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ABSTRACT

Lorentz invariance and the basic assumption in dispersion theory,

that the matrix element of a retarded or advanced commutator of local

fields   is an analytic function  of the energy variable,   are'  seen to determine

the method of handling the dispersion integral, and to require the matrix

element to consist of terms, each being a product of at most two poles or

integral thereof.  This method is used to study current-algebra commutators

with the consequence that the widely employed assumption of single-pole

dominance for the spin-one parts of vector or axial-vector currents is

inconsistent with current-algebra.  Some aspects of the K form factors
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are also discussed.
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1.  INTRODUCTION

Besides the success in soft-pion theorems,1 current-algebra has

also been investigated by assuming single-pole dominance for the spin-

one parts of currents with interesting results.  The relation of

Kawarabayashi, Suzuki, Riazuddin and Fayyazuddin2 is a much quoted

example, and, although the validity of their derivation has been in

3doubt,  it is satisfied experimentally to a remarkable degree.  Comparing

this with Weinberg's sum rules,4 the mass of the Al is predicted to be

6   times that of the p .  This prediction had of course a remarkable

5
agreement with experiment at that time.  Schnitzer and Weinberg  further

single intermediate

strengthened these sum rules by considering
particle states

and obtained
A

one of the two p-Al-1  vertices  while the other cannot be determined.

Since then the existence of the Al itself has come under some suspicion

and therefore theoretical predictions about its mass and coupling

constants are somewhat less meaningful. In order to capitalize on the

6
structure of current commutators, Brown and West  used dispersion

relations to evaluate amplitudes of the form
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1

A e 1% 0/%,)<PI [»1 \4(0)1 10> (1.1)
J

whose absorptive part was found to contain delta functions of q2 as

2
well as those of (p-q) .  They were then faced with the problem

whether  to use fixed-q2 dispersion relation  or  to use fixed- (p-q) 2

dispersion relation.  They solved this dilemma by keeping an arbitrary

22
linear combination of q  and (p-q)  fixed, and by imposing a consistency

condition for the amplitude, concluding that the dispersion relation

automatically emerged in the once-subtracted form.  We will find that

this is unnecessary.

The starting point of dispersion theory is to assume that the

expression (1.1) is an analytical function of q  (with q and other variables*

fixed)7 in the upper half of the q -plane.  We will see in Section 2

that this already contains enough information to solve the above-

mentioned dilemma, so that no additional prescription is required.  The

amplitude then naturally emerges (assuming no subtractions, for simplicity)

2                                2
as a product of two simple poles,one in q  and the other in (p-q) .
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Among others, one important distinction between this result and that of

reference6 is that the number of subtractions is not restricted in this

approach.  An effective method will be developed, which abbreviates  the

tedious arguments.As an exercise,we will apply this effective method in

Section 3 to study the amplitude

]'14% 8,1*0(r,) <01 [ir«(r),  f (o)]  1 W elf)>,
only to discover that, in general, subtractions are required and that

the off-mass-shell coupling
Y" (1

2) enters in the combination

Ye•" ( ')/ [(m. -%2)(mp - (b- 9 )2)] 0
1          8

Section 4 will be devoted to study SU(2)XSU(2) current-algebra,

which will be extended to cover strangeness-changing currents in Section 5.

Relations between soft-pion calculations and our method will also be

discussed  for  the  <7[1 V IK> amplitude.
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2.  COMMENTS ON DISPERSION RELATION                     '

The usual basic assumption in dispersion theory is the observation

that an amplitude of the form

. <,1     LqX A

M (I) = 'J
"xe 8

,(r,) 041[4(*),   9,(0)]l  f >
(2.1)

is an analytical function, when considered as a function of q , with q
VIA

fixed, in the upper half of the complex q -plane.  Here, |a> and |B>

are arbitrary vectors  in the Hilbert space of physical states,    r)  and

99(,c) are local field operators satisfying microcausality, q and x are

4-Vectors,  (ZO) is the step function, qx = g  2'xv  and g  = -gil=
Pv           00

-g  = -9   = 1.  The arrival at this observation is guided by the22   °33

observation that the factor exp(iqx)8(x )  in (2.1) approaches zero as

76.-*00 for Imqo>  0  ,  so that, barring abnormal behaviour of <0(·|I*%59(ot] Ip)

for large x, the integral for M(q) is well-defined for Ima  >0.I n

the same way, one finds that

l)

M'(f) =  2  17  +%24*86%,)<KI[7(01 0(*)]IP> (2.2)

is an analytical function in the lower half of the q -plane, and that
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this function is the analytic continuation of M(q) across the real

q -axis, so that the entire function, denoted by the H(q), exhibits

the Schwartz reflection property

H  (1"  f,      =        1-1, (10*,   f)
, (2.3)

and the discontinuity across the real q -axis, called the absorptive

part AbsM(q), is given by

62< Abs &1(<) 1-1 (f  -' i 0,  f  )--  H (te- i 0  i ). (2.4)
U.V\- 4

Therefore the absorptive part of M(q) along the q -axis is

Ab,MCf) =111'x e '1*<kl [choe, 9(0)] 1
p>.

(2.5)

Inserting a complete set of states between the fields 0(,c)    and    9(0)

in the commutator I tix), 7(0,1 one is able to express AbsM(g)    in

terms of. <LI+A, 111>. etc:

Abs M(f) - -i » e '.f*(Coc 1 4(2:)S- 1 k> <ri,- 1 (PCO) '   >'Pl

- <xI 9(03.  In><4 1 +CE) 113>J,     (2.6,    .

where n runs over the entire Hilbert space.

Purely for the purpose of illustrating the main point of this
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"            communication,let us restrict ourselves to the ideal world whose

Hilbert space consists of single- and two-particle states, and whose

particles are neutral and of two kinds:
Int,t) and I rn'' P> with masses

Vy'l

m and m' respectively (variables p denote their momentum).  Let us assume
V\A,

-3/2

<01 ¢(0)' T'11, 5 <0140(0)iNT'' f> r (2.' ) (2.7)

<014)(OjIM')f> = < 1 9(oj 'trl'.t> =  ,
and let the coupling between two

particles of mass m with a particle of mass m' be 1<  while all others are

zero. Then choosing <36   to be the vacuum <0    and   <13.    to be |m,  p   ,  and
Vi/L

following Appendix A, we obtain

Al, iMEt,P  =1(62'rf, l<014(°,192)1><",11 9,01 1 Mf>6(10-»1'1/Jm.,1,

- <Ill,-1 1 4(0)10> <01 9(031 (M,f" (m,-1)>3(to+JM*yf4  41*
W. t•« 6#.

- <01 (01 1116 2 )<1'1 ,f 1 4(O) Im, p> 6(1,- fm'2+42)/Jm,2061
4 ... '/Vt,

:vl

1-

2 0" ''-f 19'(O) 10><010(0) 1 (,n, t),(mt- )>6(40+Jm'*+f:* »t'*+t'· 1'Vt  J

(2.8)

/-2          2
where  po  = m    +p,  and  ku  =p p  -q&1 · and where  we have explicitly displayed

V/#

p as arguments of M.  These terms are represented in
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Fig. 1(a)-(d), respectively.

By standard dispersion relations,8 one shows that, for any

p, q, and q',
'6

<m,111  9 (07  1 '11'f>   =  (2'r)-3  y,/2)n' 2-  (P  -1)*J
(2.9)

<MS f' 4(0) IM'.f > = (27()-' 7/I„1 2- (f- f)  1,
where  qo  =<m2  +  q2,1\ Combin    ations   (2.7) - (2.9) with crossing

*

symmetry, one has
r 68,- ./2719 - 3 (fe 1-JM 'tf' j

AbSM( , p) = 2 1-   02#,vt' + iI (1,7,2-4 2)

-1 6 ,-1...12ff -3 01 17'/2,1 ,  j (2.10)
2  .21

v »1 '    +ff     l  '»1     -  r    '1
We can easily convince ourselves that the combination of delta functions

here is also required by Lorentz invariance, for it requires the entire

2
function H(q,p) to be a function of the Lorentz invariants q  and qp.              i

So 11(q,p) is invariant under the transformation qt'+-qu and p -p  andW   U'

hence the Schwartz reflection property of H(q,p) (equation (2.3)) implies

Int ·1-1 (ic + i O.  1, 19
-- --

I«i  H (- t,+ io,-1,-t) , (2.11)-4

9which, in terms of M(q,p), means

(2.12)

Abs M (t, t) = - Abs Fl(-1,-t) .
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This is satisfied by (2.10).

