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ABSTRACT 

This report describes the results of static and cyclic strain aging effects on the Charpy 
impact properties of a carbon steel plate (A-212BJ. From these results it is concluded 
that: 
a. Cyclic strain ranges o f  0.5 to  3% for up  t o  200 cycles in the temperature range R T 

to  550'~ increased the Charpy 50% F A  T T  by  up  to  1 1 5 ~ ~ .  The increase in  FA TT 
was a direct function o f  cyclic strain range, number o f  cycles, and temperature, wi th 
maximum embrittlement occurring around 350'~. 

b. Static deformation was considerably less embrittling t l>a~) cyclic deformatlon for 
equivalent total strain ranges. 

c. ,Notch bend tests of  0.05Oin. radius, 20% deep notch bend specimens with pre- 
cyclically strain-aged notch regions revealed no significant influence on nominal 
notch bend strength. 

1. INTRODUCTION 

The effect of static or monotonic deformation at 
room or moderately elevated temperature t o  decrease the 
n o t c h  toughness o f  carbon steel has been well 
established.' " It has been observed that the extent of 
embrittlement as reflected in an increase in the 15 ft- lb 
energy or 50% fibrous transition temperature (FATT)  is a 
function of the amount of cold deformation prior t o  
aging, or for deformation at moderately elevated tempera- 
ture is a fdnction both of the amount and temperature of 
deformation. I t  has also been shown that embrittlement 
results from reversed cyclic strain at temperature7+; this 
embrittlement is nominally attributed t o  a strain-aging 
mechanism. 

I t  was the purpose of this investigation t o  systematic- 
ally determine the influence of both monotonic and cyclic 
plastic deformation at temperatures in the strain-aging 
range on the Charpy impact properties of a carbon steel 
(A-21 20 ) .  A secondary purpose was t o  determine the effect 
of a locally strain-aged region on the notch bend fracture 
properties of  mildly notched bend bars. Determination of 
specific temperatures for cyclic strain-aging tests was made 
following static tensile strain-aging experiments over a range 
of test temperatures. 

2. REVIEW OF PREVIOUS WORK 

It has been observed that the ductile-to-brittle transi- 
t ion temperature is increased following monotonic deform- 
ation either wi th or without subsequent low-temperature 
aging. Additionally, it is a function of the extent of deform- 
ation and deformation temperature. W .  T .  ~ankford '  in a 
summary of the effect of prior cold work on the 15 f t - lb 
transition temperature of various plain carbon steels 
observed maximum shifts of about 70<'F following cold 
strains up t o  10%. The rate of embrittlement wi th strain 
va~.ied with material; In some cases, near-maximum embrit- 
tlement occurred at strains of about 1%. Terazawa and 
Otari2 observed that the 50% FATT of a 0.14% C, 0.50% 
Mn steel following both tensile or compressive prestraining 
at levels t o  70% at temperatures in the range of room tem- 
perature (RT)  t o  1300'~ increased continuously wi th 
strains up t o  about 50%. For a given strain, the increase in 
50% FATT was maximum after deformation in the range 
400-600'~.  An increase in 50% FATT of 1 2 5 ' ~  was 
observed after 5% strain at about 390°F. 

This influence of cold or hot deformation on the 
strength or loadcarrying capacity of notched plates and 
bend bars has been evaluated. ~ y l o n a s ~  using a simple bend 
test of unnotched plate of mild steel, has shown that plastic 
compression or extension performed at temperatures 
around 500°F reduced drastically the ductil ity in subse- 
quent tension at - 7 6 ' ~ .  Brittle behavior, i.e., fracture ~t !ow 
strains was a function of both deformation temperature and 
extent Burdekin4 in a review of this subject reports results 
of notched 3-inch-square bend bars bent open and reclosed 
at RT followed by aging 112 hour at 4 8 2 ' ~ .  A shift of 
about 1 9 5 ' ~  in the temperature of transition from low t o  
high crack opening displacement was observed for several 
carbon steels; the effect on notch strength was clearly obvi- 
ous but appeared t o  be influenced t o  a lesser degree. 
Kiefner and ~unse '  in tests of notched plates and bend 
bars of various low carbon steels found that prestraining at 
temperatures in the range of 400 t o  6 0 0 ' ~  renders the 
material at the root of the notch in bend bars susceptible t o  



cracking at loads of about 87% of the yield load. Also. they 
observed that brittle fracture can initiate at low applied 
stresses in the vicinity of welds in mild steel plate; this 
latter effect implies that regions of the parent plate are 
severely embrittled by the thermal and strain cycles that 
accompany welding. 

