CONF_ 15/101-28

A 218 NEUTRON GROUP MASTER CROSS SECTION LIBRARY FOR CRITICALITY SAFETY STUDIES[†]

٨.

W. E. Ford, III R. M. Westfall C. C. Webster

√Computer Sciences Division Union Carbide Corporation - Nuclear Division Oak Ridge, Tennessee 37830 This report way prepared as an account of work sponsored by the United States Gowannent. Neither the United States nor the United States Emergy Research and Development Administration, nos any of their employees, nos any of their constructors, subcontractors, or their amployees, makes any legal labelity or responsibility for the accurrey, completenes or usrituers of any information, apparatum, product on process disclosed, or represents that its we would not infringe privately owend rights.

MASTER

The AMPX system¹ was used to generate a P_3 218 neutron group master^a cross-section library from ENDF/B-IV data for the fuel, structural, and neutron-absorbing materials listed in Table I. The library is the data base for the generation of broad-group cross sections for shipping cask calculations and other criticality safety analyses using codes such as KENO² and ANISN³.

Selection of the fine-group energy structure for the 3-eV to 20-MeV energy range included consideration of the resonance structure of prominent nuclei, the thresholds of important reactions, and the fission spectra. For $10^{-5} \leq E_n < 3$ eV, 78 closely spaced thermal groups were chosen to examine the effects of low-energy resonances and thermal-neutron upscatter. Distribution of the 218 groups within the Hansen-Roach⁴ 16-group boundries is shown in Table II.

Adequacy of the group structure and validity of selected data sets from the library were tested by P_3S_8 XSDRNPM^b calculations of k-eff for two benchmark critical experiments. First, the 4.9%-enriched UO₂F₂-H₂O solution critical sphere experiment of Johnson and Cronin⁵ was analyzed.

[†]Research sponsored under the Union Carbide Corporation's contract with the Energy Research and Development Administration.

B

This system had a critical 235 U mass of 4.14 kg with a H/ 235 U atom ratio of 1002. The solution was contained within a 0.32-cm-thick Al shell having an outer radius of 34.82 cm. A k-eff of 0.9998 was calculated for the low-enriched thermal system.

Second, the 93.2%-enriched $UO_2F_2-H_2O$ solution critical sphere experiment of Fox⁶ was analyzed. This system had a critical mass of 3.25 kg 235U with a H/235U atom ratio of 1393. The solution was contained within a 0.32-cm-thick Al shell having an outer radius of 34.92 cm. A k-eff of 1.0046 was calculated for the high-enriched thermal system.

The master cross-section library is available on magnetic tape from the Radiation Shielding Information Center.^C Efforts to determine a broad-group subset of the 218 neutron groups for collapsing data sets from the library for shipping cask criticality studies are described in Ref. 7.

 b XSDRNPM is the AMPX module with one-dimensional S_n capability. See Ref. 1.

^CInquiries should be addressed to Radiation Shielding Information Center, P.O. Box X, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

2

^aThe AMPX system uses a fine-group master cross-section library as input to generate fine- or broad-group coupled neutron-gamma or uncoupled cross sections in formats for several codes (e.g., ANISN, VENTURE, MORSE, DOT, SWANLAKE) at a relatively low cost and in a relatively fast computer run.

Table I. Fine Group^a Master Cross Section Library for Criticality Safety Analysis

