m—
, 15- 146
Electron Polarization Operators¥* ER
D. M. Fradkin and R. H. Good, Jr.
Institute for Atomic Research and Department of Physics

Iowa State University, Ames, Iowa

- CONTENTS
I. INTRODUCTION III. FOUR-VECTOR POLARIZATION
OPERATOR
1. Preliminary Remarks
10. Definition
2. Notation
11. Generators of the Little Group
3. Physical Interpretations
12. Algebraic Properties
II. THREE-VECTOR POLARIZATION OPERATOR 13. Connection with Three-Vector
Operator
4. Definition
14. Lorentz Transformation
5. Algebraic Properties Properties
6. Eigenfunctions 15. Effect of External Fields
7. Foldy-Wouthuysen Representation 16. Classical Equations of
Motion
8. Density Matrix :
17. Anomalous Magnetic Mo-
9. Covariant Description ment Considerations

% Contribution No. 939. Work was performed in the Ames Laboratory of the

U. S. Atomic Energy Commission.



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



The following pages are an exact
representation of what is in the original
document folder.




,
1. INTRODUCTION

Y Xy

1. Preliminary Remarks

A vvariet); of operators has been used in the‘past_to‘ characterize the éolar_i-
zation of a free Dirac particle and to remc'Jvé the degeﬁerac& that remains after
momentum and qharge have been specified. For example, D.arwinl used the
intrinsic angular momentum opérator g_' , Motvt2 used the ir;trins.ic magnetic
moment operator @9: , and Tolhoek a1;1d deGroot3 considered a linear com-
bination of the two (I - p )g‘ .. In the 'importa..nt application of Mott scatter-
ing the polarization is déscribed in terms of two wave Afunctions, which in the.
non-relativistic limit are eigenfunctions of the spin.

Howeve‘r, it ha‘ls been realized ;:omparatively. recently that the polarization
can be discussed flueﬁtllyr in terms of a four-vector operator which was first
introduced by Bargmann and Wigner4 as the generators of the ‘littie groﬁp,

a subgroup of the gerup of Lorentz transformations. It was also found that
.the polarization could be treated in ter¥ns of"a related three-vector operétor,
first introduced by Stech, 5 which for an electron is 9: in the direction of the
momentum and Bg" otherwise., The propevrties of. .thlese' operators were
develbpedl éspecially by Mi-c;hel and Wightman, 6 ‘Tolho‘ek, 3 Bouchiat and
Michel, 7 and Werle. 8 Some aspects of the_éé op;arators that make them.
useful are: 1) they commute with thé Hé.fniltdnian and 80 corAre spond to an
intrinsic property that doesn't change with time; 2) avs shown in '&etail in -
Sec. 6, any plane wave sfaté'o'f an electrgg or .posit;on is a comprl.etely,

polarized state.
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3
The functions used in Mqtt scattering are eigenfunctions of a component
of the three-vector operator so this operator already has a place in that

theory. Calculations in the sense of this operator have been made for in-

9

ternal conversion electrons by Becker and Rose, ’ and for beta decay elec-

trons and p’ositbrons b)l( Jackson; Treiman and Wyld, 10 by Ebel and Feldman, 11
and by Good and Rose.
It seems now thaf the understanding of the basic properties of these - =

operators is complete and that a resume of their properties might be of some

value. The ‘purpos‘e of this paper is to give a consistent account of the theory
of this type of electron polar-ization,\ with a few ele;mentary examples. The
three-vector i)lolafizatién operator simplifies calculations involving plane
wave states, whereé_s the fou‘r"-vecto:‘ polarizatién oI‘;erator‘ is cbnverllignt
'fo'rl discussing Lo,fentz‘covaria';nc‘e and for taking account of external élec-—
tromégnetic fields. This paper is corre5pondin.g1y'divided i.nto.twd parts."

Thg prolblem of Aprgcess;ion of polarization in external électrorﬁagnetic
Iie1d§ has becn discussed in the small field limit by Tolhoek, 3 and in the
classical (non-qu:antum) ‘_approximatidn by Bargmann, Michel, and Telegdi, 13
using the equations of mbtién of angular momentum in the rest frame. A
treatment of the precession problem from f_irat p.rinciples is given in I
Secs. 16 and 17. | |

Another trea;t':mlent of the basic theory of the polarization operator and
several appliéatiohs :alre given by Rose. 14 A revieQ of polarization pheno-

15

mena and experimental techniques has been g‘i'v‘e‘n: by Pag;:.
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2. Notation
Units such that m = ¢ = 1 are used. Latin indices range from 1 to 3 and
Greek from 1 to 4; Xq3iT . The symbols Ax, Af, K, denote the com-

plex conjugate, Hermitian conjugate, and transpose of any matrix A.
Abstractly, the Dirac matrices are defined by:
'&»V\p * '%",'a“» = r4 8/“, where ";: - '6",‘ )

Auxiliary matrices are defined by:

3"'&4» L=ipY  , Y=Y 0NV and

.A specific representation that will be referred to is:

"‘lz}.%?(;%) . 6=(‘o?|) ) xs:(_c:-:,) ,

where the 2 x 2 9_' "ar_e the usual Pauli matrices:

7= (55) "2(33) a1 (69)

The .electromagnetic field is described by:

AI“‘ = (.& ,A4.-.£cp)

’

, and

B‘L""‘i'elj\( F_)K ' EK": iFKq‘
The Dirac equ;ation is written as

H® = ik (3/07) P



where the Hamiltonian is given by:
H=z e(p-eAY+8 +ed

Here, @ is _-LF\.V. and e is the actual charge, negative for the electron.

