
Award ER25750: Coordinated Infrastructure for Fault
Tolerance Systems

Indiana University Final Report

Investigator: Andrew Lumsdaine
Center for Research in Extreme Scale Technologies,

Indiana University
E-mail: lums@cs.indiana.edu

2719 E. 10th Street Bloomington, IN 47408

March 8, 2013

Contents
1 Project Information 2

2 Project Participants 2

3 Executive Summary 2
3.1 Research Approach . 3
3.2 Research Accomplishments . 4

4 Technical Approach 5
4.1 The FTB API Specification . 5
4.2 The FTB software - The CIFTS FTB API Implementation 6
4.3 Improving Fault Tolerance in Open MPI . 7
4.4 Fault Tolerance and the MPI Standard . 11
4.5 FTB support for system components . 12

5 Outreach and Education Activities 13
5.1 Students Supported . 14
5.2 Publications . 14
5.3 Talks . 14
5.4 Technical Reports . 16
5.5 Web Sites . 16

6 Deliveries and Contributions 16
6.1 Deliveries . 16

1

1 Project Information
• Title: Coordinated infrastructure for Fault Tolerant Systems (CiFTS)

• Principal Investigator: Andrew Lumsdaine

• Award Number: ER25750

• Organization: CREST, Indiana University.

• Submitted By: Andrew Lumsdaine, Principal Investigator

2 Project Participants
• Andrew Lumsdaine, Principal Investigator

• Joshua Hursey, Ph.D. student and Postdoctoral Research Scholar

• Abhishek Kulkarni, Ph.D. student

• DongInn Kim, Research staff member

• Lizhe Wang, Research staff member

3 Executive Summary
The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has
been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide
basis for applications and other system software. While fault tolerance has been an integral part
of most high-performance computing (HPC) system software developed over the past decade, it
has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults
has typically been limited to the particular hardware and software subsystems in which they are
initially observed. Little fault information is shared across subsystems, allowing little flexibility
or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end
fault tolerance in support of scientific applications.

As an example, consider faults such as communication link failures that can be seen by a
network library but are not directly visible to the job scheduler, or consider faults related to node
failures that can be detected by system monitoring software but are not inherently visible to the
resource manager. If information about such faults could be shared by the network libraries or
monitoring software, then other system software, such as a resource manager or job scheduler,
could ensure that failed nodes or failed network links were excluded from further job allocations
and that further diagnosis could be performed.

As a founding member and one of the lead developers of the Open MPI project, our efforts
over the course of this project have been focused on making Open MPI more robust to failures by
supporting various fault tolerance techniques, and using fault information exchange and coordi-
nation between MPI and the HPC system software stack–from the application, numeric libraries,

2

and programming language runtime to other common system components such as jobs schedulers,
resource managers, and monitoring tools.

3.1 Research Approach
With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project
came to be called) project, our aim has been to understand and tackle the following broad research
questions, the answers to which will help the HPC community analyze and shape the direction of
research in the field of fault tolerance and resiliency on future high-end leadership systems.

• Will availability of global fault information, obtained by fault information exchange between
the different HPC software on a system, allow individual system software to better detect,
diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the sys-
tem through fault information exchange, is it possible to get all system software working
together to provide a more comprehensive end-to-end fault management on the system?

• What are the missing fault-tolerance features that widely used HPC system software lacks
today that would inhibit such software from taking advantage of system-wide global fault
information?

• What are the practical limitations of a system-wide approach for end-to-end fault manage-
ment based on fault awareness and coordination?

• What mechanisms, tools and technologies are needed to bring about fault awareness and
coordination of responses in a leadership-class system?

• What standards, outreach and community interaction are needed for adoption of the concept
of fault awareness and coordination for fault management on future systems?

Keeping our overall objectives in mind, the CIFTS team has taken a fourfold approach.

• Our central goal was to design and implement a light-weight, scalable infrastructure with a
simple, standardized interface to allow communication of fault-related information through
the system and facilitate coordinated responses.

This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe
API specification, together with a reference implementation and several experimental imple-
mentations on top of existing publish-subscribe tools.

• We enhanced the intrinsic fault tolerance capabilities representative implementations of a
variety of key HPC software subsystems and integrated them with the FTB.

Targeted software subsystems included: MPI communication libraries, checkpoint/restart
libraries, resource managers and job schedulers, and system monitoring tools.

• Leveraging the aforementioned infrastructure, as well as developing and utilizing additional
tools, we have examined issues associated with expanded, end-to-end fault response from
both system and application viewpoints.

3

From the standpoint of system operations, we have investigated log and root cause analysis,
anomaly detection and fault prediction, and generalized notification mechanisms. Our appli-
cations work has included libraries for fault-tolerance linear algebra, application frameworks
for coupled multiphysics applications, and external frameworks to support the monitoring
and response for general applications.

• Our final goal was to engage the high-performance computing community to increase aware-
ness of tools and issues around coordinated end-to-end fault management.

Our outreach activities covered a broad spectrum, including technical papers and presenta-
tions, demonstrations, numerous community-oriented discussion venues, hosting of students
as summer interns, and interactions with HPC vendors.

