditions will presumably be B0 = 0, BN = 0. 319
Equations 9 lead to the following equations for n= 0 and N. _

I , . . : ™

ao = 0. . :

b= ol « Bl oar + i(1-rs L ar. )2

0o o 0 "o+ 2 0

. . . ¢ (11)
i 111

c0 = (1~ BO) D :

i

d0=-—§—H(1-B)(.sr) . Y,

i i R i Y

ay = (1-By "D

oo al « Blar. o+ 31-B) BT AT Yoo

N N NTN- TN N- - (12)
i ;

CN = 0
o= y1-B) H @arg)?

N N’ N YV N- T , J

E. Numerxcal Procedures )

, Smce the boundary conditions (equations 11 and 12) apply at opposite ends of the mesh,
- the solution of equations 6 and 7 sub]ect to them requlres some special device. We define

i i
pn andqn by

i i i ‘
- - + . . . .
®n Py ¢ n+1 9, . ( 1A3)

* The use of B;\I = 0. 319 instead of the more customary zero permits the use of actual
reactor dimensions and automatically sets the extrépglatloh 0 0.71 X with its appropriate

energy dependence through the energy dependence of A.
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Vet

Substituting equation 13 into equation 6 gives as a solution

i 1 i
.F
i °n ) i n aqnl (14)
Py pbo_oal b 47 PGt . '
n npnl n npnl

If the source H is known, it is possible, to calculate the p and qn beginning with n = 0. By

-substituting these values in.equation 13 the ¢ may then be evaluated Since

T = 0, (i =j) ‘ | ' : (15)
(Scattering transfer only from some group j to a lower energy group i.)
Hn can be calculated from P without any knowledge .of the ¢ - Thus, if the Pn are known,

the 4> can be calculated beg1nn1ng,w1th<1 =1 and proceedmg, one group at a time, toi=1.

Having computed the ¢> , the Pn are.computed by equations 8b.

‘ k- _i BTN i
S = » . +
VP, Q z Z (2 AV , .Z.f-‘AVn+) ®n {19)
0 n i 4 ) : , A
where l/2 Arn_ forp=0 , . Y
AV = mr Ar forp=1 ,
n- n .n- P
PO 1
\21[: Ar “forpg=2 ;
C oA fom > (17)
1(2 .AI"n+ .forf) =0 .
"_AVn_F = 9 Le Arn+ forp=1 |,
2 ’
L Zqu Arm_. forp=2 ; y
AV =. AV + AV : 0
‘n - n- n+
AV = 0
AVN+ = 0
N e
\4 = ) AV (18)
. n
n=0
Ar = Ar = 0
-9 -
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=y

" ized to an average value of P

.is that < €_ for all n and that

The effect of this treatment is that at each iteration the fluxes and sources are normal-

0 Q fissions per unit volume, where Q = the operatlng power

density in kw/cm3 of reactor, * P0 = number of f1ss1ons/kw -sec = 3.12 % 10 . The flux

density, then, is in neutron centimeters per cubic centimeter per second per unit energy

.at an average position in the transverse space.variable.

Usmg the values of the P computed by equation 8b,. the program calculates a new set
of ¢> and .continues the 1terat1ve process until agreement between successive iterates of
Pn andﬁ indicates .satisfactory convergence. The criterion for satisfactory convergence

tPnA } t—iPn ' , ' . £-

P 9 P IR
t n . T

In addition to these tests, the maximum number of iterations.of the diffusion calculation

for.a particular problem may be controlled‘ by:the user through the.control information input.

In o¥der to accelerate the rate of convergence, 511 was used in equation 8a.instead of

R e e LA - @9

where the presubscript, t, is the iteration number and w is an input constant. Should’

.equation 19 yield a negative value for any n, that particular P is set equal.to zero.

Methods of determining the best value of w are d1scussed elsewhere On the first
1teratlon, it is necessaryto generate.a set, This. set, obtained on the assumption of a. flat

power distribution,. is Pn =2.5 PO.Q.

~*  Note that this power density dlffers from the power per unit volume of core by the. factor
(core volume/reactor volume).

.**% See,.for example: E. L. Wachspress "terative Methods of Solving Elliptic- Type

Differential Equatlons " KAPL 1333 (1955).

-10.-



III. THE NUCLEAR CONSTANTS

A, General Discussion

The integration of equation 1 leads to the following definitions for the functions appear-

ing in equations 3, 4, and 5.

- - E, , . .
. 1 .
) D = / DE)HE)dE |- / o' € -E,) . " (20)
- -
11' /1 Z ]1 dE!
T = <2 (E)p(E)- ) x.  (E) . (EY) (E) T Fn
, t> in / in; X (E)
Ei+1. A A E A mA
'min(E/qA,Ei) | |
S (EY)
> °a (EdE' } dE ¢>i(E E. )
=), == ¢(E")dE' .- E,
% (l—ozA)E 4 i i+l
‘ E
- 8%p)’ : o @y
. . » 1.] —_ . 1 . " A v ____CE__
. T = f {me (E) f = (EYv (ENE) 3 5y
g A A = A A Tin,
‘ i+1 ' i+l
lmin(E/'aA,Ej)
S (EY):
S . R .
+ ) - S— ¢(E'dE' ) dE $UE. - E. )if j<i and
- J (1-a ,)E! i i+1
A A : .
. ;— . Ej"'l
™o oirg=i | @y

+ See equation 37 for the way the second and third terms of T" are éctuall’y computed.

i  See equation 33a for the way the variable upper limit is actually included in the second -

term of T,

o

<



>
S
i

| ~i ,
1 . L | ) e | [ e,y - (23)
3 E. : .

