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ABSTRACT
Lorentz invariance and the basic éssumptibn in dispéfsionﬁéhe6r§,‘

that the matrix element of a retarded or advanced commutator of local
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with théléohsequeﬁce that the widely emﬁloyed assumptionuof singleépdle
domipahte for the spin-one parts of Qéctdr or axial-vector currents is »
inconsistent with current—algebfaf Séme aspects of the KES form factors

are also discussed.

-

+ Supported in part by the U.S. Atomic‘Energy‘Commission.
$ Submitted to the Department of Physics, The University of
Chicago, in partial fulfillment of the requirements for fhe
Ph. D. degree. , ‘
* Present Address: . :
Department of Physics, University of Pittsburgh,
Pittsburgh, Pennsylvania 15213



1. INTRODUCTION

Besides the success in soft-pion thedrems,1 current-algebra has
also bgen investigated by assuming single-pole dominance for the spin-
one parts of éurrents with interesting results. The relation of
Kawarabayashi, Suzuki, Riazuddin ;nd Fayyazuddin2 ;s a much quoted
examplg, and, although ;he»validity of their derivation has been in
doubt,? it és satisfied experimentélly to a remarkable degree. Comparing

this with Weinberg's sum rules,4.the mass of the A, is predicted to be

1

J2  times that of the p . This prediction had of course a remarkable

~agreement with experiment at that time. Schnitzer and Weinbergs further

single intermediate ‘
strengthened these sum rules by considerin%Aparticl%\states and obtained

one of the two p-A.-1 vertices while the other cannot be determined.

1

itself has come under some suspicion

Since then the existence of the A1

and therefore theoretical predictions about its mass and coupling
constants are somewhat less meaningful. In order to capitalize on the

- : 6 . .
structure of current commutators, Brown and West used dispersion

relations to evaluate amplitudes of the form
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whose absorptive pgrt was found to contain delta functions qf q2 as

well as those of (p-q)z. They wer; then faced with the problem

whether to use‘fixed—q2 dispersioﬁ relatiop or to use fixed—(p-q)2
dispersion relation. They solved this dilemma by keeping an arbitrary
linear combinatiog of q2 and (p-q)2 fixed, and by imposing a consistency
condition for the amplitude, concluding that the dispersion relation
automatically emerged in the once—subtracted form. We will finq that
this is uhnecessary.

The starting point of dispersion theory is to assume that the
expression (1.1) is an analytical function of q, (with g énd ofhér variab1e§
fixedj7 in the upper half of the qo-plane. We will see in Section 2~
that this already;contains enough information to solve the above-
mentioned dilemma, so that no additional prescription is required. The

amplitude then naturally emerges (assuming no subtractions, for simplicity)

as a product of two simple poles,one in q2 and the other in (p-q)z.



Among others, one important distinction between this result and that of

reference6 is that the number of subtractions is not restricted in this

approach. An effective method will be developed, which abbreviates the

tedious arguments.As an exercise,we will apply this effective method in
~ Section 3 to study the amplitude

& ?9 ), V. ]l?l( >
x e (r) O ”'T(r
only to discover that, in general, subtractions are required and that
. 2 . . .
the off-mass-shell coupling );n (g ) enters in the combination
pmt(% )/[(mﬂ_ ‘g) -('P ?) )]

Section 4 will be devoted to study SU(2)XSU(2) current-algebra,
which will be extended to cover strangeness-changing currents in Section 5.

Relations between soft-pion calculations and our method will also be

discussed for the <7t\V;‘K> amplitude.




2. COMMENTS ON DISPERSION RELATION o

The usual basic assumption'in disperéion theory is the observation
that an amplitude of the form
i Lgx A, ' T
M) = i |47 "7 06,) el [900), o] 1B
. J
: - o : o (2.1)
is an analytical function, when considered as a function of Ay with q
: wA
fixed, in the upper half of the complex qo-plane. Here, |a> and |8>
are arbitrary vectors in the Hilbert spaée of physical states, ¢[z) and
qu) are local field operators satisfying microcéusality, q and x are
= 1 . ’ et = \)v' R
4 vectors, ek}b) is “the step function, gx guvxyx gnd 800~ 811
-g22=”-g33 = 1. The arrival at this observation is guided by the -

observation that the factor exp(igx)e(x.) in (2;1) approaches zero as

0

7;-—->w for Izﬁq0> 0 , so that, barring abnormal behaviour of <°"|[¢(Z;‘F(0)] lp}
for large x, the integral for M(d) is well-defined for Imq0 >0. In

the same way, one finds thét
Mg = ifa o) g, ellpy

is an analytical function in the lower half of the qo-plane, and that



this function is the analytic continuation of M(q) across the real
qo-axis, so that the entire function, denoted by the H(q), exhibits
the Schwartz reflection propert&
. * %
H(%o,g) = H (%0;%) , (2.3)
nwA 2%
and the discontinuity across the real qo—axis, called the absorptive

part AbsM(q), is given by -

pZZ Abs M(%) = H,Q{o* ios 4{)' H((go—iO; %) (2.4)

Therefore the absorptive part of M(q) along the qo—axis is

AbsM(i) = ;lz—jd% e zgx<0d [¢&); gp(o)] I,5> (2.5)

Inserting a complete set of states between the fields 96(7?) and 90(2))

in the commutator [;Q5¢(2,99(0):L one is able to express AbsM(a) in

_terms of. <0(«l¢7((}>| 14_>, etc:

AbsM(g) = % jw‘-x Syl qb(x/); (m<nle@)p)
- <“,CP(O)Z]”><”,¢(7C)'[J'>] , (2.6

where n runs over the entire Hilbert space.

Purely for the purpose of illustrating the main point of this




' communication,let us restrict ourselves to the ideal world whose
Hilbert space consists of single- and two-particle states, and whose

particles are neutral and of two kinds: hw)P> and ivnf,P> with masses
v

152

m and m' respectively (variables p denote their momentum). Let us assume
" :

<ol<p(o)lmfo> (olgto)m, p)y = (an)
<Of<f>(0)lm,f)> = (ol@)m pr =

and let the coupling between two -

..3/2_

(2.7)

particles of mass m with a particle of mass m' be 1{ while all others are
zero. Then choosing(@é‘to be the vacuum <K7I and (ﬁ> to be[m, p> , and

following Appendix A, we obtain.