3.2 Research Accomplishments
Our objective as part of the CIFTS team was to design and construct a set of tools and compo-
nents that will replace the current, deficient, fault-paradigms used on high-performance computers
with a robust system for the next generation of leadership-class computers. Our work in this area
was driven by six objectives: design and create a fault backplane that can coordinate the fault re-
sponse for both system and user components, implement a variety of fault tolerance capabilities
into Open MPI, investigate extensions to MPI for fault tolerance, integrate Open MPI with the fault
backplane, integrate a wide range of key libraries and applications into the system, and deploy the
enhanced software on the DOEs largest computers in support of their national mission. The ac-
complishments during the course of this project in comparison to the original goals and objectives
are listed below:

1. The widely deployed implementation of the Message Passing Interface (MPI) standard,
Open MPI, was enhanced to integrate with the FTB, and support a common set of fault-
related events. We have defined basic interfaces between MPI and FTB with the help of
discussions with the tools and applications community. We augmented the Open MPI run-
time system to exchange fault information with other system components. The interface
and complete specification was also extended to include support for watchdog/autonomic
components to help in fault prediction and prevention.

2. The use of coordinated checkpoint restart with BLCR in Open MPI was established as the
primary fault tolerance mechanism. This effort has also helped in specifying additions and
modifications to BLCR and the partners respective MPI implementations that were required
for checkpoint/restart integration in the MPI implementations. We prototyped integration
of incremental checkpointing, differential checkpointing and process migration with Open
MPI. The addition of uncoordinated checkpoint support using message as a team effort has
helped make Open MPI more robust in the event of fail-stop failures.

3. Error and abort reporting in Open MPI was extended to catch and respond to signals from
network fabric indicating network failure, path migration, and topology change. This admit-
ted us to prototype adaptive collective communication algorithms that reroute communica-
tion around broken or low-performing communication links.

4

4. A series of public releases of the FTB API specification, beginning with version 0.5 in June
2008, and culminating in the draft version 1.0 specification.

The FTB API specifications have been accompanied by releases of the reference implemen-
tation of the FTB. The FTB implementation works in IBM Blue Gene, Cray, and Linux
cluster environments, and is released under the BSD license.

5. A variety of system monitoring tools and libraries have been FTB-enabled to make hard-
ware fault information available via the FTB, including the Reliability, Availability and Ser-
viceability (RAS) systems of Cray and IBM Blue Gene systems, the Intelligent Platform
Management Interface (IPMI), Ganglia, and Syslog.

6. We have made significant advances in the ability of system operators to navigate, understand,
analyze, and act upon the large volumes of RAS log data that is often associated with larger
supercomputer installations.

7. Leveraging the FTB and other capabilities developed within the project, we have demon-
strated novel application-level resilience capabilities. One example integrates specific ser-
vices and capabilities within a framework for coupled multiphysics simulations, while the
other provides a an external “Fault Correlation Framework” (FCF) which can provide mon-
itoring and resilience services for generic applications with little or no modifications.

4 Technical Approach
From a technical perspective, the CIFTS framework consists of the FTB API specification and the
software that use this FTB API, as shown in Figure 1. The FTB API can be used by system software
ranging from operating systems and job schedulers to math libraries, file systems, and high-level
user applications. In addition to existing software, third-party developers can set up automatic
scripts, diagnostic routines, fault-information analysis engines, and logging systems that can be
FTB-enabled to communicate with other FTB-enabled software.

4.1 The FTB API Specification
The FTB API is a publish-subscribe framework that describes the interface that can be used by
any HEC system software to publish and obtain fault information from the system. The FTB API
interface consists of a dozen routines that allow system software to connect to and disconnect from
the FTB, publish fault events, and subscribe and unsubscribe to these fault events based on a set of
filters. As an example: the FTB API provides a routine called FTB Connect to be used by every
FTB client to initialize itself and connect to the FTB system. The FTB client must specify various
details including the namespace in which it plans to publish its events. Namespace is an important
concept in the FTB API specification. The FTB API specification imposes no restrictions on the
fault information that an FTB client can publish. While the FTB API specification provides the
interface to publish/subscribe to fault events, the semantics of the fault events are independent
of FTB API specification and must be understood and defined by a software prior to using the
FTB interface. To this end, the FTB API incorporates an event namespace, portions of which

5

System

Monitoring
Software

System

Management

Hardware

File Systems

Job
Scheduler /
Resource
Manager

Advanced
Networks

libraries

&

Check−
pointing

Software

HPC

Middleware

Applications

Diagnostic
Tools

Event
Analysis

Universal
Logger

Operating

Automatic
Actions

Linear
Algebra

Libraries

System

Networking
Fault Tolerance Backplane

Figure 1: CIFTS Framework

are reserved for the different FTB-enabled software programs. In the FTB framework, prior to
publishing any event the FTB client must specify the namespace where it plans to publish its fault
events. Similarly, FTB clients wishing to receive events need to ensure that they have registered
their interest to receive events in the correct namespace.

The CIFTS team released the FTB API version 0.5 in June 2008. Based on community and
vendor feedback, we are currently working on the FTB API version 1.0. Versions of the FTB API
specification can be found on the CIFTS website [21].