Now, assuming, for simplicity, unsubtracted dispersion relation

for M(q,p) as an analytic function of q , we obtain

M (f,pl  .=  -fjl' d.g,   AbsM(Eiitf)-S          -----

fo,- f ,
Y

-                                                   (2.13)

=       (2't.)'/2 (7Yli- 't,)(m/,IJ.42 )        ,
which exhibits the two-pole feature.  Thus the basic assumption of

dispersion relation, namely that M(q,p) is an analytic function of q 

in the upper half of the complex q -plane, dictates unambiguously the

treatment on  AbsM(q,p) when confronted with delta functions of both q 

and Po- o'

At this point, we may note that if we had replaced the expression

(2.10) of  AbsM(q,p) by

Al,$ M(f, le =-I=1-  8(„,2-19-  Sc„l,2-4,2.ji 421/  L     *t' 1-42 /»12- B'
1    (2.14)

then we may still recover (413) if we postulate an unsubtracted

dispersion relation for M(q,p) as an analytic function not of q , but

of q2, and assume that, for fixed qk, the discontinuity of M(q,p)
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across the real q2-axis is given by (2.14) (for then k2 is a linear

222  2
function of q:  k  =m  - 2qk -q  ).

In practice it is easier to use this effective technique than to go through

the entire procedure every time we are faced with such a situation.  In

the entire paper, this effective technique will be employed.

Similar cases, where the dispersion relations in q  require

subtractions, will be treated in Appendix B.  We may state the result

here:  Given the imaginary part of a complex function of q , it is always

that
easier to find the function by inspection under the guidelines (i) it

that
has the correct imaginary part, and (ii) it is Lorentz invariant, than

to intergrate directly.

We may also note  that in the more realistic case  the Hilbert

space consists of a continuum of states of various spins  in addition to

that
single particle states,

and the
above consideration will be modified by

2     #2
intergrating over m  and m with suitable spectral functions.
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3.  A SIMPLE APPLICATION
'

 -7<- 70  SYSTEM

Let a pion state of 4.-momentum p and isospin a be denoted by

11*(P)>. and let a rho state of 4-momentum k, polarization 4-vector c,

and isospin a be denoted by
If(4, E)>

0 The off-mass-shell p-1-1

coupling
4,«, (19

is defined by

1.6,4, 2 (EP,     3/,   CY,    =   <136(478)Z 7'4(o)17(clp)> (3.1)

(2-ir.13   ( .rn.'/-   1 *)
abc

where qu= Pw - kw ,   6   is the anti-symmetric tensor, 7 (I) is the

pion field, and m  is the mass of the pion.  Consider the matrix element

<,c.(1)1\ 4(0)1%,cp,> of the strangeness-conserving current between

two pion states.  Assuming unsubtracted dispersion relation for its form

factor, and assuming that the spin-one part of the unit operator I. 1%><1,1

1)-1/1« can    be    approximated   by   the    rho-state    contribution       cl E • 613,  4 (m; 4  t
:

1 24(2,6)>< 74(A,E) 1, one finds,by standard dispersion technique,

ZERGe r f + Qv
10

<grall) 1  V,fCO) I lr'(f)> =- (62,r) 3  »9'> yf'IC'* 'r') 3--1 , (3.2)

P       1

where
kw pu -  qu , m   is the mass of the rho, and F 

is defined by
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< 01  f(o  I pti,E)>= ( Ir)-3,2 3«,9    '    .                           ( .3.3)

We now relax the mass-shell condition on q , and generalize the
U

amplitude (3.2) to

M,*671, f') 5 1.(210-'i,f e'.frOLS:,)<01 E.ft tx)fV*(011 1.'r,(p)>, (3.4)

where, to be specific, we will only concern ourselves with the

2   2
Lorentz covariant part of this amplitude.  Note that for q.+mw ,

(742 -fv My«*71, p) = <Tr,(f) 1144(0) 17r ,(f)>.
Invoking the assumption and arguments of the previous Section, we

then find

Al,5 Mv,4,(g,p) = 7, 3(#111#-f 2)<7,9)1 Ito) 11'r,(p),>

-  7r 'mP F  3(me,- i,)I,   8" <pt.£, E )I' E CO)  7r'(P)  · (3.5)

With the help of (3.1) and (3.2),

Al'lls N.,671, ft)  -    caL„3    n1,9 I- t.'.-f,Y Y'., c,1.,)('., i''ll
7Tz € a#-e        r

1 Yip   -  f

3('1*- *;  Y       (% 9( - f.   + flr.e  ) 2 P F ]   .74",- 91
9.Ex (3.6)

In terms of the form factors f '(q2,k2) defined by

OfTC

H,  CK.p)-i(2*)-'646'If*'Cit#,)(hvft.)-'f Pt'.49(f,-i,)1 (3.7)
'

the absorptive part is

L 1 Atz                                  1

-r    /1,     A

t 1rrl L ( i E') (f'* - fp )] (3.8)
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Comparison of this with (3.6) gives the imaginary part of the form factors:

Int f,71 5,9 .-

-M F 7    ('C) 6(m:-12: - 6("t -b.11e P ?KA
-  11102 - i *lir*-i2 ] (3.9)

F

r    i

IN f '(11 42) = ..i „(190'11:-19l ft- t9- 60'1/-411]  (3.10)5  7                                                               'rip - R: 1'4   -  2     J.
Appendix C shows that y   (q2) is, under the same general assumption of

pAT

2
dispersion theory, a polynomial in q , so that (3.9) and (3.10) are in

the form required by Appendix B, and, hence, the form factors are

f.ti'.  t.1  -=- (3.11)

*12 Fp );KE.(1-9

iNT'-19(4*-£9
F  7.,r1((92)

f-' f*,42  = -I<- -el-P .
(3.12)

Substituting them in (3.7), we have

r 6,6-,    YVI.6 )pir7r ( 2      C

M. ttl,,  -  37T)'
r

21<-1,4,+ t, e)(p'+ i'),(Smx,-  12  )(,In;-  A     1 (3.13)

Let us assume exact SU(2) symmetry, that is,

6(xe)[V0 (*),726(0)1 - if K (0)34(x), (3.14)

i.(re

and

325 (x ) -    .                                                         (3.15)

11
Then the Ward identity reads
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A v             Abc c 3    a.*-c
1         ) = -£(27[)= 6     7               (3.16)li, P

which, together with (3.13) implies that the off-mass-shell coupling

Y (q2) is independent of q  and that it is given by
2

pwA

I"K (  7-j .- - TS'plf, . (3.17)
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4. SU(2)XSU(2) CURRENT ALGEBRA  AND  THE  -p-71 SYSTEM

Let us consider the matrix element of a retarded or advanced

commutator of two currents between the vacuum and a physical state.

Employing Ward identities and the method developed above, we may study

the context of current algebra.  In this section, the assumptions of

current algebra that will be involved are

6(1,1 L vo'(1),A;(0)1 -   i € 81*(0)64(x), (4.1)

a.6-CAC

6(*bt Aa(·X),  Vt (0)1 =   ieRGC A;(0) 64(70), (4.2)

6(x,)[AfCM), Aflo)J = i e«6-' 11';'((0) 8
4(x). (4.3)

We have omittedthe Schwinger terms, because we will only evaluate the
12

Lorentz covariant part of retarded or advanced commutators, and, following

13Bjorken,    ,  they  do not contribute  to the divergences of these commutators.