E. :
. j : ) .
i | o / S (B, ¢(E)E | [¢7 . (24)

E. :
) . . 1 ’ S
o 2 _/ (E)oE)E| [o7 . (242)

i+1

) . 1 ! . . .
| ‘ - ‘¢1 ' / ¢(E)E [ (E; -E ) . (25)
E, f .

i+1

(BZD)i is the perpendicular leakage cross section which normally is an input constant.
Although equat1ons 20 through 25 are.easily der1ved by integration of equation 1, 1f one
-assumes an energy- 1ndependent buckhng, a dlfferent equation can be derived for D by
- " integrating the transport equation to obtam a mu1t1group transport equation and deriving a
diffusion approx1mat1on to this. The results obtained from the two def1n1t10ns are often not
very different frorh each other; in this program; !:he second more convement and conventional
definition is used. ' |

A i -
i 1 _ 1 i } o
D = —— = 3 f 2, (E) $(E)AE ¢ (E -E. ) (20a)
32 E. , :
: tr -.'1'+1

B. Flux Weighting

The calculation of these quantities must use different equations, since, ¢(E) is not known
and since the above equations imply a __computatiou at each mesh point--an excessive amount
of work. As a compromise, the functi-hn Y(E) is used in place. of ¢ (E) in.equations 20
through 24, Equation 25 need not be performed at all. zp(E) is obtamed from a set of ¢>

1 :
by integrating the over regions of uniform composition and interpolating. Thus, if
y gt n.

| N,
k i &g ‘
o = 1\; oL av_ | (26)
k-1 |

-12 -
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where k indicates the kth region,

kci
ki ki 2 ki '
= - 2
¥ (E) c, + 3 * CyxE. E, <E<E . (27
The coefficients are defined by
k i
C
k i-1 ki 2. k i
..— (p = C + + C o H
1 El_l/2 3 i-1/2
- K _i
‘ C .
k i _ kcl1 + 2 . kc; ELie ' (28)
i+1/2 _
K i
kK i+l ki Clz ki
¢ = Gy ¢ *oCs B
i+3/2 .
i+1/2 2

‘The assumption of a particular functional form (equation 27) for ¥(E) makes poésible
- the performance of all the integrations i;lvolved in equations 20a through 24 for each isotope
o for a given group structure, that is, for a given set of Ei at the time the group structure
is first defined. In order to do this, the microscopic equivalents of thé‘macroscopic

*
cross sections used in (20) tarough (25) are defined as follows:

kK i k Kk i k.2 i
T = Z N, t, + (B°D) :
A
k_i k ki
- Ztr B Z‘l NA, Utr ’
A A A
9
. g . (E.-E. ) (29)
lej _ 2 kN ktl_] J j*tl .
- g A A EEL)
k_i k k.i . :
Fo= ) Ny 6 (B -EL)
A ,
k_i k K i :
=, = ), N, o (E-E )
f Y A .’fA A1 i+1

*  See section IV for the modification of equation 29 that is abtually used.

- 13 -



Here, the index A refers to a particular isotope, and l{NA is the concentration of that isotope
in region k. |

The region superscript on the microscopic cross sections indicates that they have been
. weighted by tne kzpi in the process of obtaining group values from the more detai'led dependence
of the nuclear properties on énergy. ‘ ‘

This program uses a set of cross sections, called the basic library, which describes
the detailed dependence of the cross section of each isotope on energy. ‘Among the nuclear
data specified in the basic library are o (E), g‘c(E), o (E), om(E),Auf(E), _Vin(E)" X(E),ﬁd(E),

and oi. With these and the definition

+o, ., - (30)
1

= —u) + +
g o (1 ;40). o, t0o .

tr f ,
the microscopic Aanalogués to the integrations of (20a) through (24) may be carried out
provided the weighting functions kzpi(E). are available. ‘Since, however, these weighting 3
functions are always to be of the form of equafion 27, it is convenient to define three separate

microscopic cross sections for each of those used in (29). That is if

i | P i i i i i
kt;\ = fkl— kcll t1< + kc; tz T+ kC; t3. ;
c' A A YA
kUi - 1 kcx i + kcl ol + kCl o) :
tr kCi 1 tr1 2 tr2 3 tr3
A A A A
kil _ f— kcj1 t 1” . Kl t‘zJ + kc; t;J ;ete., (31)-
A c? A A A
‘ K i K i A ki . E 1 ki 2 2
= - + - E. -E, , ,
where  C CL Ei-E) v C In E 2 Cg By ~E )

then tl1 " ti2 and t‘; may be obtained from the basic library and the energy group structure
A A A

independent of the kcll , k0; , 'kcl3

C. Microscopic Group Constants

When the program is given an energy group structure and a list of isotopes that will be

required, it computes the following group constants.

-14 -



i e N
Utr 1
, 1A ' . »
J o = 1 E) < L dE (32
N - %y, ) E ( - A )
) A i+1 k
011: ‘E
- r3A ..
_ Y,
. o Y
- A r 1
1A .
i .
ij _ ' 1 dE!
< tzA P = f (E) / (E') Yin .(E') 4 B > ;XA"(E )
3 Ein
tlJ ‘ . E!
3A — ~ ~ \_ ~
~ J f 1 ] ¢
- : ERLED oy
: : > A )1 -
+ m ‘4 ’E—; $ dE* dE. (33)
- R LA s ' '
Ej’ii
: e ]

The cross séction t' 1 is also computed by an equatlon 1dentlca1 to (33) except for the suppres-

sion of v, .
in

To simplify the ‘computdtion, the varlable upper limit in (33) is eliminated and the elastlc

scatter term replaced by

- L ' ' 1 )
EJ’ c (EY) A
Sac - 1
o : _ — E! .
~ . €_(E,Ej, Ol) / (1_aA)Et :E, ‘ d . .’
) *Ej+1 = E'
: | =B .
where €E,E., @) = —= if E,. .<— < E, ;
: 73 E. - E *l .« J
) i+l
= 1 if E > E, ; . . (33a)
o ] ¢ '
= 0 if E < E,
e il



o) T
; 1
A E
: J
1
< > = u; f o (E) { = ¢ (34)
A A - ‘ A
. Ein
fé E
A ~ 7
C ) o
o) 1
o
A
E. :
{4 . [ L\ e 35
o - op (E) ﬁ = (35)
2, | - A
s
i
o) E
£, .
. A :
(i) ()
g
C
1
A
i Ei 1
< o F = f o () { & dE (36)
2 A |
A Bi1
oi E
L Cg . _J
A_J
‘ti = O'i . o + IZ g 1 (37)
A T, "cﬂA Hag 1A