4.2 The FTB software - The CIFTS FTB API Implementation
The “FTB software” is an implementation of the FTB API specification developed by the CIFTS
team. The FTB software was first publicly released in Sept. 2008. Currently based on the FTB
API version 0.5, the FTB can be viewed as an asynchronous messaging backplane that allows
communication of fault events among the different HEC software systems.

The FTB physical infrastructure is based on a distributed architecture, as shown in Figure 2.
The FTB framework comprises a set of distributed daemons, called as FTB agents. These agents
incorporate the bulk of the FTB logic and manage the bookkeeping as well as communication of
events throughout the FTB system.

The FTB agents, on startup, connect and organize themselves into a tree-based topology. The
initial topology construction takes place with the assistance of the FTB bootstrap server which
provides information that helps every FTB agent determine its parent FTB agent and position in
the topology tree. During its lifetime, if an agent loses its parent, it can connect itself (and its
children and its attached FTB clients) to a new parent in the topology tree, making the topology
tree self-healing with a certain level of fault tolerance. The bootstrap server can also be made fault
tolerant to a certain extent by keeping track of the topology information and specifying redundant
bootstrap servers. The FTB agents subsequently connect to the existing agent topology tree when

6

FTB Agent

FTB Agent

FTB Agent

FTB Agent

Connect

FTB client

Subscribe

Connect

Publish event

FTB client

FTB Agent

Bootstrap

Figure 2: The FTB Architecture

they startup. The FTB clients, on startup, connect to a local FTB agent by using FTB routines (as
described in the FTB API specification). Alternatively, in the absence of a local FTB agent, the
FTB client connects to a remote FTB agent by enlisting the assistance of the FTB bootstrap server.
Once a connection is established, the FTB client can publish events and subscribe to receive events
using the FTB Client API.

The FTB agents keep track of all registered FTB clients. The agents also keep track of all FTB
client subscription requests, along with the subscription criteria. They perform incoming event
matching against subscription criteria and send events to the correct destinations and clients. In
addition, they keep track of their tree topology and metadata associated with maintaining connec-
tions and routing information. In summary, the majority of the FTB logic lies with the FTB agent.
Further details about the design of the FTB implementation can be found in [36].

Details on CIFTS and the FTB software implementation have been a focus of several talks and
presentations [28–35] given during this project.

4.3 Improving Fault Tolerance in Open MPI
The Message Passing Interface (MPI) is one of the most important programming models in high-
performance computing. MPICH2, [23], Open MPI [45], and MVAPICH2 [44] are three of
the most popular MPI implementations that heavily dominate the high-performance computing
space [19]. Our focus in the project was on the following areas:

1. Standardizing faults information and conditions under which these faults are published by
the respective MPI implementations.

2. Integrating Open MPI with the FTB.

3. Improving the fault tolerance and resiliency of Open MPI.

The rest of this section discusses the progress made in these three areas.

7

Standardized FTB Events for MPI Implementations With input from MPI users and develop-
ers the CIFTS team standardized fault events to be subscribed to and published by MPI libraries
and runtime systems. The FTB MPI Standardized Events document version 1.0 [46] was released
in November 2010 at the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’2010) and describes a dozen fault events and their relevant attributes
that are relevant to all MPI implementations. These fault events are categorized as (1) error events,
such as failed, unreachable, or aborted processes or failed migration or checkpoint/restart opera-
tions; (2) warnings, such as transient communication errors; and (3) information events, such as
notification of completed checkpoints or process migrations.

The MPICH, MVAPICH, and Open MPI groups have integrated FTB into their MPI imple-
mentations and are compliant with the FTB MPI Standardized Events document version 1.0.

Checkpoint/Restart in Open MPI Indiana University has been working closely with both the
user and developer communities to improve the stability and performance of checkpoint/restart im-
plementations in Open MPI, an implementation of the Message Passing Interface (MPI) standard.
Our goal in this regard is to produce and maintain a high-quality transparent checkpoint/restart
implementation in Open MPI that encourages both application developers and researchers to ex-
periment with it in their domains. In addition to correctness and performance tuning we have
demonstrated that Open MPI is able to checkpoint and restart a series of benchmark and real MPI
applications, including the NAS parallel benchmarks, High-Performance Linpack (HPL), Parallel
Ocean Program (POP), and the GROMACS and Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) molecular dynamics package. In an effort to support a variety of platforms
and improve performance we are expanding our support for interconnects beyond Ethernet to in-
clude shared memory and high speed interconnects such as InfiniBand and Myrinet.

We have added support for a variety of interconnects including TCP/IP, shared memory, Infini-
Band and Myrinet. A unique feature of our research is the ability to reconfigure interconnect pair-
ings for improved performance on restart. This work was included as a part of the Open MPI v1.3
release series. We have also added support for checkpoint/restart-enabled transparent proactive
process migration, and reactive automatic recovery. The proactive process migration feature will
allow end users to move processes away from predicted failure and planned system outages. The
reactive automatic recovery feature will provide end users with a transparent, automatic recovery
mechanism when an unexpected process failure occurs. Alongside this work, we have improved
the checkpoint stable storage mechanisms to support centralized and staged techniques. Staging
checkpoint files to stable storage overlaps the writing of checkpoint files with application execution
ultimately leading to a significant reduction in application performance overhead. As part of the
staging technique, we have added caching and compression of checkpoint files. Caching check-
point files improves automatic recovery time by referencing a local copy of a checkpoint when
available. Compression often reduces the size of the checkpoint files and results in a reduction in
the time to checkpoint and disk space required to do so.