We also assume strict SU(2), that is

3*V G(*)= 0 (4.4)

In evaluating absorptive parts, we expect to encounter matrix

elements
<0   R  A 

of vector currents between the vacuum and physical

states in> . For these to be non-zero, In > must have isospin one, and even

1 ,
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G-parity.  In an angular momentum expansion of such states, we find that,

because is a divergenceless 4-vector, only the spin one statesV;

contribute.  We will label such states simply by i *(1, f, 9,>  to

indicate that its isospin index is b, its momentum is k, its polarization

4-vector is E and the square of its mass is a.  All other internal variables

and summation or integration thereof will be omitted for clarity.  Thus

we define their coupling
5(3)

with the vector current \  by, in analogy

to the rho-states of the previous Section,

- 3/2  C a#
<01  \,r'(O) I pt#, S. e)>=(11)      C'    0- 1 «)82.  ('.5,

Similarly, for the axial-vector currents, we have

<01 AF:( 0) 1 (14(·A, 8, a)> = (27[) 3/, 39*45 Fa(G ) E», (4.6)

where, again omitting unessential internal variables, 1  d.6(*, E, a)>

is a spin-one state of isospin one, isospin index b, odd G-parity

4-momentum k, polarization e, and square of the mass 9.  In addition to

these spin-one states, there are, in principle, spin-zero states which

are annihilated into the vacuum by the axial-vector current.  From now on

let us assume that, out of these states, only the pion states are dominant

and define F  by

<01 A; (O) 1 Tr *(p)) = f (27()-¥' FA PM. (4.71
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( 1) CURRENTS BETWEEN    ,r  AND  VACUUM

Equations (3.1), (302), (3.13), and (3.17) are now generalized to

.     ate  22
 ep., Y." (G) E <16(4, 6,0"il tr'(O) 1-r'(ft>,

i€

(2*23 0"tn  -17 (4.8)

<TE,(t ) i v,4(0) liT '(p)>= -   S'P a  Fp Ca) va.-  ·4 1       'p'(1T 1  < V +  V  ,     (4.9)

A A 0&(-c .

ly' V   (f,St)
(4.10)

--tki,(,#.*..)   11'»  .1'.,c,)   c-,v,+   '.,,)(t".,B)ilr  0

(  do F,(a)    7      (0) =-1 (4.11)

J ir pTE R  r                                1    1

where

t-4-1» , (4.12)

and where the q2-dependance of  '    <CT  | has been omitted, since in
pEK

later calculations only physical values (where q2 =m2) are of interest.

b AC
We will now proceed to study <6Z

(1,7,«') I v» 17rt0>
Defining

the 6-P-A  couplings YS   (c,a')and YD   (0,0,)   by
palr p a.·n

<d«( ,91, 0')  7[70) I p*(4'' 8, g)>

-   ea#'(Ax)-1 Imr,-Cp-69217   );, (c,o')(Ell) (4.13)

+  R.YA" 6.,09(4,1/,ug )1,
we find that
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<d *(0,7, a ') 1  V, 6(0) 1 Tr'(p)>

C  10.Is
-

1 -2 5 (') C- g.,+ f.'16 )  Il'1, C,) 't} ' 'j e-

-  Yllco-, 0')39)(PS+ 9 #)] (4.14)

We have included here only graphs of the type shown in Fig. 2(a), where

the strong interaction vertices are connected. Graphs  like'  Fig.   2 (b)

have been omitted from this matrix element for the present, and their

b
effects will be discussed later. Since V is divergenceless, these

\)

couplings must satisfy

2  1,D

1.-df F(C.)1 tpl·Co.,07 + (c'-m,r ) 44.,r (c.,c')1 = 0.
J' fE p (4.15)

In like fashion, we find

abc f  2 5, 121:1[ (d)
<ps(i:,a)lA»to)'Tr'(p)> = iI)31- mi 2- 9 1 CE,1,12 (4.16)

lT

+ 1 10'.13 r
,

1   R,I--RIE" 16(09(-O»+  12921 A:. (a,a, Ef-  1 1, (9,0,)(Ef)(p.+ 4.)j  1J v .3-
0

and

< ftt,    c )1 32A»«CO)17(,CP)>

=  1-696  f-"1''Fi, I., Co) C'i), (4.17)

(017[)   l'ni[ -  
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and, by comparing them,

2 Ii; Ypiric (0)  =f5'i(a'fl.51,(80')+ Co-*iryyl,(e,all  (4.18)

Now we are ready to compute the following advanced commutator:

M .84'(t,+) =  fle 't'0(10)<01 [A;(*), 1/'(O)1 17,·'Cp)> (4.19)

whose absorptive part is, according to Section 2,

A 1,5 M,v'6'(i, E ) = -tfift e,-1*<01 [ Ap«(r), K.tol l 1 %,/p )>

= -i-(62'r)4  6(7,1,2,- 92) i 1  fi'<7rd(9 ) 1 \46(0) 17E'(p))

+   fda'6(0'-et'),15   Fa(c')Ill'1,<d»(9,1,c')lt(O  )ITt'(t)>

-   ficy  6(a-  12)0-Fp(cfi-,  Ev<Pl(4(,E,C)\  A;(0)11I'( 41>
E abc        F

=    26   LKM,1:-f)'F   a      [dg Ja  „,     1%11*ja-42 rpla)1*x(a)(b .1-0 )
T V    $1/ ,

tj  da'8(0'-1,)'IE'   ti.(01(-1,219:)    'ta-11   F   (a){-   ,       +  111\k '4 OVE. G 1
v   I  .11 S      /

A   Ld fax le,0 "ft#-  YA  (Cr,o,  )  e  (f#+   'IP   4

- f'*,3-c«-1,45 eceic- i,p'-t*  )/- f:-2,;f'11,2 t'
C  do'W   r

-'"i   <-i:'•<:,6,m ,+48,5,(3'',6,¢i'*-3:,c,;c#'.491'1 3 1.
(4.20)
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By slightly rearranging the terms, we easily check that the imaginary

14               abcparts of the form factors entering ,into M v (q,p) has the form of

Equation (B.6) of Appendix B.  Hence, by Appendix B,

. A   ate

1.i"    Ct, {0 =fbc    '-4554F (a)(-a"t fvaiL)(/12*2      1     G-  lL         P

C        FI  YPKir (a 7 f &3121x -Mi_ 2  FL (p'+  ') +    , 1 Ii(a,       (4.21)
"'1[      T                                                      D1  9 -9

x (-1'%-+-tf#)[4.(,).1"B- )'pi,('',1(£1)'+1'141'1' }]  j.

and it is represented by Fig. 3.  Had we included graphs like Fig. 2(b)

into our amplitude, wetwould then find that the triangle graphs (Fig. 4)

abc
must also be included in Myv (q,P)·  These graphs do not possess the two-

15
pole feature exhibited in (4.21), and they, among other things, contribute

16
to the anomalous part of anomalous Ward identity. Since later applications

will be centered around single-particle or resonance intermediate states,

these triangle graphs will not appear.

