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INTRODUCTION

During recent years, there is an increasing trend towards the develop-

ment of nonlinear finite element analysis method. Such analysis is needed

for the determination of ultimate load carrying capacity of a complex

structure or for the design of a structure subjected to extreme loads.

Structural nonlinearities normally arise from two different sources: material

and geometric nonlinearities. The material nonlinearity to be considered

herein is the commonly used elastic-plastic material, for which the con-

stitutive equations depend on the current deformation state of the structure.

The geometric nonlinearity being considered is due to both large displace-

ment and large strain.

There are many finite element programs that are presently available for

solving nonlinear structural problems by considering various types of non-

linearities. A comprehensive survey of these programs is discussed in

reference [1]. This report concerns, however, with the nonlinear analysis

of a three-dimensional continuum, for which both the elastic-plastic

material and large deformation are of primary interest.

Elastic-plastic analysis of three-dimensional continuums has been

reported previously for problems with small deformations [2-4]. Using the

Lagrangian description, a general theory for the three-dimensional finite

element analysis including both the material and geometric nonlinearities

was presented by Hibbit, Marcal and Rice [5], Sharifi and Yates [6]. A

formulation of the similar problem with an Eulerian description was given

by McMeeking and Rice [7). However, detailed formulation of the stiffness

equation for a three-dimensional Isoparametric element has not become

available. The purpose of this report is to follow Hibbitt and Sharifi's

work and present the formulation of the stiffness equation for an

8-21 node isoparametric element with elastic-plastic material and



large deformation. The formulation has been implemented in a nonlinear

finite element program for the analysis of three-dimensional continuums.

To demonstrate the utility of the formulation, a thick-walled cylinder

was analyzed and the results are compared favorably with known solution.

BASIC EQUATIONS

To solve nonlinear problems with «lastic-plastic material and

large deformation, an incremental solution approach is adopted. Using

the Lagrangian description, all dependent variables are defined in terms

of an undeformed Cartesian reference frame. X.. For discussion purposes,

the following notations are introduced: Let u. be the displacement

vector of a material point referring to the undeformed state; S...

the second Piola-Kirchoff stress tensor; and E.-, the Green strain tensor

which is related to the displacement components by

E i j ' I ( u 1 J + M J . 1 * u k . 1 t t k . J > ' (1)

3U.

where u. 4 • TTT- . Now consider a typical load increment n. At the

beginning of the load increment, the initial displacements, stresses and

strains are assumed to be known as u?, S^. , and E?., respectively.

Suppose that the continuum is subjected to an incremental surface traction,

if., an incremental change of state will result, i.e., &u.t AS.. and

{£... Thus the total displacements, stresses and strains at the end of

the n-th loading increment are given respectively by



• AU1 (2)

Sfj + ^ (3)

From Eqs. (1) and (2), one can derive the expression for the incremental

Green strain tensor, i.e.

where Ac,* is the linear part and An*.- is the nonlinear part of AE...

They are evaluated from

<J>

I Auk,i Auk.j

The elastic-plastic stress-strain equations adopted herein are

the incremental form based on the von Mises yield criterion with either

isotropic or kinematic hardening. Then the increment of Kirchoff stress

is related to the increment of Green strain by

A Sij " °1jrs AErs <8>

where D ^ represent either the elastic constants or the elastic-plastic

constants, which are derived from the current yield surfact. Since the

derivation of D.. can be found in references [5,6], therefore its

formulation will not be repeated herein. The definition of D«j is

given in the Appendix.



For simplicity, all subsequent formulations are restricted to

one element. Following the development in (5,6,8], the stiffness equation

of an element is derived from a linearized virtual work principle

°fjrs fiErs

dA - / S^j. 6(AEij) dV (9)» / AT. sitM^ dA - / S^j. 6(AEij

M V

where V and A denote the volume and area of the undeformed element,

respectively.

FINITE ELEMENT FORMULATION

Three-dimensional isoparametric element consisting of 8-21 nodes

as shown in Fig. 1 is considered in the present derivation. In each

element, the undeformed coordinates X. and displacements u. of any

material point are interpolated by [9]

<»>

where X1? s undeformed coordinate of the m node in the i direction,

u? = displacement component of the m node in i direction.

h * shape functions for a three-dimensional isoparametric

element as defined in reference (91.