Currently the Open MPI project’s checkpoint/restart functionality depends upon the Berkeley
Laboratory Checkpoint/Restart (BLCR) project. BLCR provides Open MPI with a system-level,
transparent single process checkpoint/restart service. Over the course of this project we have col-
laborated with the BLCR project to stabilize existing interfaces, and experiment with new inter-
faces. One such interface collaboration is the hook interface provided to support checkpoint/restart-

8

SnapC
Local Coordinator

Outside World

SnapC
Local Coordinator

orted 0

orted 1

orted 0

orted 1
SnapC

Local Coordinator

MPIRUN

shell$ ompi-checkpoint PID_MPIRUN

SnapC
Global Coordinator

SnapC
App. Coordinator

O
M

P
I

C
R

C
P

OPAL CRS

ORTE FileM

app 0...N

{Global Snapshot Reference}

{checkpoint options}

(SnapC Global Coordinator
requests SStore sync

causing a remote file transfer)

SnapC
Local Coordinator

Distributed Application

O
M

P
I

C
R

C
P

Local
Disk

Local
Disk

Stable
Storage

B

A

E

F

D
C

ORTE SStore

ORTE SStore

Figure 3: Illustration of Open MPI C/R frameworks participating in a distributed checkpoint of
a running MPI application. 3D boxes represent nodes containing white application processes.
Rounded boxes represent runtime support processes.

enabled parallel debugging. The collaborative partnership between the Open MPI and BLCR
projects has allowed for peer evaluation of each other’s software on different platforms and in
different application domains than typically available to each individually. Through this collabo-
ration we have helped investigate and solve a number of software bugs in both the Open MPI and
BLCR projects resulting in a more stable checkpoint/restart experience for both single and parallel
processing applications. Alongside this work, we have also improved the checkpoint stable stor-
age mechanisms to support centralized and staged techniques. Staging checkpoint files to stable
storage overlaps the writing of checkpoint files with application execution ultimately leading to a
significant reduction in application performance overhead. As part of the staging technique, we
have added caching and compression of checkpoint files. Caching checkpoint files improves au-
tomatic recovery time by referencing a local copy of a checkpoint when available. Compression
often reduces the size of the checkpoint files and results in a reduction in the time to checkpoint
and disk space required to do so.

The most time consuming component of the software development life-cycle is application de-
bugging. This year we added support for checkpoint/restart-enabled parallel debugging in Open
MPI that can dramatically shorten the debugging cycle. Software developers can save hours or
days of time spent debugging by checkpointing and restarting the parallel debugging session at
intermediate points in the debugging cycle. We also introduced a variety of checkpoint/restart
application interfaces through the Open MPI Extensions interface. These interfaces provide ap-
plications with the opportunity to guide the checkpoint/restart related operations to best suit the
application requirements. In addition to a checkpoint and a restart interface, we also expose inter-
faces to migrate processes within an MPI communicator, and receive notification of the progress
of a checkpoint.

9

Open MPI Runtime Environment (ORTE) The underlying runtime support layer of Open MPI,
known as Open MPI Runtime Environment (ORTE), has undergone considerable development by
the Open MPI team members over the past year, primarily focusing on improving scalability and
reliability. We participated in some of the ORTE code rework and re-factoring through the de-
velopment of the Runtime Services Layer (RSL) interface. The RSL is a software engineering
approach to isolate the rest of the MPI implementation from the internals of ORTE, and ultimately,
if adopted, will allow Open MPI to utilize different runtime environments. Although the RSL has
not yet been incorporated into the mainline Open MPI code, it has greatly influenced the develop-
ment and simplification of ORTE itself. We continue to work with other Open MPI developers to
improve ORTE to not only be more scalable, but also more robust and fault tolerant on the system
targeted by the Coordinated Infrastructure for Fault Tolerant Systems (CIFTS) project. We added
support for process fault recovery into the Error Management (ErrMgr) framework. The fault re-
covery extensions allowed us to add support for checkpoint/restart-enabled, transparent proactive
process migration, and reactive automatic recovery. The new framework also supports MPI ap-
plications that choose to run-through a process failure by stabilizing the runtime environment and
continuing execution. This stabilization recovery feature supports ongoing research into fault tol-
erant MPI semantics, currently under consideration by the Fault Tolerance Working Group in the
MPI Forum.

The stabilization recovery feature directly supports our efforts to support task farm and man-
ager/worker styles of parallelism in Open MPI. At Supercomputing 2009, we presented a modified
version of the POV-Ray parallel application that was able to use the stabilization recovery feature
and the CIFTS Fault Tolerance Backplane (FTB) to run-through a process failure and correctly
finish execution. We refined MPI and CIFTS interfaces, and improve the robustness of ORTE to
support fault tolerant task farm and manager/worker styles of parallelism. One of the other demos
at Supercomputing 2010 involved proactive migration of MPI processes due to predicted failures.
Impending failures were predicted by monitoring FTB for fault information. We also demonstrated
reactive fault tolerance in Open MPI where an MPI job sustained execution despite failures owing
to the new run-through stabilization features in the runtime. In line with this work, we have devel-
oped a test suite for the task farm scenario that will be added to the nightly Open MPI regression
tests. This test suite checks for the ability of the MPI implementation to allow a specialized MPI
program to continue to run after a node failure.