Abs /‘//(az, b=t 21)5/2 [<of¢(o)lm,g><m, i‘ @(0)| m,f> lgynirg® )/Jn"qa,, 7

- o %I¢(O)IO><01<((O)I<M,;9), (m, %>>5§me+@2-)//”4+?
< Ol & )’ 19O [m, p> Stk /mfwﬂ/m

F 'y 1(0)10540| ¢(0)»l (m,f))(m’;&DMo* Jm " )//m’z*f']

(2.8)

where P, =j;2 + p2, and ku = pu -qu. and where we have explicitly displayed
) WA

puas arguments of M. These terms are represented in



Fig. 1(a)-(d), respectively.
By standard dispersion relations,8 one shows that, for any

p, qy and q' ’

&’MC{]W(O)’M?> (zr)” )//[mfz (P ?)]
<""?,‘KJ'¢<ONW>———-(;zm*}y/[mz_(woq ‘

(2.9)

3 and qo—Jm'2+q2
where CR =j; +q, AComblnlng equations (2.7)- (2 9) with crossing
wy

symmetry, one has O(‘f W) 5(?0 +_\/m _‘_? )
| Abs M(f = 2«/17([ fm*+9?2 +?2 (m’?

e e ]
- _JZ\/WZ’ +é (w1? —?1)

We can easily convince ourselves that the comblnatlon of delta functions
herev%s also rquired by Lprentz invariance, for it requires the entire
function H(q,p) to be a function of the Lorenta invariants q? ana qp.

So H(q,pj is'invariént under the transformation'qu-hqu and pu»-pu,and

hence the Schwartz reflection property of H(q,p) (equation (2.3)) implies

(2.11)

TnH(q+i0;q, ) == Im HEg.430-9,-8),

Which, in terms of M(q,p), means9

sk~ dishigp o




This is satisfied by (2.10).

' Now, assuming, for simplicity, unsubtracted dispersion relation
} for M(q,p) as an analytic function of q,, we obtain

\

\

M(%?P) = __j g/ AbsM(i ,f; f’)
. y ¢

@07 (m3- 9P m*-4£%)

which exhibits the two-pole feature. Thus the basic assumption of

(2.13)

diépé?Sion relation, namely that M(q,p) is an analyf}c fuﬁction of q
;P tﬁe upper half of the compléx qo-plaﬁe, dictates unambiguously the
treatment on AbsM(q,p) when confronted with delta functipns of both qo
and.pp-qo.

At this point, we may note that if we had replaced the expression

(2.10) of AbsM(q,p) by

AR D
AL)SM(? f 02\/27_( 4R - FWZQ»*?:'.

’ (2.14)
then we may still recover (213) if we postulate an unsubtracted
dispersion relation for M(q,p) as an analytic function not of g0 but

of q2, and assume that, for fixed gk, the discontinuity of M(q,p)



across the real qz-axis is given by (2.14) (for then k2 is a linear

function of q2: X2 = m2 - 29k - q2 ).

In practice it is easier to use this effective technique than to go through
the entire procedure every time we are faced with such a situation. In
thé entire paper, this effective techniqug will be employed.

Similar cases, where the dispersion relations in do require>
subtraétioﬁs,.ﬁill be freated in Appendix B. We may s£ate tHe fesult
here: Given fﬂe imaginary'part of a complex.fﬁnction.bf qé; it is alwéys

- : ‘ that
easier to find the function by inspection under the guidelines (i) it

that ,
has the correct imaginary part, and (ii) it is Lorentz invariant, than

to intergrate directly.
We may also note that in the more realistic case the Hilbert

space consists of a continuum of states of various spins in addition to

that
single particle states, and,the above consideration will be modified by

A

intergrating over m2 and m'2 with suitable spectral functions.
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3. A SIMPLE APPLICATION —— Q-7T- L SYSTEM
4
Let a pion state of 4-momentum p and isospin a be denoted by
l7ta(rﬂ>¥,‘and let a rho state of 4-momentum k, polarization 4-vector e,
P (4,¢))
and isospin a be denoted by P ,f) . The off-mass-shell p—7i-7'c'
. 2 . .
coupling );ﬂ17(% ) is defined by

cate o . o :
(&5 02(679) 2 — 6’ a Cri
(a’(f)%‘m,ﬁ—?l) );)M (g) = <F (é,s)l% (0)/71 (P)>) (3.1)

. . . a .
where Q= P, - ku . ‘eabclls the anti-symmetric tensor, 7 (;(‘) is the

pion field, and m_ is the mass of the pion. Consider the matrix element

LetqI\ )

‘/‘[C(P)>l of the strangehess-éonserving current between .

two ﬁion'states. P;ss"umin.g unsubtracted dispersion relation for its form
factor, and assuming that the spin-one part of the unit operator ann><nl |
can be approximated by the rho-state contribution Zdi fdaé _21‘_'("’1/,2‘* éz)_l/z

‘)Dd'(ﬁ’ £)><Pd(‘£,, £) " oné finds,by standard dispersion technique,

_ ’ aécﬂ . F}+%y 10
<7ta(‘{), Vf(@) | 'T(C(P)> == (1:2%)—3 mpEo 9;)1[7[(7"7{ )Wz ’ (3.2)

where ku = p - dq 'mp is the mass of the rho, and Fp

O

is defined by -



. =12~

<O‘\/1}(0)lpd(£ £))= (427@-3/2?% plp B (3.3)

We now relax the mass-shell condition on q and generalize the

a.mplitude (3.2) to
Mg p) = iyt e $9 Kol [nt), 40N ), .0

where, to be specific, we will only concern ourselves with the

Lorentz covariant part of this amplitude. Note that for qz-*mn2,
atre

| * =M, p) = <7r“(%)/ (O)l?r‘(p))
'Invokmg the assumptlon and arguments of the previous Section, ,.wlg.

then find. i

Abs M,* (cé §) =1 8mi-g? ) ) [\ np))

—rmF 8lm - £2)Y E,,<p4(1@,E)Iw"‘(o)!w‘.v(ﬁ)x. (5.5)
With the help of (3.1) and (3.2), N
Abs /\/7 (g ﬁ) = Wz;af‘: f’ P[ é@_—ngy) pﬁr(mnz)(Pu‘f’ ?,/) N

Sy by ) o
m’( gz XPW’(% )(_gVﬂJr W;ﬂ ;&pﬂ] . : (3.6)

In terms of the form factors f, '(q2 k2) defined by

(lTC

M. (cgp )=1(an) "¢ ’ ([f (f%z)(f?/rg )+7. (z £, gy] (3.75
/%sM MC(Z f?)rwm Sl [Imf [2 2)(p,, 1)
+Imf(% ) p-4.) ] (3.8)
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Comparison of this with (3.6) gives the imaginary part of the form factors:

Imf(% ) =- W’Fpmr(%)[ ) 1@2 5;% ;2)] (3.9)

(22 §2 m-¢%)  S(m>£7)
IMJC‘ (%’%)H m, prn(?z)(mn ? [,,:: JE ,m:’:,f] (3.10)

Appendix C shows that pr"(q } is, under the same genefal assumption of
dispersion theory, a polynomial in qz, so that (3.9) and (3.10) are in

| the form required by Appendix B, and, hence, the form factors are

' 2 p* :;_ /W’oFﬂyPrrrc[iz) N
J(Jr(q A R ). (mnz—gz)(mpl-éz) (3.11)

JC [% 2)~ J.”_”——f—-) (3.12)
My~

Substituting them in (3.7), we have

afe 1€ abe mF);,,r,,(j) %%
(%’P) () (mg- i")(m g)(ﬁw fmz)(p+%)

Let us assume exact SU(2) symmetry, that is,

6(xa)[\/ (x),n¥0)] = 2¢* EC(0)54(X), (3.14)

