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I. INTRODUCTiON 

1. Preliminary Remarks ..•.. - ... 

A variety of operators has been used in the past to· characterize the polari-

zation of a free Dirac particle and to remove the degeneracy that remains after 

momentum and charge have been specifie~. For example, D.arwin1 used the 

intrins.ic angular momentum operator (j, Mott2 used the intrinsic magnetic - . 
. . . 3 

moment operator ~ ![ , and Tolhoek and deGroot considered a linear com-

bination: of the ~wo (1 - fl )~ . , In the important application of Mott scatter­

ing the polarization is clescribed in terms of two wave functions, which in the 

non-relativistic limit are eigenfunctions of the spin. 

However, it has been realized comparatively :t'ecently that the polariz,ation 

can be discussed fluently in terms of a four-vector operator which was first 

introduced by Bargmann and Wigner 
4 

as the generators of the 'little group, 

a subgroup of the group of Lorentz transformations. It was also found that 

. the polarization could be treated in terms of a related three -vector operator, 

first introduced by Stec'h, 5 which for an electron is (f' in the direction of the -
momentum and '~otherwise. The properties of these operators Wt!l't: 

developed ~specially by Michel and Wightman, 6 Tolhoek, 
3 

Bouchiat and 

Michel, 7 and Werle. 8 Some aspects of these operators th.at make them. 

useful are: 1) they commute with the Hamiltonian and so correspond to an 

intrinsic property that doesn!t change with time; 2) as shown in detail irt . 

Sec. 6, any plane wave state· of an electr<;:m or positron is a completely. 

polarized state. 
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The functions used in Mott scattering are eigenfunctions of a component 

of the three -vector operator so this operator already has a place i~ that 

theory. Calculations in the sense of this operator have been made for in­

ternal conversion electrons by Becker and Rose, 9 and for beta decay elec-

; 10 11 trons and positrons by Jackson, Tre1man and Wyld1 by Ebel and :Feldman, 

. 12 
and by Good and Rose. 

'. 

It seems now that the uhderstanding of the basic properties of these ,_. 

operators is complete and that a resume of their properties :r:riight be of some 

value. The purpose of this paper is to give a consistent account of the theory 

of this type of electron polarization, with a few elementary examples. The 

three -vector polarization operator simplifies calculations involving plane 

wave states, whereas the fout-vector polarization operator is convenient 

for discussing Lo.rentz covariance a_nd for taking account of external elec-

tromagnetic fields. This paper is correspondingly divided into two parts. 

The problem of precession of polarization in external electromagnetic 

Iidds has been discussed in thP. small field li~it by Tolhoek, 
3 

and in the 

classical~ (non-quantum) approximation by Bargmann, Michel, and Telegdi, 13 

using the equations of motion of angular momentum in the rest frame .. A 

treatment of the precession problem,from first principles is given in I - ' 

Sees. 16 and 17. 

Another treatment of the basic theory of the polarization operator and 

several appli~atio~s :are given by Rose. 14 A review of polarization pheno-. 

mena and experimental techniques ha.s been glven: by Pag~.lS 

. ' 
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2. Notation 

Units such that m = c = 1 are used. Latin indices range from 1 to 3 and 

Greek from 1 to 4; )( .. :.l_'t . The symbols A*, A'+, A, denote.the com-

plex conjugate, Hermitian conjugate, and transpose of any matrix A. 

Abstractly, the Dirac matrices are defined by: 

where 

Auxiliary matrices are defined by: 

~ :. 't'.q , ~ = i. ~! 'ts = ~, 't" 'r1 'r,.. and 

~: t ~4\ tt's t .: - t t ( r )( r ) 
,A specific representatio.n that will be referred to is: 

. ) «=(o~) 
.-t - · cr o - . ,. ~=(0-1) s _, 0 

where the 2 X 2 cr a.re the usual Pauli matrices: -
a: : (Q ' ) 1 I 0 

cr. : ( o -L) a i. o ' ct: =l' 0 ) 1. 0 ·\ 

The electromagnetic field is described by:. 

, and 

·The Dirac equation is written as 
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where the Hamiltonian is given by: 

Here, ~ is -i.n I and e is the actual charge, negative for the electron. 

Equivalently one may write: 

where and 

The charge conjugation matr.ix satisfies: 

The charge conjugate of a wave function and an operator 

are: 

3. Physical-Interpretations 

For the free particle, as an alternative to Dirac's hole theory, one may 

interpret the fc;mr solutions of the Dirac equation as actually describing elec- · 

trbns aJ?-d positrons (instead of electrons alone). One must then assign the 

operators I H \ · ·(H/IH\) ~ • ( H / lH l )(] x ~ + -£ lt ! ) , to be the 

energy, momentum, and angular momentum. The operator IHI is de-
i . . a. -

fined in momentum space by IH\ =- (.p: .,.1. )t. , the positive root to be 

taken. This point of view is carried through consistently in what follows .. 

. ' . 
When equations apply non-uniformly to electrons and positrons, the upper 

' ' 

signs apply coherently for electrons and the lower for positrons. The 

plane wave solutions for the free particle are therefore written as: 
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where ~ and W are the eigenvalues of the operators ~ and H and where 

!t and E are the eige1:1values of the momentum ( H/ hU) ~ , and the 

energy lH\ Here ~ and W satisfy the equation: 

·-p."- w" = -1 . 