Although there are fewer tests of the influence of 
cyclic strain on the impact and notch strength properties of 
carbon steels, effects similar to those described above have 
been observed following reversed cyclic plastic straln at 
moderately elevated temperatures. Forrest6 found that a 
0.17% C steel cycled at 3 5 0 ' ~  for 10' cycles shifted the 
Charpy energy curve about 1 1 0 ' ~  to higher temperature. 
This shift was considerabl~ qreater than that observed for 
an equivalent and higher static strain at the same tempera- 
ture. Susukida and ~ n d o '  for two carbon steels w ~ t h  about 
0.18% C found an apparent relation between the 15 ft-lb 
transition temperature and total plastic strain after cyclic 
loading at room temperature with no apparent influence of 
number of cycles. As noted by these authors, the rise in 
transition temperatilre was perhaps all or in part associated 
with an increase in hardness due to hardening during 
cycling. 

A more extensive investigation of the effect of 
reversed axial strain at RT and 6 0 0 ~ ~  on the Charpy 50% 
FATT has been performed by Salkin8 for several high 
manganese. low-alloy carbon steels. Increases in transition 
temperature of up to about 1 4 4 ' ~  were observed following 
cycling at 3 0 0 ' ~  (572'~). Similar cycles at RT produced 
much less e~nbrittlement. 

To correlate the influence of strain range and number 
of cycles, Salkin devised a single parameter derived trom 
ooncid~ration of total nrrl~rnt~lat~rf strain, i.e.. 

3. GENERAL 

The general testing plan followed is  described below. 

3.1 STRAIN AGING I N  STATIC TENSILE TESTS 
To determine the general temperature range of maxi- 

mum static strain-aging effects, and the influence of strain 
rate on strain aging response, tensile tests were conducted 
over the range RT to 600 '~  at various rates. From these 
tests, the temperature of maximum strain aging as reflected 
in an increase in strength andlor a decrease in ductility was 
determined. These test's were conducted on plates in the 
nominally stress-relieved condition, i.e., 1050'~ for 1 112 
hours, and for material given a thermal treatment at 
1250'~ for 2-112 hours and water quenched. This latter 
condition was an attempt to simulate possible fast cooling 
rates associated with welding or other processes resulting in 
these thermal effects. To determine the influence of static 

where 
Act = total strain range per cycle, %; 

cf = true fracture strain, %, derived from 
tensile reduction in area; and 

n = number of cycles. 

This parameter was then empirically correlated with 
observed changes in transition temperature, i.e., 50% 
FATT. It was observed that the change in transition tem- 
perature for several low-alloy steels was greater following 
clefoi'marian In the srraln-aglrly rarlye, 1.e.. 300'~. TI.lis 
parameter and approach if applicable has merit in that it 
permits an estimate of the extent of embrittlement tor 
strain ranges and number of cycles other than those tested. 

Powersvn fully reversed strain cycling tests of A302 
steel observed an influence of temperature on the stress 
amplitude to obtain a given strain range, and determined 
the increase in Charpy impact 50% FATT after various 
levels of cyclic strain at 600°F. A maximum shift of 9 0 ' ~  
was obtained following 300 cycles at a strain range of 1.3%. 
This increase was approximately the same magnitude as 
observed by Salkin for this same steel. 

Coffin," in tests to determine the influence of cyclic 
strain on fracture properties ot lowcarbon steels, ohserved 
that the ductility transition temperature, i.e., the tempera- 
ture corresponding to a sharp drop in tensile reduction in 
area increased abo~it 200°F following several cycles at + 1% 
strain as 2 5 0 ' ~  (482'~). 

TESTING PLAN 

strain-aging on Charpy irrlpact properties, and thus provide 
a basis for comparison with cyclically strain-aged speci- 
mens, a few plate specimens were statically strained to vari- 
ous amounts at 3 5 0 ' ~  and Charpy properties obtained. 