To repeat, the isotopic group constants of (32) through (37) and, in addition x;,' are

computed when an energy group structure is defined and a list of isotopes required for the

problem specified. The program may examine an old microscopic gi‘oup tape and compute

*

the group constants only for those isotopes needed which are not already on the old tape.

ki k i : _
If a set of <p1 are available, the program may then compute the C1 by solving equation

?
28 and from them the microscopic constants of (29) by means of (31). Two additional cross

ki k i : :
sections o; and or:: are needed for burnup calculation and are computed in the same way.
A A
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The pfogram tests the computation of each parameter evaluated in equation 31; if any are

negative, they are recomputed with kC kc; =0,
The definitions in (28) are modlfled in a simple way in the.case of the first and last
groups: A
¢>0 =1 ;
Fig TR
(38)
+
I+1 = 1 :

EI+3/2 = Ein

The choice of ¢'s = 1 causes the wgighting functions. 02 and C3 evaluated in the initial
case to be identically equal to zero.

The.calculation of the neutron spéctrum within the thermal group is presumably performed
by. some .other program--either a Maxwellian is assumed or some method such as Wignér-
Wilkins is ﬁs‘ed. At any rate,. the averaging over this thermal group must at present be done
externally to DMM. The effect of these .cross.éections on the thermal group,ciross sections
.is then -established by DMM through an appropri_ate choice of the. low-energy entries in the

*
basic library.

D. The Basic Library

The detailed de‘péndehceiof the nuclear constants in the basic library on energy. implied
in the integrations.of equations 32 through .37 is obtained by specifying the values at a large
number of energies. These energy values are chosen to be appropfiate,to the most economical,
yet aécurate representation for each individual isotope without regard to the values used. for

other isotopes.

_*  Modification of DMM to include the determination .of a thermal spectrum and evaluation of
thermal group.cross sections thdt have been.averaged over it i§ certainly practical. An
alternative approach that 'may be superior is to provide in the nuclear.constants routine
for a special scattering model near thérmal energies, to add upscattéring terms'to the
ti and ‘TH, and. then to treat several. groups near thermal in the conventional. way. In.
any case, it is usually necessary to have additional separate.computations to deal with

such effects as.shelf shielding, resonances and near thermal scattering.
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The ¢; used in the nuclear constant evaluation are the result of a previous iteration or
-stage of the calculation. Transfer to this cross section averaging routine inay be made at
some .stage of bthe.calcula_tion when some of the auxiliary programs have caused a .change.in

concentration of some components.
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IV. SELF SHIELDING

Usually.this.code will be applied to:a semi,—homog‘eneou‘s approximation of the actual
reactor. . For this reason, it ﬁlay not be satisfactory to mix the isotopes according to their
.relative ,conc"entrations, as described in.section III. This difficulty can be solved by Ilnultigf
plying the concentrations by self-shielding factors.which are functions of energy and are the
relative flux densitieAs‘in the regions of a.lattice cell. .

In DMM, provision is made for several sets of self-shielding factors fiS , where p is the
.index of the set. .With each isotope A in eact; regi'on. k, the.set of self-shielding factors to

be used is indicated by specifying the particular set through a value of ks If ks is.zero,

A’ A
the program uses unity for the self—shielding,factbr, for isotope A in region k. The fls are

.inserted in equation 29, effectively producing a pseudo concentration that is.energy dependent.“%

For example:

kel "o ) ky £ KoL kgZpt | , (39)
& k ‘a t B - |
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V. XENON AND SAMARIUM ADDITION

Equilibrium, or shutdown xenon .and samarium concentrations.can be.automatically
-computed.and added to the .contents.of a region of the problem if the input indicates that
this should be done. The.calculation is made at a stage in the problem at which estimates
of the Pn and ¢;' are .available. |

The input required is

Ats - the time.since.shutdown in seconds ‘(Ats = 0 gives.equilibrium xenon

and samarium concentration);
*

Q -~ the powef density of the reactor in kw/cm3 of reactor.

The calculation makes use of the following constants:

P0 - fissions/kw-sec = 3. 12 X 1’013. :
YXe - Xe:!135:.atoms produced per fission = 3. O:X:‘IO—?.
YI - T1'135 atoms produced per fission= 5.6 X 10—2.
YPr - Pr 149 atoms produced per fission= 1.4 X,lO_z.
AXe - probability per second of decay of an Xe 135 atom. =: 2.1 X 10_5.
}\I - probability per second .of decay of anI 135 atom = 2.9 X 10—5.
- -6
APr - probability per second of decay of a Pr 149 atom = 4.1X10 .
k_' i ki .
P = E ks ¢ 0 : | . (40)
i :
ki i o i
o = ¢ AV + > d. AV o+ ¢ AV ;
N1 N, n=N, +1 " P NN
k-1 k-1 k
. Nt ,
‘and Vo= AV.; o+ ) . AV o+ AV
Py = * + N )
N1 n=N ;1 k

*  See footnote, page 10.
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where AV‘r.l s AVn+ and AVn are given by 'equaﬁon 17 and the average‘_fiss'ion density in

region k 1s then-

kK = 2 | | < | (41)