The ± subscript on "\' de~otes the sign of W, and ~ characterizes the two-

fold polarization degeneracy. It is clear that the operator (H/lMt) is + 1 for 

an· electron state,· and -1 for a positron state. Also, the energy eigenvalues 

E :: "!: W are positive. 

The wave equation for the free particle is covariant with regard to charge 

conjugation. Also one finds that 

He:- H 
so the operators for energy, momentum, and angular momentum are self 

charge -conjugate: 

IH\c::. \\\\ 

_L(H/HH)~]c:: ( H/\H\) ~ 

and similarly for the angular momentum. The theory is therefore covariant 

with regard to· charge conjugation both for the wave equation and for the 
. . 

physical assignments.· Since He= ·l-\· , o~e' sees'that (H/IH\)(. is 

- H./\H\ so the c,harge conjugate of an electron.state with morpentum 

~ is a positron state ·with momentum_ i .. Finally, it is seen that 
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is the equation satisfied by the plane wave amplitudes in terms of the physi:.. 

cal momentum !k and energy E 

II. THREE-VECTOR POLARIZATION OPERATOR 

4. Definition 

For. the free particle, the three -vector polarization operator is defined 

as: I 

0 - <~·f. )t ~filii)~ + ~ l( ( f:l9: l( ~) 
(4. 1) A ~ 

fi 2" -+ ( g' · ~ )( ( H /I H \) - ~ J ~ 
1\ 

where ~ is defined in momentum space as ~ / f' . Thus ,for electrons I 

positro_ns, the three -vector polarization operator is 1-(f -- in the direc-

tiqn of motion and ~· g' perpendicular to the motion. Explicitly writing 

out the Hamiltonian and expanding, one may alternatively express the de-

fining equation as: 

(4. 2) 

One finds that 

(4. 3) = 0 -
so the interpretation of ~ as the polarization op~rator also is covariant 

with respect to charge conjugation. 

5. Algebraic Properties· . - . 

If one introduces a right-~anded orthogonal coordinate system, 
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A ,._ 

such that E:-.. e.. = s .. J. - .... 
,. ,., ,. 

, E: ~ )( E., : £\J' V\ e=:.. , then the components of 
- -J -" 

e in this system, e. : 0· E.\ , have an algebra similar to that of the ...... '- .-..... ....... 

Pauli matrices, 

(5. 1) 

where H is the free particle Hamiltonian, 

Consequently, for any unit vector, - , the above equation implies:. 

(5. 2) 

so. has eigenvalues ±. 1. Also, it is easily ve'rified that 0 
. - is 

Hermitian, and that any component of 0 - commutes with the (free particle) 

Hamiltonian: 

(5. 3) [~,H)= 0 

.Therefore, 0 corresponds to an integral of the motion, and a complete set -
of eigenfunctions may be found which are simultaneously eigenfunctions of 

"" the Ilarniltonian and 6• S --
6. Eigenfunctions · 

I 

Since 0 commutes with the Hamiltonian, a complete set of plane wave -
eigenfunctions, ~E.,.\ t!): 4'£.~(i\ ~x.p(tK'<~·~·EEt)) may be found such 

that: 

H LV,,>.< i \ = ·~ E lVe..~ l ~\ , and 
(6. 1) 

~ . . 
('-. ! \_\J £,A ( i \ : ~ ·41 E, ~ ( ~ ) 



. ' 

9 

where E , l\ are independently+ 1. ·It is clear that if l\'Cil is an eigen-\ 

function of e.; -- with eigenvalue +1, then is an .eigenfunction 

with eigenvalue -1. One may therefore replace Wc.A <!l 
A system in an eigenstate of (9. s - - with eigenvalue + 1 is said to be polar'-

" ized in the 5 direction. -
One may relate the plane wave eigenfunctions of arbitrary momentum to 

eigenfunctions in the rest system. Let these eigenfunctions be simultaneous 

eigenfunctions of the Hamiltonian and e·s -- in the rest system, so 

(6. Z) lVot ,. l\'o ,. 
. E (!,) E (!) -:. 1 

'\ \Vo A e'\':(!l (6. 3) ~ ,(~)::. , and 

(6. -4) (i A \.\10 A 410 " ~· ~. c: ( i.l - £(!,} -
Defining the projection operators, Pe , by 

. (6. 5) 

where H E. , ~ , are the eigenvalues in the laboratory system, one 

finds, using Eqs. (6. 3), (6.1)J and (4. 1), that: 

. (6. 6) H { Pe \.\': t !J) : ~ E ( ?~ 4J = t!1) , and 

<
6

· 
7

> ~·! ( ?e l.Vf:C)(il) = ~· ~ ?~ (~ Q"· ~) 41; til = (fe LV:< tl) 
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Also, is is known that 

) 

so 

where Eqs. (6. 2), (6. 3), and the fact that 
o' o l\)G ! ' £'We. :: 0 , which. is 

easily proved from Eq. (6. 3), is used. Therefore, the wave functio~ given 

by 

' 
(6 .. 8) 4J E: <. ! ) = f. '2. E" I (c + 1. ) 1 i ~ \V: ( ! ) 
satisfies: 

(6. 9) 

(6. 10) , and 

(6.11) 

These functions WE. ( i) actually are proportional to the rest-system 

functions UJ~0 ( l) Lorentz transformed to the laboratory frame. The 

wave function amplitudes, lV 0 
in the rest system and 4J in the laboratory 

system, are related by 

LV-: A4J 0 

where ..fl.' r-t}A A ": a..JAP tt, 

and the transformation r.nP.fficients are 

a. .. :. a. ~1 : E' 
, and 
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the ')(. -axis having been chosen in the ~ direction. 