3.2 EMBRITTLEMENT FOLLOWING STRAIN AGING 
IN CYCLIC TENSION-COMPRESSION TESTS 

After the above tests, 1 -inch-thick plates were cycled 
over total tension-compression strain ranges of 0.2 to 3.0% 
for up to 1,000 cycles a t  a single slow rate of loading at 
350'~. Also, a few tests were made at temperatures in the 
range of RT to 5 5 0 ' ~  to determine the influence of test 
temperature including that associated with reactor opera- 
tion. Charpy impact properties were determined from these 
plates to measure the shift in transition temperature relative 
to the virgin plate material. 



3.3 LOCALLY INDUCED EMBRITTLEMENT IN 
NOTCH BEND TESTS 

Since it is likely that strain-aging embrittlement, if it 
were to occur, would be present as a locally embrittled 
region, it was believed of value to determine whether low 
stress fracture of a locally embrittled region could trigger 
fracture in nominally unaffected base metal. For this pur- 
pose, mildly notched bend bars were cyclically deformed at 

350°F at conditions designed to obtain a shift of 50% 
F A l T  of about 1 0 0 ~ ~ .  Final loading was in compression to 
avoid inducing compressive residual stresses. These speci- 
mens were then tested at temperatures from -320'~ to RT 
to determine possible influence on notch bend strength 
properties. For comparison with the above results, a 
single specimen was tested in the non-cyclically strain-aged 
conditions. 

4. EXPERIMENTAL PROCEDURES 

4.1 MATERIALS AND TEST SPECIMENS 
The composition and mechanical properties of the 

experimental material are given in Table 1. These properties 
as well as the mixed ferrite plus pearlite microstructure 
shown in Figure 1 are typical for steels of this type and 
composition. 

To establish a reference condition to which the 
rcaults of voriouc ctroin.,aging cycles could be compared, all 
experimental material with the few exceptions noted below 
were stress-relieved at 1 0 5 0 ~ ~  for 1-112 hours and air 
cooled. To obtain a uniform and constant metalluigical 
condition, all cyclic specimens were heated to 3 5 0 ' ~  for 24 
hours prior to test. This treatment which resulted in a 50% 
FATT of O'F is considered the reference condition for a l l  
subsequent tests. 

The configurations of the test specimens used are 
shown in Figures 2 and 3. These include conventional strip 
tensile specimens, standard Charpy impact specimens, a 
notch-bend specimen and a dumbbell-shaped specimen of 
welded lamellar fabrication. From each of these specimens, 
a set of Charpy specimens was machined using the orienta- 
tion shown, i.e., the specimens were transverse with the 
fracture surface parallel to the direction of rolling, and the 
length of the specimen perpendicular to the rolling direc- 
tion. 

Tho notch bend specimen of Figure 3 was employed 
to determine the effect of local cyclic strain aging on notch 
bend properties after cycling at 3 5 0 ~ ~  to -+ 0.5% strain to 
pre-embrittle the notch. The arrangements used for cycling 
and testing this specimen are shown in Figure 3. In all cases, 
the final loading was in compression to avoid inducing 
favorable compressive residual stresses at the notch. 

4.2 MECHANICAL TEST PROCEDURES 
Standard mechanical test procedures were employed 

in all tests. Rates of loading for the static tensile tests were 
0.001 in./in./min, 0.010 in./in./min, and 0.010 in./in./min 
plus a 30 minute hold time at 1%. 3%, and ultimate tensile 
strain levels. Since these rates did not exhibit significantly 
different effects in tensile tests, cyclic strain-aging tests 
were performed o t  o rote of 0.002--0.005 in./in./min. Strain 

ranges for these tests were monitored and controlled over a 
range of 0.2% to 3% using strain gages attached to both 
sides of the dumbbell specimen. Cycling was performed to 
obtain a fixed total strain range, irrespective of amplitude. 
In some cases, the total range was developed by cyclic 
excursions of equal amplitude in both tension and compres- 
sion; in other specimens, cycling was to an amount neces- 
sary to restore the specimen to i ts  initial length. There was 
no apparent influence of this variation in cycling path on 
subsequent embrittlement. 

Heating for the strip tensile tests and cyclic strain- 
aging tests was performed in heated insulated cabinets. 
Heating of notch bend bars and statically loaded plate spec- 
imens used resistance-heated electrical tapes. In all cases 
specimen temperature was 'monitored with a thermocouple 
embedded 1/4 inch below the surface of the specimen. 