- and the .equilibrium concentration of Xe in region k .is

- ' : (Y, +.Y, ) Kpx 10724

- kel o . —Xe_ ' — . (42)
. * Xe A + Z ko_l ST ki - o4
T Xe " L % %k L (E -E )x10
‘ : i Xe s, k_ Vi i+1 ,
Xe -
where.fll{ is the self-shielding factor associated with-Xe in region k, group i. -
Xe B A
At Ats seconds.after shutdown, the.concentration of Xe in region k is
| k -24
- 4 ' - =\ A
kne @ty = 580 e "xe s + b el [e "xe s - e " ~ts:| (43)
Xe s Xe 7&1 - >\Xe .
Similarly, the equilibrium concentration of Sm is’
, ‘ k
k 0 Ypr P o
N = . - , , (44)
Sm . E ko_l eb ki :
| P %m Ks. w. BT Eug)
Sm 'V :
and the.concentration of Sm in region k at Ats séconds after shutdown is
. Y ki 10 -A At '
- k _ k.0 Pr . pige Pr s
A NSm (At;s) = NSm + }\P <1 e | > . (45)

" Equations 43 and 45 apply of course only when the reactor has been in operation before
= .shutdown for a sufficiently long period to establish Aequi_libri‘um._ Xenon and samarium con-
centrations during the approach to equilibrium may be cofnputed by the burnup routine dis-

cussed in section VI,
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'VI. BURNUP

A. General

'DMM may be used to compute, in conjunction with the calculations described above,
the .consumption.and production of isotOpés in each region during reactor operation. The
procedure takes into account the spatial and energy variation of the neutron flux; also, A
through use of the crfticality control routine described in section VIII, effects of a .control
device used to maintain criticality during burnup may: also be accounted for.

The'burnup_ calculation involves the solufion_of a set of differential equations for each
region of the reactor. Each of the equations relates the rate of éhang‘e .of concentration of

an isotope to its own concentration and to the concentration of its parent isotopes. Thus, if

N is the concentration of the gt isotope present in region k,

g—t !kNg} g kNg' {Z fp— fg" ko;'-—'g (Bj = Ejpp) 107 ?‘g'*g
S iV £ ’
T . ki _
i kNg 5 koa,l £ EL (E, - E,,,) x 10 24 Ag] . (46)
Here, f = self-shielding factor for isotope g', and og'—"g = cross section for production of

isotope g from isotope g' . The sets of differential equations are solved by means of a method

due to Adams so that, after the first four burnup steps on a material, an estimate of the

precisfon is available. This estimate for each isotope in a region is compared with a pair of
. K . i

tolerance limits, € 4 and 65 ,to determine whether At should be increased, decreased, or left

unchanged.

B. Solution.of the Differential Equation

‘Calculations of the concentrations are made, using estimates of the first through fourth

~ derivatives obtained frovm the differences of values of the previous first derivatives. Thus,

‘ 3 - e ‘
predictions are made with N =NP14 At Z a, ' Ny 1 , and

: i=0 - : ~

1 - b 3

g = b2 =% %% = 83535 7
using the backward differences

v’ = ¥,

viyP = ‘PPt | (482)
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.at

2 _ 1 - - -
vivP = viyP oot yPh o yP gyt 4 w2

-3

-1 vP -3y ligyP 2 _yP : (48b)

V' yP = vl yPogitlyel

In 48ab the superscript p indicates the time. at which. the concentrations and their rates .of

change apply. The term N” is the concentration at time t” estimated from data available at
time tp - At = tp_l. The data available at thiys time is the concentration, Np_l; the rate

of change at tp—l, Np-l ; and the higher order differences of I;I, (Vi, N)p-l (i=1,2,3) which'
yield information of the second through fourth derivatives of N in recent time steps. The.Oth )

order difference, (VO N) prl = NP 71', .is obtained from (46) using. the fluxes. and concentrations

-1 , .
tP . The fluxes used for this purpose depend, of course, on the properties of all regions,

in addition to the one currently being solved.

ALVS N * | -5
The value of ——_—— (where N is either Nor 1.7 X 10 ~, whichever is_larger_) is used
: . N At V3 N
as a measure of whether the time interval, At, is satisfactory. If — | > 65.,_thiS
' N

is .an indication either 1) that changes in concentration of other isotopes in the same region
or higher terms in the expansion.of the rate of depletion of the isotope in question lead to a

requirement for a shorter time step, or 2) that indirect effects of changes in other regions

.are.causing errors.

C. Changing the Time Interval-

B
AtV N .
= < ¢, | | | (49)

If
N

~for all isotopes. in the reactor, then At will be increased by a factor of two for the next step..

. 3 .

AtV '

_t_;_l\l_ > € ; €. = 20 ¢ : (50)
N 4

I | 5

. for any isotope in the reactor, then At will be decreased by a factor of two before the new

concentrations are.computed.
When At is decreased, backward differences,. Vl, corresponding to the new time interval

are required for the prediction. These are.computed from
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V' N 1 0 (U 0 V' N
1 o - S
V'N 0 1/2 - 1/8 1/16? V' N A
2 - - ' 9 ;. (51)
VN 0 0 1/4 1/8 V'N
- 3 : .
VN A 0 0 0 1/8 ' V3N ,
new ‘ : S old
: and the hew concentrations.are,computed by equation 47. .
- If f'o_ur backward differences.are available, if At is less than.a maximum permissible

.value, 1f At was not doubled on the previous_fime.step, and if e,quatioh.49 is satisfied, At is

increased by a factor of two. The new ba;ckward.diffefences ,aré_‘computed from

N 1 o 0 0 N
vin o 2 -1 o viN
2N i 0 0 4 ) | viN | . (s2)
) veN | o o0 .0 8 VPN
new o ' | old

D. Matrix Elements

The calculation of the right hand side.of (46) is.essentially a matter of collecting the
pertinent cross sections. Most of the terms.are zero; thé,t is, only a small numbér of the
isotopes present in region k contribute to the production .of any particular isotope in that
region. On the group..cfoss section tape .and .on the basic library along with the crossAséction

data for each isotope are the following data:

- ‘ A - isotope .name
7 a, -~ atomic weight of A
- , o ' '
A 0A name of isotope produced when a neutron is.captured by an A atom
- ' ) - o .
A1 A name of an isotope produced when a neutron causes fission of an A atom
! i . . A |
Y1A - yield of A1~A 1n fission .of A
1
A2A - name.of another fission product of A’
V 1
H Y , v - yield.of A2A in fission of A
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- (up to 9 fission products per isotope)

A - total radioactive .decay éons_tant for isotope A in reciprocal seconds
1 o : o : |
A 4 A name of an isotope produced by radioactive decay of an A atom

1 ‘

! 1
A - radioactive.decay, constant for A in chain producing A

1A » : dlA

, :
A d A " name.of another decay product of A

0
. .