Equivalently one may write:
('X‘;ATT»-H\P =0 :
where Tl',: -p.”-eA,‘_ : and .P” is =LR 6/6)(,.,

The charge conjugation matrix satisfies: C*T; C = -'X‘q 'Y‘F'n'_ ,
Ct=c*-Ct - '

= = . The charge conjugate of a wave function and an operator
are:

‘yc:: Cﬁlyl’ . ﬂﬁglcﬁﬂtc

L]

" 3. Physical .Interpfetations

For the free. partiglé, as an alternative to Dirac's Holé theory, one may
interpret the four solutioqs of the Dirac equation as actually descril;ing elec-
trons af_1d positfons »(instead of electrons alone). One must then assign the
operators Wl . (H/IHI) £ o HW(xxp +LRg) . to be the
energy, momentum, and angular momentum, The. operator (H) is dg-
fined in momentum spaée by ‘H\ = (pa"tl\-‘{ ' , ihe positivé root tp be
taken. This point of view is céffied thfqugh consistently in what follé;ws.,
When equations aPply non-uniformly to el‘ec-trons and .po.sitrons, :t‘iie ui)éer
signs apply coherently fc;r électi'oné, and the lower for positrons, The

plane wave solutions for the free particle are therefore written as:
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By Wy axplik'Cpx- wel

=W, ,expls '\.7\-.'(%-:&;- Et))

3

where ﬂ' and W are the eigenvalues of the operators £ and H , and where
% and B are the efgepvalues of the momentum (H[IH!) ﬁ » and the

energy |H| . Here @ and W satisfy the equation:
.
B e wh=z -1,

The * suBscript on \V deﬁbtes the sign of W, and ‘A cha'.r,acterizes the two-

fold polarization _degene‘racy. It is clear that the operator (ﬂll“‘) is#l for

an electron state, and -1 for a positron state. Also, the énergy eigenvalues
E = ".:' W are positive.

The wave equation for the free particle is covariant with regard to charge

éonjugation. Also one finds that
: , e
H°=-H .

so the operators for energy, momentum, and angular momentum are'selfv
charge-conjugé.te: |

S LT

Lnunel®= (vin g

and similarly .fOI; the angular momentum. The theory is therefore covariant
with regard to-charge conjugation both for the wave equation and for the
physical assignmé_nt.s. _ Since' H®= -H ., qﬁe' sees that (-H/“ﬂ); is
| - H_/\H\ * s'o“th'e charge c;)njugate of an eklectron.stat.e with momentum
% is a po;‘itron state'wifh moment‘um_.‘% . 'Fin'all-y, it ié se'en't}‘)’a'.t



T

(g g+p)W,, = tEW, ,

is the equaLtionv satisfied by the plane wave amplitudes in terms of the physi-

cal momentum & and energy E

~/

II. THREE-VECTOR POLARIZATION OPERATOR
4. Definition
For the free particle, the three-vector polarization operator is defined

as: ;}
Q= (- ENRMY B+ Bxlpgx B)
“n = g +(9"§)L(H/IH\)‘9]J§

where é is defined in momentum space as ﬁ/f» . Thus,for electrons/
pos.itrqns, the three-vector polarization operator is ¥ 9: in the direc-
' fign of ‘motion and e.g perﬁendicular to the motion. Explicitly writing

out the Hamiltonian and expanding, one may alternatively express the de-

‘ fining equation as:
(4.2) Q= pg-Hi'¥sp-LGn)Y g R) £
One finds that

“«s» Q%= C'g C=.g

A

so the mterpretatmn of & as the polar1zat10n operator also is covar1ant
with respect to charge conjugation.
5. Algebré,ic Propertics

. ' 'S
If one introduces a right-handed orthogonal coordinate system, . € ,
i ' B -



8

A "~ » [ N .
such that ‘6_;0 §3 = 8'-‘) , ‘&_;X éi = Eij“ §“ , then the components of
»N
Q in this system, 6,‘ = 6' €: , have an algebra similar to that of the

Pauli matrices,

(5.1) Gi0;= &+ LEe O (RN

where H is the free parficle Hamiltonian.

Consequently, for any unit vector, g.,, » the above equation implies:
: , a2
(5. 2) (@ 8) =1

[ e .
so. 9° S has eigenvalues + 1. Also, it is easily verified that Q is
Hermitian, and that any component of Q commutes with the (free particle)

Hamiltonian:

ww—

(5.3) - le,nl= o

Therefore, Q corresponds to an integral of the motion, and a complete set

of eigenfunctions may be found which are simultaneously eigenfunctions of

A

the IHamiltonian and @* S .

A

6. Eigenfunctions
{
Since Q commutes with the Hamiltonian, a complete set of plane wave

eigenfunctions, \}{‘__ AC::'-)": Lpe k(;g_\ exp [;_1-\“(9,5_65"“ may be found such,,‘
that: o o

H we x(s..\z 'GEWQ‘XLE\ ", and
(6.1) o ~ :



where € , A are independently + 1. - It is clear that if ‘-V(g;)’ is an eigen-
Z : SR

: 8 . . a . .

function of Q‘ ] with eigenvalue +1, then W (. $) is an eigenfunction
with eigenvalue -1. One may therefore replace WG,A (?_) by wé (Ag_)

R :
A system in an éigenstate of Q- § with eigenvalue +1 is said to be polar-
. A

ized in the § direction.

One may relate the plane wave eigenfunctions of arbitrary momentum to

eigenfunctions in the rest system. Let these eigenfunctions be simultaneous

eigenfunctions of the Hamiltonian and Q:s: in the rest system, so
. 9? A ¢ a
(6. 2) WY (g = 1 ,
€ "~
© a © a .
(6. 3) BW. (1= eWe (s , and
(6.4 BT s Weidh = W
Definiﬁg the projection operators, Pé , by

6. 5) B P s i+xe(n/e)]
= (RE)'(E+ eEx-preg) - \

where H , & , , are the eigenvalues in the laboratory system, one
g , Y sy

finds, using Eqs. (6.3), (6.4), and (4.1), that:

6.6) H(RW &)

eE(PéLV;Q\) ~, and

(6. 7')', -5 (R Ws)

f

03 BB W) = (B woc)
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Also, is is known that

&*:E’E , PP =R

o (RWIYERW) = WP W = @EY'(s+1)

: ot o
where Egs. (6.2), (6.3), and the fact that W, gg_.-:g\l)e = O , which is

easily proved from Eq. (6.3), is used. Therefore, the wave function given

by

(6. 8) Y = L2e/E+1)]? P W, (%)
satisfies: |

(6.9) WMWY = 1 o
(6.10) HW. ($)= eE W, (§) , and
(611 &8 Wt = W, (8

These functions Wecg) actually are proportional to the rest-system
functions L\)é"(‘s‘\ Lorentz transformed to the laboratory frame. The
, . ° . L
wave function amplitudes, W in the rest system and \P in the laboratory

system, aré related by
W= AW
=\ - '
where .A. 'Y\»_/\_ - O"J“P B“P

and the transformation cnefficients are

S

&, = aqq = E

", and

Riq= Qg = '*L‘%—
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the X -axis having been chosen in the % direction.