To see the context of current-algebra, in particular, of Equations

(4.1) and (4.2), we: find that the Ward identity is
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4 9 MM»v '6-4(t,p) 4 Dv.#71, P) = i(&*)-"26-3/,Eale F  AArp , (4.22)

where we have used (4.7) and where

&4C

b.  Ct' A, = tf#4 e '1 8(Io) <01 [ 33»1 vto,1 1.*7P,>· (4.23)

abc
In the same manner, we express Dv  (q,p) in terms of the various constants as

. a#e    2

I,VaA'*1*)==

.lf__ liq
/

02·F(c))<1:-gv,+4130)(I,B+ ") (4.24)

MF fds,15

(210"' Mn-f 81*J 6-1 P 0

so that the Ward identity implies

.1  11   F,(c)(_ci     +1*f )< F. Ypirtrio)(f,+  i,)01'4 . 9

- -de'FIngfys   (obalf#- 41,(0,01*mit-k')1'+Cik)*')13  =   FApe .IE; "- 1- 2&1[ 1

This, with the help of (4.18), reduces to

C do  49'
J 46, 4(0) Fala lf-j ly:.(1,01  +Ce-"I,2)  il (0,0,))*v

- 48 yD    
pa« · a. a ') f v        =     fi  Pv,

which, because of (4.15), further reduces to

C 45 da' VV 0+0/9
J-'13     1-f(a) Filo,)  apa,(0,0,)(--,JE- *„- JE f,   =Ff-TE  V '

Therefore, we obtain the following two sum rules:
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4 /D

P,cla 113 5(a) li (0•9 4£·r  (re'l  = -  1,4 (4.25)

and

'   15  (1./'    r -,D

,477   Fla) Fdc') Y f ax(G,a')(O *a') =
0. (4.26)

In addition to (4.22), there is another Ward identity (remember that

3Fvvt =0):

il '  M  c#e (f,   p)    =-  1. (2621) -3/zed#.e F ,6 (4.27)

rv 1  ,lk 2

but this, again with the help of (4.15) and (4.18), reduces to (4.26)

and
11

j,l« 49,  '15 Eple)74(0",)YA.,  (a,a')  = 7/ . (4.28)

This equation does not represent a new relation as it follows from

(4.25) and (4.26).
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(II)  CURRENTS BETWEEN d AND VACUUM

We may extend the above study to the amplitude '

N t'(I,t,1,0')  =  i  jifk  e'1*8(z,)< 01{4;60), Vt(o)]  la'(p,1,«,)>
(4.29)

whose absorptive part, by the now familiar method, is

AL.
* 'CA   J'  0   a')= jd'x e'l'<OII/11;6,1 Vvto)Jlli'(p,v, a,j>i,USi

27  7 r'·1'

*-    NX)0 (6 (M I'- l i) i E, 1/ <'Irfi) 1 V'f.(0) 1 4,(P, 9, 09>

+ fd," ER#- 19+, FIM,92-<CA <45 c qu i v 10) I d'*,9, a,  >

- 6(or-  C)   Epla)  1.EE,<p#(*,e,611  A;(0)la'(t,1,0'f). (4.30)

We already have the expression for
<7Ta(1) 1  Vv*(0) I  d '(P, 17, C.')>

(Equation (4.14)).An attempt to express
<d« 1\1,     d'>    and

</IA;ld,> in terms of couplings runs into the problem that, for

those ti or   states  that  are not single stable particle - states,  it  is

extremely difficult, if not impossible, to write a dispersion relation

for these matrix elements. The obstacle lies in the fact that these

states do not have their respective local field operators.  Nevertheless,

let us assume that we can define "effective" couplings 4AV / and
,   A

 I,(''CY,al by having an "effective" strong interaction Hamiltonian:
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<d«(i, 40')pl.(A, 4 a) 1 H 'ff (0) 1 d e(p, 1,0,)>
. a&c r

:2 - Af  1 4 ,       11\  ,

62'r),/2 L '6 )>ta. (5 0, 0 ) C 29) (£ 1:,1

1%        i

+  ,,dd (01 (I', 0,)(rv)(Ef) 1 9         (4.31)

and evaluate the matrix elements < tla ' V\,b l d,c >, < P b 1 A l·l a 1 d.c > and

<pb 1 31.,Aual ac>  from Fig. 5:

<d.«(i, C,o')1 v, 4-(0) I dtp,9,0,)>

-

ie

'   ds 'la  FCC,1-9     +  t,S

alc  r
-

(Ax)'      J     E-- *2 ,   PB

(4.32)

x1622;c4(....')[crf, 1,- c.7 ,C#l

typda (C,G''ct,) (Cl)(PB-1- 1*)  
'
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<26(4, 8,0)1 Al'«(0) Ide(p,9,0,1>

· 61,6

- - ilip f·..., t,1,,4.Le"c"P-1-2·1',5ile a,x't· Aspt
1   fps  , 7,

-

ry!7[ -

+.  1  41"427   Fat-,t)(-          «1-   1,99
(4.33)

11 2 U    40--9 U'.

<5' ,                          1/,
1-,mca,o',a")((EY)(fft ki)-2.(71£)6«)-246£(o,e,a,)(Ep)710,] .} ,

and

< /(1'E, al I  31*A;(0) 1 ac(t,71 , C'))
06-c zr

E                   741[    '1r     fl, S 07*     i (4.34)--
2 2 *Ld» Ce,(T,(E,7,•te6  'pdn" c 'aP('7£)(Ep)3

(17r)"    14    - 1

Crossing symmetry on (4.31) requires       cr, d & a' andp£4

4 '. 4  (05   0-'' a,) to be symmetric under  0 - a1                          11

Multiplying (4.32) by kv  and (4.33) by qu , we obtain respectively

,1%5(g)Y.F,&(9.,g'a,(a,al,C")(C'-G") = 0 (4.35)
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and the pair

F  y s (- -A = (0.- C't dc' F c (4.36)

1  .Ir    u  ed·1[ cu,V   / '11.J* aco,t).lipal(C,(i''G") -

E.L-ip,%(«,g')     =   1-5   FaL«"tfp,&«,g'.0-·)  +746*4(0,"g''q'. 11.
(4.37)

Substituting (4.14), (4.32), and (4.33) into (4.30), and employing the

effective technique, we find simply

N:. c
I-

11,09 = -
i  f'4'      I,   erE  Fpla)   1

1'   C %3 '7.1  1('71 J        U - 42     l-  f,  +  i of#      )

X   „,Ij;i b.'A, CO,«'f' '*(74))9 *1I<6,99 (p,+ f 'tj

,   1 #-'  Ii(e' ( 1,1+ 5#)rea,('.,t,fa(b'+·k')7'-2614),4/ ,J u -r
(4.38)

+ ..44&(c,g''a"fl «(p,+1')1  ,
t

whose representation is shown in Fig. 6(a).  The closely related matrix

element, Fig. 6(b), is similarly determined

Ev»fe (%,p V ci= ififgetix«)<01( 2'»), V *coillp'(p, 7, a'l>
(4.39)
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46     2

- 1, . -21.i   -0 4* F (a)(-&„, fvef'.)-          '371          2-6 2   
S J

S 1,$
x L  IpaT (03(999+(71·1).7.D   (0)0.9(PB+  B) 1

.

(4.40)
pal[

The Ward identities are

i.4   1,„'#71,
h - 0,1  = - (27[)-3/2 6     JE, 129,) Ebi,

v 1\ / a4c
7 '11 (4.41)

and

1 9/' A/p.v «6(0, *, 7 , 1,) +  E"R#'(t,p, 7, 09

=     ( 21[)-312  <6  Q+C   5'   Fd<G')   Ev , (4.42)

which respectively, with the help of (4.15), (4.36), and (4.37), reduce to

'lacim''llf  Fp(a)  Fica  ,)  Yp' 4(o  g''c")  =-Jelica·, (4.43)

and

 dia.,  5(a)Ek<a,9 4&6(C.,a,,a,) = 48)  (c·,).    c'.44)
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(III)  CURRENTS BETWEEN p AND VACUUM

For evaluating a similar matrix element for p-states, we already

have the necessary ingredients (4.16) and (4.33).  We obtain

F f'll, AS, «) E  if» e 't '0(%, ) <ol C»), A,te)]  If TA ') ' )> (4.45)

abc r f  LI   vte   I  FI

-   27'")31'  -';1,2- 96ffi 1nr#-42 'fir(03 (81) tv

+ fdo,/2 FC«')/           + fE<#j h/S  C     '7"jEB+(El). D   (0.  Cr')(b<+ 1·')j J 0.11- ,&,liacv ., 'gv,   a# /LOPel \(S,y , pal[ 1  1

 19/\15 r / 1

t» 13)1 FEA- '
-j 91-124(09 -1,*+  a.,/ ,1 2  1*95'S (9 (,)8«'- p (i-IC '

,,

f  i  ,i r-3
+ Cti ) 71 (a, a QIP"_,2,1 1  + )1 -ffii (-g„p,tfil) C a ")

(4.46)

xltic Coi, u'' oi,)(-etp,+14,+Cp,+ k')&') -2 4 £(L«:('fetif'J.1-, ,
and

F.'471, f, 6, el =13$41, 'i'OCT,)<01  Arlg),  /1.to)]Ip(p,E, a)> (4.47)
/1 a.
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E &6·c             mI 2 F

=----'-3,/2- ,;11  :ij _tfat Lit'i,   i"    FC'.1(27)         *1*,- 4 1

x Gi., -' ifi,1 Ty'L'fa,(0'a,f E,+ 8#) 41(40'j(Po+ B)   
.