7\2 A - decay constant for A for production of A dg A

- (up.to 3 decay products for each isotope)

This information governs the .selection of cross.sections for the og : from the o,

—-g!

A

and o, The number of fission products.and decay products may vary from isotope to
A

isofopé.




VII. THE ADJOINT EQUATION

At the computer's option, DMM may be used to calculate the adjoint fluxes. The

equation adjoint terquation lis
* *
VI[D(r,E)Ve (r,E)] -2 (r,E)¢ (r,E)

E

. v. (r,E)
- « T2 (rE) A f X, (r.E)¢ (r,E")dE"
. r’ ~ 7. - . E) ’
i | A mA xin (r,E) E mA ‘
A min
5. (B) ?
SA . N _
+ § W ¢ (r,E')dE
- ' max(E ., a , E)
min’: A
max
‘ " , o
= -%*Zf (r,E)vf.(r,E) / Xg (r,E¢ (r,E)dE' . (53)
. & . o d
- “min ’

- "~ The corresponding multigroup e'qua-tions are almost identical in form to equations 3, 4,

and 5. .
*i * *§ *j S
-V(D'(r)Ve '(r)] + T (¢ (r)=H (r)i=1,2,3...1.

1

Him=3 T melm+x'P @
j=i+1 . .
- * 1 1 *. ok,
PMm=45 ) Flomelm . A | (54)
a . J=1 . : .

The only difference between these equations and equations 3, 4, and 5 is that the sum
B " in equation 54 is over j > i, while in equation 4 it is over j <i. The definitions of some of
the nuclear constants, hoWever, are.quite different. The adjoint equations analogous to

equations 20 through 25 are A ' - .

n

E '
*i 1 [ * : (g |
D 3 [E s, (E)¢ (E)dE o1 (E -E,) B (1)

i+l
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it

E

i+1

E

A A
Ei+1

! . *
/ {Zt(Em (E) - Z Z., © XmA(E) / xmA(E') ¢ (E"dE'

Z‘S (E) - .
- Y GoaoE / o (EdE'S dE *i
(1-a ,)E _ N (E, -E. )

A max(Ei+1,aAE)
+ [B2D]i‘ . (56)
n, B, (E) E, <
Z _a f X, (EY¢ *(E 'YydE'
A X (E) . in,
j+1

. 2, (E) E, |
A *E)dE' Y dE (E -E_, ) if J > 1.(57)
" § (1—aA)E ¢ (E")dE <1>
_ ,a ,E)

max(Ej_'_1

s
T =0ifj =i
S _

1
/ 3 (E)v(E) dE (E -E,) - - 68)
~ B -
S_— _

j A

‘ * *j
x({E)¢p (E)dE ¢ . . (59)

n Ej+1 -

- 27 -



I

E

*j R |
2P = f Xg (E) ¢ (E)AE| - (59a)
E, )
S S R ri * . ‘ . ’ .
¢ = | f ¢ (E)dE (Ei - Ei+1) e (60)
Ein | ' |

In DMM, flux weighting is not included in the adjoint cross section calculations. As a

-result, renaming the groups and the fission constants provides a formal identity between the

adjoint and normal calculations. To.carry this out, one must return to the input routine and
re-evaluate. the nuclear constants.with no flux weighting, or carry out the adjoint calculation °

before the normal diffusion calbulation.is carried out.
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VIII. CRITICALITY CONTROL

The criticality subroutine of DMM is used in orﬂer to determine critical conditions |
and tb'maintain criticality by simulating the motion of a.control rod during the burnup
calculation. When used to determine critical conditions, it may be applied in conjunction
.with either tﬁe straight muléigroup diffusion or the adjoint calculations. Its use during
burnup.calculations is required to maintain the spectrum appropriate tb actual reactor
operation and to assure the proper normalization of the fluxes. As input, it is necessary
to specify‘t'he address of a.single quantity Z that is to be varied, a first guess (6) for the
reciprocal of the derivative of # with respect to Z, the reactivity desire_(i (-4 0), and the
tolerance (63) for the deviation of the final reactivity from £ 0 The parameter to be varied
might be, for example, the mesh spacing in any region, the.concentration of one component
in any region, or the transverse leakage.

If ( ,{0 - 7@1) > €, , anew trial value of Z is computed from

Ziyg %t O(R - £) . | : (61)

When ’@i+1 has been determined, 6 is replaced by

Ziyg 4
6 = :—é—_-__ . ‘ ' ' _ (62)
i+1 i .

However, when three.successive Zi have been computed by (61), instead of using the third
of these, the program replaces the third one by

2
(Zipq ~ %)

Z. . =2 . - : -, | (63)
i+1 i+1 (Zi+1 - ZZi + Zi—l)

2 : .
~thus using Aitken's 6 method to extrapolate to a better estimate of the critical value of Z.