In this case the trapsformation matrix is found to be

A: {2(e+1)]} % (E~ %yl + 1)

\
\

When this is applied to the function, Wg () , one can replace % by
€p and 1 by €B so that
W= A W)
= R(E+ 1)) E (E+ canp+ ep) W ch)
= ET \'_2El(:E+1)'_\%- P W, (§)

and this proves the assertion. One sees that if a particle has polarization

" ’ "
S in the laboratory system then it has the same polarization § . in the

rest system. In other words, the polarization of an electron beam is the

same no matter from which Lorentz frame the beam is viewed.

The explicit plane wave eigenfunctions satisfying Eqs. (6.2), (6.3), and
(6.4), in the specific representation of Sec. 2, are:
'M%e edi.‘d’
. - ‘» . g -it,‘h
- , =t b .
Pty = | simieeit? | ¢ |

o N
© \ and
(6.12) :
o]
S @] . '-L-
Qj(g) - "“3.0'\“{\3 e‘i‘ ¢ e.' ,T\
:  con Lo ei'®

_ . : - Y ,
where O , Q) are the polar, azimuthal angles of § From Eq. (6.8),
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the corresponding arbitrary Lorentz frame eigenfunctions are:

and*

. b ., b e x-ET) IR
‘P,('e,ihlm"iee‘ q,i(g\+wn-iee‘ ‘?'{?ﬂe £ )

6.13) 0 . e s | N .
( ) q{'(fg; 5)’,{60&'-26 81.|-¢ \!;i(ﬁ\" 5*"\_4'39 e‘"d’V‘%(.n.ﬂ ec.(f R+ ET)/H

"~ where U, , .V.‘. "?'. are the functions: .
: o[ Ev1) Ray
- T
Ug:i('&\- [E.E(Efl)] o_e ‘X-q-.‘. * and
- -2
(6..14) ' ' '
V | N g’f‘fxt';
+2(@)= [2e(E~A)]® | |
: \(E+1) Kay ’
and Xt\i are the familar "spin-ué", "spin-down'' functions of non-rela-

!

tivistic theor‘y,

(6. 15) K.

7

16 "NTCAY .
The solutions given in Heitler™~ are ?E (Pl-e-'i ) Agg) . in the present
notation, where Heitler's E i O ‘corresponds to ez *l here, and
‘where Heitler's € and ¥ correspond to €Az} and €A=~1 here.

The functions Q... ~of Eq. (6. 13) a1"e' a similarity transformation from-
those of deGroot and Tolhoek. !7 They write A and B in place of
S . 4

coase €E JREIPS L1 ions in te
) and MEQ e R and express the functions in terms

of the physical momentum. Since they define the 'direction of polarization

° ,¢_byv

(6.16) - | B/A :'Ca,mlieei¢ | | o ,

K4
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A
it is clear that their direction of polarization coincides with the vector $
used here.
In general, if the system is in a state described by the wave function Wetg) s

[
- then the expectation value of Q is 5 . Symbolically,

1' ~ "~ "~
(6.17) P5) O Pusy =
This may be easily proved, since from Eq. (5.1),
r'S a
(0310 + @(o-3) = 2}
d jon with Pt (3 P, (s he left and right yield
and operation wit e(;_) ) e (%) on the left and right yields
the result by virtue of Eq. (6.11).

Also, any plane wave electron or positron state is a state completely po-

N
larized in some direction §. .. To show this, considcr the expansion of an
[ ~
electron state X in terms of qu (e3) , @,‘, (-gs) , which for con-

venience are studied in the representation of Eq. (6.13). Then

™ .
(6.18) Xep)= ae€ U..tp) + 2-e'f U,y (p) ,
where a , 2, o, @ , are real numbers, and a!-b,Q," =1

If one take é

ae= eitPlg, voetit
k N Li(ae Yy
etz ertlrd cevl o€ B¢

then’this has a solution, 6, ® where SA'n\'L'_O'.' a., cod %9 tQy , and "

¢ = o-g . Conséquently,

Liusp) .o ‘
(6.19) Kepy= et T Wad) .
and since wave functions are only defined to within a phase factor, the asser-

tion is proved.
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7. Foldy-Wouthuysen Representation

The three-vector polarization operator assumes an especially simple

form in the Foldy-Wouthuysen 18

representation and many of its properties
become evident in that representation. In the specific representation of‘

Sec. 2 the free particle Hamiltonian contains even and odd operators--odd
operators being matrix oi:erators that mix the upper and lower two compo-

nent spaces of the wave function (e. g. 'X\S , oL ), even operators being those
4 . —

which do not effect this mixing (e. g. p 0 G ). The purpose of the FW
transformation is to obtain a rej:resentation in which the Hamiltonian is an
+ ‘

even operator, so that electron and positron solutions are cleanly separated
into the aforementioned two-component spaces,
Any operator, A, in the FW representation is:

H -i5
etSA et

(7. 1) pr

where. the desired unitary transformation is explicitly:
| siS | .
(7.2) et = lmi(misn) e [e(mi+1) + ¢ p]
Performing the indicated transformation, one obtains:

(7.3) &) X}

a-Fw_ o~ “D

Hew = B 1HI

The upper/lower two-component spaces in the FW representation are associated

with the Pauli non-relativistic two-component theory of the electron/positron.

