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INTRODUCTION

During recent ycars, there ié an increasing trend towards the develop-
ment of nonlinear finite element analysis method. Such analysis is needed
for the determination of ultimate load carrying capacity of a complex
structure or for the design of a structure subjected to extreme loads.
Structural npnlinearities normally arise from two different sources: material
and geometric nonlinearities. The material nonlinearity to be considered
herein is the commonly used elastic-plastic material, for which the con-
stitutive equations depend'on the current deformation state of the structure.
The geometric nonlinearity being considered is due to both large displace-
ment and large strain.

There are many finite element programs that are presently available for
solving nonlinear structural problems by considering various types of non-
linearitias. A comprehensive survey of these programs is discussed in
reference {11. This report concerns, however, with the nonlinear analysis
of a three-dimensional continuum, for which both the elastic-plastic
material and large deformation are of primary interest.

Elastic-plasti; analysis of three-dimensional continuums has been
reported previously for problems with small deformations (2-4). Using the
Lagrangian description, a general theory for the three-dimensional finite
element analysis including both the material and geometric nonlinearities
was presented by Hibbit, Marca) and Rice [5), Sharifi and Yates [6]. A
formulation of the similar problem with an Eulerian description was given
by McMeeking and Rice [7]. However, detailed formulation of the stiffness
equation for a three-dimensional isoparametric element has not become
available. The purpose of this report'is to follow Hibbitt and Sharifi's
work and present the formulation of the stiffness equation for an

8-21 node isoparametric element with elastic-plastic material and



large deformation. The formulation has been implemented in a nonlinear
finite element program for the analysis of three-dimensional contiauums.
To demonstrate the utility of the formulation, a thick-walled cylinder

was analyzed and the results are compared favorably with known sojution.

BASIC EQUATIONS

To solve nonlinear probiems with elastic-plastic material and
large deformation, an incremental sclution approach is adopted. Using
the Lagrangian description, all dependent variables are defined in terms
of an undeformed Cartesian reference frame, Xi. For discussion purposes,
the following notatioﬁs are introduced: Let uy be the displacement
vector of a material point referring to the undeformed state; Sij'
the second Piola-Kirchoff stress tensor; and Eij' the Green strain tensor

which is related to the displacement comporents by

1

ST UL TR WL (1)

1)
beginning of the load increment, the initial displacements, stresses and

where u, Now consider a typical load increment n. At the

strains are assumed to be known as u?. ng s and E?j. respectively.
Suppose that the continuum is subjected to an incremental surface traction,
531, an incremental change of state will result, i.e., au;, Asij and

AEij' Thus the total displacements, stresses and strains at the end of
the n-th loading increment are given respectively by



U, = u? + By, (2)
E 3 o.
« g° )

From Eqs. (1) and (2), one can derive the expression for the incremental

Green strain tensor, i.e.

AE” = degy * dngy (5)

1j
where Acij is the linear part and Anij is the nonlinear part of AEij.

They are evaluated from

. 1,0 0 0 0
dej 5 (ui,j+ DR A PR U R "k.j) (6)
« 1
ngg = 7 AU g U s 7

The elastiF-plastic stress-strain equations adopfed herein are
the incremental form based on the von Mises yield criterion with either
{sotropic or kinematic hardening. Then the increment of Kirchoff stress
is related to the increment of Green strain by

AsiJ " Dijrs AErs {8)

where Dijr represent either the elastic constants or the elastic-plastic

s
constants, which are derived from the current yield surfac.. Since the

derivation of Dijrs can be found in references [5,6), thergfore its
formulation will not be repeated herein. The definition of Dijrs is

given in the Appendix.



For simplicity, all subsequent formulations are restricted to
one element. Following the development in 5,6,8], the stiffness equation

of an element is derived from a linearized virtual work principle

0
{ Qijrs be .o G(Aeij) dv + | sij G(Anij) dv

= - 0
= { AT, S(Aui) dA J sij G(Aeij) v (9)
where V and A denote the volume and area of the undeformed element,

respectively.

FINITE ELEMENT FORMULATION

~ Three-dimensional isoparametric element consisting of 8-21 nodes
as shown in Fig. 1 is considered in the present derivation. In each
element, the undeformed coordinates xi and displacements u, of any

material point are interpolated by [9]

o m
X, -mgl b, X . (10)
- M
. =) h ol (1)
ioogey md
m . . th . th . .
where xi = undeformed coordinate of the m™ node in the i~ direction,

u, = displacemeant componant of the mt node in ith direction.

h = shape functions for a three-dimensional isoparametric
element as defined in reference {9].