In this case the transformation matrix is found to be 

' 
(~(E"'l.)]-1 ( e + ot._.~ ""1.) 

When this is applied to the function, au:c~_) 1 ~ ~.:; ,. , one can rep ace ll by 

~-'P' and 1 by E ~ so that 

l\) :: .A w: (l) 
' 

: ("2(E*l.})-i (E"' ~Cl._.f--t- E.fl)4J:ci_) 
= et (.'2E/(E'+l.>1t ?~ w:ti> 

and this proves the assertion. One sees that if a particle has polarization 

~ ~ 

S in the laboratory system then it has the same polarization S in the - -
rest system. In other words, the polarization of an electron beam is the 

same no matter from which Lorentz frame the beam is viewed. 

The explicit plane wave eigenfunctions satisfying·Eqs. (6. 2), (6. 3), and 

(6. 4), in the specific representation of Sec. 2, are: 

·~.!.e e·it4> 
l 

lp:c.i) ~~e ' . ~ -&.l:/"' - e 'i" e i. 

a 
0 \ 

I and 

(6.12) 
0 

t¥: <i) 
0 ' .• e .i. t: tV\ . ' --a. - -~-e e '1. - . 'Z. 

. ' .!.t~' 
~ ~9 ea 'Z. . . 

e· <I> "' ('6. 8)' where 
' are th~ polar' azimuthal angles of s Froni. Eq. -
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the corresponding arbitrary Lorentz frame eigenfunctions are: 

and' 

(6. 13) ~-{i!, id.tol\. i& ei.•~ yi li!l- ~1 & et:••v.i (~~ e i.(i!•!+£t.l/t. 

where u .. ,. ' v ... .L 
- 2. . .. a. 

and 

(6. 14) 

and ~+!.. are the familar "spin-up", "spin-down" functions of non-rela­
- 1. 

tivistic theory, 

(6. 15) ('o) h+!.: 
t. 

The solutions given in Heitler 16 are ~~ (-p1 §1 1 A~-a) in the present 

notation, where Heitler's E ~ 0 corresponds to ~ = t 3. here, and 

' 

where Heitler' s + and + correspond to E ~= 1 and t&.~: •1 here. 

The functions ~ ~ ·of Eq. (6. 13) are a similarity transformation from 

those of deGroot and Tolhoek. 17 They write A and B in place of 

• L •"- .L. • "" . ,_.!..ee·i"' ti!•'-' e.aL't' ~ 1 and ~le . · , and express the functions 'in terms 

of the physical momentum. Since they define the direction of polarization 

e . <\> .bY 

(6. 16) '8/A 
/ 
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A 
it is clear that their direction of polarization coincid~ s with the vector S 

used here. 

In general, if the system is in a state described by the wave function lf.'6 (!) 

then the expectation value of e is -
,. 
s - Symbolically, 

"' .(6.17) -- s -
This may be easily proved, since from Eq. (5. 1), 

"' 2. s. -
and operation with ~: (l) on the left and right yields 

the result by virtue of Eq. (6. 11). 

Also, any plane wave electron or positron state is a state completely p6-
,.. 

larized in some direction S . To show this, consider the expansion of an -
electron state 'X. in terms of lp + ( i1) , ~ + c- ~ ,) , which for con-

venience are studied in the representation ~f Eq. (6. 13). Then 

(6. 18) 

where A 

If one takes 

R, · , ct. , fJ , are real numbers, and 

a. ei«: 

··~ e'' = 
then'this has a solution, e , <I> where ~i·-= 0..., 

Consequently, 

(6. 19) 

and 

c.oQ. l 8 = ~ , and · 

and since wave functions are only defined to within a phase factor, the asser-

tiofi is proved. 
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7. Foldy- Wouthuysen Representation 

The three-vector polarization operator assumes an especially simple 

form in the Foldy-Wouthuysen 18 representation and many of its properties 

become evident in that representation. In the specific representation of 

Sec. 2 the free particle Hamiltonian contains even and odd operators--odd 

operators being matrix operators that mix the upper and lower two compo-

nent spaces of the wa~e function (e. g. 'is , ~ ) , even operators being those 

which do not effect this mixing (e.g. (3 .r, ~ ). The purpose of the FW 

transformation is to obtain a representation in which the Hamiltonian is an 

even operator, so that electron and positron solutions are cleanly separated 

into the aforementioned two-component spaces. 

Any operator, A, in the FW representation is: 

(7. 1) 

wher.e. the desired unitary transformation is explicitly: 

(7. 2) 
. ' 

[l\\\\(\H\+1)1-if3 (~(h\\..,1) ± C!-'4:) 

Performing the indicated transformatipn, one obtains: 

(7. 3) eJ =- ~cr 
- f:W t""' -· 

. 
» HFW f3 \ H \ '•. 