One sees, therefore, that the Pauli theory equivalent of the three-vector po-

larization operator is ¥0 ( = +1 for electrons/positrons). It is also
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seen that the algebraic properties of the three-vector polarization operator

follow easily from Eq. (7. 3).

8. Density Matri.x ~
In scattering problems, where incoming and outgoing particles are treated
asymptotically as free particle wave states, it is useful to have an expression
for the statistical density matrix!9 as a function of the average poiari'zation
:'i ‘of the cohs'ideféci ensemble of particles.

In general, the electron/positron density matrix for an ensemble of single

parficle systems with definite energy E and momentum % is given by

Az ,~%

(8..1) f’:=‘z R AT LMTE Y

. .
where Pg) is the probability the particle is in polarization state A 3

ﬁsing Eq. (6. 8), one may write

A3,

P, = [eel(es1] R (Z pﬂW;(Ai\‘\':?(Vi‘) R ’

which, in cuonsequence of Eq. (6.3), is cquivalent to

(8.2) P = E[z(s*i)]'"R_ (el (Z ‘P,,‘W:(Ai\\i’:*(k'm('tﬁ) R

In the specific representation of the Dirac'matrices given in Sec. 2,

o ..ot .
("'—'G)Z:'P“L\'t (xi\l&: (A}) is of the form

(x9) o« (2%

for upper and lower signs, respectively. Here, X is a 2 x 2 matrix and
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t}}erefore,m'ay be written as
(18 )(A: +'By- T) .

where A¢, and B-,. are still to bé determined. This gives

(8. 3) P;_ = e [z(éu)]“ B ()AL +By )1 4p8) Py
Finally .-.At an; B, are evaluated from the relations

Tr({p,) =1 ,

EOXAE SR -

which yiéld the result that At = ";: ) ‘ + : L',_ E Consequently,

the plane wave density matrix is:
A ’

P£o= E[aED]'R, (14 PN1: B g)12p) By

(8. 4)

1}

@eEy'[Etprug* E’ 3% Py
+E(P-Bg) +ipL- (P 3;) *E (g ) g)
- (€2 (B %X g 4) )

* The expression for the density matrix ;:ontaining the iarojectiori’ operators

20

was given by Mihlschlagel and K8ppe; the expanded form by Tolhoek and

deGroot. 3

9. Covariant Description

Michel and Wightman6 introduced the operator

9. 1) | G =i am,

MW
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" to'describe the polarization of a plane wave state of a free particle. Here
. mp is defined to be a four-vector with components § , O ) in the rest

system of the particle. [It is clear, thgt mum

\ is unity and thgt %)“ Moy

is zero since %" is (-0, i.. )} in the rest system.] This operator is equi-

. ~ .
valent to Q° §_ as shown below,

The components of ™ in the laboratory system are

m = § + (E« ‘.\.)-‘(%-g_) % :
(9. 2) . . .
| Ma= L% 2

As long as ml‘ directly multiplies a plane wave solution of the Dirac equa-

tion one can replace it by m" R defined by

A ‘ -l A |
| ,'L\"’P: S +",(\H\+1) (ﬁ-g).& ,
(9. 3)

o Myop = LerS (H/W)
i .

/Here e is =th 2 and these operators.have the properties

’

| Mpop Mpop = L S
(9-4) o |
Moo+ LMy

A direct consequence of Eq (4. 2) is that

(9.5) LM, o = ©-s
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One sees then that \OMW , defined for a plane wave state, is equivalent to

(LY
O.s
~'~

when opefating on the state function.

III. FOUR-VECTOR POLARIZATION OPERATOR
10. Definition

~Ffo'r the fre‘e,;partic'le,‘ the four-vector polarization operator

fined to be |
T = % (LY -p£)
= 80 -
(10. 1) eg s R :
“) . .
=lg g
“This is closely related to the operator
(10. 2 = -
{ ) T}‘BW = =z E’Pwv Y@ T‘n ‘Pv
which was first discussed by Bargmann and Wigner. = In fact, as a conse-
"~ quence of the relation

(10;3) 'X‘,,.'&’\.Jpp"-' 'Pﬁ- %E,aenu?s?pw‘n ‘PD

one find_s that

(10. 4) T

,‘B\,“: 'X\S'(i"rl‘"f/‘\ * TS'X‘F‘('Y“;‘P,,-L.) .

N
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Therefore, when applied to solutions of the Dirac equatidn. the operators arne

equivalent.

11. Ge'nerators of the Little Group
The components T,, are the generators of the little groﬁp, the subgroup
of homogeneous Lorer;tz transformations that leave the four-vector fi» of
a plane wave state unchanged. This was pointed ou§ in _then,general ca'se of
arbitrary spin and mass by Bargmann a.nd Wigner.

To sce this in detail here, consider the infinitesimal Lorentz transformation

. ,‘
(11.1) X = Quu Xp = (6,0 +8uu) Xu '

where §,gv'-‘- - §nﬁ are infinitesimals. The corresponding wave function

transformation is
' S ’ T
(11.2). Pxr= APy

where infinitesimally

\ A

(11.3) A= 1+ %grevrx\f

Substituting Eqs. (11.1) and (11.3) into (11.2), and expanding ll’(x,‘- gpmxl))
~about LP _(%P) in a Taylor"s‘ series, one obtains 'gto first order in in-

finitesimals)

(11.4) \Pf(x\: [1+ g,e(g'x‘,v‘,-xe é/a»x,)] W xy.

For a plane wave state of a free particle of specified four-vector JPM ,
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the wave function has the form

(11. 5) P (w) = LP(P») 'eiﬂ““"/“

If only those homogeneous proper Lorentz transformations that leave .P»

unchanged are considered, then

(11.6) | SupPu= O .
.so that
Y ; ' .
V)= (1'*?;69'»4'.‘\9)@(“).