(3.13)

and '
Mhu(x) = 0. CAt)

Then the Ward identity reads'11



-14-

vag abe ' : -3 atc :
’g MV (?,p)“ —L(ij) € 5 | (3.16)
which, together with (3.13) implies that the off-mass-shell coupling

is independent of q2 and that it is given by

),/mm(gz) —:‘*‘mP/FP' (3.17)
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4. su(2)xsu(2) CURRENT ALGEBRA AND THE (Z-p-m SYSTEM

Let us consider the matrix element of a retarded or advanced
commutator of two currents between the vacuum and a physical state.
Employing Ward identities and the method developed above, we may study
the.conteXt of current algébra. In this séction, the assumptions of
current algebra that will be inVoiVed are

sa) LV, AL0] = ie* Al 0)8 ),

6(’x0)[A0"‘(7c), \//’(O)] = z’e“hA,f(O') 5%x), (4.2)

s [ALE), AL = PV 0)8" ). wn
We have omittedthe Schwinger12 terms, becausevwe will only evaluate.the
Lorentz covariant part of retarded or advanced qqmmutatdrs, and, following
Bjorken,lé they do sop gontribute to ;he divergences of these commutators.
We also‘assume:strict Sp(Z), that is

2”‘\/%“.(_37() =0. | (4.4)

s

In evaluating absorptive parts, we expect to encounter matrix

P ,a .
elements <O'VM {‘n) of vector currents between the vacuum and physical

states in) . . For these to be non—zero,|r1> must have isospin one,>and even

§ iy



G-parity. In an angular momentum expansion of such states, we find that,

a
because »/
M

is a divergenceless 4-vector, only‘thgzspin one states
contribufe. ‘We will label such stgtes simply by 'Pﬁ(ﬁzgd)> to
indicate_that its isospin index is b, its momentum is k, its polarizat%pn
4-vector is e and the_square‘of its mass is o. Al} other internal varjables
and summation or integration thereof will be omitted for cla;ity. Thus

&

we define their coupling l?(O) with the vector current \/a by, in analogy

to the rho-states of the previous Section,

0] 0| ke, o)) = @) 5™ Bl

Similarly, for the axial-vector currents, we have

<C|/A\Pa(0)|&{’(1’{,6, 0)>E(37f)‘3/25a0‘/5:@(6)£ , (4.6)

- where, again omitting unessential internal variables, l &{'(k, g, d)>
"is’a spin-one state of isospin one, isospin index b, odd G-parity
4-momentum k, polarization e, and square of the mass @. In addition to
these spin-one states, there are, in pfinciple,'spin—zero states which
are aﬁniﬁilatéd iﬁto the vacuum b; the axial—vectorvcufreht. From now on
lef Qs assﬁme that, out of these‘stateg, only the pion states;are dominant

and define Fn By

<O|A:(0)‘HL(P)> = i(27()‘3/2 F?t P,“'. (4.7)
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(1) CURRENTS BETWEEN w AND “VACUUM . -

Equations. (3.1), "(3‘2j‘ (3.13), and (3.17) are now generalized to

a(kcoz(g)
(th):“(fmn cg

Vo () = gk, 60)| w0y ),

(4.8)

| e
<7Ta(%)[\/4f(o) )y =- (.zer / d:rrf,éﬂ( ));m(g)(f’u*?v ), s

e,

M (gz'p) o

—. 1e?” da'\/a' F(U) k,,é .
@ lng =) f Ym0+ 222) (4 4)

S—o—’iﬂ}’m(cﬁ =-1, (4.11)

Jo P

where
= - (4.12)
k=P

and where the qz-dependance of ')/nvr(cr‘) has been omitted, since in

P

later calculations only physical values (where q2 =m§) are of interest.

We will now proceed to study <aa(?71770')'\/’:‘r(0)|7fc(f))> Defining
the G-p-n couplingé YS&I)( (0,0 )and +S&n(o,c') by |

@%(g,m,00|m(0)] p(H',2,9))

= aéc(é(nﬂ[m,, ~(p-#)*] [Xpa,.(oo)(n] : (4:13)

+ o’Z )’Paw(c,o')(ﬁ'q)(_s%)] ,

we find that
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<&a(% ”, d’)l Vy’}(o)lw°(p)>
- (dofo {7@
Jo— L (0 )( et )[ Pan(o—’ol)qﬂ o
- }?)&W(G’O/)(%ﬂ)(PB+?ﬁ)] . (4.14)

We have included here only graphs of the type shown in Fig. 2(a), where

the strong interaction vertices are connected. Graphs like Fig. 2(b)
have been omitted from this matrix element for the present, and their
effects will be discussed later. Since va is divergenceless; these

couplings must satisfy |

| / 2 D ) B
/ﬁ{é F;(G)}:)/pzn(o,cr’) + ("= mg ) Vyax(0,0 )] -0

(4.15)

In like fashion, we find

aﬁc . 2 nxmt(d)
<fltbelholn) - e

dO’Jr_ f x D
Jeit i o)
Lp¥h,e, o) 2*ALO) 7 lp))

. abe 2
™ Ay ?2 );,,r(a)(e?), (4.17)

(6q)gu  (uae)




and, by comparing thém

& Fr ?;,,m () = F(O')[?;,g,r(U0’)+(0-mn2)ypgm(0,vo"2]' (4.18)

Now we are ready to compute the following advanced commutator:

M}Ava“(?/f?) = i/d“xe ifKQ(Z‘,KO{ [A;(xL V,,L(O)] | WC(N}, (4.19)

whose absorptive part is, according to Section 2,

Als 1,14, p) = fatee TOILA )OIl (p)

= L) 80m-g) iF g, <tg)INLH0) Ix(p))
+ [do'cs(oz?l)ﬁlf (002 TG g 1,9 )\, (0) 1w ()
fdcr5(<r # )FF(U)Z £,<p (%EG)IA ) np)y

aZ'c
[5(*“ )R ?pﬁ“’,{:F (G)Zo,m(or)(p,ﬁ? )
\ /ag gl

[P@,((UO)g“ﬂ )/P];,r(cr o) # (p?+ ?/’)J

.__ f@(qé(g—ﬁz)ﬁﬁ,(o)(“gz:p% %C/fﬂ)

dUFF(o)[ j )

s th(q)

TS
i ?O?F Vet 58 rtrog- e 49| ]

(4.20) ;.
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By slightly rearranging the terms, we easily check that the imaginary
1L . abc’ ‘
parts of the form factors entering into Muv (q,p) has the form of

Equation (B.6) of Appendix B. Hence, by Appendix B,

4‘{fc a&c ‘
10 = g [ 5t 5

X{* Fr ypmt(o) | dU \f—’ (O) (4.21)

2 ?A(P“%F) u

Mg —¢°

(gﬂ“" %‘Lg‘x [ aﬂ(o—)o/)g“ﬁ_ );J;n(ojU')(CZ%“?ﬂ,l_A%ﬂ_‘_gdgﬁ )] }’

\
and it is represeﬁted by Fig. 3. Had we includedbgraphs like Fig. 2(b)
ihto,éur'amplitude, we would then find that the triangle gréphs (Fig. 4)
must also be 1nc1uded in Migc(q p) These graphs do not possess the two-
pole feature15 exhibited in (4.21), and they, ambng other things, contribute
to the andmalou$ part of anomalous Ward identity.16 Since later applications
will be centered around sing}e—particle or_resonapce intermediate states,

these triangle graphs will not appear.