In matrix notation, Eqs.(lO) and (11) are rewritten as

(X^ * [H] {X™} (12)

{u^ = [H] {u™} (13)

The derivatives of displacements can be readily found from Eq. (13)

where

and

" i , / * {ul,l U2,2U3,3 ul,2 U2,3 U3,l>

U . } T = (u.1 u} u* u" u" u"}

N, N nodal point of the element

h, , 0 0 hM , 0 0

b, , 0 0 hN , 0 0
1,2 N,Z

h. - 0 0 hM .. 0 0
0 hl,l ° ° hN,l °
0 hl,2 ° ' ° hN,2 °
0 hl,3 ° ° hN,3 °
0 0 hj j 0 ° nN 1

0 ° hl,2 ° ° hN.2
0 • 0 h, , 0 0 hM ,

hk,i * 3XJ"

(14)

(15)

(16)

(17)



The linear strain-displacement relationship is derived by using

Eqs. (6) and (13), ie.

{u} (18)

where {e} £33 2 e31 }

(20)

In the above equation, the matrix B,o is due to small deformation

and 8,, Is due to Initial displacements as a result of large deforma-

tions. They are given by

0 . . . .

0 . . . .

1,3
0 ....

o h 1 $ 2

0 Oh

hl,2 hl,
0 h l t 3 h12 . . . .

^1,3 ° hl,l ' • ' '

0 hN,2 °

1.3
hN,2 hN,l °

0 hN,3 hN,2

hN,3 ° hN,l

(21)

and
U2,lhl,l
U2,2h1.2
U2,3hl,3

U3,l hl,l
U3,2 hl,2
U3,3 hl,3

Ul,2 hl,2

.Ul,3 hl,3

ul,lhl,2+ul,2hl,l h2,lhl,2+ U2,2hl,l U3.1 hl,2

Ul,2hl,3+Ul,3hl,2 U2,2h1.3+U2,3hl,2 U3,2 hl,3

Ul,3hl,l+Ul,lhl,3 U2,lhl,3 U3,3

U3,2 hl,l
U3,3 hl,l
U3,l hl,3

(continued)



'1 ,

l,2hN s2

l,3hN,3

u 2 , l h N , l

U2,2hN,2

u2»3nN,3

^.l^^A,!

U 3 , l h N, l

u3,2hN,2

u3,3hN,3 (22)

" l A s ^ l . s W u2,2hN,3+u2,3hN,2 u3,2hN,3+u3,3hN,l
U1.3hN,l+Ul,lhN,3 U2,3hN,l+U2,lhN,3 U3,3hN,l+U3,lhN,3

Combining Eqs. (7), (9), (13), (14) and (19), and after some manipulation,

one may easily find the incremental element.stiffness equation in the

following form

^ (1) {Af} + U e ) (23)+ k(1)] Uu) =

As pointed out by Hibbit et al. [5], the element stiffness matrix con-

sists of thres parts: the commonly known small displacement stiffness

displacement stiffnes

and they are given by

k i the initial displacement stiffness k* , and the initial stress
(21stiffness ir '

ID] [BL0J dV

[B L 1]
T fDJ [BL1] dV

(24)

(25)

IS][BNL) dV (26)

where [D] represents either the elastic or elastic-plastic material

matrix as defined in Eq. (8), and S is the 2nd Piola-Kirchoff stress

matrix which is given by



IS] =

[S]

0

0

0

(SI

0

0

0

(SI

(27)

[S] '21
531

22 S23

S32 S33

(28)

and the force vectors on the right hand side of Eq. (23) are

Uf) = [H]UT} dA

Ue] = f [BLJ {S} dV

(29)

(30)

where Ae is a force vector resulting from large deformation,
<k I g ft p r* c C* (* i

and (31)

SAMPLE PROBLEM

The above formulation has been implemented into a finite element

program, which is a modified version of the general purpose nonlinear

finite element program NONSAP developed by Bathe, Rarnm and Wilson [8].

To demonstrate the validity of the present formulation, a thick-walled

cylinder subjected to internal pressure was considered and it was

represented by a three-dimensional model as shown in Fig. 2. One



quarter of the cylinder was used for the analysis. The ana.ysis

model consists of 40 elements: 20 layers in the radial direction and

2 segments in the circumferential direction. Each element has 12 nodes,

i.e. 8 corner nodes and 4 midside nodes on the curved boundaries. This

problem has previously analyzed by Hartzman (10} with a two-dimensional

model and the analytical results were obtained by MacGregor [11].