Using Eqs. (10.2) and‘(ll.b), it may easily be verified that:

£D/APA g}ke T; q (») = §¢'P v“ Tp APu q.)(*)
Thus, for the eigenvalue | f}»* O , one obtains

' ' . -4 , '
(11.7) \P (r) = [1 +* (Qf\‘u) EU’P; g)“PT\]q-’(ﬂ ; no sum on M .
'Eq. (11.6) implies that only three infinitesimal parameters are independent,
which, for a given P , may be taken as ely-pk E,.P . Therefore, the

operators T)« are the generators of the little group.

12. Algebraic Properties

The operators T,‘ ‘satisfy the equat{ons
12.1 , = : ,
( ) | | T,, T/A | 3
(12.2) T £+ it T,H=0 :

nzs [ H] =0
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The operators T._ are of primary interest because Eq. (12. 2) can be used

to express T4 in terms of them. Their algebra is involved with that of

the operators S;" defined by

(12. 4) Si® Tl + €;n M Pr

In detail one-finds: |
[T;,T;,]__-
s
[si. ;) = 2L €5 (Skv Syppd

LT, = 208G peg)

2i (€jn T Ejam Ty pampr)

[s,T1], =2 S;j H
[Si, S), = 2Ls0a ) - pigy )
[Ti.p H:l+ = 2(SK*SJ‘PJ‘Pi.) , -and

(s, HY, = 20+ T - 2T 0pp; .

There is the relation

T-9:97T

Lo T VY

2
>t
P
S
+
i
T
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between the polarization operators, the angular momentum operator

-J = ‘)_S X.{E -ﬁ-‘iT\g:

Aps

and Dirac's ope rator?l

W= gl g (xxp) +h]

The charge conjugated four-vector polarization operator is.

T = C'I’C = T

T =C"T,Cc=-T,

13. Connection with the Three-Vector Operator

The relation between the operators is

T=0+ (M~ 1)(O.p)p ,

(13.1)

To=t (W) Q- n

as is easily verified. The connection between T,A and Q is the same as
A
the one between mﬁ"P’ and §_ , Eq. (9.3). Combining Eqs. (10.1),

(9.4), and (9.5), one finds that

(13.2) T/A Q.

tn>

Muop =
Therefore the wave function l}{, (‘é) describing a plane wave state

[
po?lanzed in the §_ direction is also an eigenstate of T’. m,. op
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. ) ® ~
(13.3) T P tdr= O (8
To find thé expected value of T’. one observes from Eq. (5.1), that

[e,e8],=2

A

1>

so that Eqs. (13.1) yield:

1 17} 4

1,

‘(13.4) [Tp.Tva@]a, = Y.T , O
2 P Muen

The result of té.king the expected value of this last equation is

t

T " '’y -~
3.5 BUE) T Py td) = W) muep Watd)
| .

R .
'where,mr' and § are related by Eq. (9. 2).

It is clear from Egs. (6.17), (13.5), and (9. 2) that the following inter-
i .
.pretation of these operators can now be made: For a plane wave state, the
thrée-vector polarization operator g is the laboratory system operator
corresponding to the direction of polarization g in the rest system of theA
particle; the four -.ve.ctor polafization operator is the laboratory system opera-

tor corresponding to the four-vector which is the Lorentz transform of

~n
( _S_ , O ) fromthe rest system.

14. Lorentz Transformation Properties

A

Since ."/“,~ commutes with the Hamiltonian the expectation values

(14.1) T.y = s\yt-‘-ﬁqj | ’
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where B is any solution of the Dirac equ;tion ;':l'nd the integral extends over
all space, are constant in time. The {(T.) are real and (TQ) is ;})ur,e
imaginary. It is interesting to inquire into the tensor transformation pro-

perties of these quantities.

Let the expectation values be defined in a different coordinate system by

! lt ¢ ’
(14. 2) (T.) = fLP T, W , .
It is immediately clear that for space rotations (T‘) 1s a vector and
<T4) a scalar. Pure Lorentz transformations can be easily discussed

infinitesimally. The transformation is

’

)3

= X-VvT

't': 't-‘\[.

1X

,.and
‘ ’ '
(14.3) Q=P+ v. (toP +x sP/ot -3 Q) -

On substituting Eq. (14. 3) into Eq. (14.2), replacing a¥ /et by -LARHYP

and simplifying, one finds

(Y= (TLY + v €Ta)

Ty = (Ta) - iy ()Y

which are the caorrect rules for a Lorentz four-vector.
For the space reflection

&':'-2(_ ' t' =T
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one may consider either the usual wave function transformation

W) = LT Wen

or the Wigner-Landau combined inversion

-~

i . ®,,, ¥
Wik = L, CT W x)
In either case the result is

: p . ,
Ty =CT) , KTz - (T2
Finally for the time reflection

%' = % v/ -t

-
-

the wave function transformation rule is

\P (X'):‘. 'K‘q'Fs C*q) (7')

and it is found that

(Y= - (T ) (Te)'= (Tq)

In summary, for the general Lorentz transformation
;

/

the expectation values transform according to the rule

(Y = (dat ) oy €T

The reflection properties of (T;) are the same as those of angular momentum.
. ‘ ‘ =2,
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15. Effect of External Fields

The four-vector polarization operator can be generalized to the case of

e
a Dirac electron in an external electromagnetic field. The operator is then

-~ defined by

T, = s (i - )

"

(15. 1) BoL-Yem

Ty = ¥ (L% -tH+ied)

Lo T

- A

This operator has the properties

(15.2) T.T.=3+ehagB .
(15.3) | U.I,--L(H-eq;wq = e'F\g_L"B_ ,

(15.4) [1‘” H],:" .‘_eAT\ cxB -ceh 't‘g(g_a-a,»_;/n) , and
(15.5) [Ta,H) = -eh g- (E + 3A/2T)

Consequently the Heisenberg equations of motion are found to be

" dX/dt = e(gxB - ¥E)
(15. 6) |
dTq/dt = te g-E

These equations can be accumulated into the form
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(15.7) AT,./&C= P P F,uv

In these three special cases there are polarization integrals of the motion:

(1) If E is zero, Tq is an integral.