The upper/lower two-component spaces in the FW representation are associated 
I 

with the Pauli non-rel~tivistic two-component theory of the electr·on/posit~on. 

One sees, therefore, that the Pauli theory equivalent of the three-vector po-

lari:~.ation operator is ± [ ~ = +1 for electrons/positrons). it is also 
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seen that the algebraic properties of the three -vector polarization operator 

follow easily from Eq. (7. 3). 

8. Density Matrix 

In scattering problems, where incoming and outgoing particles are treated 

asymptotically as free particle wave states, it is useful to have an expreBF.d.on 

for the statistical density matrixl9 as a function of the average polarization 

fP 'of the cons'idered ensemble of partiCles. -
In general, the electron/positron density matrix for an ensemble of single 

particle systems with definite energy E and momentum % is given by 

(8: .1) 

where is the probability the particle is in polarization state 

Using Eq. (6. 8), one may write 

which, in cuusequence of Eq. (6. 3), io equivalent to 

In the specific representation of the Dirac ·matrices given in Sec. 2, 

!" l \Jo " H)ot " (ltp)"--ft>. "'f'!:().!l,t (AH is of lhe forn1 

or 

for upper and lower si.gns, 1·espectivcly. Here, X is a 2 x 2 matrix and 



\. 
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therefore. m~y be written as 

where A and '1· 

~ ' -' 

Finally .. At. and 

B. --
' ' ~· 

are still to be determined. This gives 

a + are evaluated from the relations --
TJl. (y.) : ~ 

l\PI~1 -
which yield the result' th~t 

the plane wave density matrix is: 

(8. 4) 

- {4EY'( E t f3 + t!"% ±. ~· ~ + 'lfs ~· !k 

-t- E (~· ~g:-) + i.~~· ( ~ ~ ~) ~ tE+lf'(~·%)(2:%) 

- <e.•1. r' ( ~· ~ x \l <1.:- ~)] . 

The expression for the density matrix containing the projection operators 

was given by Mlihlschlagel and KHppe; 20 the expanded form by Tolhoek and 

deGroot. 3 

,• 

9. Covariant Description 

Michel and Wightman6 introduced the operator 

. (9. 1) 
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· to.·'describe the polarization of a plane wave state of a free particle. Here 

. ~ 

. /'r\.1'- is define·d to be a four -vector with components ( !_ , 0 ) in the rest 

system of the particle. [It is clear, that rn.,.lt\,. is unity and that ~/'"l"f\.1'4 
\ .. ~ 

is zero since 1rl" is ( · o .. t. ) in the rest system.) This operator is equi-
. ) 

valent to e. s as shown below. - -
The components of ~in the laboratory system are 

/Y\,: -
. (9. 2) 

As long as f'r\1" directly multiplies a plane wave solution of the Dirac equa-

tion one can replace it by rn.,. op. defined by 

A . •\ 4 

~op.: !_ + (\H\+l.) (~·!..) -e-
(9. 3) 

. ._, 
tr\.4 ~ :. '- ~· ! ( H I \ \\ \ ) 

is - L ~ V - and these operators have the properties 

(9. 4) 

A direct consequence of Eq. (4. 2) is that 

(9. 5) e. s ·- -
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One se.es the~ that-~ ON\W , defined for a plane wave state, is equivalent to 

~~o· e. s when operating on the state function. - -
Ill. FOUR- VECTOR POLARIZATION OPERATOR 

·.I 

10. Definition 

· Fo.r the fre.e, particle~ the four -vector polarization operator Tp. is de-

fined to be 

(10.1) 

T - -- ~s ( t I. - -.f= ) 

: . ~ g: - "4t's ~ 

T ~ : 'i'r ( l. 't'1 - \. H) 

'This is closely related to the operator · 

( 10. 2) 

whichwas first discussed by Bargmann and Wign~r. 4 In fact, as a conse-

··~ quence of the. relation 

(10.3) 

one finds that 

(10.4) 

.I 

'. 
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Therefore, when applied to solutions of the Dirac equation, the operators ;~.rr• 

equivalent. 

11. Generators of the Little Group 

The components T,._. are the generators of the little group, the subgroup 

of homogeneous Lorentz transformations that leave the four -vector f~ of 

a plane wave state unchanged. This was pointed out in the.,general case of 

. ' 4 
arbitrary spin and mass by Bargmann and Wigner. 

To ·flee this in detail here, consider the infinitesimal Lorentz transformation 

(11.1) 

transformation is 

(11.2). 

x.' = JA 

are infinitesimals. The corresponding wave function 

where infinitesimally 

(11. 3) 

Substituting Eqs. (11. 1) and (11. 3) into (1 L 2), and expanding 'P(~I'- fJI!!) ~..-) 

fin itt~ s imal s) 

(11. 4) 

in a Taylor's series, one obtains ·(to first order in in­
/ 

For a plane wave state of a free particle of specified four -vector ..p.~ 
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the wave function has the form 

( 11. 5) 

If only those homogeneous proper Lorentz transformations that leave -fp. 
unchanged are considered, then 

·.(11. 6) ' 

so that 

Using Eqs. (10. 2) and (11. 6). it may easily be verified that: 

Thus, for the eigenvalue "f » :/:. 0 , one obtains 

( 11. 7) 

. Eq. (11. 6) implies that only three infinitesimal parameters are independent, 

which, for a given ' , may be taken as E:»)ApA ~JAP . Therefore, the 

operators T ~ are the generators of the little group. 