To see the context of current-algebra, in particular, of Equations

(4.1) ‘and (4.2), we. find that the Ward identity is
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. ate ac"-.~ -3/2 afe '-
"LglﬁMIW -(%,ﬁ‘fbu &(%)&)f- _’L(o'Z?r) /6_# an),,, (4.22)

where we have used (4.7) and where
D,MC(%,P) = ifd‘* L%IQ(IKOMQ"A (x) (o)] [n (P)> (4.23)

In the Same manner, we express Dabc(q,p) in terms of the various constants as

Z { doJo r
D : C(% f) (g )m ?,u/ 0’12 F(o)(g +——-—)(p/’+§ ) (4.24)
so that the Ward identity implies

/3—0;/;[:(0-) —-gup"—-——g){ T pmr(o)(P +?

f Vi Fe(0) [ ,,an(‘m @ an(q)ql)((mﬁz'#)?p*@’”’%ﬂ)] } = fxp, .
This, with the Help of (4. 18) reduces to

/dd dUF(U)F(O); [ pan(cro)Jr(o My )f,&,,(c,o'):]%y

—\/_):’“"(0’0,)?1/} = P,

which, because of (4.15), further reduces to

do da

F(U)on));an(oa)("*“% J'—ﬂ)z Fop, .

Therefore, we obtain the following two sum rules:




fd(fdtf F(O')F (0')3?&7[ (ro') =~ F-xt

(4.25)

and

J doda’ da’

o P (U)Y/:ax(U o' )o+a') = O. (4.26)

In addition to (4.22), there is another Ward identity (remember that
a .
B“V =0 ):
ate

1& M.

but this, again with the help of (4.15) and (4.18), reduces to (4.26)

(% ) =-1Q7n)" 3/2 “h f’}i) (4.27)

and

Jdddfr’\/g——,fl:o(ff)f:a(d)y on (0,0') = Fr . (4.28)

This equation does not represent a new relation as it follows from

(4.25) and (4.26).




(II) CURRENTS BETWEEN & AND VACUUM

We may extend the above study to the amplitude

a(rc

whose absorptive part, by the now familiar method, is

ate

AbbN (i X f);%fdg 65?“<OI[A;[7C);Vf(oﬂ'/’d‘(ﬂﬂﬂ'»

= L% [sni-¢Yi F,t?%w(%nvfm)l & (p1,0'7)

+ fdof'é(a't ¢*Na' @(U”)Z{Z} <d“(%) o)V, '(’(O) ’&c(tb,7770”)> |
"Jdcré(o'-— NG ;) Zg g, <P'(’(4é' &,0)| A a(O)I Gpy1,97). (.30

We already have the expression for <’T(,a(Z)l V (O)! dc(P, 7]7 /)>
(Equation (L.1L)).An attempt to express <&“IV(’I &c> and

<P 'A}"‘ l&c> in terms of ;ouplings runs -into the problem that, ifor
those & orP states that are not single stable particle- stgtes, it is
extremely difficult, if not impo;sible, to Qrite a dispersion relation
for these matrix element§. The obstacle lies in the fact that these
states do not have their respective local field operators. Nevertheless,
let us assume that we can define. "effective' couplings %ad(O',G:O'”}and

-/ :
9;&,&<U;U;U”) by having an "effective' strong interaction Hamiltonian:

(g b =i /d‘fx 60X ol[A ), \/"(0)] ),
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g1t 5 | HHE o] 6 (p1po))
4 .
= - 5 Aealoor 00 () (D)

Y, (0, ”)(2’7)(8?)]

(4.31)
and eValuaté the matrix elements <&a|va| &c>, <pb|Aua|&c> and
<pb|a“Aua| ac> from Fig. 5:
a , /6' ¢ !
@%q, 2,001V, (0)| ap,7,0)
_ L€ ‘ do /o ‘ﬁ ‘éﬁ |
(2)3/0' %ﬁ_(o)(g g )
(4.32)

Xgoz %d&(q,o",o”)[((ﬁ)ﬂﬂ“ (”’]%)Iﬂ]
! %laa(c,o’,o”)(fﬁ)(ﬁﬁ+%ﬂ)}
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P 0| A0 G (py, o)
’Zédh

F'
= -2 { g [7?@((70)(57])%23/&((00)(7/%)@)]
B ot g b8
xwda(do U)(5’7 (7f‘+¢é°‘) 7(77%)5“) 023/&&(000 ){ff’)? J}

<p{}(7@ £, 0)] B/LA (O)[&C(poy o))

C

= (02 P g’ [Pdn(ccr Jen)td P&’f(c U’)(ﬂé}(fﬂ]-

(4.34)

Crossing symmetry on (4.31) requires );da(o')o",dv and
.a/ ! / " R / el
p&&(d, o,0 ) to be symmetric under U «— 0

Multiplying (4.32) by k¥ and (4.33) by g# , we obtain respectively

/ g F(G))’faa(g o o' )Ng'-0") = (4.35)



-26~

and the pair

7
ypan(cn )= (o-0) f/é/o”)afpa(o,a/,a”) - e

P do” . / (4.37)
Fe };an(d,d ) = / I G (o”[ ) %4el0,9,0")+ Lgalco o]
Substituting (4.14), (4.32), and (4.33) into (4.30), and employing the

effective'technique we find simply

akc ate [ dols f‘;,(d) b #
N (% 7b7 ‘7)— - @K)s/zj 0_42 '(‘ ﬁylg-l-—;'[;—)

x{ﬂﬁ[/m(c o)1’ +(nk) pm(ﬁ‘ )(pf+g )J
Ja(c"/o" - (o) ( ot LB % e )((M DP-208)°°)
(4.38)
P&&"‘(a,o’,cr”m (7> +%p)]} ,

whose representation is shown in Fig. 6(a). The closely related matrix

element, Fig. 6(b) is similarly determined

=,y pod= i ene 8 Ol AV, m)J(P(m o)

(4.39)
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’mrrz Fr do Jo %V %
28 bl g 2)

(Xﬂ)w 4’”7;’ ‘g : a

XV oaloomt e bV oo gh)] . o

The Ward identities are

ea&c

| . v agt i _3; ‘@t / |
it N/“u [%’_/’7’77‘7') S COR C ACOE I .41

and

ig"N V“h(%z,wy,cf’) + th(g,p 7,0)
= (2" e T E (), | s

which respectively, with the help of (4.15), (4.36), and (4.37), reduce to

fo(o‘da”\/:g—_—zg(g)@(gu) );;&(o; o', 0") =—jof (o) .43 |
and ) | | |

, jdddd"’\/—g’q,’,—ﬁ(a%(ﬁ”) %aa(ﬁ,o’;@”)zﬁ[ém’)' (e.18



~-28-

(III) CURRENTS BETWEEN p AND VACUUM

For'evaluating a similar matrix element for p-states, we aiready

have the necessary ingredients (4.16) and (4.33). We obtain

P“G‘({ pio)=i[ttre 1) 0l Ae) A (0){ Geo)

. aftc
_ i€ Fa 2 Fx
" (am” [mrﬁ-f’%/‘{ =gl (5?