Cycling of notch bend bars to induce a locally strain- 
aged region at the notch was performed in three-point 
bending over a 7 to 8-inch span in reversed bending for 
about 200 cycles. The notch-root strain range of cycling 
was about 2 0.5% as monitored with a 1/32-inch-long gage 
length strain gage placed in the notch at the mid-thickness 
of the specimen. This level of strain in subsequent tests was 
observed to shift the 50% FATT by about 1 0 0 ~ ~ .  Thus, the 
material at the root of the notch can be considered to have 
a 50% FATT of about 10o°F while the FATT of the bulk 
material is about -10'~. Cycling was completed after a com- 
pressive cycle to avoid inducing residual compressive 
stresses at the notch. 

To determine the depth and hardness of the strain- 
aged notch root region, microscopic examination of bend 
bars was performed. This examination revealed no clearly 
discernible plastic strain zone. Microhardness traverses in 
the vicinity of the notch indicated a locally-hardened zone 
about 0.1 00-inch deep. 

Fracture tests of cyclically strain-aged notch bend 
bars, and a few virgin specimens for comparison were made 
in three-point bend-tension over a span of about 7.5 inches. 
Cooling was performed with either an alcoholdry ice mix- 
ture ' ( - 1 0 5 ~ ~ )  or liquid nitrogen (-320'~). For intermediate 
temperatures, the bar was cooled to -320°F and allowed to 
heat to the test temperature, 



TABLE 1 . 

COMPOSITION AND MECHANICAL PROPERTIES O F  
EXPERIMENTAL STEELS 

Composition C M n  P .  Si S Cu N2 

(weight percent) 0.24 0.74 0.015 0.24 0.031 0.23 0.007 

Grain Size: ASTM NO. 6.5 
Microstructure - Fine pearlite-ferrite mixture (Figure 1) 

Mechanical Properties (~ransverse): 

Test Ultimate 0.0296 
Temp. Strength Yield Strength 

(OF) (psi 1 (psi) 

Room 75,883 
125 72,500 
200 72,250 
300 80,250 
400 83,400 
500 85,000 

Charpy Impact Properties ( f  r ansve r~ )  : 

As-Received - 1050~ F - 1 1 I2 hours 

Test 
Temp. 
("F) 

Impact . 
Energy 
(ft- lbl 

% Fibrous 
Fracture 

0.2% 
Yield Strength Red. i n  . Elong. in  

(psi Area (%I 1 in. (%I . 

Test 
Temp. 

(OF) 

As Received - 1050'~ - 1 1/2 hrs. 
+ 3 5 0 ' ~  - 24 hrs. 

Impact 

EneWY % Fibrous 
(It-ltr) F~.ecture 



Figure 1. Microstructure of A-2126 Carbon Steel Plate 
Used for Strain-Aging Experiments 
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Figure 3 Schematic Features of Test Specimen and Test Set-Up 



5. EXPERIMENTAL RESULTS 

5.1 STRAIN-AGING IN STATIC TENSILE LOADING 
The results of tensile tests throughout the strain-aging 

temperature range are listed in Table 2 and ,illustrated in 
Figures 4 and 5. Figure 4 shows portions of the load- 
extension curves for the as-received stress-relieved plate, 
and illustrates the typical serrated or saw-tooth load- 
extension curve observed for carbon steel in the tempera- 
ture range of 300 to 400°F. This phenomenon, associated 
with discontinuous yielding, is evident at 300°F for strains 
in the yield point region. At 400°F, serrations do not occur 
at strains near the yield point, but are evident at higher 
strains. 

The ductility and strength properties are shown in 
Figure 5. These results indicate that the temperature of 
minimum ductility coincides with that temperature at' 
which serrations are evident in the load-extension curves. 
The few tests at lower strain rates, including the influence 
of a hold-time at various strain levels, indicate a minor 
effect of this variable, but no appreciable effect on the 
temperature of maximum embrittlement. Figure 5 also 
illustrates similar effects for material given a thermal treat- 
ment at 1250°F for 2-112 hours and then water quenched. 
This treatment generally decreased the absolute level of 
strength and increased the ductility; however, the tempera- 
ture of maximum strain-aging was unaffected. 