12. Algebraic Properties 

The operators T)"o satisfy the equations 

(12. 1) T Tr = JA ' 
3 

(12. 2) I·~ + t. T4 H = 0 

'(12. 3) [T. \-\ 1_ - 0 )A. -
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The operators T~ are of primary interest because Eq. (12. 2) can be used 

to express T" in terms of them. Their algebra is involved with that of 

the operators Si. defined by 

(12. 4) 

In detail one· finds: 

[ Tt. S; 1_ :. 2.t (E~j W\ TV\+ ~lM\ 1'1 -fl~~ .. ) 

[ 5 i. • 5 ,j 1_ : 2 L f. l. j ~ ( 5 K + 5~ f.t f"] • 

( T;. , Tj ).., .= '2. ( & .: j + f '- 'P,; ) 
. . 

[S,,Tj)+ = 2.S.:j \-\ 

[Si, Sj)+ = l (~:j(\+~)-..p.:~j] 

( T~ , H ) + = 2 ( 5 ~ -+ S~ f J -pt. ) , . and 

[s~, H1-t = 2 <, ... ~1.)T.:- 2ljfJr' 

There is the relation 

- - - -. -.. 
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between the polarization operators, the angular momentum operator 

-
and Dirac's operator21 

The charge conjugated four-vector polarization operator is .. 

-
c• T._*c-=- -T~ 

13. Connection with the Three- Vector Operator 

The relation between the operators is 

T:.O - -
(13. 1) 

as is easily verified. The connection between T)'- and e - is the same as 

the one between rnJA. and - Eq. (9. 3). Combining Eqs. {10. 1), 

" (9. 4), and (9. 5), one finds that 

( 13. 2) - -
Therefore the wave function ~ '! l i) describing a plane wave state 

" polarized in .the s - direction is also an eigenstate of 
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(13. '3) 

To find the expected value of T)" one observes from Eq.· (5. 1), that 

[~,~·~]+= 2[ 

so that Eqs. (13. 1) yield· 

(13. 4) [ .,.. T - · J -- rT ..... ~· _5]+ 'JA, )J,.,.'~O'f + L ,--. 

--
" 

The result of taking the expected value of this last equation is 

(13.5) 

1\ 

. where m,_· and s - are related by Eq. (9. 2) . 

It is Clear from Eqs. (6. 17), (13. 5), and (9. 2) that the following inter-

. pretation of these operators can now be made: For a plane wave state, the 

thr~e -vector polarization operator ~ is the laboratory system operator 

A 

corresponding to the direction of polarization S in the rest system of the -
particle; the four -vector polarization operator is the laboratory system opera-

tor cqrresponding to the four-vector which is the Lorentz transform of 

,.. 
s - 0 ) from the rest system. 

Since 

14. Lorentz Transformation Properties 

T, · commutes with the Hamiltonian the expectation values 
~ 

(14. 1) 
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where ~ is any solution of the Dirac equation and the integral extends over 

all space, are constant in time. The (Tt) are real and (T,..) is pure 

imaginary. It is interesting to inquire into the tensor transformation pro-

perties of these quantities. 

Let the expectation values be defined in a different coordinate system by 

(14. 2) 

It is immediately clear that for space rotations (Ti.) is a vector and 

(T .. ) a scalar. Pure Lorentz transformations can be easily discussed 

infinitesimally. The transformation is 

x.' = X.- v-1: - - -
I 

"t ::' t- V"·'X. - , and 

(14. 3) 

On substituting Eq. ( 14. 3) into Eq. ( 14. 2), replacing ~\)! /~"t by ·L l\ H t:J! 

and Himplifying, one finds 

and 

whi.ch are the r.nrrP.c.t rnlP.s for a Lorentz four -vector. 

For the space reflection 

x'=·-~ t' =t: - - ' 
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one may consider either the usual wave function transformation 

or the Wigne:r-Landau combined inversion 

1 I J I ' eft I \J * 
"'Y ('('): L 't.. 'i"' ('1.) 

In either case the result is 

, 

Finally for the time reflection 

t' = -t 

the wave function transformation rule is 

\V 1 (~') ': 't(' .. 't's c•lV*<~) 
I 

and it is found that 

In summary, for the general Lorentz transformation 

the expectation v~lues transform according to the rule 

The reflection properties of (T.,) are the same as those of angular momentum. 
j 
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15. Effect of External Fields 

The four -vector polarization operator can be generalized to the ~ase of 

1~. 
a Dirac electron in an external electromagnetic field. T~e operator is then 

· · defined by 

(15. 1) 

T t. -:: 't's ( t '\t\ - 1T '-) 

T4 : 't'5 (L~4 -l.H+lee\>) 

: tcr.,; - -
This operator has the properties 

(15. 2) 

(15. 3) 

( 15. 4) ( I , H 1 .. = i. e 1\ Q: X 'Q - i. e h ~&' ( £. + ~ 6 I~ "t) , and 

(15. 5) [T4 , \-\1_ = - e'h ~- (~ + c)~/~"t) 

Consequently the Heisenberg equations of motion are found to be 

(15. 6) 

ol T" I d.:t. = C. e <r· E -
These equations can be accumulated into the form 
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( 15. 7) 

In these three special cases there are polarization integrals of the motion: 

(1) If E is zero, T4\ is an integral. -
" (2) If E' is zero and the magnetic field has a fixed direction B - then T1-

~ 

and T • B are integrals. - -
(3) If 8 is zero and the component of "' E m some fixed. direction \'( -
then 

,... 
T·~ --

-
is an integral. 