(4.48)

The Ward identity      -

11 ,- 460 -3/1 01C-1- I

zirt;,  (g,p,E,a)+ 5«+71,0,8,0)=(2,r) 'e .1  ria) E (4.49)V '9\ 1

yields, through (4.18), (4.36) and (4.37),

 ds'la" . Fjo')11(a")36£(9,01 c')  =  15 5(G).      c'.so

The other Ward identity can be shown to be equivalent to (4.49) because

of the following property:

P
6'6/ -1 == p:;. t.t," E,G . (4.51)p.v      C f i P, E, v -
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(IV)  DISCUSSION OF SUM RULES

Up to here, we have obtained a number of sum rules from current-

algebra and Ward identities.  We will now study their significance.

From (4.28), and (4.37),

 ads'du»-Fe) Fala,}Pilla.)&Ca,a''g")+16£(10''o')]= F.'' (4.52)

which enables us to obtain Weinberg' 54 firsEU ule from (4.43) and (4.50):
A

»I  Fp'(a)  _  Ft 9)1      -F  2.                   (4.53,

Weinberg's second sum rule also follows, but from (4.44) and (4.50):

fic-aL 5 2(9) -   Ii'Ca)1   =    ni/.                    (4.54)

From (4.15), (4.18), (4.25), (4.28) we also derive that

f le r.
1      ,15       4((T  )   -2,pTA(Crl -1. (4.11)

This, of course, had been obtained earlier from another consideration,

but it is comforting to note that our method of dispersion relation shows

some internal consistency.

In current-algebra calculations, it is a common practice to assume a

single p-state to saturate the vector current, and a single Al-state plus
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the pion-state to saturate the axial-vector current.  This assumption

combined with our sum rules also leads to interesting results.  For

example, (4.43) reads

7   1pac  =  -'r'1,1   F  e       ,
(4.55)

which except for a factor of  -2 is exactly the same obtained by Schnitzer

and Weinberg,5 while (4.44) and (4.50) read

lp,4 -* ,
(4.56)

1           -    7,4 5 (4.57)
--

p&&
FAr

The last two equations are mutually dependent by virtue of Weinberg's

second sum rule (4.54), and this expression of y cannot be determined
pai

5
by the method of Schnitzer and Weinberg. One may then proceed to employ

this single-pole dominance assumption and work with other sum rules such as

(4.15), (4.18), (4:25), (4.28), (4.36) and (4.37), and then finds that, under

this assumption, (4.25) and (4.28) lead to the following absurdity: MAl=-tnp'.

Faced with this difficulty, the next best assumption one may hope for is

that either the vector current or the axial-vector current is single-pole

dominated, but not both.  In the following, we will show that even this

is too optimistic.
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(V)  ) AND
G SPECTRA

(4.15) can be cast as a sum rule for _   andY         V'
paa Op a'8-

through relations (4.36) and (4.37):

fiada'Fla, Ca')[(e-m*') ad(o,a',a")+CoitmK'));14(90''a,91 = 0,j  1537    P  -  ' 'Fa
(4.58)

which, because of (4.43) and (4.44),can further be integrated to yield

C * O(6'      '                                                         Y'11 'll p&&-«.8(9) Fla')lica'JI); Ca,a''a")+ (c·,v',c"11 = 0.J  4 0-0" C       r
(4.59)

At the same time (4.25) and (4.37) imply

jle le' do,'tI  Folo) Fe,(c,) FLCe.)
2

X Fii    (a,a', a") + 7'    (
L   p &4 'pad.    (I, 01  G ") J       =    -   1 I .

(4.60)

Now let us assume that the vector current is single-pole dominated and

observe that the last two equations, which now read

F *'41 11(a')90,1\Y.'A(o''a·1 +Y;&6(06 0,11  -  o1                                                         J     Ja'a"

and

F i da'cL<r"Fla')Fa(G")ty (C''G'.1+
-. ,/

(Cr, Cr",1 - - p,
-2

'11,  p  1-i  F 9 Pad. Tpal

require the unphysical result that F2 = 0.  Thus this assumption is

unattractive.
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Under the alternate assumption of single-pole dominance for the

axial-vector current, (4.52) and (4.59) now read respectively
..

E' fakTFCa)(Y   .c«)  +   )116 (0)1  =  Pli'n

J.Igp

pak

and

fs" c<,lt, ce, -' t„c«,1  -  0 i
31

these two equations also require the unphysical result that F2 =0,

and  likewise this assumption  is also unphysical.

*
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5  K-K*-KA-K SYSTEM AND THE  Kt3 FORM FACTORS

Extending the considerations of the previous arguments  to

SU(3)XSU(3) current-algebra involving strangeness-changing currents,

one obtains, as before, essentially the same conclusions  with the

exception that the analogue of (4.11), due to non-conservation of strange-

ness-changing vector current, must be modified.  We must then consider

scalar states of strangeness one and isospin half, and shall call them

|*5< 77»   
with isospinor index s, momentum p, and mass   4  .

Its spin-one "brother" will be donated by 1 K:(B''P)), where < is its

polarization vector, and the parity partner of this will be denoted by

1 KA<  40)>
. The coupling of K-states with others will be defined

as follows:

1-3  1  ,     .  2          IKA (Ek )
< t( ) | TITIO) 1 *s(p,p.)>=i (2,I)   5-(ai )5    - 2

(5.1)

tnr-(f-111  ,

Y. 'A" (11,9)&·(Fk)
<1<Ah, 8, a)|7Ii(0) | *3 (p, )>= (27r)- 1(02),t. 1... ., (5.2)

'TY, 1,*- (p-1.)*  ,

.       ,   t  1( 4KCM,0)62 (84)

<d.'(£,2,0)1 Kt(0)< *s<P,FL)> (27I)-3-SCO.ils
- --(5.3)

111X  - ( - t)*     ,
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while       <1<*KA<   is  defined  analogously to Y.. 9') , whereas
...111",   1...,)

and  s,   6, c) are defined analogously to    6 * ',01 We also define
-            e K x   r   )       '

Fc (      ,          Fl<*(p.)       and       liAL«)    as the coupling   of the respective states

with their respective currents.