Integrating the FTB with Open MPI The FTB provides a common shared infrastructure for
system software components to exchange fault information and coordinate responses through a
uniform interface. High Performance Computing (HPC) system software, such as Open MPI,
use the FTB to interact with other FTB-enabled components in the system to add to the overall
resiliency of the system.

FTB support in Open MPI uses the FTB client API (version 0.5) specification to exchange
fault-related information with the FTB. Oftentimes, the MPI implementation is amongst the first
to detect faults in a running parallel application. Upon fault detection (or suspicion), Open MPI
can relay the information about the fault to other components over the FTB and/or act on the
fault locally. Additionally, Open MPI may listen to events from other FTB-enabled components
and handle these events depending on the type of the fault or the action requested. For example,
Open MPI can initiate a coordinated checkpoint of the running parallel processes on receiving the

10

corresponding event from a FTB-enabled job scheduler.
The FTB support in Open MPI is implemented as a component of the Notifier framework in

ORTE. The Notifier framework exports information, warnings and errors related to Open MPI-
detected problems to one or more Notifier components which are selected at runtime. Leveraging
the infrastructure provided by the Open Portable Access Layer (OPAL) SOS interface, Open MPI
can control the way that these events are reported. Fault events can be reported to multiple Notifier
components, including the FTB, and then acted upon appropriately by calling the necessary inter-
nal library routines. Further, OPAL SOS provides Open MPI the opportunity to filter, aggregate or
coalesce events according to severity and others parameters. The FTB Notifier component is avail-
able in the Open MPI trunk (as of r20655). It is currently deemed experimental and full support
for FTB is expected to be included in the next feature release of Open MPI in the v1.5 series.

Multi-level content-addressable checkpoint file system We developed a multilevel, content-
addressable checkpoint file system which achieves in-flight checkpoint data reduction across all
compute nodes through compression and elimination of duplicate blocks over a series of check-
points. Through a detailed analysis of checkpoint dumps, we assessed the benefits of data reduction
for scientific applications that are representative of production workloads. The reduction in check-
point commit latencies was shown to minimize the total execution time (including the dump, restart
and rework times) of an application. We further implemented an analytical model for multilevel
checkpoint/restart I/O to develop insights into co-design of exascale storage infrastructure.

4.4 Fault Tolerance and the MPI Standard
Indiana University is currently an active participant in the recently reconvened MPI Forum. We
assisted in the standardization process for MPI 1.3 (July 2008) and MPI 2.1 (September 2008).
We are currently assisting with the current MPI 2.2 standardization effort. In addition we are
participating in a number of MPI 3.0 working groups, each charged with investigating interface
and wording adjustments to better support current and next generation HPC applications.

The MPI 3.0 Fault Tolerance Working Group is charged with investigating MPI standard ad-
justments that will enable applications to explore a wide range of fault tolerance techniques. A
number of proposals have been brought forward for discussion including two from Indiana Uni-
versity.

The first proposal presented for discussion is the addition of a checkpoint/restart quiescence
API. This API gives the application control over when and how checkpoints occur from within the
application. This level of control will allow applications to better use a wider variety of check-
point/restart services available to them at runtime, including user and system level services. A
prototype implementation is available as part of the Open MPI Extensions interface in the current
trunk, and will be incorporated into the v1.5 release series. The proposal was presented to the Fault
Tolerance Working Group in early 2009, and the resulting feedback was integrated into the pro-
posal. The working group highlighted some portability issues with the interface that are currently
under investigation by the concerned parties.

The second proposal is improvements to the process creation and management interface orig-
inally presented in MPI 2.0. This proposal strengthens the wording in the standard regarding
MPI implementation expectations in the presence of failures. In addition, this proposal presents

11

a nonblocking process creation and management interface. The nonblocking interface will allow
an application to overlap process creation and connection establishment with computation. These
two parts of the proposal will allow applications the ability to prepare for and react to the failure
of a process depending on the applications requirements in a standard way across MPI implemen-
tations.

4.5 FTB support for system components
Error logger The syslog protocol has been the de-facto industry standard for logging event no-
tification messages generated by programs. syslog clients are bundled with almost every operating
system distribution. Nearly all monitoring services running on networked machines have plugins
that interface with syslog. Given its prevalent usage, several data-mining and analytical tools have
been developed for recognition, aggregation, and correlation of syslog events. It provides a logging
infrastructure commonly utilized by programs and services across the entire software stack. Thus,
syslog provides important information about a system by logging all the events that are config-
ured to be monitored. To leverage the pervasive presence of syslog, we developed a FTB-syslog
software that relays event notifications between syslog and FTB. The software publishes syslog
messages of interest so that other FTB-aware components can subscribe to them and take relevant
actions. Software services that are agnostic of FTB, thus, indirectly act as sources of failure event
notifications to help in making holistic fault tolerance decisions. Further, active decisions made by
FTB components are also logged to syslog for provenance. We have developed an application to
catch every new syslog event based on the syslog configuration and publish it to the FTB by using
the FTB and Python bindings. Since the log formats and configuration policies of syslog vary on
different systems, it is required to make the application generic to coordinate with the target sys-
tems. The FTB and Python binding used for this purpose make it easy to adapt to a variety of the
system logs. To filter events of interest from the syslog stream, we plan to investigate developing a
continuous query language (CQL) that can help in specifying precise constraints and range-queries
on the generated events. This would help in finding surprising patterns in the incoming data stream,
establishing correlation between distinct temporal events and reducing the overall noise in events
published to FTB.