>

(2) If E is zero and the magnetic field has a fixed direction B , then ’1'4

A

and I B are integrals.
R A t
(3) If B is zero and the component of E in some fixed direction !t_ is zero,
(o)
then ‘I_' Y is an integral.

16. Classical Equations of
Motion

Eq. (15.7) gives the equations of motion of the four-vector polarization.
One is often interested in the analogous equations of motion for the expeqt'ét'ion
‘\‘ralxt‘ie of the polarization of a particle which is localized so that the wave
function is a packet. In this limit the rate of change of the polarization can be
expressed in terms of the external fields and the polarization itself.

One considers a particle corresponding to a wave function which is essen-
tially non-zero only over a small spacial extent. This packet moves through
space as the particle moves through space. It is assumed that the external
eleétromagnetic fields and potentials do not vary appreciably within the packet
and - may be represented by mean values,‘ where the mean values change

with time as the packet moves through space. The wave function of the:physical
. a »
particle has the forrr}, 7

(16.1) W (x,x) = W(x,t) exp [-L?\"%(u}_,tﬂ
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where f is real and positive. Then,
y

HQ = [a/ot fox,m]® + iLh [a/or Uiyt exp [—i’ﬁ"{,(}.t )] .

It will be assumed that,

Lk QUIRE) ot H(e T/

atT
/

(16. 2)

<< \a_ﬁ___at“"‘ q)\ ,

so that to a good approeximation,

" (16. 3) HD = [d/at %(ﬁ.tf_\@
Moreover, within the small packet it will be assumed that [6/61: %(},t)]
may be represented by a mean value, E(t) , 8o that
(16. 4) HY= Em ¥
i

Under these assumptions, one finds that for any Hermitian operator Q,.

i
[poteﬁtials‘and fields before integrals or average values represent mean

values within the packet]

[gram-e P ax + f[an-ed)PT'Pax = 2(E-ed) [P'QPdx

or

(16.5) <[Q,H-‘E¢]+> = Z(E'E‘MQQ?

It is useful to define the quantities

ae.6) - F= (E-ed)= -i<Ma) - am
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(16.7) | = M)

One expects, from the correspondence principle, the relation .,.

pl-

(16.8) = (1-02)

to be valid to a high degree of approximation, since this implies that
<TD\-><A7T;«) = =1

Using Eq. (16.6), Eq. (16.5) may be written as

(16.9) aY = ¥)'{La,H-edl,) .

This equation for the expectation value of a Hermitian operator when a'local—
ized wave function represents a particle is used to relate operator equations
to packet observables.
By application of Eq. (16.9) and ﬁsing the result
[H-ed, i%¥stu), = 2Ta

it is found that:

(16 10) (L% TsWuy = ¥ LT ,
(16.11) <%>=,Q, : , and
(16.12) (g = *"

Substituting Eq. (16.10) into Eq. (15.7) and factoring the fields out, one
finds the equation of motion for the polarization (average) of a particle as

seen in the laboratory system, namely,
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(16.13) 'd-/_dt {Tu) = e B Fuy <Tu)

It is shown below that in the particle's rest system, =1, {T4d» =0,

so in the rest system, -Eq. (16.13) is analogous to the usual classical equa-

. . ' 1 %

tion of motion of (spin E) angular momentum, &
diat £ = e (£x8B)

where the g-factor is 2.

‘Also, since

dldt ¥ = A/dT {H-ed) = e E. )

and
dfdr ()= e [ (<zyxB) + £
one finds from Eqs. (16.11), (16.6), and <(:1‘6.7), that:
(16. 14) 'dlc\f. (my)= elE ¥-(&x @_Y_\ . ,
(16.415){ Alat ® = e E-fs o
(16. 16) FYP. ,g_} = e?“L§+(&*§.\-(§-§)&] and
(16;17) . dldt & = e *UE-L)(-) /= e (%) (E- ).

Eq. (16.14) is the expected relation from Ehrenfest's theorem, and the
other equ‘ations of motion are also exactly é.nalogous to the corresponding

classical equations.

" Using Eqs. (16.6), (16.7), (16.13) to (16.16), it is found that:

(16.18) - dldT € (T,)(Tﬁ)] = O | . '

4_‘3’\}:
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(16.19) - d/dt [{mH(T.y) =0 and

(16. 20) alat [(my(mu] =0

It may be shown that (‘n,‘) and (T,Q are four-vectors for».continuous
Lorentz transformations. The problem can be discussed infinitesimally. For
infinitesimal space-time Lorentz transformation

( V‘; is an infinitesimal):

’

(16. 21) Xiz % -wnt .,
(16.22) ti = t-V-x , and’
(16.23) Wen,t) = (1 vwg (Tdlonis vidfot = L o) Wi, )

For any operator, Q" , ‘_:P is defined by the relation

(16.24) = Q;,O}_,t) = Qulx,T) + v E‘,;

Using the abbreviations, !