Each time .equation 63 is used and each.time a Z is found such that (~7@>0 - -:éi) = €_, the

3
program must begin once more accumulating a set of three Zi before (63) may be used again.
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IX. NEUTRON BALANCE

DMM can compute the various components of neutron transfer from and to each group
and region and priht these out. The quantities calculated for each group and region are:

1. The total neutron flux per unit energy in‘group i-of region k:.

N -1
ki i ' k i i
- A
¢ d’.N AV + 7 I\; +1 ¢)n AVn ¥ ¢Nk VN—
k-l Nl{—l k“l . k

. . *
2. The total fission neutron source in region k:

N -1

k
P=P = AV +Z P AV +P AV
I + n n - -
N SN N

k

+ N
\ k-1 k-1 k-1 1 Nk k
3. The degradation from group i in region k to lower energy groups:

!
J

- I E -E ,

k_i k i ki j ji+1

SRR N e B
j=1i+1 i i+l

4. The scattering from higher energy groups into group i of region k:
i-1 .
K i K it Kk i
s= ) T %)
_ i1

5. The fission neutron source in group i of region k:

ki i1 Kk
F = xf P .
6. The removal from group i of region k due to perpendicular leakage:
. k . k 3
kL; - *@8%p) ol

7. The removal due to absorption from group i of region k:

kcl =_(kT1 k¢1)_k31 _ kLll;

*.  This is the portion of the normalized source 1/£ F¢ that is ‘produced' in region kj;

although it is the source which produces the kqs],- ‘it is not really that which would be
produced by them unless#2 = 1. The possibility of a difference between the source
that produces a set of fluxes and the source resulting from those fluxes is one reason
for the necessity of maintaining criticality during burnup calculations. '
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10.

11.

12,

13.

14,

The removal due to leakage from the outer boundary of regionA k in group i:

i i~
¢ - by
k i " Nk Nkl
M Kar

The removal due to leakage from the inner boundary of region k in group i:

o) "
k i K i Nk_1+1 N
- D k

‘ Ar’

k-1

The total removal from group i of region k:

le _ kcl R kal + kL;.+ kL,:_ + kLi

The total production in group i of region k:

-kP1 = ksl + kﬁl, '
The total leakage in region k:

k. : ki k. i i
o 121 . 3

The error in neutron balance for region k:

ke - | i1 1
A k_i
Z P

i=1

The fission neutron product from group i of region k:

_. k . -
kFl _ Fl k¢1
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X. FLOW CHARTS

Basic Library Preparation

Problem Input

Monitor

Diffusion Cal.culation.

Microscopic Group Tape Preparation
Macroscopic Constants

Burnup Constants

Adjoint Modification

Determination of Critical Conditions
Neutron Balance

Xenon and Samarium Addition

Output
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Read in 1s'otope list
from raw tape

Convert decimal to
binary

A. BASIC LIBRARY PREPARATION

Convert decimal to
binary

Read in Indicator Block
for {sotope A l'roxp raw
tape

Write isotope list on
basic library tape

Write Indicator ﬁlock
for isotope A on basic
library tape

Read in Descendent
Block from raw tape

Write Function Block for
isotope A at point E

Write fission spectrum
(xf) Block on basic

library tape

Read in Indizator Block
for fission spectrum
("r’ from raw tape

Convert decimal to
binary

Write Indicator Block
for fission spectrum

Convert decimal to

.| binary

Convert decimal to
binary

Rewlind tape and put on
another reel

Convert decimal to
binary

Read in fission spectrum
(xf) Block from raw tape

(xr) on basic tibrary

tape

Allocate core storage
for fission spectrum

Write Descendent Block
on basic library tape

Test for end of all
Function Blocks for

Test for end of isotopes

isotope A

Read in Lambda Block
from raw tape

(xr) Block

Convert decimal to
binary

Test for end of tape

Yes

Monitor

Read in Function Block
for isotope A at point E

Yes

Write Lambda Block
on basic library tape




/

6¥%¢C

B. PROBLEM INPUT

Set SWltogoto 1l

Y

Read card with

variable identification
into memory :

End of Cm-dl Set up instructions to

convert incoming
variable data

Y

RJ Pro 33 Pro 6
sw2

Err4

No

Pro 34

Store current variable Yes Test if variable to be Affix FLAG Convert current Read current Variable Yes Is current variable
on tape permanently stored on {7 B Variable Block decimal card into core d jon block
tape ! to binary
No
I——> Err3
No * No
Test If variable to be . Store current variable Allocate for all Test if current variable Store current variable
permanently stored in L. in its permanent permanently stored 1s to be permanently Yes in its permanent
-core location in core variables entered by the stored on drum location on drum
W1 problem {nput routine
_ DC8
Monitor Affix fictitious values 1— PHK's N Test if AKBK on drum No Test {f PTS in core
at b and end 2
of energy
Yes Yes
Set up BRMX Compute core 2 RJ NK2 NK

Compute mesh




C. MONITOR

Start (at chis point;
the dismond register,
DIAC, contains a
PROBIN diamond)

DMND v
Write end of file on Is Lt a "STOP" Test (DIAC) - Is this Test execution count Reduce V of DIAC by 1 -
output tape, REW Yes | diamond? No| a program diamond? Yes (V of DIAC) - Has the | yo and load the correct
progran and output - - program been executed prog: from tape.
tapes. the deefred number of
times?
No Yes
FPinal Stop
\ D03 Y
Reset execution count We assume (DIAC) is a Modify execution count Send the contents of Set upSl - Set switch
to its initial value. Yeg | transfer dismond. Test Modify DIAL to cause & the location specified|

execution count - Has

transfer in the

in DIAL to DIAC.

this transfer been diamonds. Bump DIAL by 1.
passed the desired
ouzber of times?
I 1 1 X
NUTBAL DMNDO2
11 13
Call DMM cutput Call neutron balance s1 —

routine

routine
(TP us Q)
'CALL OUTPT

(RJ ELOC + 3 ELOC + 1)

Call Xe - Sm addition
routine

according to the

DIAC,

program ID number in

Call DMM ocutput
routine

(RJ ELOC + 3 BLOC + 1)

NUCCON

MGCST

Call DMM output

routine
d (TP v7 Q)
CALL OUTPT

Call nuclear
constants routine

{RJ BLOC + 3 ELOC + 1

Call microscopic
group tape
preparation routine

(RJ ELOC + 3 ELOC + 1)