Resource Manager Simple Linux Utility for Resource Management (SLURM) is a popular,
open-source resource manager and job scheduler developed by Lawrence Livermore National Lab-
oratory. SLURM is actively managing resources on several of the TOP500 supercomputers includ-
ing the Tianhe-1A supercomputer at NUDT and the Tera-100 at CEA. SLURM is designed to sup-
port heterogeneity of resources, be portable and extensible through its use of a sophisticated plugin
system and tolerate system failures including node failures executing its own control functions.
It continues to be actively developed to support new architectures, interconnects, authentication
mechanisms and job scheduling policies.

We extended SLURM by adding a new notifier plugin to report events to the FTB. Notifica-
tions related to monitoring of resources, scheduling of jobs and failure events internal to SLURM
are supported. The SLURM controller daemon (slurmctld) publishes these events to FTB through
its various hooks using the notifier plugin. FTB-aware components interested in these events can,
thus, track resource changes, job status and SLURM failures. SLURM can consequently be con-

12

trolled externally through its command-line tools, a library interface or using an external scripting
language. FTB integration of SLURM provided us insights into commonly occurring resource and
job failures, which led to the initial efforts in FTB fault event standardization pertaining to RM/JS.
In addition to the supported failure and status events, we plan to add support for FTB event noti-
fications related to resource usage and accounting, QoS parameters and overall job statistics. This
information is invaluable in improving the cost-effectiveness of the machine and taking intelligent
decisions about management of the available resources. With the planned addition of dynamically
resizable jobs and resource pools using hot-spares in SLURM, we intend to extend it to listen for
event notifications from other FTB-aware components to offer more tightly-coupled fault toler-
ance.

5 Outreach and Education Activities
The CIFTS team has been involved in various outreach efforts during the CIFTS project. Following
is a comprehensive list of all efforts:

1. The team has designed publicly accessible web resources for dissemination of CIFTS-related
research: (1) CIFTS web page [21] provides overall status and progress of the project, (2)
the CIFTS wiki [22] serves as a repository for all detailed documents for all aspects of
CIFTS research, including weekly/other meetings minutes, (3) the CIFTS SVN [18] serves
as a repository for code development, presentations, papers, meetings, and supporting doc-
uments, and (4) the CIFTS TRAC [20] is used for tracking bug fixes, future features, and
enhancements. Most of the information related to the project is readily available to provide
transparency and foster collaborations.

In addition, the software that has been FTB-enabled has individual project websites that have
also been used for information sharing.

2. The CIFTS team has over 100 outreach materials in various forms (see bibliography for
detailed CIFTS-related articles and talks). In particular, we have published approximately
30 publications, presented 40 talks and 5 posters, and conducted Birds-of-a-Feather sessions
and round-table discussion sessions every year for the past four years at the IEEE/ACM
Supercomputing conference, and we have given more than 25 demonstrations of our research
at various venues. The FTB design paper [36] has been cited two dozen times and by several
independent sources, in less than two years. The community-targeted Birds-of-a-Feather
sessions held at the IEEE/ACM Supercomputing conference [24–27] have been popular,
with more than 50 attendees each year.

3. The CIFTS team has encouraged and fostered extensive collaboration between their internal
team as well as with external teams at other institutes. Approximately half a dozen students
belonging to CIFTS institutes and external institutes such as the Illinois Institute of Tech-
nology and North Carolina State University have collaborated as summer interns or research
assistants on various aspects of the CIFTS framework.

13

4. Members of the CIFTS team have collaborated with several vendors and other research
groups. Prominent among them are our collaborations with the SLURM, TORQUE, FE-
DORA, and DEBIAN teams, which have resulted in integrating support for FTB-enabled
software such as BLCR with their software. Equally noteworthy are our collaborations with
IBM and CRAY, which have resulted in outlining clearer goals for end-to-end fault manage-
ment in future systems as well as defining the new FTB API 1.0 specification.

5.1 Students Supported
The award supported four graduate students and three postdoctoral researchers at Indiana Univer-
sity.

5.2 Publications
[1] Rinku Gupta, Pete Beckman, Hoony Park, Ewing Lusk, Paul Hargrove, Al Geist, Dha-

baleswar K. Panda, Andrew Lumsdaine, and Jack Dongarra. CIFTS: A Coordinated infras-
tructure for Fault-Tolerant Systems. International Conference on Parallel Processing (ICPP),
September 2009.

[2] Joshua Hursey, Chris January, Mark O’Connor, Paul H. Hargrove, David Lecomber, Jef-
frey M. Squyres, and Andrew Lumsdaine. Checkpoint/restart-enabled parallel debugging.
Proceedings of the European MPI Users Group Conference (EuroMPI), September 2010.