16. Classical Equations of 
Motion 

is zero, 

Eq. (15. 7) gives the equations of motion of the four-vector polarization. 

One is often interested in the analogous equations of motion for the expectation 

. value of the polarization of a particle which is localized so that the wave 

function is a packet. In this limit the rate of change of the polarization can be 

expressed in terms of the external fields and the polarization itself. 

One considers a particle corresponding to a wave f~nction which is essen-

tia'tly non- zero only over a small spacial extent. This packet moves through 

space as the particle moves through space. It is assumed that the external 

electromagnetic fields and potentials do not vary appreciably within the packet 

and ·may be represented by mean values, where the mean values change 

wl.th time as the packet moves through space. The wave function of the,physical 
i " 

particle has the form, 
I 

(16.1) 

I 
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where f is real and positive. Then, 

It will be assumed that, 

(16.2) I i.'- :~t~;t:l e-L~<~.~l/l\1 <<.< \~~t(IJ:,t:l ~!!\ 
I 

so that to a good appr0ximation, 

(16. 3) 

Moreover, w;ithin the small packet it will be assumed that ( ~/iJ't &(~,"t)) 

-may be represented by a mean value, E.l't.) , so that 

(16.4) 

Under these assumptions, one finds that for any Hermitian operator Q,. 

'I· 
[potentials and fields before integrals or average values represent mean 

values within the packet] 

f~i"Q(H-e<\))~ o\~ + f[Q(H-e~)~]"'ll'c!~ = t(~-e4>) flPtQtp t!:f. 

or 

(16. 5) 

It is useful to define the quantities 

(16. 6) , and 
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( 16. 7) -
One expects, from the correspondence principle, the relation 

( 16. 8) 

to be valid to a high degree of approximation, since this implies that 

Using Eq. (16. 6), Eq. (16. 5) may be written as 

( 16. 9) (Q)- 1• 

ThiA equation for the expectation value of a Hermitian operator when a local-

ized wave function represents a particle is used to relate operator equations 

to packet observables. 

By application of Eq. (16. 9) and using the result 

it is found that: 

(16~ 10) 

(16. 11) (~)=h ,and -
(16. 12) 

Substituting Eq. (16. 10) into Eq. (15. 7) and factoring the fields out, one 

finds the equation of motion for the polarization (average) of a particle as 

seen in the laboratory system, namely, 
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(16. 13) . d.. I d. T. ( T JA) : · e ii·' F I"'~ ( T.., ) 

It is shown below that ·in the particle''s rest system, i' = 1, (T_..) = 0, 

so in the rest system,· Eq. ( 16. 13) is analogous to the usual classical equa­

tion of motion of (spin.!:) angular momentum, ~ 
2 -

d.. 1 a.. t ·~ : e ( .~ Jt ~ ) 

where the g-factor is 2. 

'Also, since 

d..ld:t. "r' = ci./d."C (H-ecb) = e.[·<~> and 

one finds from Eqs. (16. 11), (16. 6), and (16. 7), that: 

(16. 14) ·d/d.t.(TI)= e[§:+(-&x~)1 

(16. 15) 

(16. 16) cJ...I tit= -& :. e i'·' [_ ~-+ (~ x ~)- (~:!!)!!) and 

(16.17) ti/d.T. t, = e i·'<[·&)t\-~li.Rr .= e C'i'~.a,f'Cs:&l. 

Eq. (16. 14) is the expected relation from Ehrenfest's theorem, and the 

other equations of motion are also exactly analogous to the corresponding 

clas sica!' equations. 

Using Eqs. (16. 6), (16. 7), (16. 13) to (16. 16), it is found that: 

(16. 18) 
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{lll. 1.9) . 

(16. 20) 

It may be shown that (n,..) and (TJo') a.re four-vectors for continuous 

Lorentz transfol,"mations. The problem can be discussed infinitesimally. For 

infinitesimal space-time Lorentz transformation 

( V'~ is ·an infinitesimal): 

(16. 21) 
I 

)( .... " - ·' 

(16. 22) t:' : 1:- V• X -- , and· 

(16. 23) 

For any operator, QP , t1J.L is defined by the relation 

.(16. 24) 

Using the abbreviations, 

(16. 25) 

one finds, upon substituting Eqs. (16. 23), (16. 24) into Eqs. (16. 25), that 

(16. 26-) 

I < Qt' (.t)) - < Qp (.t)) 

Vi{. 1 <. [ «.l, Q_,.)_) -+ ( fll") + T. ( (Y.t, Q_..]_ f~- ('It'\, Q,..l f; 
. - 4 

- ('t dG,../~~i..+ X~ (}Q~/~t> ~< ~~t-~~'[QJA,H1_ + c\~/c\t)) ~ 
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In the limit of a small wave packet, one may factor an average <~i.) out of 

the last term, so that, 

(16. 27) 

-Classically, for a particle in an orbit ~-:. ~(.t) , the classical four-

·vector Q,.~~, (t) · transforms according to 

Consequently, using Eqs. (16. 21) and (16. 22) one finds 

(16.29) 

Performing the operations indicated in Eq. (16. 26), one finds that the expec-

tation values of and T}' transform like classical four-vectors 

in the lifnit of a small wave packet. Since any proper Lorentz transformation 

can be constructed from spacial rotations, for which these quantities are evi-

dently four -vectors, and infinitesimal space -time Lorentz transformations,· 

. one sees that the expectation values of ~ and Tp transform like 

classical four-vec;ors when the wave function is a restricted wave packet. 