/ Ao/ (o)L, + %’)[an(c,o"')fﬁ ()Y ) (”ﬂ*‘fﬂ”}

(4.45)

U//

a7 X( ¢
/GLO’ a4t W/{ f# D[PW(GIU,)EOC

+(E% Y/)@W(UJUI)/P +4€ )] +/M(_?VP+%)F(O”)

" 4€2
(4.46)

[ aa (0,0",0")(-¢ pﬂ+?’3 JH(p+4" )e f)-2 Q’P“(g,o U”XE?)} "]}J

and

?

abe . 14 % ( a ¢
FV (%,f, £0)= fot"xe § 67(760)<O{E4/~(7C), /45’[0)]1}0 (p,g,6)> (4.47)
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gaZF);’m()(Ei),é Jdo'gﬂ F_( )

My _44.

éa{m mnzf;‘t
(X”rc)a‘/2 f

(ﬁw toere leloal? o)

The Ward identity

y -32_abe
%/L [gnb,f o)+ F (ff b &, 0) (2) Ve JE/;;(G)EV (4.49)
yields, through (4.18), (4.36) and (4. 37),

Jao'do [T o) B0 Yylorot o) = G E@). o

The other Ward identity can be shown to be equivalent to (4.49) because

of the following property:

| /L;V“&C(%; f)7 & U) P#ac(%)_ p, € o). (4.51) |



-30-

(IV) DISCUSSION OF SUM RULES

Up to here, we have obtained a number of sum rules from current-
algebra and Ward identities. We will now study their significance.

From (4.28), and (4.37),

dode 40| B OV 0) 0" Y 0,0°9") Y gl o) =F a5

which enables us to obtain Weinberg's4 firs%u¥u1e from (4.43) and (4.50):

2 2 __' 2
qu[l?? (0) - @(G)j o Ez . (4.53)
Weinberg's second sum rule also follows, but from (4.44) and (4.50):

jdo’U[E%(U}-’ @2(6)] = 0. (4.54)

From (4.15), (4.18), (4.25), (4.28) we also derive that

EE O Ylo) ==

This, of course, had been obtained earlier from another consideration,
but it is comforting to note that our method of dispersion relation shows
some internal cogsistency.

In current-algebra calculations, it is a common practice to assume a

single p-state to saturate the vector current, and a single A, -state plus

1
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the pion-state to saturate the axial-vector current. This assumption
combined with our sum rules also leads to interesting results. For

example, (4.43) reads

Y e =~/
© pék P/P ’ (4.55)

which except for a factor of -2 is exactly the same obtained by Schnitzer

and Weinberg,® while (4.44) and (4.50) read

M2
7y - —4 4.56
(34 (4.56)
f ’mf’ﬁ’ p)

y - meb (4.57)

The last two equations are mutually dependent by virtue of Weinberg's
second sum rule (4.54), and this expression of Ypa& cannot be determined
by the method of Schnitzer and Weinberg.5 One may then proceed to employ
this single-pole dominance assumption and work with other sum rules such as
(4.15), (4.18), (4:25), (4.28), (4.36) and (4.37), and then finds that,under

. . . . 2 2
‘this assumption, (4.25) and (4.28) lead to the following absurdity: Tﬂnl==-?np -
Faced with this.difficulty, the next bgét assumption one may hobe for is
that either the vector current or the axial-vector current is single-pole

dominated, but not both. In the following, we will show that even this

is too optimistic.
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(V) P AND @ SPECTRA
V4

. ! \ . ) / N
(4.15) can be cast as a sum rule for }/ and )/ XA

pag =4 Yp
through relations (4.36) and (4.37)£
de'dO' F{;(O.)E(g/)[(o—_m;));“(o;o'/,a/')‘i'(o-u_mnznf/)é&(q)o/,gn)] = (0,

(4.58)
which, because of (4.43) and (4.44),can further be integrated to yield

40da do" () F (60 F(0)[Y,galo,o" 0”)+Y (0,0,0) | = O.
jJ_— M [&a “ ](459)

At the same time (4.25) and (4.37) imply

Jto do'do" =55 E(6) Fy (o) ()

X [ypa&(d'all U”)‘fyp/a&(o’,d’)a”)] = — f;t o (4.60)

Now let us assume that the vector current is single-pole dominated and

observe that the last two equations, which now read

j@'_z‘f (@00 ea(0:0)+ Y g l0501] = O

and

5 [ R0 Gl Vo] ==,
2

require the unphysical result that FTr = 0. Thus this assumption is

unattractive. .
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Under the alternate assumption of single-pole dominance for the

axial—vector‘current, (4.52) and (4.59) now read respectively

JMF(U)[YM(G) + P;‘g(o)]
and
EHO o)+ Tula] = 0

these two equations also require the unphysical result that Fi =

and likewise this assumption is also unphysical.
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5 x-K*-K,-K SYSTEM AND THE K,, FORM FACTORS
[a) 2

Extending the considerations of the previous arguments to

SU(3)xSU(3) current-algebra involving strangeness-changing currents,

one obtains, as before, essentially the same conclusions with the

exception that the analogue of (4.11), due to non-conservation of strange-

ness-changing vector current, must be modified. ~We must then consider

scalar states of strangeness one and isospin half, and shall call them

l?CS(P,Iu,)> with isospinor index s, momentum p, and mass J/: . i
(K*(pe a) . 1

Its spin-one '"brother" will be donated by quefnﬂ)>ﬁ where ¢ is its

polarization vector, and the parity partner of this will be denoted by

}l(A ( & )> . The coupling of k-states with others will be defined

s Fb )0/

as follows:

L =7 -3 1 £ Xc 7t(/“> )
(KUl np,p))=i@n) 7 (%), m#‘K( ol (5.1)

; -3 t yxk n(/A O')OZ(EP)
(KA, &, D7r(0) |y (pop) ) = @n) 4 @,)s ,,‘—(;rg)

(atq, 6,9 KHO) 1y =(@m) £ 0,
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vhile X (/,L) is defined‘ analogously to P’”‘(/“‘) whereas )/K*ﬁ-K(/u 0)

K*Kn s
s,D D
anfi ]K*KAK(/"’ are defined analogously to Xp&r (/l @). We also define

and F g/ -as the coupling of the respective states
Felw) - Fee(p) RC pling P
. {
with their respective currents.
The entire program in Section 4 can now be repeated with these

entities, and we will not display it in detail. However we will only

note the following relevant relations:

<Kt(%)| VSOl )y = - @ g (o)
duF, (//_) du Ji » k% |
/&J‘ ):ckn J;/;Z/‘; i«(/‘)%,m(#)(-gpf',TE)(?’p*gﬂ) ’(5'4)

xgﬂ(/A = (u- me") S:a(d)yxak(/“'o),, (5.5)
de“F(/L))/ W = (m? ml)ff_ K*(/“}Y*er (5.6)

25 e ()= - j“r(o)[%&,(,m)w,‘ ) Ve )] o

.zfdﬁi(y)xtKAn(/A, J:\/‘/,,ﬁ /u)[ K"KA (Iuc)+(c me )Y*K" (IAO} (5.8)

oljd;LFn(y x&K J *aK(f‘ g)+ (- mkl)y*(iK d)], (5.9)



FKynK"((/M): (#‘mnz)/ﬂ'[i (G))/KA (/4 aq), (5.105

&FK)(K*K (/M "‘j (0'[ K*KAre (,U O’)’}_(}A—/mﬂ)};ﬂ(” (/M, J -1

i/d"x e L?x9(xo)v<Ol [ A/f(x), \/th(O)] | K Gp))

——1 (gt K '
= 3,(,27{)3/1<O—7')s [mxz’%z?pj—% //1 ,@2 'L—(}"') >/K7f(}'()

dpJu
+]ﬁ Fer X«‘Kn(f‘)(_?’/ﬂ & %B)(PJr? )}

+j?rgf O G cr {fé/ b Va0 )(p*+ 4°)

dulu “8
+/xxﬂkzﬁ<*(/‘ (o5 )D/Ksax( 94"

(5.12)

—~ K*ak }A,U)(Q& %'B+%“’€ﬂ+%x%ﬁ)] }}

and

?




-37-

i[d xef Q(x)<ol£A,L (), V[ (0)]Impy
= (2(027[)3/2 (O) [ K’_?z ?f" {—£V/ﬂ—1€2/it(/u’))/xk7r(/u)

/p. 42/',;*(;1) K*Kn(/u){ gv,e ] ﬁ)(P + ?ﬁ)}

4 /gof; () g, 385)(_g )4

dp
+]_7%E Pt ?Vﬂ

~y?

K* KA

(1,0 )(%

&

{

)[ Kﬂ@ﬂCM,U)g“p
et ]|

—

The current commutators required here are

5% LA, v 0] = = 40, A (0) 8%x),

Kt
SxILA,"

5(x,) [A (x

), V,5(0)] == (9, A, (08 ),

(0)] =-2(a, ) tA (o)é‘*(x)

V) - ;€2F{/")KKA (}A,U)(p +#%)

(5.13)

(5.14)

(5.15)

(5.16)
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and :
52, LA (2), V< (0)] == 200, V. (0)8%(x). .17

Then the Ward identities relevant to (5;12) yield the sum rules .

jd#dgjj—%“ﬂ,(p)é(g) 7:,)%,({/1,(70) = '——FK , (5.18) .
and '
B e R, o

while those relevant to (5.13) yield

Jrdo [ FF ) Yo () =y, @

and
Jap do B Rl ) g (0) Venag (,0) == Fe . @an
Considering equations (5.5), (5.7), and (5.9), the first pair of sum

rules ((5.18) and (5.19)) shows

_ oG dr
J[‘ Kx(/“) K*Kzr(/u)—— F. ./,“‘mxz E((/LL) nK"(]’L) (5.22)

but the second pair of sum rules ((5.20) and (5.21)),when combined with

(5.8), (5.10) and (5.11), shows

j\/‘ 22 Dol M

= l:\“'\

+ ;ETEF(}‘)X KK(/“)- (5.23)




]f (£?) =- _d_(["‘/l".‘ FK*Q")
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- If we express (5.4) in terms of - k,.-decay form factors f , defined
P ¢37SC2Y TOTH tactors .

LRIV @)
== @5 0. £ Wlgag, 1 wg-1,)],

we find that

/A-zka }1ﬁEK7[(}&;>;

| .‘.(5;25)
f,(’&a)‘—" _i(:&:[z'(z&;)%ckn(lﬂ)’

Earlier we have been dlscouraged by assumlng single-pole dominance of '

- the spin-one part of vector and axial-vector currents. Now we will see

that assuming single-pole dominance of the spin-zero part of vector current

is not bad at all, for then (5.22) and (5.23) respectively read

:f (0) = —55- + —FZ—?}—EL - .
4+ . 7(' m}‘tz —- mKZ ) (5.27)
and -
]C+(O B F. 777,12— m> (5.28)



From these two relations we see that (becauSé-of (5.6) and (5.25))

f.(0) = =1

’ |  (5.29)
and
2 — 2
m 2 My Fk + Mp E;
X FK e F1r 3 ‘ (5.30)

where the upper and lower signs give two different solutions. With
lF“l= 131 MeV,IFK|= 149 MeV, m = 137 MeV, and MK = 495 MeV, the last

equation determines the mass of the » to be

1380 MeV
m, ==
370 MeV,

for the upper and lower signs respectively.

The lower sign thus leads to a x with mass lower than the K-7m threshold

and we definitely do not observe a stable strange scalar at that mass.

Therefore let us discard the lower sign. The upper sign certainly does

not fare much better, for, though mi is above the K-m threshold, no
established

x Tresonance has been in the region around 1380 MeV. However,

we may regard this as an effective parameterization, and so, with the

upper sign we have

f. o = 1. (5.31)




Thus this approximation surprisingly resembles the Ademollo-Gatto

theorem17 which states that f _(0) equals to 1 to first order of symmetry=
breaking. By virtue of Cabibbb's18 theory of weak interactions,

experimental data on kaon decays yields19

| £ F/F | = 1/(128+ 006) .

With the above values of F1r and FK one obtains f+(0) ~ 0,95, in
reasonable agreement with (5.31). Like all single-pole dominance models,

it necessarily predicts a very small but negative value of f (0):

fo) ~-0-17.%°

Experimentally, the status of the value of f (0) is confusing, but,
overall, it seems to favour the value e£—1.21
Soft meson Calcﬁlations on <w]V]K$' with 7 soft has been found

to differ appreciatively from that with K soft. Some authors maintain

that extrapolation of the K-mass to zero is not as good as extrapolation

of the m-mass to zero. With the above sum rules, one observes that

:these two different extrapolations are consistent, provided that the

off-mass-shell couplings zn;*Kn an% ]K;Kﬂ

are independent of

the sduare of the off-mass-shell momentum. For under such an assumption,
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the current matrix element with pion off-mass-shell,

/“L 3% (% f’) zt
= (an) 7 iom,* gz)fd”xe o) 0l [, V. O1k(p), €32

and that with K off-mass- shell

R s ( ?)
"(m) 3;/2 —p )Jd e 6’(x)<71“(%)l[\/ (O (7()](0>

are both given by

Fe 55 Gg fz) 6% fz)
- d,uf X xky
R(An)> (%) 5[/1 £ 'k (/‘L))/K*K (/M.)(g %ﬂ)(,P +% )

d
S E Y )] e

Now soft-m and soft-K calculations based on the hypothesis of partial

IS,

conservation of axial-vector current (PCAC) require respectively

a t -3 |
R (0,p) =-Gr) " 50,), (F/F) % 659

and

ﬁ ;s (g 0)=-(Ax) ’—(o— i(Fﬁ/FK )%/u (5.36)