The cylinder is made of aluminum 17S0 and its elastic-plastic stress-

strain curve is given in reference [11]. Isotropic hardening rule was

used in the analysis. Shown in Fig. 2 are the plots of the internal

pressure vs. the hoop strains at the inner and outer surface of the

cylinder. As seen in the figure, the strain response at the outer

surface obtained from the 3-0 solution is identical with

Hartzman's result, however it is slightly below the analytical

solution by MacGregor. The second curve in Fig. 2 represents the hoop

strain of the cylinder at the inner wall, which is well into the large

strain range.

CONCLUSION

The stiffness formulation for a three-dimensional isoparametric

element with elastic-plastic material property and large deformation

was completed and the formulation has been incorporated into a non-

linear finite element program for solving large size problems. The

element type presented herein can be applied not only to 3-D continuums,

but also to plate or shell structures, for which degenerated isopara-

metric elements may be used.
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APPENDIX - ELASTIC - PLASTIC CONSTITUTIVE RELATIONS

For elastic-plastic material, the constitutive relations in terms

of incremental Kirchoff stresses and incremental Green strains are

given fay

ASij = Dijrs AErs <A"1>

or in matrix notation, Eq. (A-l) is rewritten in the form

{AS} = [D] {AE} (A-2)

Where D represents either the elastic or elastic-plastic matrix. The

elastic-plastic matrix D assumes different values depending whether

the isotropic or kinematic hardening law is used.

For isotropic hardening law, the von Mises yield criterion is given

by
1 2
2 ij i j

where Si. is the deviatoric component of the Kirchoff stress tensor

and K is a measure of strain hardening which is assumed to be a

function of plastic work

K = F (Wp) (A-4)

Wp = /S . dE?. (A-5)

Based on the above relationship, one can easily derive the expression

for the elastic-plastic matrix D,

[D] = [DE] - [DPJ (A-6)
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where D represents the elastic matrix which is given by

[DE] =

1-v V

1-v

ric

v 0

v 0

1-v 0
l-2v

0

0

0

0

l-2v
2

0

0

0

0

0

l-2v

(A-7)

E is the Young's modulus and v, the Poisson's ratio. The plastic
p

matrix, D is defined by

[Dr] = * G 6 [S2] (A-8)

where
(A-9)

and

[Sz] =

die
W

Symmetric

(A-10)

C l C l C l C l C l C l

1̂1*33 hriz 5ir2:
CI Cl Cl
S22a33 *22
Cl Cl Cl
S33a33 a33

S12

S12 S22 S

S12 S33 S

S12 S 1 2 S

C" C
bZZb

• i

'23

23

•

23

•

23

Cl C.

S33 S

S12 S

S 2 3 S

;i

' i

'31

31

i

31 (A-ll)
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In the case of kinematic hardening,the von Mises yield criterion

has the form

> • ° < A 1 2 >

where K = a t& , o - uniaxial yield stress (A-13)

, EE.
c = | E. (A-15)

3

Ep = plastic modulus of the uniaxial stress-strain curve

evaluated at the current state.

Based on the criterion in Eq. (A-12), one can derive

JD] = [DE] - [DP] (A-16)

E P
where D is defined in Eq. (A-6) and 0 is given by

[DP] * G y[$z) {A-17)

where y = -5—c r " 5 — - ? - » (A-18)
Koll+v c cc P 1 2 ^23 331 ; i

and the matrix S"2
 has the same form as defined in Eq. (A-ll) except

that the stress deviators are replaced by their shifted quantities,

i.e.
s;. = sjj - «tJ (A-19)
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A final remark should be in order. Since the above equations were

derived from a Lagrangian description the Kirchoff stresses and

Lagrangian strains were used for stress and strain measures. Then,

for large deformations.the elastic-plastic constant, e.g. E p, must be

determined from the uniaxial data of the same stress and strain measures.

However, the uniaxial stress-strain curve is usually obtained on the

basis of engineering stress and engineering strain. The conversion

from the engineering stress and strain to Kirchoff stress and Lagrangian

strain can be made according to

Kirchoff stress = — — (A-20)
1 + eE

1 2
Lagrangian strain = e£ + f E E (A-21)

P
oF = Engineering stress = -5—
t Ao

Engineering strain = -r
oo

P * Uniaxial load

Ao
 3 Undeformed cross-sectional area of a specimen

LQ * Undeformed length of a specimen
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Fig. 1 A three-dimensional isoparametric element.
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Fig. 2 Internal pressure vs. hoop strains at the inner
and outer surface.