,‘//_J

CONCOR

Call nuclear
congtants correction
routine

gl I
CALL OUTPT

Call DMM output

(RJ BLOC + 3 ELOC + 1)

routioe
(TP U7 Q
CALL OUTPT

Call bastc library
preparation routine

(RJ ELOC + 3 ELOC '+ 1)

CRTCAL PROBIN AJOINT
Modify (DIAC) so that 1a & within the Call criticality Set up for a new .| call adjotine Load the diffusion
next diamond will be Yes degired tolerance of ad justment routine problem. modification routine routine from tape.
. -
executed 41 (RJ ELOC + 3 ELOC + 1) (RJ ELOC + 3 BLOC + 1)
(TV VO DIAC) :
No
y Y BURKNUP Y DIFFUS
Call DMM output Mod{fy (DIAL) to Call burnup routine Call problem input Call d{ffustion Test (INFS) - Do we Call DMM output
routine cause transfer to (RJ ELOC + 3 ELOC + 1) routine Toutine print the results of Yes routine
[ another diamond. Set . § each iteration?
(TP us Q) execution count in (R3 ELOC + 3 ELOC + 1) (RJ BLOC + 3 BLOC + 1 (g Ul 9
CALL OUTPT DIAC to tero. CALL OUTPT
A No
A \ So /
Is this the chird Call PMM output Send diamond 1 to Call DMM output Was convergence Re-enter diffusion
execution of CRTCAL routine DIAC. Set DIAL to routine Yes | reached? routine at
oy :‘1.::; the last print | (.n, U3 Q) locatfon of diamond 2.| (.“, Uz Q) |- - convergence test
‘CALL OUTPT 'CALL OUTPT (RJ ELOC + 3 ------ )
i v 7 |
No
A J A A J A &
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Set DUMP 1t0 0

Compute power Pn

Compute reactivity
K

Bring in parameéters

Transfer 2.5 PeQ to

D. DIFFUSION CALCULATION

Set up iteration by
energy and point

Coxi:pute

af bl
non

n=1,2,...,N

Compute kg)i

Test for convergence of

Compute

i
*n i
n=1,2, ... N

Compute
|

Enter power storage
No
Test for last energy Modify instructions
Yes group pertaining to energy
group
Yes
Set DUMP 1to 1 Set up to accelerate
No

k
KOt

Return jump to monitor
to writek, P_ ¢

n'n
n=12,...,N
i=1,...,1

Test for convergence of
k and Pn’ n=0,1,...,N

DUMP 1=0

Return jump to monitor
to test to write after

Yes

convergence of Pn' 8

Accelerate Pn
lyPn- @pPal®

*©Fn " @Fa

i
P %,

n=1,2, .. N

Test for convergence
of Pn

4

each iteration

Test for last Pn

Itpn—(t-l)pn'

!Pn

Modify to test for

convergence of next Pn

Set DUMP 1to 1

Monitor




Allocate core storage
for group structure,
isotope list, Indicative
Block, VAL

Bring into core and

on MGCS tape

write group structure

Bring into core and
write on MGCS tape
list of { pes to be

| used by problem

Bring into core and
write Lamba Block on
MGCS tape

Bring into core and

on MGCS tape

[

Bring into core and
write AK Block on
MGCS tape

write Descendent Block

Write Indicative Block
on MGCS tape

Bring X, Block fnto core.
Compute y, and write
on MGCS tape

k2]

E. MICROSCOPIC GROUP TAPE PREPARATION

@

Test end of isotope
names

Rewind all tapes

points into core
— VAL

Bring tabulated ve
Block into core -~ FUN

Bring tabulated energy

Bring tabulated LA
Block into core — FUN

Allocate core storage
for Descendent Block,
Lambda Block, AK
Block, FUN, IFUN,
TRA, ITOT, ISCA,
IXIN, ISX, ISSC

No

Y

Bring Indicative Block
into core

Write
oy, o}2), old)

Compute (SUM)

i

f

i=1,2, ..., 1—-IFUN

v

on MGCS tape

FUN + TRA — TRA
IFUN +ITOT ~~ITOT

f

Write v_ on MGCS tape

Compute (SUM)
i i 1
Uc(l). oc(Z). oc(B)

FUN-—-TRA

Monitor.

IFUN—ITOT

Bring tabulated %
Block into core — FUN

i=1,2,...,1
— IFUN
Compute (SUM)

i i i
01), 94(2), g(3)
1=1,2,...,1
—1FUN

Bring tabulated o
Block into core — FUN

Write

1 1 1
1, o (2,

o). 0 (2), 0 (3)

Compute (SUM)

i i i
0,1, 0,(2), 0.(3)
i=1,2,...,1—-I3CA

Bring tabulated (1 - uo)

Block into core
~FUN+M A +1

on MGCS tape

TRA + (1 - uo)' %
—=TRA




- Compute
M, P, de
—ISSC

Compute (TUM)

i i i
oy Lo O
)
—ISX

itm,

E. MICROSCOPIC GROUP TAPE PREPARATION

Compute o w

Compute
ta, da, da
ISSC + ITOT —-ITOT

Compute (TUM)

%in"in %in"in
x—(l), —x.—(Z).
in in
%n"in
(3) ~ISX
X,
in

TRA + FUN—TRA

Compute
1j

—1ISSC

o iy, ey, ey

(Page 2)

Bring into core

g, —FUN
in

vm-FUN+(MA+l)

xin- FUN + Z(MA +1)

Write .
Hay, B, e
on MGCS tape

Compute (SUM)

i

xln

i=1,2,..., ] -IXIN

Bring tabulated Xip

Block into core — FUN

Compute (SUM)

i i i
0. 0, 2). 7 B)

i=1,2,..., 1 —~IFUN

Write

i i i
"u-(l)‘ au_(z). a“_(ll)
on MGCS tape

Write
tl(l), z‘(z). t'(a) on
MGCS tape




Start

Compute xf for

i=1,...,land
k=1,...,Rif they
have not been computed

F.