The entire program in Section 4 can now be repeated with these

entities, and we will not display it in detail.  However we will only

note the following relevant relations:
t

< KN) 1 V,R,(O) ' Ir CEP ) > = - (2'r ) - 3.6 ( a, ),
StiF.(11)

X Clf A-- 1:-  4,1,(,)+ 1 62* F.C.ty (,)(-i.4.tpft''i')1 (5.4)
J Ak-* 1 K* Kir

1

- (10
FI I,11 (r)   = 9'- 1'1,4) 1- E (0.) I. ACM'°)' (5.5)

j \19   -

f'((fOY„KA(»1 -  (TRK'- 01-') ffi:F -91) .K,(2), (5.6)

j  qi   K

2·Ii·t)„IM) = -ff liC, }[I 62·9),9-m'*,1 I.3, Cr)'fl (5.7)

2.111'F,401:KA, 9,0)  =   6  F   (,1)17 s     (,1 e)+Ca-m„ )7                        1

2 3

J Jji  K* r-    Pl KAir r-, 1<* KAH< 'a) (5.8)

44.FIC,)1,61,0, «) = .1'*F.(t')lik,aK(p «1* Ca- mk'));,a,(fl'q).  (5.9)
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FK1AKME 2)==  (2-MA )'t  FI,(a)Y  . A   ("   a)*A   ·R    f.' 1 (5.10)

2, FK-YK'K'r (fi )  = f  fiA (aj[tt.(F,a)+.(pk-„7,21tl, (i#g)J,    (5·11)

ifk'xe'1*0(xe)<OLIA 'cx) VK'(O)]1 Ks(fl>2 1 V

=_ l3,1 C (Ii)*t        E.1(21[) T- . .q f   D  f d'.
L'nX 11-  1"( -*,j )'- A,  1 L IP,) ):1('t- (PL)

C   d.11  I#

-' j i.'-4·  Ii, (p) IK'„(11) -fv  + 4';f,-)(p'+ iB )j
-

2   1  dc LE    C  i l ti' 1" ) f_ 2     f _d  -1- 16011,- 31«2   9   32  41,-ei(tly*&*(P,a)Cfr+4*1jO-- 9

+ t.(4, Jii-  F      ,      '  C 0 4  4.,lip

  »- k* LK*lp„ 1(-3.v# 1   11      eaKI 7 s  (p.' a) 9«,

-48 C (5.12)

4.a K (1111, e)(62*7'+ i,1,-1- t't')] 5 j ,
and
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ifi,< e ,1* OcID)<ol LAM    (z), \44 CO) 1 17:,(p)>
Kt

'      tr F .A 1 al» „= aritow, laiJ,  L-mA'-92 1/ l-"vjp-£, r„(16))11'*(P)             t

f diA,[B

j ,-e FK..(»),h,Kn(lk,{-gv,+49 68)(4'+ 0,)  .

t.1-13·    Fl"t«)(-914,11415)t it  A'  E.(1')  Y.KAA  (P.,«)(f''  A.)

1.  11:1:!A F  c 1 f  A I r

j  »-*2   K.'F'(-gv'+    11--)L  ,KATI(B,0 ) f 

-  Y,t,K (FL,CY )(621£1%* -ttlgi,-2 1'1' 521  3 Li  /
/-

(5.13)

The current commutators required here are

6(*o)[ A«K,(X), 44(0)1 = -3(ai),tAM,(O) 34(g), (5.14)

3(7(0)[ AP.Kt(Z ),  VoK'(0)1 =--1-CaL),tA f(0)34(1), (5.15)

6 (-ko)F- Ao'(x ), v;t( 0)1 -- .i (Gi ),t A *K,( o) 64(x ), (5.16)
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and

3(*o)  [AF'(,c  ),   Vo K'( 0  )]     =  --1-L ('i )5'   lf;O)64(x). (5.17)

Then the Ward identities relevant to (5.12) yield the sum rules

1(14'La,132 4.(p) 11,la) 11 KIP·,O)    =    -F (5.18)K  1
and

 d.p. daft- FK,(1') 11(c)YK*al:(p,,a)   =    FK (5.19)
7

while those relevant to (5.13) yield

 d,p.Gl.G       FK.(11}FKA(Gly'Jeic(lk''a)      = F (5.20)

K,

and

 d, d.als FKKCAK) FK,(0)7*1 KA,l»,G )   = - F,I .
(5.21)

Considering equations (5.5), (5.7), and (5.9), the first pair of sum

rules ((5.18) and (5.19)) shows

C dll
ff#  EK. CY) I.K, CT')--t J 3 15 41) Y

/1-YYLK    '        *K* 91),     (5.22)

but the second pair of sum rules((5.20) and (5.21)),when combined with

(5.8), (5.10) and (5.11), shows

f,Fi'(F,  7%,K.(p)   =- -2.  +J..::-2 11  ("1 Y.K, (P·). (5.23)

P.-    Ill X
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If we express (5.4) in terms of  K  :decay form.factors f  , defined23 -

by

< 25(   1 V„'*(0  1·,T'(pf>

=-  ('2.K,-3,6 (g )st If*(47(#49 (5.24)

ip   A p 1+ f. 611(t.- t)-1,
we find that

i.,Ce)  -1 -dliA FK.cr)  Y-42 10'KI('A) ,
(5.25)

i -(1') =-1 -i» F..Cr)  7.k.(F)»- it

-  (,Ft   z      *1   21   fl         C. <U) I'K,IC/') (5.26)

re- k,J« »- 42
Earlier we have been discouraged by assuming single-pole dominance of

the spin-one part of vector and axial-vector currents.  Now we will see

that assuming single-pole dominance of the spin-zero part of vector current

is not bad at all, for then (5.22) and (5.23) respectively read

FK      F  Y

f,(a)   =    =4   + i' - - : (5.27)

*kir

..IX   //.1' 
1

and

i co) -1 11, Y„Klr

m   R     - 1'1':
(5.28)
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From these two relations we see that (because of (5.6) and (5.25))

4,(0)  =  i 1,
(5.29)

and

2                       79%2 FK       +    S'FIT:  1 
*M

*                              Fl: 2   Fi                       3                                                                 (5.30)

where the upper and lower signs give two different solutions.  With

FTr = 131 MeV, lFK|= 149 MeV, m  =  137 MeV,  and MK = 495 MeV,  the last

equation determines the mass of the * to be

1 3 8 0        Mil  V

x-   370 Mev,
for the upper and lower signs respectively.

The lower sign thus leads to a K with mass lower than the K-1 threshold

and we definitely do not observe a stable strange scalar at that mass.

Therefore let us discard the lower sign.  The upper sign certainly does

not fare much better, for, though  m* is above the K-1 threshold, no

established
K  resonance has been in the region around 1380 MeV.  However,

we may regard this as an effective parameterization, and so, with the

upper sign we have

ft(O)
(5.31)
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Thus this approximation surprisingly resembles the Ademollo-Gatte

17
theorem   which states that  f (0) equals to 1 to first order of symmetry-

18
breaking.  By virtue of Cabibbo's   theory of weak interactions,

19
experimental data on kaon decays yields

1 4.CO) 6,/Fx I  = 1/(1·28 + 0·06).
With the above values of F  and FK one obtains f (0) 1 0.95, inIT

reasonable agreement with (5.31).  Like all single-pole dominance models,

it necessarily predicts a very small but negative value of f_(0):
20

£(0) LY -0·17.
Experimentally, the status of the value of f_(0) is confusing, but,

overall, it seems to favour the value  ni -1.21

Soft meson calculations on <r V K> with w soft has been found

to differ appreciatively from that with K soft.  Some authors maintain

that extrapolation of the K-mass tu zero is not as good as extrapolation

of the  -mass to zero. With the above sum rules, one observes that

·these two different extrapolations are consistent, provided that the

off-mass-shell couplings   and IX, are independent of
K*KA

the square of the off-mass-shell momentum.  For under such an assumption,
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the current matrix element with pion off-mass-shell,

Rt,is ' (%, P
Kt

-312 .

(27()  1(Mir'-i ')fd, e'f gao)<01[71'(er),5. Co)JI':,(p>, (5.32)

and that with K off-mass-shell,

rk'abt(%,t, (5.33)

-   can)-3/22(,ng,-  p,11(k4x e-'Pxe(- xe)<7Ia(1'Il-vrKpo)  K,(1)1  10>,
are both given by

Rat (i, P)  =   Rp *,s' (1, p)

1                                   t    f   (624=            p--
. (01), 4  4

2.(21[)1
-

1} 77 1 K.(lk) IK,Kirtlk)(- „+  94(f.+ i.)