5.2 STRAIN-AGE EMBRITTLEMENT IN CYCLIC 
LOADING 

The results of Charpy impact tests following cyclic 
strain-aging at various temperatures, cycles and strain ranges 
are listed in Table 3 and shown in Figures 6 through 9. 
These results include the temperature at which 15 ft-lb i s  
absorbed, the temperature of 50% fibrous fracture, i.e., 
50% FATT, and energy absorbed at 100% fibrous fracture. 

Typical raw results of Charpy impact tests following 
cyclic straln aglng at a given condition are shown in Figure 
6. These results indicate the effect of strain-aging to both 
increase the brittle-toductile transition temperature, and to 
decrease the maximum absorbed energy. 

As shown in Figure 7, there is, for a given strain range 
and cyclic history, an apparent influence of test tempera- 
ture on shift in 50% FA lT  which is qualitatively similar to 
that observed in results of tensile tests, Figure 4. The extent 
of embrittlement increases with increasing test temperature 
and appears to maximize at 300 to 400°F; there i s  the 
suggestion of lesser embrittlement at 550'~. The shitt in 15 
ft-lb transition temperature illustrates similar effects. How- 
ever, since the maximum energy level is also affected by 

cyclic strain-aging, a constant energy criterion may not be 
as unequivocal as that based on fracture appearance. 

The influence of cyclic strain range for various num- 
bers of cycles i s  shown in Figure 8. These results indicate a 
significant effect of strain range on embrittlement. Also, as 
shown in Figure 9, there is for a given strain range, an 
apparent effect of the number of cycles. Over the strain 
ranges tested, there is  evidence that the Charpy transition 
temperature for a fixed number of cycles increases continu- 
ally over the strain range examined. However, the.influence 
of the number of cycles in the range 50 to 100 is  relatively 
weak. The maximum shift in 50% FATT noted was 1 1 5 " ~  
following 151 cycles at + 1.0%. 

Figure 8 also shows the shift in transition tempera- 
ture associated with static deformation at 350°F. These 
latter results, though somewhat questionable for the rea- 
sons discussed below, indicate a significantly lesser effect of 
static than cyclic deformation on embrittlement resulting 
from strain aging. 

5.3 EFFECT OF LOCAL EMBRITTLEMENT IN NOTCH 
BEND TESTS 

The notch bend fracture properties of this steel over 
the temperature range of -320°F to RT are shown in Figure 
10, and listed in Table 4; typical loaddeflection curves are 
shown in Figure 11. These results indicate within scatter 
that the nominal net section bend strength calculated from 
the maximum bending load is  essentially high and constant 
over the range R T  tn -?2o0F with low strength occurring at 
-320°F. Comparison of the twn tests at -150°F. one of 
which contained incipient cracks developed during the 
cyclic straining revealed no appreciable effect of this varia- 
ble for the conditions tested. Examination of the load- 
deflection curves, Figure 11, revealed no evidence of 
incipient or partial fracture associated with a shallow brittle 
region. In a single test 8t room temperature. an attempt to 
detect acoustical emission, i.e., a "ping", using a contact 
microphone failed to reveal incipient cracking. Whether 
incipient cracking occurred at low temperatures with insuf- 
ficient loaddrop to provide an indication on the load- 
deflection curve is uncertain. 

For comparison purposes and to evaluate the relative 
effect of local embrittlement on fracture properties, both a 
fatigue cracked bend bar (notch plus 0.080-inchdeep 
fatigue crack, and a virgin bar of mild radius, 0.040 in. was 
tested at -105'~. These test results (Figure 10) indicate no 
significant differences in notch strength, and suggest that 
the cyclically strain-aged region developed in these tests had 
no influence on notch bend strength. 



Figure 4. Load Extensicn Curves for Carbon Steel (A2 12B) Specimen: at a 0 i'O ln./ln./Min Illustra ring 
Serrated or "Saw Tooth" Curve in ~ t ra i rn~~ in~ 'Te ;n~era ture  Range 



TABLE 2 
TENSILE PROPERTIES OF CARBON STEEL (A-212B PLATE) 

Spec. Test Upper Yield Lower Yield Ultimate 
No. Temp., (OF) Strength (ksi) Strength (ksi) Strength (ksi) 

Condition - As-Received + Stress Relieved 1 0 5 0 ~ ~  - 0.010 in./in./min 

6 Room 
14 200 
1 300 
4 400 

15 490 

Condition - Same as Above - 0.001 in./in./min 

Condition - Same as Above - 0.010 in./in./min + 30-min hold @ 1%. 3% and 
strain at maximum load 

Condition - 1 2 5 0 ~ ~  - 2.5 Hours - Water Quenched - 0.010 in./in./min 

'1 7 Room 
13 200 
10 3w 
3 408 

11 500 

Elong. in 
2 in. (%I 



1 2 5 0 ' ~  - 2.5 HRS-WATER QUENCH 

A - 0~010 in. /in. 'min 

AS RECEIVED +1050°F - 1.5 hfs. 