In matrix notation, Eqs.(10) and (11) are rewritten as

(X} = [H {X',;'} (12)
(g = (H () (13)

The derivatives of displacements can be readily found from Eq. (13)

(uj 5 = [By){uj) (14)

T

where {"i,j} = {"1,1 "2,2 U3 Y2 u2.3 u3‘1} (15)

T _ .1 1 1 N N N
{ui} = {uy uy Uz ... u; U, "3} (16)

N, Nth nodal point of the element

- Th, o 0. ..... g 0 O
hyp O 0. ..... o 0 O
g O 0. v vnn. s © O
0 m, 0...... 0 hy, O (17)
) - Z :1’2 : ...... °: :N.Z :
13 O N3
0 0 hy ..., 0 0 hy,
0 0 by, ... 0 0 hy,
[0 0y, e 00 hyg
- by

he,i = W,



The linear strain-displacement relationship is derived by using

Eqs. (6) and (13), ie.

{e} = [BL] {u} : (18)
8] = Bl + B (20)

In the above equation, the matrix BLO is due to small deformation

and BL1 is due to initial displacements as a result of large deforma-

tions. They are given by

(hy, 0 0 ..., hyy O 0O
0, 0 ... 0 hy, O
ey - ho ho h163 ..... 0 0 my, |
2 My 0 - Py,2 My, O
0 hygh, e 0 hyg My,
g O by SRS
and N
1,1 M U2,1M 1 Y3,1 M1
U3,2 M2 Uy 2M1,2 U3,2 M,2
. 1,3 1,3 uz,3M,3 u3,3 P13
Bal  “luy by g%y ghy 1 By gty % g gty g gy By ot ug P
Uy,2M1,3M,30,2  Y2,2M1,3" Y2,3M,2 Y32 M3t U3z hyy
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(continued)



c e ug by Uz 1hy,1 U3 1M1
<o e Up oy o Up 2,2 uz ohy 2
<o v e Uy shy 4 up 3My,3 uz shy 3 (22)
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Combining Eqs. (7), (9), (13), (14) and (19), and after some manipulation,
one may easily find the incremental element stiffness equation in the
following form

AL B L R e N I TS (23)

As pointed out by Hibbit et al. [5], the element stiffness matrix con-
sists of thres parts: the commonly known small displacement stiffness

ko. the initial displacement stiffness k(l), and the initial stress

stiffness k(z) and they are given by

wl®; - [ " o1 mg o (24)
wlly - i " (0 (8,1 av (25)
2 . i [BNLJT [§J[BNL] dv (26)

where [D} represents either the elastic or elastic-plastic material

matrix as defined in Eq. (8), and S is the 2nd Piola-Kirchoff stress

matrix which is given by



(5] = 0 (sl o (27)

1 = | S S22 Sy (28)

32 33

and the force vectors on the right hand side of Eq. (23) are

(af} = [ [HI{aT} dA (29)
A

(se} = [1B3 (S} a¥ (30)
v

where ae is a force vector resulting from large defcrmation,
T Si, S (31)

and {S} {S]] 522 533 12 523 S31}

SAMPLE PROBLEM

The above formulation has been implemented into a finite element
program, which is a modified version of the general purpose nonlinear
finite element program NONSAP developed by Bathe, Ramm and Wilson [8].
To demonstrate the validity of the present formulation. 3 thick-walled
cylinder subjected to internal pressure was considered and it was

represented by a three-dimensional model as shown in Fig. 2. One



quarter of the cylinder was ;sed for the analysis. The ana,ysis

model consists of 40 elements: 20 layers in the radial direction and

2 segments in the circumferential direction. Each element has 12 nodes,
i.e. 8 corner nodes and 4 midside nodes on the curved boundaries. This
problem has previously analyzed by Hartzman {20] with 2 two-dimensional
mode! and the analytical results were obtained by MacGregor [11].

The cylinder is made of aluminum 1750 and its elastic-plastic stress-
strain curve is given in reference [11). Isotropic hardening rule was
used in the analysis. Shown in Fig. 2 are the plots of the internal
pressure vs. the heop strains at the inner and outer surface of the
cylinder. As seen in the figure, the strain response at the outer
surface obtained from the 3-D solution is identical with
Hartzman's result, however it is slightly below the analytical
solution by MacGregor. The second curve in Fig. 2 represents the hoop

strain of the cylinder at the inner wall, which is well into the large

strain range.