<u>Nuclide</u>	ENDF/B-IV MAT No.	Master Library ID Number	<u>Nuclide</u>	ENDF/B-IV MAT No.	Master Library ID Number
••	tacab	10/0	1. 107	11000	112002
H	1269 ^b	1269	Ag-107	1138 ^c	113802
He-4	1270	127003	Ag-108	1139 ^c	113902
Li-6	1271	127103	Cd	1281	128103
L1-7	1272	127203	Sn	7039 ^d	703903
Be-9	1289	128903	Ba	7040 ^d	704003
B-10	1273	127303	Gđ	1030 ^c	103002
B-11	1160	116003	Dy-164	1031 ^c	103102
C-12	1274	127403	Lu-175	1032 ^c	103202
N-14	1275	1275	Lu-176	1033°	103302
0-16	1276	1276	Hf	1034 ^C	103402
F	1277	1277	Ta-181	1127 ^c	112702
Na-23	1156 ^c	115602	W-182	1128 ^c	112802
Mg	1280	128003	W-183	1129 ^c	112902
A1-27	1193	1193	W-184	1130 ^c	113002
Si	1194	119403	W-186	1131°	113102
P-31	7019 ^d	7 0 1903	Re-185	1083 ^c	108302
S-32	7020 ^d	702003	Re-187	1084 ^c	108402
C1	1149	114903	Au-192	1283	128303
К	1150	115003	РЪ	1288	128803
Ca	1195	119503	Th-232	1296°	129602
Ti	1286	128603	V-233	1260 ^c	126002
v	1196	119603	U-234	1043c	1043
Cr	1191 ^C	119102	U-235	1261 ^c	1261
Mn-55	1197 ^C	119702	U-236	1163C	116302
Fe	1192 ^c	119202	U-238	1262 ^c	1262
Co-59	1199 ^c	119902	Np-237	1263 ^c	126302
Ni	1190 ^c	119002	Pu-238	1050 ^c	105002
Cu	1295 ^c	129502	Pu-239	1.264 ^C	126402
Zn	4530 ^e	453003	Pu-240	1265 ^c	126502
Zr-95 ^c	1202	120202	Pu-241	1266 ^c	126602
ZIRC-2	1284 ^C	128402	Pu-242	1161 ^C	116102
Nb-93	1189 ^c	118902	Am-241	1056 ^c	105602
Mo	1287°	128702	Cm-244	1162°	116202

^aThe 218 neutron groups span the range $10^{-5} \le E_n \le 2 \ge 10^7$ eV. Seventyeight "thermal" groups are in the range $10^{-5} \le E_n \le 3.05$ eV. bENDF/B MAT 1002 was used for water bound thermal data.

CThis is a resonance material. A potential scattering cross section of 5 x 10⁴ barns/atom was used in the unresolved resonance calculation. ^dENDF/B formatted data was obtained from Howerton's library.⁸

^eENDF/B formatted data was obtained from RSIC's Defense Nuclear Agency Working Cross-Section Library.⁹

Han	sen-Roach		Number of 218n
Group Number	Energy Range	218n Group Numbers	Groups per Hansen- Roach Group
1	20-3 MeV	1-4	4
2	3-1.4	5-9	5
3	1.4-0.9	10-17	8
4	900-400 KeV	18-31	14
5	400-100	32-37	6
6	100-17	38-48	11
7	17-3	49-55	7
8	3-0.55	56-66	11
9	5 50-100 eV	67-78	12
10	100-30	79-108	30
11	30-10	109-124	16
12	10-3	125-141	17
13	3-1	142-182	41
14	1-0.4	183-196	14
15	0.4-0.1	197– 208	12
16	0.1-10 ⁻⁵	209-218	10

.

.

٠

•

Table II.Correspondence of 218n and Hansen-Roach16Group Structures

٠

•

.

REFERENCES

- N. M. Greene, et al., "AMPX: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries from ENDF/B," ORNL-TM-3706, Oak Ridge National Laboratory (to be published).
- G. E. Whitesides and N. F. Cross, "KENO, A Multigroup Monte Carlo Criticality Program," CTC-5, Union Carbide Corporation, Nuclear Division (September 10, 1969).
- 3. W. W. Engle, "A User's Manual for ANISN A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering," K-1693, Union Carbide Corporation, Nuclear Division (March 30, 1967).
- G. E. Hansen and W. H. Roach, "Six and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies," LAMS-2543 (1961).
- E. B. Johnson and D. F. Cronin, "Critical Dimensions of Aqueous UO₂F₂ Solutions Containing 4.9% Uranium-235-Enriched Uranium," <u>Trans. Am.</u> <u>Nucl. Soc., 7</u>, 301 (1964).
- J. K. Fox, et al., "Critical Parameters of Uranium Solutions in Simple Geometry," ORNL-2609, Oak Ridge National Laboratory (1958).
- 7. D. M. Plaster, R. M. Westfall, and W. E. Ford, III, "Shipping Cask Criticality Safety Master Cross Section Library Development," these Transactions, p. nnn.
- Robert J. Howerton, "The Lawrence Livermore Evaluated Nuclear Data Library (ENDL) Translated into the ENDF/B Format," UCID-16727 Lawrence Livermore Laboratory (March, 1975).
- 9. R. W. Roussin, (ed.), "Defense Nuclear Agency Working Corss Section Library: Description and Comments," ORNL-RSIC-34, Oak Ridge National Laboratory (October, 1972).

.