C  d/k- i j -F-42  FA L/')):'.
(P,).11

(5.34)

Now soft-w and soft-K calculations based on the hypothesis of partial

conservation of axial-vector current (PCAC) require respectively

R»apt(0,  f)  =  - (RA)-3  Cok), t(FK/FT) 422 (5.35)

and

-a t (5.36)

R/*  ;  s  (%,0)=-(11)-14-(ac}*4(Fi/FK)f/,.
With help from (5.34) they state that
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-1.-£  F. 91, )  1   «5(fl Y                     _F6J IM *Kir<21-    2-11 Kl
li (IX)

r-,r , (5.37)

and

- i ft-F  ,  ,
J   '1.F    K''lk'.' A* XICIL)  +   1  4l -2LE   Y-K-1,( f')   = -T  (5.38)J 0-1/ A

These are nothing but equations (5.22) and (5.23) derived earlier from

dispersion relations and current commutators.  We therefore conclude

that the hypothesis of PCAC is equivalent to the assumption that (a)

the pseudoscalar mesons dominate the divergences of the axial-vector

currents  and  (b) the couplings of off-mass-shell mesons are independent

of the square of the off-mass-shell meson momentum.
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6.  CONCLUSION

We have thus shown that analyticity in q  necessarily leads to

amplitudes of
two-pole form in cases where the retarded or advanced commutators are

sandwiched between the vacuum and physical states of spins zero or one,

and we have concluded that the hypothesis of single-pole dominance for

spin-one parts of vector or axial-vector currents, although enjoys

quite impressive successes, is inconsistent with current-algebra itself.

If we now try to remedy the situation and assume two poles for vector

currents and two for axial-vector currents, then there are more para-

meters associated with these poles than our sum rules can determine.

This means that we have a large amount of freedom in which we can

postulate models about these poles. In this respect, considerable interest

may be found in the dual resonance model, in which states of spins zero
23

and one are populous, and which has already shown some surprises with

24
current algebra.

In our considerations, Weinberg's two sum rules4 follow automati-

cally.  Perhaps this is not surprising because in his related work with
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Schnitzer,5 the two-pole form was extensively assumed.  However, the

celebrated relation of Kawarabayashi, Suzuki, Riazuddin and Fayyazuddin2

(KSRF) does not emerge  from  our approach, and therefore the mass

formula 2m 2=m  2  which was obtained by Weinberg4 when he combined the
p --Al '

the above relation with his two sum rules, cannot be obtained here.  The

answer to this can be found in Appendix D, which proves the KSRF relation

under the assumptions that (i) there are no low-lying Al-like states

to dominate the axial-vector current, and (ii) the effects of the

continuum of Al-like states can be represented in the amplitude <7[|A,|PO)>

(where E is the polarization) as the subtraction constant in the once-

subtracted dispersion relation for the form factor that multiplies into

Eu .  Since these assumptions are incompatible with those which we have

worked with, we cannot possibly combine the KSRF relation with Weinberg's

sum rules.  Actually this contradiction may be more comforting now than

it would have been in the past, as the experimental status of the Al

(originally thought to have a mass of 1080 MeV, and so satisfy the

relation mAl 2=2 mp2 excellently) has eroded somewhat.25
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Finally we may add that, although our prediction, that

f (0) = 1 for K   decay, is not bad compared to experiment, we must£3

view the underlying assumption with skepticism, for it also predicts

a K-# s-wave enhancement at about 1380 MeV.  Experimentally, the

situation is far from clear, and no s-wave resonance has ever been

definitely established, although there are some suspicious resonances25

reported at 1080 MeV, 1110 MeV, 1160 MeV, and 1260 MeV.
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APPENDIX A

Consider the following commutator amplitude:

Abs   E  -1,  el*xe'11<01  [067),. 9(0)11
f)(p)> (A. 1)

where
1 9 (P)> is

a single particle state of
momentum f .

· Introducing

a  complete  set of states |11(s)  into the commutator, the first  term  is

 (Ax)+ 2{645   3(,2-  F1r  )ecs,)24(5-11<(,1¢(0)116)><Sr,(,)1  cpco)  I  FLP)>,
11 J

(A.2)

where m is the mass of |,rl(S)  .n

If     91 (S)> is a state of the form

1 *1 (s j  >    =       111'Cs'),   B (43) > (A. 3)

(where s = s'+p), then the last factor in (A.2) can be split into

connected and disconnected parts  (Figs.  7  (a)  and (b) respectively) :

<Snis,1 9,0,14(p)>

=  <,1($)19(0)14(p)>      + <·n'(s'),f(p) 19'(0)1 1 (p)>
COArl disc

-  01(S ) 1 90(02 1 Blp)>COMA -f <1' C s 919(0)1 0>
(A.4)

If <'Ft<S)  Cf<0)     C ) 
cannot be split this way, we say its

disconnected part is zero.  Replacing the dummy variable n' and s' in
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the disconnected part by n and s, and integrating over d45, the first term

(A.2) takes the simple form:

f CZE),1,  L20100)1'1. (1 ,><,tct,l f0,111(p})         6(i,-,1Rrti;fh'.'.12Conn
+

+<gte-·4)191(0)10><010(0)11,644 2(f)>       6(40+42779114,+ ,1
Collrl 71' * /

.

These are represented by Figs.8(a) and (d) respectively.  Treating the

second term similarly, we find it can be represented by Figs.8(b) and (c).

Therefore

Abs =il.(2,)i  <010(0)1,19 )>42(1)19(0)14(p)>3(f,-jm„'+1' f/Jm':*f'

-   <71.(-f)1  +Co)16><019(031'n (-1),  4(f)'>6(t,+ 401„* 4  f  ) 1,0'1:.I   i 

2 011 1 2  01
-<019(0) 171(4) ><,1(4)10(of IBIp J > 6(40-,/*1„ +A f  mn +13

+ 01 64)1 ,(o}lo><010(0,1'n,-,Locp,>3(,4.+ft=F)/32If 1

where we have dropped the subscript "conn" and understand from now on

that all matrix elements refer to connected parts only.



-50_

APPENDIX B

Consider the following function as an analytic function of q :

F (1 J       . "n'-  *
(f- 11' (B.1)

)

where q and p are 4-vectors.  The absorptive, or imaginary, part of

F (q) is

Im- FCf)  =  fi L F<fo' io, 1) - F-(9,-Lo, 911/--

= 7r

 [cf,-w}'-c/-1, ]3<a-16,
(B.2)

- FIP +a 7- (p- 9)' 1 6(a+10 1/la,1-         0
t...

where a  - 'An,, + 12 .

An  once-subtracted dispersion integral gives

K + -1_ f &16 Im F.(10'' il
IC  j     10' (9Fo' -  10 ,

=  <  te'-,2"  4  + [p'-Ep-i)'+ a'K]le'/a'-ta'K} Crn'-1,),'to ro 1/* V'/L
(B.3)
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where K, the subtraction constant, is determined by Lorentz invariance of F(q)

as follows.  Since the denominator is Lorentz invariant, so must be the

numerator.  However, the leading term in momentum in the numerator is

[,82-  -i,12+a<K ]i* al   which cannot be Lorentz invariant.  So
this term must be zero:

'01 - (f-i '2 + a A = /.
2 //

(B.3), therefore, gives

K  +    2  1   sio' I„' F.(fe'' it (p- 1)*
J               facto'  -1 )

7'12 - T,     ,
which is just F(q).