. / 2 R
{Quv) = f P¥x,Ty Q,'.(s.t) Wix,t) an
(16. 25) ”

' <Q)‘(t)> = { \P‘t(§ot) Q/A«(‘.':..‘-)\‘P(E,t) dx
one finds, upon substituting Eqs. (16.23), (16.24) into Eqs. (16.25), that

/
¢16. 26) <Qr~“‘> - <Q/a(“> =

v 3Ty + Ry R (08 4, D00

- (T 3@ o%i+ X, dQuIST) +<x;(-‘d§‘ (Qu 1] + ao,.za:))j
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In the limit of a small wave packet, one ray factor an average (\K;)' out of

the last term, so that,

(16.27) <x;_;(-LT{‘[Q,..,H]_+ 3Quiet)y T (%) d/dt {Bu)

Classically, for a particle in an orbit X 2 %N(t) , the classical four-

vector Q)A(t)‘ transforms according to

(16.28)  Qu(t) = Qult)+ §u Q1) = Quit) + 1V (g Spt - S0 Qi)

Consequently, using Egs. (16.21) and (16. 22) one finds

(16.29)  Qult) = Qulx) = Vi [ X1 d8u/dt +i (Rabpui-Sua @)]

Performing the operations indicated in Eq. (16.26), one finds that the expec-

tation values of TTIA and T,‘ . transform like classical four-vectors
l .

in the limit of a small wave packet. Since any proper Lorentz transformation

. can be constructed from spacial rotations, for which these quantities are evi-

dently four-vectors, and infinitesimal space-time Lorentz transformations,’

. one sees that the. expectation values of Tr and T, transform like
P Y A

classical four-vec,tors when the wave function is a restricted wave packet.

As a result of the four-vector properties Eq. (16.19) implies that

Q( Q‘_{' . (1‘) + L (Tq > ) = constant,
for all.frames of reference. If one uses the specific representation of the -

Dirac matrices given in Sec. 2, and defines a rest system such that the

expectation values of all odd operators [defined in Sec. 7] are zero, then

i - |
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Eqs. (16.10), (16.11) imply that & = (Tq) "= 0 in such a system.

Consequently, the constant equals iero, and it is true, in all systems, that

(16.30) | Ty =0 &.’.’ ()

In order to determine the polarization in the rest system, it is convenient

to introduce the unit polarization four-yector,
. . A -"i
(16.31) T = (KTTY) T D

Following a procedure suggested by Bargmann et al., 13 one may resolve

(X) into componénts parallel and perpendicular to the momentum, i.e.,

(16.32) | (1): | <TH (»om.o( {&:r + Sinm o /f_\.)
where | &'-‘ &/Ry ; é - .?: = 0 é‘{"\t = 1. Then, from

Eqs. (16.13), (16.18), (16.30), (16.31), and (16.32);

' A - ~ .
(16.33) /4T T» = e F/‘”T” e
16. 34 ‘?‘ = LR 2+ s o :
'( . 34) » = [_l-Q:CmoL] (ma B 4 Samol M| Llrmu.)-

One may equivalently write:

la) — N . — ~ .
(16.35) T. = (P2, L) cond +(a,0) sin@
where )

cew @ = RO (\—Rr‘c«r{"u)'?- cow o  and

(16. 36) R
Sim @ 2. (1=t eod®d) % sime
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) )
The reason for introducing the angle ® is seen when one considers

"in the rest ‘system

l_a_bi_. rest.
o o \[Sn® (A) Sim @ (A)
F RT3 = | cone (2)

, "
Thus, @ gives the orientation of TAest , Y_T“'\eﬂ: = 0] , along

directions parallel and perpendicular to the coordinate grid specified by

a
&
Substituting Eq. (16.35) into Eq. (16.33), using Eqs. (16.15), (16.16),
and (16.17), and defining:
ﬂ-
(16.37) Q= d/at @

one arrives at the relations:

(16.38) = -¢e (ﬁtb)-‘(g_‘ ’i‘\ ' » and
dlat A = e ¥ {-bu[m-(E+&xB)]
+ Axk LEY ot @(hing-£) « &8}

" Now, from Eqs. (16.16) and (16.17), one finds:

(16. 39)

- A - -1 D : ' A ‘
(16. 40) dfdat = e(P&) & x (&8« (Ex)]
Since /?\ is pefpehdicular to Ey , it is always truge that:

A ldt (,‘Q:{.,zq =0 = .é\:° dfdt(n) + /E_\- &Idt(é})'

o v

v
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hence,
(difde) -y = - e®)' (A [E+ xm)]}

Thus, the first term in Eq. (16. 39) reI.Jresents‘the change in the perpendicular
component of polarization ciue to the changing direction of motion of the parti-
cle, and merely signifies that tﬁe direction of polarization transverse to the
motion remains trénsverse. The second t.err.n of Eq. (16.39), in the .(Iil X Ez )
direction, represents a rotation of the transverse direction of polarization
about the direction of motion, in é left-handed sense. Consequently, rela-

”

tive to a coordinate system moving with the particle, the equations,

A=z -e(P)(E R) , and
(16. 41)

ARldT = (Axd) e [FLVexP(tram£) + £-B],

give the precession of polarization in the particle's rest system in terms
of quantities computed in the labo’ratory syst‘em. These equations were ori-
ginally derived by Bargmann, Michel, and Telegdi, 13 and specialize to give
~agreement with earlier precession equations obtained by Tolhoek and deGroot. 3
Four cases are of special interest:

(i) E_ longitudinal ( E =% E;Q:r ), ?_ = 0.

In this case, we find from Eqgs. (16.41) that:
n= o

, dm/dTt =0

Thus, referred to axes co'ntihuously moving with the particle, the direction

of polarization does not change with time. Since, frorﬁ Eq. ‘(16. 4'1)
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A » .
&&r/d.t =0 , the above statement is also valid with reference to axes
instantaneously fixed in the particle.
. a
(ii) - § transverse ( B+ & =0), ¢ E = 0.

One finds, from Eqs. (16.41), that

»

4 N=0 ; dm/dat =0

Accordingly, referred to axes continuously moving with the particle, the

polarization direction remains fixed. Howevér, from Eq. (16.40),

1>

difat = e ® ' (L xB)

;

One sees that the polarization rotates about the - § axis with the rela-

tivistic qyclotron frequency, o
. - =l

'Thus,_ referred to axes instantaneously fixed in the particle, the normal com-
. ponent of polarization appears to rotate with the relativistic cyclotron fre-
A KO v
quency about the = § direction. : [ (
a : -
(1ii) B longitudinal ( B=+ 8% ), E =o0.
. Ay [ o~

..From Eqs. (16.41) one finds
~ A A
Q=03 adldt = o (Ax i)
Accordingly, referred’to axes continuously moving with the particle, the

longitudinal component of polarization is constant, and the transverse com-

ponent of polarization rotates about the direction of motion, in a left-handed
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sense, with the relativistic cyclotron frequency W . Since, in this case,
n
a/dt = O , the continuously moving axes are equivalent to a set

of axes instantaneously fixed in the particle. One may, with Tolhoek and

deGroot, write

A eB ¥'Aat = eB & AT ()

13>

%“C B A ( distance particle travels )

where % is the instantaneous momentum.of the particle.