CONCLUSTON

The stiffness formulation for a three-dimensional isoparametric
element with elastic-plastic material property and large deformation
was completed and the formulation has been incorporated into a non-
linear finite element program for solving large size problems. The
element type presented herein can be applied not only t2 3-D continuums,

but also to plate or shell structures, for which degenerated isopara-

metric elements may be used.
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APPENDIX - ELASTIC - PLASTIC CONSTITUTIVE RELATIONS

4

For elastic-plastic material, the constitutive relations in terms
of incremental Kirchoff stresses and incremenial Green strains are

given by

ASij = Dijrs AErs (A-1)

or in matrix notation, Eq. (A-1) is rewritten in the form
~{aS} = [D) {AE} (A-2)

Where D represents either the elastic or elastic-plastic matrix. The
elastic~-plastic matrix D assumes different values depending whether
the isotropic or kinematic hardening law is used.

For isotropic hardening law, the von Mises yield criterion is given

by
2

I SR i} .
f = 5 Sij Sij K 0 (A-3)
where S%j is the deviatoric component of the Kirchoff stress tensor
and ¢ is a measure of strain hardening which is assumed to be a

function of plastic work

K = F{Wp) (A-4)

P
Isij dEij . (A-5)

Wp

Based on the above relationship, one can easily derive the expression

for the elastic-plastic matrix D,

o = pf - oY (A-6)
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where DE represents the elastic matrix which is given by

( 1-y v v 0 0 0

1v v 0 0 O

ik = E Iw 0 0 0

(T+v)(1-2v) (A-7)
1"2\) o 0
2
symmetric 1-2v 0
2
1-2v

o E -

E is the Young's modulus and v, the Poisson's ratio. The plastic

matrix, DP is defined by

071 =& &S, (A-8)
6 = &
Z2(1+v)
where 1
Ry Fra 1 (A-9)
k(14 E) :
- de . )
] [} ] [ s n
and 111 S22 S SuSiz SuSa SuS:
522522 522533 S228i2 S22523 52253
S33%33  S33%12. S33S23  S33%3
[52] = sl s' S' Sl s' S'
Symmetric 12812 Si2%3 Si2%h
$23%23 523531 | (A-11)
31531
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In the case of kinematic hardening, the von Mises yield critericn

has the form
fel (s1-a Sl -ai) - &2 = 0 (A-12)
2N A B § Rt & B 0
where kg = gy//§ » o, = uniaxial yield stress (A-13)
de,. = c dE", \ (A-14)
ij 1J '
EE
c= 2.7 (A-15)
S -k
P
Ep = plastic modulus of the uniaxial stress-strain curve

evaluated at the current state.
Based on the criterion in Eq. {A-12}, one can derive

o1 = % - " (A-16)

where DE is defined in Eq. (A-6) and DP is given by

1= 6+, (A-17)
where y = —— z — (A-18)
Kol t et 2c (S' + S' + S' )]

and the matrix §é has the same form as defined in Eq. (A-11) except

that the stress deviators are replaced by their shifted quantities,

i.e. A
Si, = S;j - ey (A~19)
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A final remark should be in order. Since the above equations were
derived from a Lagrangian description the Kirchoff stresses and
Lagrangian strains were used for stress and strain measures, Then,
for large deformations,the elastic-plastic constant, e.qg. EP’ must be
determined from the uniaxial data of the same stress and strain measures.
However, the uniaxial stress-strain curve is usually obtained on the
basis of engineering stress and engineering strain. The conversion '

from the engineering stress and strain to Kirchoff stress and Lagrangian

strain can be made according to

g
Kirchoff stress = E (A-20)
1+¢
E
Lagrangian $train = ¢ + %- EE (A-21)
where o = Engineering stress = P
E Ao
e. = Engineering strain = ——
E Lo

P = Uniaxial load

A = Undeformed cross-sectional area of a specimen

L, = Undeformed length of a specimen
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Fig. 1 A three-dimensional isoparametric element.
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s~ 3-D Solution and
Hartzman's [10]

- — - Analytical Solution Q¥]
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Internal pressure vs. hoop strains at the inner

and outer surface.