- C.O1O in. ' ~ n  'min 

- C:001 in./in. !min 

0 - C.O1O in.!in. !min + 30 min 
. HOLD AT 1%: 3% AND UTS 
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TABLE 3 
CHARPY IMPACT PROPERTIES FOLLOWING CYCLIC AND STATIC 

STRAINING UNDER VARIOUS CONDITIONS 

Charpy 
50% FATT (OF) 

15 ft- lb 
Trans. Temp. (OF) 

Max. Energy 
ft-lb. Condition 

1. As-received plus 
1050"~ - 1-1 I2 hours 
plus 350°F - 24 hours 

0 
-5 
0 

Cycled at RT 

'2. f0.5% - 20 cycles plus 
+1 .O% - 20 cycles plus 
f t .5% - 25 cycles 

Cycled at 200"~ 

3. +0.5% - 200 cycles 

Cycled at 350" 

4. +0.10% - 1000 cycles 
5. f0.25% - 200 cycles 

+0.25% - 200 cycles 
6. f 0.38% - 200 cycles 
7. *0.50% - 9 cycles 
8. f0.50% - 75 cycles 
9. f0.596 - 200 cycles . 

10. 21.0% - 151 cycles 
1 1  ..::&I .5% - 3 cycles 
13. .+I ,  5% - 37 cycles 

Cycled at 550"~ 

13. *0.5% - 200 cycles 

Statically Deformed @ 350'~ 
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Figure 1Q Notch Bend Strength at r'racrure as a Function of Temperature for PreCyclicaIly StraimAged Specimens 
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TABLE 4 
RESULTS OF NOTCH BEND TESTS OF LOCALLY-CYCLICALLY 

STRAIN-AGED BEND BARS 

Test 
Temp. (OF) 

Room 
-105 
-1 05 
-1 50 
-1 50 
-200 
-320 
-105 

Incipient 
Cracks at Notch 

No 
Yes (0.26 in.) 
Yes (0.07 in.) 

No 
Yes (0.01-0.015 in.) 

NO 
Yes (0.07-0.08 in.) 
No, as machined 
notch - not pre- 

strain aged 

Notch ~racture 
Strength on Net 

Section (psi) 

6.  DISCUSSION 

The results of these studies indicate conclusively an 
embrittling effect of strain aging, the magnitude of which is 
apparently influenced by test temperature, strain range, and 
number of cycles. To compare these results with the 
approach devised by salkin8 calculations were made of the 
parameter (nAq2 )/(ef2 ). 

Since these quantities reflect the influence of strain 
range (Ay) ,  number of cycles (n) and, indirectly, test  tem- 
perature through i t s  effect on tensile reduction in area (ef), 
it has possible usefulness for estimating transition tempera- 
tures for those conditions of strain and cyclic history not 
specifically tested. A correlation, and comparison with the 
original results by salkin8 for low-alloy steels 'tested at 
3 0 0 " ~  (572°F) is shown in Figure 12. This comparison 
indicates generally that the rate nf emhrittlement associatd 
with a given strain range-cycle history is  considerably 
greater in Salkin's tests, but that the general parametric 
concept appears suitable for correlating these variables, at 
least within the ranges evaluated in these tests. 

To determine whether the apparent increase in transi- 
tion temperature for these tests possibly resulted from 
simple hardening as a result of cyclic strain history or aging 
effects, rather than more complex metallurgical phenom- 
ena, the Rockwell "A" hardness was determined for several 
conditions using halves of broken Charpy specimens. An 
examination of these results shown in Figure 13 revealed a 
slight but significant trend toward greater hardness with 
increasing transition temperature. 

An evaluation of some of the tensile specimens by 
electron microscopy is given in Appendix A. 