With help from (5.34) they state that
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‘“ ’ (5.37)

, d R
\j'/[[ K*(/")X*Krr(/"‘)—/ ﬁ"lz“) an(/'()

and

(5.38)

¢
"TZ'

/# o Yo 1 +/c£/f,¢2) 71@#/*)

dispersion relations and current commutators. We therefore conclude

S

\
These are nothing but equations (5.22) and (5.23) derived earlier from
\

that the hypothesis of PCAC is equivalent to the assumption that (a)
the pseudoscalar mesons dominate the divergences of the axial-vector
currents and (b) the coupling;bf off-mass-shell mesons are independent

of the square of the off-mass-shell meson momentum.
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6. CONCLUSIO&

We have thus shown that analyficity in 9 ngcessarily leads tb
aﬁplitudes Sf
two-pole. form in cases where the retarded or advanced commutators are
sandwiched between the vacuum and physical states of spins zero or one,
and we have concluded that the hypbthéSis of single-pole»dominan;e for
spin-one parts of vector or axial-vector currents, although enjoys
quite impressive successes, is inconsistent with current-algebra itself,
If we ndﬁ try to rémedy the situétion_and assume two poles for veétor
currents and two for axial-vector currents, then there are more para-
meters assoeiated with these poles than our éum ruleé caﬂ detérminé.
Thi§ means that wé have a large amount of freedom in which Qe can
postulate models about these poles. In this respect, considerable interest’

3

may be found in the dual resonance model,2 in which states of spins zero

and one are populous, and which has already shown some surprises with
current algebra.24

X . s 4 .
In our considerations, Weinberg's two sum rules follow automati-

cally. Perhaps this is not surprising because in his related work with
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,Schnitzer,s the two-pole form was extensively assumed. However, the
celebrated relation of Kawarabayashi, Suzuki, Riazuddin and Fayyazuddin2
(KSRF) does not emerge from our approach, and therefore the mass

2

formula 2m 2 , which was obtained by Weinberg4 when he combined the

o ~TAL
the above relation with hiS two sum rules, cannot be obtained he;e. The
answer to this can be found ig Appendix D, which proves the KSRF relation
under the assumptions that (i) there are no low-lying Al-like states
to domipate the axial-vector current, and (ii) the effects of the
continuum ofrAl-like states can be represented in the amplitude (n'/VJP(E)>
(where € is the polarization) as the subtraction constant in the once-
subtracted dispersion relation for the form factor that multiplies into
€, Since these assumptions are incompatible with those which we have
worked with; we cannot possibly combine the KSRF’relation with Weinberg's
sum rules. Actually this contradiction may be more comfofting now than
it would have been in the past, as the experimental status of ?he A1

(originally thought to have a mass of 1080 MeV, and so satisfy the

relation My =~ = 2 mp2 excellently) has eroded somewhat.25



Finally we may add that, although our prediction, that

f+(0) = 1 for K£3 decay, is not bad comparea'to ekperiment, we must
view the underlying assumption with skepticism,'for it -also prediéts'

a K-m s-wave enhancement at about 1380 MeV. Experimentally, the

“situation is far from clear, and no s-wave resonance has ever been

definitely established, although there are some suspicious resonances25

reported at 1080 MeV, 1110 MeV, 1160 MeV, and 1260 MeV.
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APPENDIX A

Consider the following commutator amplitude::

Abs = % [dee Tl [¢w, p@T1pp),

where {ﬁ(’p)> is a single particle state of momentum P/‘. Introducing

a complete set of states f'rl(s)) into the commutator, the first term is

Lauot) / d's §(s*-m,” )96) 54/s~3z}<0_/¢(0)/ n(s)){m(s)| ¥(0) | plp)),
" (A.2)
where m_ is the mass of I m(s)),

If ]ﬂ(s)) is a state of the form

In(s)? = lﬂ’(sl), B(P)> (A.3)

(where s = s'+p), then the last factor in (A.2) can be split into

connected and disconnected parts (Figs. 7 (a) and (b) respectively):

{nls)] ¢c0)| plpi)
= () plo)lptp)) |+ <n'ls) pip) |9 (0)] B(p)),

i = () [ PO B e + ()] 9(0)]0)  &°

If <%(S){<F(O)I,B(f’)> cannot be split this way, we say its

disconnected part is zero. Replacing the dummy variable n' and s' in
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the disconnected part by n and s, and integrating over d4s, the first term

(A.2) takes the simple form::

3@0*)., [ OI8O G0 Q)| PO e § Yl ;

AP OIPOCAL P, Sl F |

These are represented by Figs.8(a) and (d) respectively. Treating the
second term similarly, we find it can be represented by Figs.8(b) and (c).

Therefore

Abs :i(a“)in [<OI¢(O)‘71(?)><7;(f)]Qﬂ(o){p(p))éfio-,/mnqu ) 'an;* %z

= {ngNPOI0N 0l 0)lnt-9) pipy6 G+ ¢ fm 7

= 0lg0) Inth) Xtk #0013 Sl ) o B
+ k)90 |0p<0] ¢(O)ln(—£zﬁ(p)>é(%q+jm / W]

’
where we have dropped the subscript ''conn" and understand from now on

that all matrix elements refer to connected parts only.
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~ APPENDIX B

Consider the following function as an analytic function of Q,:

F(% ) = (P-2)° | | | (B.1)

2 2
m —-? 5
where q and p are 4-vectors. The absorptive, or imaginary, part of

F(q) is

Tim F(%) = L] Flg,+ 0, ﬁ)’F(?O;LO, ?)]

=T {[(Po’ﬂ)z-(p*%)z]é(wgo)
- [(p+a) - (p- ?)2]6(a+%0)}/2a,

(B.2)

" where a == ,{/m.z + ?2
B -

An once-subtracted dispersion integral gives

7 %o (%o —(fo)

(B.3)
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where K, the subtraction constant, is determined by Lorentz invariance of F(q)

as follows. - Since the denominator is Lorentz invariant, so must be the

numerator. However, tﬁe léading term in momentum inithe numerator is
[%2, (,P_.%,)z-l-.azK.]%oz/az which cannot be Lorentz invariant. So
this term must be zero: o
pol—({o—ﬁ)l +a’K=0.
m
(B.3), therefore, gives
/ / 2
K+ ‘f?j e
. $o (% —?) mo-q

which is just F(q).