As a result of the four-vector properties Eq. (16. 19) implies that 

' 
~ \ 

= constant, 

for all.frames of. reference. If one uses the specific representation of the .. 

Dirac ma_trices given in Sec. 2, and defines a rest· system such that the 

'-'exp·ectation values of aU odd operators [defi~ed in Sec. 7} are zero, then 
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Eqs. (16. 10), (16. 11) imply that - = (To~\) = 0 in such a system. 

Consequently, the constant equals zero, and it is true, in all systems, that 

(16.30) 

In order to determine the polarization in the rest system, it is convenient 

to introduce the unit polarization four -vector, 

(16. 31) 

13 . 
Following a procedure suggested by Bargmann.!:.!_ al., one may resolve 

(!) into components parallel and perpendicular to the momentum, i.e., 

(16. 32) "' I<!)\ <~c( & .. ~or. 6) 

where 
,. 
.2r :: J1J I~ - -

,. 
~. kr = 0; - -

,. ,.. 
.n\. • M = l. Then, from --

Eq s . (16. 13), ( 16. 18), ( 16. 3 0), ( 16. 31), and ( 16. 3 2); 

" (16. 33) ci./d..t. T~ ', ' 

(16. 34) 

One may equivalently write: 

(16. 35) 

where 

, and 
(16. 36) 
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ofhe reason for introducing the angle ~ is seen when one considers 

in the rest 'system 

0 0 

-"/' 

0 .. t~i' -'t'. 

1\ 

Thus, ~ gives the orientation of Tl\.tS1: -

lab. rest. 

~~ (~) ~cg -
'i ~(() cir) - Co4. cp -

.0 

. rTA. "'es't ] L --. = 0 , along 

directions parallel and perpendicular to the coordinate grid specified by · 

-
Substituting Eq. (16. 35) into Eq. (16. 33), using Eqs. (16. 15), (16. 16), 

anc;:I (16.17), and defining: 

:~ 
( 16. 3 7) 

one arrives at the relations: 

(~) 

(16.38) and 

(16. 39) 
d 1 aT. 1: : e ?r' {- &-1 RT [ ,; • < E. + !! x ~ ) ] 

+ ~~& (-{~Rrr'~~(~·-&· !) + &· §1}. 
Now, from Eqs. (16. 16) and (16. 17), one finds: 

( 16.40) 

1\ 
Since lr\ - is pe~pendicular to it is always true that': 

1\ ,. 

:0 = .Q_,.. d./cit.(~) - . 
" + I'Y\. -
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henc~, 

Thus, the first term in Eq. (16. 39) represents the change in the perpendicular 

component of polariza~ion due to the changing direction of motion of the parti-

cle, and merely signifies that the direction <;>f polarization transverse to the 
. ' . ~ 

motion remains transverse. The second term of Eq. (16. 39), in the (In x .l,) - -
direction, represents a· rotation of the transverse direction of polarization 

about the direction of motion, in a left-handed sense. Consequently, rela-
,.. 

tive to a coordinate system moving with the. particie, the equations, 

( -'la _,, "") 
.fl = - e 'r' ..u-) \~.' ~ , and 

(16. 41) 

give the precession of polarization in the particle's rest system in terms 

of quantities computed in the laboratory system. These equations were ori-

ginally derived by Bargmann, Michel, and Telegdi, 13 and spe.cialize to give 

agreement with earlier precession equations obtained by Tolhoek and deGroot. 3 

Four cases are of special interest: 
,, ,. 

(i) E longitudinal ( E = t E lr ), 
. ...... - \,. ' ... B = o. -

In this case, we find from Eqs. (16. 41) that: 

. 
) "" d. l't\. I d.:r:. -= o -

Thus, referred to axes co"ntinuously moving with the particle, the direction 

of polarization does not change with time. Since, from Eq. (16. 41) 
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, the above statement is also valid with r'eference to axes 

instantaneously fixed in the particle. 

(ii) . B transverse ( - = 0), \ E = 0. -
One finds, from Eqs. (16. 41), that 

,.· 

. 
l ciM. /d..T. : 0 -

Accordingly, refe.rred to axes continuously moving with the particle, the 

polarization direction remains fixed. However, from Eq. (16. 40), 

,.. 
pne sees that the polarization rotates,, about the -B - axis with the rela-

tivistic cyclotron fr.equency, 

(16. 42) 

'Thus, referred to axes instantaneously fixed in the particle, the normal com-

. ponent of polarization appears to rotate with the relativistic cyc~otron fre-

A ~· . 

quency about the - B direction. 
' -

A 

(iii) ~ longitudinal ( ~: "t B ~ ) , E = o. -
.cFrom Eqs. (16. 41) one finds 

'( 

.n = o· ; 
. \. 