If corrector routine is
to be used, set switches

MACROSCOPIC CONSTANTS

Do we use corrector
routine

Allocate for temporary
storage .

Do we use corrector
routine

Compute contribution
from current iso. in one

region to

k. i
kD‘, L kE:., le.
kTi]

Modify 1 for next
isotope

No

Add contributions to
" the nuclear constants

If matrix inverses have
not been computed
compute them

(Y

No

Read information for
one isotope

Read in nuclear con-
stants and prepare
them for correction

Read information con-
cerning {gotope whose
contribution is to be
corrected

Do we use corrector
routine

No

Does current isotope
appear in another
region?

Modify 2 for this region

No

Have we read In the
information for the last
i ?

Write all nuclear
constants on tape

Monitor




G. BURNUP CONSTAN g
Allocate space for Compute average fluxes Compute matrix Clear matrix for Read information from
Start temporary storage ki /kV inverses storage of evaluated tape needed for one End of tape
¢ —1 functicns —®—’ 1sotope

[

L

—

Y

Modify 1 for next
isotope

Modify 2 for next region

O where Isotope appears

Yes
< region?

Does current {sotope
appear in another

Compute capture produc- Does this isotope have Evaluate destructive Compute fission and Test for end of tape
tion of these descendents descendents by capture ? part of function and add capture cross sections
Yes -t £ N .
from current {sotope el ——— to for first region isotope ‘1—@—
and add to respective appears
equations )
3
| No
Yes
vy v : Y
Does this isotope have Compute fission pro- Does this {sotope have Ccmpute decay pro- Set up program exit.
descendents by fission? duction of these de- descendents by decay? duztion of these de-
Yes d by current | _Yes gl scendents by current
isotope and add to isctope and add to
respective equations respective equations

No

Exit




™

| 444

Allocate for temporary
storages

H. ADJOINT MODIFICATION

Read nuclear constants
tape

Start

k) Xsnypl
t=1,...,1
ks1,...,R

Kguup! " 1* 111+ 1
_kij

t=2,...,01,§=1,...,1-
k=1,...,R

k4 ki
F -~ Et‘
i=1,...,1
k=1,...,R

kxi‘_ki
f

t=1,...,1

k=1,...,R

Write adjoint constants
on tape

Kl =141 kgt

gl
i=1,...,1
k=1,...,R

Monitor

bl - L kgnymy!

kgt
i=1,...,1
k=1,....R




N ‘o . A
B : ,
N
[N
U‘ *
I. DETERMINATION OF CRITICAL CONDITIONS
Start Switch K3 (initially set 1 SetK3tol Compare: _/_ Set K3 to 0 Set s.wllches in Exit (to output)
g t00) S - (|k0 -k < > monitor to call {n next
3 . diamond
2
Y . B L
No
Z - Z1 Z+ 6(ko ~k—-2 Set s.witcbes in Test: have_ three Exit (to monitor)
6= Py monitor to transfer to I ive values of
1 another diamond Z been computed as in
. box B?
Yes
\

Accelerate Z by th
cee "aze V the Exit (to_output)
Aftken 6 method >




Start

Allocate space for
temporary storage

NEUTRON BALANCE

Read in necessary
nuclear constants

Compute

Compute
kcl kj,i
k=1, ...,R k=1,...,R
isl1,...,1 isl1,...,1I
Compute Compute
kLi and L\ b
k=1,...,R kel,.
i=1,...,1 t=1,...,1

q )
Compute Compute
p 1
k=1, ..., R
k=1,...,R t=1,...,1
i=1,...,]1
Compute Compute
lle ksl
P k=1,...,R
k=1, i=1,...,1
i=1,...,I e
Compute Compute
kpl kL
k=1,...,R k=1,...,R
i=1,...,1
Compute
Monitor J

k=1,...,.R

L




N
LS
w

Start

K. XENON AND SAMARIUM ADDITION

Allocate for temporary
storages

Store new Xe and Sm
concentrations in
BRMX on drum

Compute

k
V for
k=1,..,R

Compute

kP for
k=1,...,R

Compute dlvisors for

Store changes in Xe and
Sm concentrations on

1-18S0,1— MARK !

{Information for nuclear

constants code)

drum -

Compute
k

NSm (ats) for
k=1,...,R

Compute
k

NXe (Ats) for
k=1,...,R

Compute divisors for

Monitor




QUTPT

Transfer contents of
core to drum image.

Transfer the output
routine from drum to

Set upS2 - (Q contains
output routine number

PROBLEM OUTPUT

Print the macroscopic
group. constants:

core.
P~
(
PR3
Print concentrations of Print heading for’
all the isotopes in all burnup output.
regions, -t
g
PR1 "
Print heading for Is this the first
diffusion output. iteration of this
- Yes diffusion step?

Print: Print heading for
kP, ¢l neutron balance output.
n’ *n
Y
kLl , kLi ) kRi., Print neutron balance
'+ - quantities:
kpl ky ke kgl -t k¢i. kp, Kpt, kgt gl
k, § ki
LP , C.

Restore core from
drum image.

at entrance to OUTPT) ki ki i k. ij | Normal
D, T,x., T . Lt
RJ Exit = .,
ki k_i
F, z I
PRNT Y PRY7
82 Print heading for Print:
nuclear constants Z, k, 6 for the last
m| output. C iterations on k.
o (1<C<3)
8 4
PRS
Print heading for Transmit any data
criticality adjustment left in output buffer to
routine output. tape. »
PR4 / PR2 Yes
Print heading for Have we printed after Print:
Xe - Sm addition each iteration? t t-1
P -P 7
output. n
. No -
Y Y
Print concentrations of Print heading for Pr{nt:
Xe and Sm in all diffusion output, i
k,P,¢
reglons. n’ Yo