As noted above, some qualifications are to be noted 
with regard to the Charpy impact test results following sta- 

Total Depth of 
Fibrous Tear 

At Notch (in.) 

1.6 (1 00% fibrous) 
0.32 

0 
0 
0 
0 
0 

0.19 

tic deformation at 350"~ .  Since these specimens were 
possibly erroneously machined from a second plate of 
A-212B. and were tested in the as-received condition with- 
out stress relief, or a pretest age, there is some question 
regarding the validity of comparing the two sets of results. 
Tests to evaluate the influence of the variables of stress 
relief at 1050°F for .I-112 hours, or a pretest a t  350°F for 
24 hours 'indicates that these variables could increase the 
50% FATT by perhaps 10°F; this is within the data scatter 
band of the Charpy impact test, and presumably has little 
influence. The possibility that this plate represents a'second 
plate of unknown virgin properties is  relevant, and this 
possibility is strengthened by the rather high but not 
unusual maximum energy values for the static tests. 

Comparison of the notch bend properties of this 
study with those obtained by Burdekin4 suggest generally 
similar results for the influence of temperature on notch 
strength; however, in that case, low stress fracture with 
subsequent arrest was noted in several instances. Of most 
significance in these prior tests was the apparent and strong 
effect of aging on the crack-openingdisplacement (COD), 
or notch strain prior to fracture. As noted previously, the 
transition from low-to-high COD increased about 195°F for 
the cold-bent and aged specimens relative to those stress- 
relieved to remove these effects. Since the notch opening in 
these tests was not measured it is not possible to compare 
Burdekin's and these results directly. However, Burdekin's 
work, particularly the incidence of low stress crack arrest 
suggests'that the few tests made in this study may not be 
conclusively and generally definitive. 
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7. SUMMARY AND CONCLUSIONS 

The influence of both static and cyclic strain aging on 
the Charpy impact properties of a 0.24% carbon steel 
(A-212B) was determined. It was observed that both static 
strain aging in tensile specimens as reflected in a minimum 
in ductility or a maximum in strength occurs in the 
temperature range 300 to 400°F for this steel. Also, it 

appears that this temperature corresponds to that at which 
a maximum is observed in the Charpy 50% FATT following 
a given cyclic strain aging condition. 

Examination of the influence of strain range and 
number of cycles indicates both to be important variables. 
A 'maximum shift of about 1 1 5 ' ~  in 50% F A R  was 
observed after 151 cycles at +1.O% strain at 350°F. At 

550°F, less change occurs in the shift of the Charpy 
transition temperature, i.e., +0.5% for 200 cycles led to a 

shift of 80°F whereas for equivalent straining at 3 5 0 ' ~  the 
change in 50% FATT was 1 0 0 ~ ~ .  

Examination of the influence of a locally cyclically 
strain-aged embrittled region in a mildly notched bend bar 
indicates no apparent influence on notch bend strength at 
fracture for the range of conditions tested. This phenom- 
enon which is contrary to that observed previously by 
others may result from a lesser extent of embrittlement in 
these specimens, and should not be considered as a general 
effect. 
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APPENDIX A 
ELECTRON MICROSCOPY OF STRAIN-AGED PLAIN CARBON STEEL 

To supplement the study of the effect of static and 
cyclic strain aging on the Charpy impact properties of a 
carbon steel, several of the specimens were examined by 
electron microscopy. The objective of this aspect of the 
work was to determine whether the extent of strain aging 
and the associated increase in transition temperature could 
be correlated with concomitant structural changes. 
Although it is believed that maximum effects are related to 
rather subtle structural modifications, precipitates have 
been reported in some cases following prolonged strain 
aging. It has also been demonstrated that dislocation den- 
sity is dependent on the extent of strain aging occurring 
during a test.' Accordingly, specimens have been examined 
for evidence of precipitation and changes in dislocation 
density and dislocation configuration. 

A.l RESULTS 
Relief replicas were prepared from tensile specimens 

deformed to failure at RT, 300"~.  and 490"~ .  Areas close 
to the fracture and in the undeformed grips were 
examined. No evidence of precipitation was detected and 
there were no significant structural changes as a result of 
the strain and temperature exposure. Figure A-1 shows 
examples of the structure close to the fracture for the three 
test temperatures. The micrographs show regions of both 
ferrite and pearlite. 