Accordingly, referred 1to axes continuously moving with the particle, the 

longitudinal component of polarization is constant, and the transverse. com-., 

ponent of polarization rotates about the direction of motion, in a left-handed 
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sense, with the relativistic cyclotron frequency WL Since, in this case, 

, the continuously moving axes are equivalent to a set 

of axes ·instantaneously fixed in the particle. One may, with Tolhoek and 

deGroot, write 

..fi.-' e B 6 ( di.stance particle travels ) 

where ~ is the instantaneous momentum-of the particle. 

A 

(iv) E - transverse ( E ._Q, = 0), -- ~ = 0, = 0. 

For this case, Eqs. (16. 41) give 

_(16.43) I- 'l )- '( " ll-= -e\"i'"Ar If:~) • 
) d.~ /d..l: = 0 -

Referred to axes continuously moving with the particle, the polarization 

1\ 

stays in the plane specified by Rl and E - - and rotates about 
" ,.. 
,R, X E - - axis 

with frequency, 

It is seen that this type of electromagnetic field converts, in a harmonic 

fashion, longitudinal to transverse polarization. Also, from Eqs. (16. 40), 

the particle 
1\ A 

rotates about the ~)C § -a~is with the frequency e E (i't-r' 

so, referred to axes instantaneously fixed in the particle, the polarization ro-

tate s about the - - direction with frequency, 
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One may, with Tolhoek, and deGroot write, 

--
where the total energy E. is 'i' , and the kinetic energy is t ~ ... \ ) 

17. Anomalous Magnetic Moment Considerations 

Under the assumption that the anomalous magnetic moment of a Dirac par-

ticle can be described, in single particle theory, by the addition of a co-

variant Pauli 22 term to the Hamiltonian, one has 

'• .. 

(17. 1) 

where p. is a dimensionless scalar (the anomalous contribution), and the 

g -factor is given by 

(17. ·2) 

With T I'" still defined by Eq. (15.l),where the definition "14 ='ts(i.1'~-tH+te4>) 
is taken, one now finds that: 

(17. 3) 

The packet considerations follow as in Sec. 16. Using Eq. {16. 9), it is 

found that 

( 17. 4) 

(17. 5) 

__ , 
-1. ~ G~ .+ ~ (1\) 

. ~. 

where 
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(17.6) 6-~: ~ Ej K't < '~'\; ( ~ e't - E't ~ dj )n). TfK) 

+ <<~·~)n~) 

Also, since 

( 17. 7) 

one fin,ds 

(17. st 

Substitution of Eqs. (17. 4) and (17. 8) into Eq. (17. 3) yields 

( 17. 9) 

.. 
In the classical particle picture, the order ( l\ ) may be neglected, and 

the expectation values may be· regarded as classical values. Identifying 

7T)4 as the four-vector velocity, Eq. (17. 9) corresponds to the equation 

of motion derived by Bargmann, Michel, and Telegdi. 13 By a procedure 

similar to that given in Sec. 16, one obtains, after lengthy algebra, the pre-

cession equations 

, a:nd 

(17. 10) 

where A1. is a vector which,when non--zero, points in the direction of the - ' 

instantaneous no:r.ma.l to the plane o! motion, 
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~ 

(17. 11) ~1. - &x[~i-(~~~)1 

and the terms for JA'=O are given by Eqs. (16. 41). Eqs. {17.10) are valid 

relative to a coordinate system rigidly attached to the particle and con-

tinuously ~oving with it. 

In the special cases discussed in detail at the end of Sec. 16, .the presence 

of an anomalous moment produces a qualitative change only for the case in 

which B is transverse, - E = o. - The results for the same four special 

cases- are: 
j. 

(i) f: longitudinal, e = o; --
Here , Jt&.; = 0, and the direction of polarization is unchanged, as -
before. 

- E = o. -(ii) B transverse, 

Referred to axes moving cont,inuously wi~h the particle, the normal 

component of polarization rotates until it is in the plane of mo~ion, and there-

A 

after the polarization rotates about the perpendicular to the plane, < • B - ) ' 

with the frequ,ency 

Consequently, the anomalous mome.nt creates plane polarization, and con-

verts longitudinal pola~ization· into transverse polarization, in a harmonic 

fashion. Referred to axes instantaneously fixed, the polarization appears 
.,. 

to rotate about the ·B 'axis with frequency, 
'-~· 
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This la~t result was obtained by Carrassi, 23 and by Mendlowitz and Case. 24 

(iii) B longitudinal, - E .= o. -
Here, .h~ = 0, and in the coordinate system continuously moving with -

the particle, the longitudinal polarization is constant, and the transverse 

polarization rotates about the direction of motion with. a frequency times 

the relativistic cyclotron .frequency. 

(iv) E' transverse, -
,... 1\ 

6 =_,0. (hX!'I\ • E" ) = o. ..... ,.. ........ 
In this case, 

, and 

where the quantities .at p = 0 are given by Eqs. (16. 43). Consequently, 

( 

in the coordinate system continuously moving with the particle, the transverse 
,... 

polarization remains in the plane specified by Jb. and E , and rotates about - - . 
. ,.. " 

the ( E xlr ) axis with frequency, --
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