[3] Joshua Hursey and Andrew Lumsdaine. A composable runtime recovery policy framework
supporting resilient HPC applications. Under submission, 2010.

[4] Joshua Hursey, Timothy I. Mattox, and Andrew Lumsdaine. Interconnect agnostic check-
point/restart in Open MPI. In HPDC ’09: Proceedings of the 18th ACM international sym-
posium on High Performance Distributed Computing, pages 49–58, New York, NY, USA,
2009. ACM.

[5] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew Lumsdaine. The design
and implementation of checkpoint/restart process fault tolerance for Open MPI. In Proceed-
ings of the 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1 – 8. IEEE Computer Society, March 2007.

[6] Abhishek Kulkarni, Adam Manzanares, Latchesar Ionkov, Michael Lang, and Andrew Lums-
daine. The Design and Implementation of a Multi-level Content-Addressable Checkpoint File
System. In Proceedings of the 19th International Conference on High Performance Comput-
ing (HiPC 2012), December 2012.

5.3 Talks
We gave a talk at the IEEE Supercomputing 2006 conference about our work on fault toler-
ance [37]. We presented our work on fault tolerance in Open MPI to Sun [39] and to the Innovative

14

Computing Laboratory at the University of Tennessee [38]. We gave three talks at the Supercom-
puting 2007 conference, one each at the Cisco and Indiana University Booths [42], and one during
the CIFTS Birds-of-a-Feather meeting. We gave two talks at the Indiana University Booth at the
Supercomputing 2008 conference about our work on CIFTS [40, 43]. We gave three talks at the
IEEE Supercomputing 2009 conference, one at the Cisco Booth, one at the Argonne National Lab-
oratory Booth, and a mini-workshop at the Indiana Booth [11–13]. At Supercomputing 2010, we
organized a demo at the Indiana University booth and a talk at the Argonne National Laboratory
booth [41] about the integration of the fault tolerance backplane with Open MPI.

[7] Joshua Hursey. Fault Tolerance in Open MPI. Presentation in the Indiana University booth
at the ACM/IEEE SC06 Conference, Tampa, FL, November 2006.

[8] Joshua Hursey. Process Fault Tolerance in Open MPI. Presentation to Innovative Computing
Laboratory (ICL) Friday Lunch Speaker Series, University of Tennessee, Knoxville, Feburary
2007.

[9] Joshua Hursey. Checkpoint/Restart Support in Open MPI. Presentation to Sun Microsystems,
Inc. Tech Talk Series, May 2008.

[10] Joshua Hursey. Fault Tolerance in High Performance Computing: MPI and Check-
point/Restart. Presentation in the Indiana University booth at the ACM/IEEE SC08 Con-
ference, Austin, Texas, November 2008.

[11] Joshua Hursey. A Transparent Process Migration Framework for Open MPI. Presentation in
the Cisco booth at the ACM/IEEE SC09 Conference, Portland, Oregon, November 2009.

[12] Joshua Hursey, Jeffrey M. Squyres, Abhishek Kulkarni, and Andrew Lumsdaine. Open MPI
Tutorial. Presentation in the Indiana University booth at the ACM/IEEE SC09 Conference,
Portland, Oregon, November 2009.

[13] Abhishek Kulkarni. Process Resilience in Open MPI using the CIFTS Fault Tolerance Back-
plane: A POV-Ray Demonstration. Presentation in the Argonne National Laboratory booth
at the ACM/IEEE SC09 Conference, Portland, Oregon, November 2009.

[14] Abhishek Kulkarni. Fault Tolerance in Open MPI using the FTB. Presentation at the Argonne
National Laboratory booth at the ACM/IEEE SC10 Conference, New Orleans, Louisiana,
November 2010.

[15] Timothy I. Mattox. MPI Is Dead? Long Live MPI! Evolving MPI for the Next Generation of
Supercomputing. Presentations in the Cisco and Indiana University booths at the ACM/IEEE
SC07 Conference, Reno, Nevada, November 2007.

[16] Timothy I. Mattox. Research at Indiana University for Reliable Petascale Performance. Pre-
sentation in the Indiana University booth at the ACM/IEEE SC08 Conference, Austin, Texas,
November 2008.

15

5.4 Technical Reports
[17] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine. A checkpoint and restart service

specification for Open MPI. Technical Report TR635, Indiana University, Bloomington,
Indiana, USA, July 2006.

5.5 Web Sites
The Open MPI project maintains several websites hosted by Indiana University, primarily a main
public website, and a developer wiki and bug tracker:

• http://www.open-mpi.org/

• https://svn.open-mpi.org/trac/ompi/wiki

The CIFTS project overall maintains two websites hosted by Argonne National Lab, similarly
split between a main public website and a developer wiki:

• http://www.mcs.anl.gov/research/cifts/

• http://wiki.mcs.anl.gov/cifts/index.php

In addition to the Open MPI and CIFTS project websites, we also maintain a Fault Tolerance
research webpage. This webpage provides documentation and detailed examples for all of the fault
tolerance related work going on at Indiana University.