Examination of thin foils prepared by electrolytic 
polishing of transverse sections cut from close to the frac- 
ture of these same specimens,.where the local strains were 
between 10 and 20%, revealed some dislocation tangling 
and the beginning of cell formation. Figure A-2 illustrates 
the type of dislocation structure obtained at the threetest 
temperatures. In general, after deformation at RT, the dis- 
locations tended to be relatively straight. A number of 
fairly well defined sub-boundaries consisting of dislocation 
nets were observed [Figure A-2 ( A l l .  At the higher test 
temperatures [Figure A-2 (B) and (C) 1 far more dislocation 
tangling was apparent and smau areas of fairly dense dis- 
location structures indicated an early stage of cell forma- 
tion. No significant difference was observed in the speci- 
mens deformed at 300°F and 490°F. These observations 
are rather similar to previous reports of the effect of 
deformation temperature on the dislocation structure of 
a-iron2 where the tendency to form cells increased with 
increasing strain and increasing temperature up to about 
500" F. 

The maximum increase in transition temperature for 
this material was obtained after cycling at 350°F. Thin foils 
were therefore prepared from parallel to the initial rolling 
plane for several specimens cycled at this temperature. In 
addition, one foil was examined for each of the other test 
temperatures. The cycling conditions and the measured 
increases in 50% FAT1 for these specimens are described 
below: 

Temperature (OF) Strain Range (%) Cycles A FATT (OF) 

Room 
350 
350 
350 
490 

Figure A-3 shows the dislocation structure and illus- 
trates rather well defined cells approximately 0.5 pm 
diameter in all cases for the three specimens cycled at 
350"~.  No significant structural differences were observed. 
for the different cyclic exposures. The structure in the 
specimen cycled at RT is shown in Figure A4.  In general, 
the cells appeared to be at an earlier stage of formation 
with considerable tangling within them. After cycling at 
4 9 0 ~ ~ .  the dislocations have formed a very distinctive 
elongated cellular structure shown in Figure A-5. The dark 
contrast at the cell walls indicates a very high dislocation 
density and the straight dislocation segments within the 
cells demonstrate continued accumulation of plastic strain. 

A.2 DISCUSSION 
The extent and morphology of dislocation cell forma- 

tion appears to depend on the temperature and deforma- 
tion mode. However, with the limited number of observa- 
tions 'made, it is not possible to relate the structure directly 
t o  the measured increase in transition temperature. 
Although the specimens tested at 350°F have similar transi- 
tion temperatures and similar cellular development, the 
specimen tested at 490°F would clearly not fit into a gen- 
eral pattern relating structure and FATT. I t  i s  possible that 
the type of dislocation configuration is mainly controlled 
by the crystal structure and the deformation conditions, 
rather than resulting from dislocation-interstitial reaction. 



For example, decarburizing has been shown not to signifi- sity of mobile dislocations, which cannot be determined 
cantly affect the dislocation structure of a-iron deformed at from an electron micrograph and will depend on the extent 
various temperatures in ten~ ion.~  It seems probable, there- of dislocation locking, must be important in determining 
fore, that the measured FATT cannot be related uniquely the response to any subsequent mechanical property test. 
to the dislocation structure. Among other factors, the den- 
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F i ~ m  A- 1. Relief Repljcas Taken From Close to Fnrcture of Speimens Deformed 
in TensionatA) RTB) 3 l X f F a n d ~ )  4 9 0 0 ~  x5m 



Figure A-2 Effect of Temperatun? on Disloc~tion Amngement After Tensile 
Deformation. A) R T - 20% B) 3 d  F - 10% C) 4 9 8 ~  15% 



Fiwm A 9  Cell Formation Following Fatigue at &FA)  37 Cycles at 1.5% 
B) 2W Cyclesat CL5% C) 20YI Cycles at a38%. x 7 m  



Figwre A-4 Cdl Formation Following Fatigue at RT for 20 Cycles at Q5% 



Figure A-5. Elongeted Cells For& After Fatigue at 4 9 $ ~  for 200 Cycles at Q5% 

The mies of dark ban& going diagonally across this micrograph are 
cell walls coniaining a hiah density of dislocations Within the 
cells, B much l o w  cbsity of relatively straight didocetion 
segments is prrrsent 
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