Realizing that  ImF(q) has the alternate form

2    6 ('2-  m't 42 )
6( got 1 mi t f )-

4 Im Fct, = CP-1  I im',i· +1 J m'-* i   - 1,O-,
every term of which is Lorentz invariant except for a denominator and

a delta function, we could have obtained F(q) from it by inspection, if

2    2 -1
we had observed that the imaginary part of (m -q) i S    j Ust

6(10-Jr,12+1: 1 6(i°+41412+ 2 )
   2.- 1
A r    4 10 1 "e + i   -to     .    I

We can now set up the general rule that:  for any function G(q), whose

imaginary part along, a cut on the real qQ-axis is given by
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FFIrr  4(f) - F'(12, c/-11,2
i

)<   4                  1                   r   25(10- '/ '+1
11,

3 ( , 4  J  K' 4-f    j
---           -I

     7,2- C f -j)'    qYLI-f itt, =1-f - 4 ,Vt* Do

6(f,-f,+4'+2-11,) 5(f,-90-4 11
+t- 1)')

4                        -

rn' -  t'          Jn,+C.t -1)2  - h  + 90 ]*2'   (t-   f    +   t,-   te
1

(B.4)

where P(q2, (p-q)2) is an arbitrary finite polynomial in q2 and (p-q)2,

then the function G(q), consistent with Lorentz invariance, is

T),  ,  C  11-----<ti-,'  )

6 (f)    -    (,r,  - f  /In,-ip-f),1 ,
(B.5)2   21

We can easily check that this function has the correct imaginary part

and can be obtained from a  dispersion integral with a suitable number

of subtractions. This rule can also be translated into the effective

language, similar to the effective technique discussed in Section 2, and

it reads:  If the imaginary part of a function G(q) is given by
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f     6(912-   4 1)  .              6(n' -  (t-· f) 9 -   ,-1-Im G(1)= P(92, Cp-1)'1 '- (9 -;)'        »L'    ,
-Y

(B.6)
along a cut on the real q2-axis for constant (p-q)q,

then the function G(q), consistent with Lorentz invariance, is

P(  12'   (t-j)'  )
64)               (sm'- f, ) [  1&2- Cp-1)11   .                                    03·71

In this effective technique, the function G(p) is treated as an analytic

function of q2 with (p-q)q fixed.  It is then easy to see that, since

(p _ q)2 = p2 - 2(p - q)q - q2, G(q), as given by (B.7), has

the correct imaginary part as given by (B.6).
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APPENDIX C

With the standard reduction technique, the definition (3.1) of

y   (q2) is modified to be
p 1T1T

C -8/0
(R,I)-3 ie**' 2.(EA)14,"(f)/(mir- 1')  -  (an,T,1'i (741*-  f') jit.x e

X 96%,)<pfC#,E)107r¥047(7%)110>   2-M,
(C.1)

9-  r[ 1

where qu = pw - kw.   Now the assumption of dispersion relation is that

the form factor involved in (C.1), that is y   (q 2)/(m 2 _ q2), is
p Trlr

analytic in the upper half of the q -plane with at most a cut along the

real q -axis.  This at once implies that y   (q2)   has no singularity at
p 'Irlr

finite q2 except possibly along the real q -axis.  To investigate the

singularity along the real q -axis, the absorptive part of (C.1) is

1 1- C

*111' -t'/ &4%6-,Pr<fLIA, E) 1 It'(0), 7, 7*)1 |02  2 (17[) 1 1

  =1'11r

aGC
V         i       *)   F                                                                                         *17/4

62,r )3  -  (E   )    'pir, cm,I ,   l 3 61 - J,rliz' -' 12 j  - (5(6+ Jntiri+fz)

9 /Wn'r  t 1
2 2 -.

Thus the only discontinuity of Y (q2)/(m 2 _ q2)
pwY

2 1
across  the real qi-axis  is  at     0   =  rt    MI  +  

bo
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and of the same form as that of the function (m12 - q2)-1.  Y   (92)pt/

thus has no discontinuity along the real q -axis, and, combining this

with the earlier statement that it has no singularity at finite q 

outside the real q -axis, we conclude that y   (q2)    has no
p 7T 7T

singularity at finite q .  The assumption that the amplitude (C.1)

that     2
satisfies a dispersion relation implies y (q )  is bounded by a finitePWA

polynomial for large qQ, and, since it has no singularity at finite q ,

y         (q2)   must   be a finite polynomial   of ql Hence, by Lorentz invariance,
p 7r 7T

y   (q2) is a finite polynomial of q2.
pwA

.

L
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APPENDIX D

Different from the spirit of the paper, we will discuss the alternate

hypothesis about axial-vector currents:  that there are no low-lying

spin-one states which dominate the axial-vector currents, but that the

overall effect of spin-one states can be described by the subtraction

constant of a once-subtracted dispersion relation.  For the amplitude

<7[  (1   J   I  A»to)  Ip'(p,E)>   =   (17I) -3ea .c l:f( .)%+...]           (D.1)

(where ku = pu - qu), this means that only #-states are used to dominate

2the axial-vector current , and that f(k ), since it is entirely a spin-

2
one effect, satisfies an once-subtracted dispersion relation in k .  To

be specific, let us postulate un-subtracted dispersion relations for all

other form factors in (D.1).  Then standard technique finds that

9.6-C

<TI'ci J  IA,to)Ip'*..}>  =-  1-i.I  f. h:  64,4  + K.1
(D.2)

I ' 1 I.              1 6 -,/L

where K is the subtraction constant, and that
2.-

ie abc    a "1*  VE-  Y  *  (E k )
<.Ir «  )  1    0"A»to) 1 ft P, E )>   =     -i;trLj    -mt,·_ 1<2 71 ·   (D.3)

In order that these two equations may be consistent, we determine K to be

K    =   ,2 FLY ** , (D.4)
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so that (D.2) becomes

a.6·c

<37"( ) 1 A»'(O)Ip'(p,El>   = -   ii,  ilfr  /"IArii ./.,EK'    (DIS)7  1-(E£, 1  1

One then finds that the absorptive part of P (q, p, 6) (as defined by
abc
pv

an equation similar to (4.45), but omitting c here) is given by
abc

Al                    ZE
*                             )           ,-   13/2- /1 DS

P,v.'.(1, F.,
== - .-I 2Fly

(9(.7[)
7[ VpX'7[

r CE                        ,)A ffil-      iA  3(i'-*1171,-fy,1 - i,4.+8J +6(41„.   .1™ .-te li.+EM-JCD.6)L-  7[

'

and that, by the effective technique,

a#c

5.*« (1' p, E. )   =  -   i€     -  62 F 2 7/4      13/2 1[ flIT[(0(.*Ir /

r
(EA) 14" ,»EV i 42 7

(D.7)

X - + --

_(7yl 5- _ql)(m1&
_42) Mir - 1

1 2
1)tr2- 4.2 JJ.

In the same manner, one obtains, similarly to (4.47),

46-c n 1

F. ",1 (i. h ' )   -  - &62  -ir::6*,  );" I„i'+6  4 "J (D.8)
1-e U

1

so that the Ward identity (4.49) results in the relation

i £2 4 --m E
7[ W

-
9Y. (D.9)

Noting that (3.17) in here reads

mp-' FF )>irK           1,                                ID.10}

we therefore have the KSRF relation

1(2-4  1     2
(D.11)

0(17[      opKA                           p       -
M
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FIGURE CAPTION

f, 4  iqx
Fi . 1. Representations of   d xe   <0|[*(x),9(0)]Im,p>.

vt

Fig. 2. Representations of < alvvco,i„,I

f 4   iqxFig. 3. Representation of i d x e   0(x ) <O|[A (x), Vb(0)]|,rc(p)>.

The central blob represents strong interaction vertices.

f 4   iqx
Fig. 4. Triangle graph of iJd x e    8(x,) <O|[A (x), Vb(0)]|7rc(p)>.

Fig. 5. Representations of (a) <Ga(q,(,a")'Vb(O)lac(p,n,a,)>,

(b) <&b(k,E,a)|A (0)1 ac(p,n,c')>,  and

(c)   <pb(k,£,a)|31'A (0) I ac(P,n,a,)>.

Fig. 6. Representations of

(a) i d4x eiqx 0(x,) <01[A (x), V (0)]Ipc(P,n,a')>,   and

(b) i d4x eiqx 0(xO) <O|[3VAp(x), Vb(O)]|pc(P,n,a,)>.

Fig. 7. (a) Connected and (b) disconnected parts of <n(s)|f(O)18(p)>.

f 4  iqx
Fig. 8. Representations of Jd x e <01[*(x), 9,(O)]18(p)>.
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