• http://osl.iu.edu/research/ft/

• http://svn.osl.iu.edu/trac/ftb/wiki/syslog

6 Deliveries and Contributions

6.1 Deliveries
In this project, we undertook the following software deliveries:

• Open MPI with coordinated and uncoordinated fault tolerance

• Fault-aware Open MPI with FTB support

• FTB system components (error logger and resource manager)

• A multi-level content-addressable checkpoint file system

• Distributed testing infrastructure to aid FTB development and deployment

16

References
[18] SVN for Coordinated Infrastructure for Fault Tolerant Systems. https://svn.mcs.

anl.gov/repos/cifts.

[19] Top 500 Supercomputer Sites. http://www.top500.org/.

[20] TRAC for Coordinated Infrastructure for Fault Tolerant Systems. http://trac.mcs.
anl.gov/projects/cifts.

[21] WEBPAGE for Coordinated Infrastructure for Fault Tolerant Systems. http://www.mcs.
anl.gov/research/cifts/.

[22] WIKI for Coordinated Infrastructure for Fault Tolerant Systems. http://wiki.mcs.
anl.gov/cifts/index.php.

[23] Argonne National Laboratory. MPICH2 . http://www.mcs.anl.gov/research/
projects/mpich2/.

[24] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Kulkarni. CIFTS:
Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in conjunc-
tion with the ACM/IEEE International Conference for High Performance Computing (HPC),
Networking, Storage and Analysis (SC,10), November 2010.

[25] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine.
CIFTS: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in
conjunction with the ACM/IEEE International Conference for High Performance Computing
(HPC), Networking, Storage and Analysis (SC) (SC ’07), November 2007.

[26] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine.
CIFTS: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in
conjunction with the ACM/IEEE International Conference for High Performance Computing
(HPC), Networking, Storage and Analysis (SC’08), November 2008.

[27] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine.
CIFTS: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in
conjunction with the ACM/IEEE International Conference for High Performance Computing
(HPC), Networking, Storage and Analysis (SC’09), November 2009.

[28] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk in Argonne
National Laboratory booth at the IEEE/ACM International Conference for High-Performance
Computing, Networking, Storage and Analysis (SC), November 2007.

[29] R. Gupta. Introduction to CIFTS. Talk at the CCA Forum meeting, July 2007.

[30] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Argonne
National booth at the IEEE/ACM International Conference for High-Performance Comput-
ing, Networking, Storage and Analysis (SC), November 2008.

17

[31] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Work-
shop on Fault Tolerance and Resiliency, In conjunction with Los Alamos Computer Science
Symposium (LACSS), October 2008.

[32] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited Talk at
Fermi National Accelerator Laboratory (Fermilab), May 2009.

[33] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Argonne
Leadership Computing Facility (ALCF), May 2009.

[34] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited talk at
University of Chicago, April 2009.

[35] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited Talk at
SIAM Conference on Parallel Processing for Scientific Computing, February 2010.

[36] Rinku Gupta, Pete Beckman, Byung-Hoon Park, Ewing Lusk, Paul Hargrove, Al Geist, Dha-
baleswar Panda, Andrew Lumsdaine, and Jack Dongarra. CIFTS: A Coordinated Infrastruc-
ture for Fault-Tolerant Systems. International Conference on Parallel Processing (ICPP),
pages 237–245, 2009.

[37] Joshua Hursey. Fault Tolerance in Open MPI. Presentations in the Indiana University booth
at the ACM/IEEE SC06 Conference, Tampa, FL, November 2006.

[38] Joshua Hursey. Process Fault Tolerance in Open MPI. Presentation to Innovative Computing
Laboratory (ICL) Friday Lunch Speaker Series, University of Tennessee, Knoxville, Feburary
2007.

[39] Joshua Hursey. Checkpoint/Restart Support in Open MPI. Presentation to Sun Microsystem,
Inc. Tech Talk Series, May 2008.

[40] Joshua Hursey. Fault Tolerance in High Performance Computing: MPI and Check-
point/Restart. Presentation in the Indiana University booth at the ACM/IEEE SC08 Con-
ference, Austin, Texas, November 2008.

[41] Abhishek Kulkarni. Fault Tolerance in Open MPI using the FTB. Presentation at the Argonne
National Laboratory booth at the ACM/IEEE SC10 Conference, New Orleans, Louisiana,
November 2010.

[42] Timothy I. Mattox. MPI Is Dead? Long Live MPI! Evolving MPI for the Next Generation of
Supercomputing. Presentations in the Cisco and Indiana University booths at the ACM/IEEE
SC07 Conference, Reno, Nevada, November 2007.

[43] Timothy I. Mattox. Research at Indiana University for Reliable Petascale Performance. Pre-
sentation in the Indiana University booth at the ACM/IEEE SC08 Conference, Austin, Texas,
November 2008.

[44] Network-Based Computing Laboratory. MVAPICH/MVAPICH2: MPI-1/MPI-2 for Infini-
Band and iWARP with OpenFabrics. http://mvapich.cse.ohio-state.edu.

18

[45] Open MPI Group. Open MPI: Open Source High Performance Computing. http://www.
open-mpi.org.

[46] The CIFTS Team. FTB MPI standardized events version 1.0:
http://www.mcs.anl.gov/research/cifts/. http://www.mcs.anl.gov/research/
cifts/, November 2010.

19