Realizing that ImF(q)'has the alternate form
LImf) = (p-g)]| Slgineg”) _ Sgirimeg’)
n i P g /m2+52 +g, Jm2+f -4 1,

every term of which is Lorentz invariant except for a denominator and

a delta function, we could have obtained F(q) from it by inspection, if

. we had observed that the imaginary part of (m? - q?)fl is just

_ CS(gof\/mz—*ﬁz) ~ 5(§0+ /mz+£z‘)
m~g* +g°  mi+gs -¢

0 L]

We can now set up the general rule that: for any function G(q), whose

imaginary part along-a cut on the real qo-axis is given by



=52~

FImaly) = P(g, (p-37)
(1 T8I st fneg?)
“1‘('?””?)1 :,Vm’v‘i%go \/m"’+§2 -9,

| O g+l - 5(/%?%0—/”2*(15‘@2)
W LR b, Gl 4,

4+

(B.4)

where P(q?, (p-q)?) is an arbitrary finite polynomial in q° and (p-q)°,
then the function G(q), consistent with LoTentz invariance, is
G( - P(jz,(p—%)z)
0= ] e

We can easily check that this function has the correct imaginary part

and can be obtained from a  dispersion integral with a suitable number
of subtractions. This rule can also be translated into the effective

language, similar to the effective technique discussed in Section 2, and

it reads: If the imaginary part of a function G(q) is given by
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. [ 8- s(n-(p-q))
L Im Glg) = P(f ’(?”?))[fnz—(p—g)’ - ml—;‘ ? ]7

(B.6)

along a cut on the real qz-axis for constant (p-qlq,

then the function G(q), consistent with Lorentz invariance, i;
P(g?, (/p—g)z)
(mz" ?2)[ nZ__(P‘?)ZJ . . ‘ (B.7)

G(%) =

In this effective technique, the function G(p) is treated as an analytic

function of q2 with (p-q)q fixed. It is then easy to see that, since -
2 2 2 .

(p-q)=p"-2(p-aqla-aqa", G(q), as given by (B.7), has

the correct imaginary part as given by (B.6).
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APPENDIX C
With the standard reduction technique, the definition (3.1) of

(q ) is modified to be

Yon
(o?fm)‘aie “20h) W(()/(mn g )_(azvr t(m,, f’)/d ot
X 947‘0)<P&(%,€)l[’r5“(0),7c )]0y . (C.1)
where q, =P, -k Now the assumption of dispersion relation is that

the form factor invo}ved in (C.1), that is Ypﬂﬂ(qg)/(mﬂ2 - q2), is

| analytic in the upper half of the qo-plane with at most a cut along the

| real qo—axis. This at once implies that ypﬂﬂ(qz) has no‘singularity at
: - finite q2 except possibly along the real qo—axis. To investigate the

singularity along the real qo—axis, the absorptive part of (C.1) is

tsz;z?{)g; dxe L?<P(%e \[x(0), = (=110}

p=

C

(;63 2(ek) X’“( ) 5(§ Jm,mf{ 5(?O+J’”"*?)
t) ‘z/m +%

].

Thus th ly di tinuity of Y (qg)/(m -q2)
us the only discontinuity of Y, .. -

2
across the real qo-axis is at Z = X IMm, +?
o
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2)

and of the same form as that of the function (mﬂ2 - q2)-1. .yp""(q

thus has no discontinuity along the real.qo-axis, aﬂd,combining this
with the earlier stétemenf that it has no singularity at finite q,
outside the real q -axis, we conclude that ypﬂ"(qz) has no
singularity at finité‘qo. The assumption that the amplitudev(c.l)

that 2)

satisfies a diépersion relation implies yp"“(q is bounded by a finite

polynomial for large qo; and, since it has no singularity at finite Qe
(q2) must be a finite polynomial of 9 Hence, by Lorentz invarience,

Ypﬂﬂ

Yp""(qz) is a finite polynomial of q2.



APPENDIX D

o

Different from the spirit of the paper, we will discuss the alternate
hypothesis about axial-vector currgnts: that there are no low-lying
spin-one states which dominate the axial-vgctor curren;s, but thgtvthe
overall effec; of spin-one states can be described by the subtraction
constant of a once- subtracted dlsper51on relation. For the amplitude

<7I“(%)|A (O)Ip(p £)) = (Juc)”("[f(ﬁ’)f,u&‘], (0-1)
(where ku = pu - qu)’ this means that only w-states are usgd to dominate
the axial-vector current , and that f(kz), since it is entirely a spin-
one effect, satisfies an once-subtracted dispersion relation in k2. To
be specific, let us postulate un-subtracted dispersion relations for all
other form factors in (D.1). Then standard technidue finds that

a & ¢ 64{}6 Yp,m (D.2)
GHQIALON o) = | et (e + Ko |

where K is the subtraction constant, and that

aéc gmx -
(i) PALOppe)) = e #zm(a@).

In order that these two equations may be consistent, we determine K to be

(D.3)

K = 2K )/P’"" ‘ (0.4
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so that (D.2) becomes : _
a(}c
£
<7Za(%)l/\ (O)lp (p£)> ((2%)3 02553}1":[(5 ijw] (D.

(%3]

)

One then finds that the absorptive part of Pﬁgc(q, P, €) (as defined by

an equation similar to (4.45), but omitting o here) is given by l
atre a#c

‘/,'lfAlDS P/‘W (% p,t ) = - (‘2 )3/2 OZF JPT‘“

(Exr)
w8 m [ k[ E g ]} g
and that, by the effective technique,
P o i -
}&v (%r'P/‘c') - )3/.?.0Z
(g&)%ﬂé‘, fz#sy 45, | (D.7)
R 3 Py ST PRy
(my —gz)(ﬂ%ré) Mr™-¢ My - .
_In the same manner, ome obtains, 51m11ar1y to (4 47),
Fa!}c( ea{}c 2 by [ (c%) ht+e D.8)
bt =T o e g/””‘ kY
- so that the Ward identity (4.49) results in the relation
2
oqur )/pmt :"mpFP, : "~ (D.9)
Noting that (3.17) in here reads
-1 o ' ' (D.10)
m)o F,; XPTI'TL' - 17 _
we therefore have the KSRF relation
(D.11)

025:2;7”( :mz’
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FIGURE CAPTION
Fig. 1. Representations of Ijahxeiqx<0|[¢(x);¢(°)]|m’P’°‘
w

Fig. 2. Representations of < G}V§(0)|w>.

L iqx

Fig. 3. Representation of ijd x e " 8(xy) éOl[Aﬁ(x), Vﬁ(b)]'nc(p)>.'

The central blob represents strong interaction vertices.

Fig. 4. Triangle graph of ijdhx e1ax

8(x,) <0|[A:(x), V‘\';(o)]l'rc(p)»
Fig. 5. Representations of (a) <a?(q;c,o")|VS(0)|éié(p,n;c')>,
(b <6°(k,e,0) [4%(0)] G5(puns0)>, and
(©) <pb(k,e,o)|8uA3(0)|dc(p,n,o')>;
Fig. 6. Representations of
(a) inhx elax e(xo) <0|[Az(x), VB(O)]Ipc(p,n,o')>; and
(L) inhx elax e(xo) <0|[auA3(x), VS(O)]lpc(p,n,o')>.
Fig. 7. (a) Connected and (b) disconnected parts of <n(s)|@(0)|8(p)>.

L% <o|[8(x), @ (0)1]8(p)>.

Fig. 8. Representations of thx e
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