LS

(iv) ,.E.. transverse ( E&:= 0), ?_ =0, (Q_’X/E_\‘E) = 0.

For this case, Eqs. (16.41) give
- -\
(6.43) - QL= -e('&"‘b‘) (E-rg) ; cl/i\ ldTt = O

Referred to axes continuously moving with the particle, the polérization
, A A "
stays in the plane specified by ‘Q.i and ,E_. and rotates about & X E axis

with frequencY,
L & -1
W= ek ("f A-)

It is seen that this type of electromagnetic field converts, in a harmonic
fashion, longitudinal to transverse polarization. Also, from Eqs. (16. 40),

‘ A A A y . '_ -t
the particle rotates about the %:3 E -axis with the frequency e E ('P!r) ,
so, referred to axes instantaneously fixed in the particle, the polarization ro-

~ A
tates about the £ xE  direction with frequency,

~7 -\ —
Weiver = e BN ()
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One may, with Tolhoek, and deGroot write,

| (wFiue¢ )/(wpmvtic|g\ = E"“"'/ e

where the total energy E is " , and the kinetic energy is L"‘P \ )

17. Anomalous Magnetic Moment Considerations
Under the assumption that the anomalous mégnetic moment of a Dirac par-
ticle can be described, in single particle theory, by the addition of a co-

variant Pauli22 term to the Hamiltonian, one has

(17.1)  H = -7 o o

aT-T +%4-ieAq+ (1/8) Le‘R,J.F" oy 'X‘p
where A is a dimensionless scalar (the anomalous contribution), and the
g-factor is given by
(17.2) , 3 A

With T" still defined by Eq. (15.1), where the definition 13 =’8‘,(i'8‘q-i-H+ie¢)

is taken, one now finds that:

& (17.3) ATV /de = $9<ie T UsTu ) c(/8lne (0¥ Ty [Fag, 1,0, )

The packet considerations follow as in Sec. 16. Using Eq. (16.9), it is

found that
7.9 KL% TRD T BT + osder (R) :
(17.5) {0 a W ‘Fgﬁ-rr,‘) = -2 ?"G, + orden (h)

—

where



&

39

(17.6) G, t Ejkt(*S('&jBt“Eth:i)'n)ﬁK>

+ <{(g-E) TIa)
Also, since -

(17.7) <F;¢B7TQT=L TTx> = G, + W(R)

one finds

7.8, s Uy g Fag TaD = -2 ¥R T, TN, + eradan (k)

n

Substitution of Eqs. (17.4) and (17. 8) into Eq. (17.3) yields

(17,9 A<M/t = Fe ' (g FaudTu) - m&Fypny To T )) + odan(R) .

In the classical particle picture, the .order ( R ) may be ne‘gle‘:lcted, and
the expectation values may be -regarded as classical values. Identifying
—T?M as ghe four -vector velocity, ‘Eq. (17‘. 9) corresponds to the equation
of motion derived by Bargmann, Michel, and Telegdi. 13 By a procedure
similar to that given in Sec. 16, one obtains, after lengthy algebra, the pre-

cession equations

TSR TR 7 WP SR
(17. 10) | o
S abdans 5a(adiat) v (xd)pe o wtd (A )

where ‘Q‘L is a vector which,when non-zero, points in the direction of the
-~ : .

instantaneous normal to the plane of motion,
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(17.11) ﬁ,_ = é}x[guggxg)] '

and the terms for M=o are given by Eqs. (16. 41). Eqs. (17.10) are valid
relative to a coordinate' system rigidly attached to the ;;article and con-
tinuously moving with it. "

In the special casesY discussed in‘detail at the end of Sec. 16, ‘the.presence
of an anomalous morﬁent produéeé a qualitative change only for the case in
which E is transverse, E = 0. T}-lé results for the same four special
é'asea;‘ar'e:

(i) E longitudinal, §_'= 0.

Here . &L: 0, and the direction of polarization isvunchang.ed, as

before.

(ii) . 9_ transver.se,. E = 0.

Referred to axes moving cont}inuously with the particle, the normal
component .ofv polarization rotates until it is in the plane of motion, and there-
after the polarization rotates about the perpendicular to the plane, ( -:B_' )
with the frequency

wA: %}Ava

Consequently, the anomalous moment creates plane polarization, and con-
verts longitudinal polarization into transverse polarization, in a harmonic
fashion. Referred to axes instantaneously fixed, the polarization appears

S
to rotate about the -Q 'a>5is with frequency,

Weired = WL (1 EMY)
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s

23 24

This last result was obtained by Carrassi, and by Mendlowitz and Case.
(iii) B longitudinal, E = o0.
Here, .0;,_ = 0, and in the coordinate system confinuously moving with
. the particle, the longitudinal polarization is constant, and the transverse
polarizatién ertates abouf the direction of motion with a frequency '7" % times
the relativistic cyclotron frequency.
(iv)  E transverse, B =0. (&;xq} . E ) = 0.

In this case,
| JL= (‘ - l{}*;“‘o})(ﬂ)ﬂ:@ , and

aAfat = (\- g #F) (dRJdT) . 5

‘where the qua‘ntiti'e-s‘.at }A = 0 are given by Eqs. (16.43). Consequently,

in the. coordinat_e system (continuously moving with the particle, the transverse

polarization remains in the plane specified by & and g_ , and rotates about
L A

the ( E XX ) axis with frequency,

o= (1- ST ) e E(F )
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