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NUMERICAL SOLUTION OF F U E L - E L E M E N T 
THERMAL-STRESS PROBLEMS 

Rober t F . Redmond, H a r r y Pol lack , Alton E. Klickman, 
Will iam S. Hogan, Harold M. Epste in , 

and Joe l W. Chastain 

In developing a method of numerical analysis for the solution of thermal-
stress problems special emphasis was given to fuel elements with internal coolant 
channels. Numerical techniques for reducing the partial differential equation sys­
tem to a form suitable for numerical solution and a new iterative method of solving 
large systems of linear algebraic equations were employed. Computer codes were 
devised to obtain the numerical solution of the thermal-stress problems and were 
used to obtain numerical results for single-hole and seven-hole hexagonal elements 
and plate-type elements. Comparisons were made between analytical results and 
numerical results for the case of the simple annulus shape. 

I N T R O D U C T I O N 

The pe r fo rmance of r eac to r fuel e lements is affected and frequently l imi ted by the 
occu r rence of t h e r m a l s t r e s s e s . Hence, a design p rob lem constantly encountered is the 
predic t ion of the t he rma l s t r e s s e s which will occur in a given r e a c t o r fuel e lement . The 
p rob lem of analyzing for the t h e r m a l s t r e s s e s is usual ly complicated by the geon:ietry of 
the fuel e l ements . The fuel e lements may have holes and will probably requ i re a two-
dimensional descr ip t ion . 

This r epor t de sc r ibe s a general method of numer i ca l ana lys is which can be applied 
to a wide range of two-dimensional t h e r m a l - s t r e s s p r o b l e m s . These numer i ca l methods 
have been coded for the IBM-704 computer and have been used to analyze a number of 
fue l -e lement geome t r i e s . 

The p rocedure followed is to develop the appropr ia te pa r t i a l differential equations 
which desc r ibe the p rob lem, to approxinaate the differential equations by difference 
equat ions, and then to solve the resul t ing difference equations. The major difficulty 
no rma l ly encountered in this p rocedure is the solution of the difference equations. 
The re may be as many as 500 to 1000 l inear a lgebra ic equations to solve s imul taneously , 
and this is a formidable task even for the IBM-704. The method of solution adopted in 
this work was an i te ra t ive p rocedure . This method has advantages and disadvantages 
which will be d i scussed l a t e r . 

The remaining p a r t s of this repor t give the detai ls of the p rob lem formulat ion, 
the i te ra t ive method of solution, and the numer i ca l r e s u l t s . F inal ly , the n-^ethods and 
re su l t s a r e evaluated and d i scussed . 
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F O R M U L A T I O N O F T H E P R O B L E M 

T h e p rob lemi c o n s i d e r e d i s t h a t of d e t e r m i n i n g the p l a n e - s t r a i n t h e r m a l - s t r e s s 
d i s t r i b u t i o n s in c y l i n d r i c a l b o d i e s w h i c h m a y h a v e i r r e g x i l a r b o u n d a r i e s a n d w h i c h m a y 
c o n t a i n c y l i n d r i c a l h o l e s . I t i s a s s u n i e d t h a t a l l p h y s i c a l p r o p e r t i e s a r e c o n s t a n t in the 
p r o b l e m and t h a t t he m a t e r i a l i s i s o t r o p i c a n d h o m o g e n e o u s . T h e b o d y i s a s s u m e d to 
h a v e u n i f o r m i n t e r n a l h e a t g e n e r a t i o n and to b e c o o l e d b y h e a t t r a n s f e r to a c o o l a n t . 
T h e h e a t - t r a n s f e r coe f f i c i en t i s a s s u m e d to b e c o n s t a n t . 

T h e a s s u m p t i o n s r e g a r d i n g t h e h e a t g e n e r a t i o n and h e a t t r a n s f e r cou ld e a s i l y be 
m o d i f i e d if m o r e d e t a i l e d i n f o r m a t i o n w e r e a v a i l a b l e . T h e r e s u l t s a l s o wi l l a p p l y to 
p l a n e - s t r e s s p r o b l e m s wi th m i n o r c h a n g e s in t he c o e f f i c i e n t s . 

T h r o u g h o u t t h i s r e p o r t t he b o d y u n d e r s t u d y w^ill b e o r i e n t e d in s u c h a w a y t h a t the 
z - a x i s i s p a r a l l e l to t h e c y l i n d r i c a l b o d y a n d t h e c r o s s s e c t i o n of t h e b o d y w i l l b e d e ­
p i c t e d in t he x y - p l a n e . A l l q u a n t i t i e s w i l l b e a s s u m e d to b e i n d e p e n d e n t of t he z 
c o o r d i n a t e . 

D i f f e r e n t i a l E q u a t i o n s fo r t he T e m p e r a t u r e F i e l d 

T h e a n a l y s i s of t he t h e r m a l - s t r e s s p r o b l e m c a n b e b r o k e n down in to two p a r t s . 
F i r s t , t he t e m p e r a t u r e d i s t r i b u t i o n m u s t u s u a l l y b e d e t e r m i n e d ; a n d , s e c o n d , t he r e ­
s u l t i n g t h e r m a l s t r e s s e s m u s t b e d e t e r m i n e d . C o n s i d e r f i r s t t h e t w o - d i n i e n s i o n a l t e m ­
p e r a t u r e p r o b l e n i in t he xy p l a n e . T h e e q u a t i o n s to b e s a t i s f i e d b y the t e m p e r a t u r e a r e 
a s fo l lows : 

S^T{x,y) o^T(x ,y ) ^ Q 
+ = V ^ T ( x , y ) = - - , 

Bx'^ 5y^ ^ 

S T { x s , y s ) 
Sn 

S T ( x s , y s ) h 

0, a t i n s u l a t e d o r s y m n i e t r y s u r f a c e s , ( l a ) 

T { x g , y g ) , a t h e a t - t r a n s f e r s u r f a c e s , 

w h e r e 

Sn k 

T (x , y) = t e m p e r a t u r e above the m e a n c o o l a n t t e m p e r a t u r e a t t h e po in t 
(x, y) in t h e b o d y 

Q = v o l u m e t r i c h e a t s o u r c e 

k = t h e r m a l c o n d u c t i v i t y 

h = h e a t - t r a n s f e r coe f f i c i en t 

(xg ,yg) = c o o r d i n a t e s of a p o i n t on t he s u r f a c e 
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-T-— = normal derivative in the direction outward from the surface, 
on 

These equations are more convenient for numerical work when they are expressed 
in dimensionless form as follows: 

a2T(x,y) , a2T(x,y) iTr 

ST(xg, 

^ 

ST(xg, 

Bx2 

ys) 

Ys) 

0, at 

ay2 

insulat 

- ^T(xs,ys), 

- V J. V A , y / -

ed or synimetry 

at heat-transfer 

A > 

surfaces , 

surfaces , 

(lb) 

where 

an 

— x — y — n 
x = — , Y =• 1 ri = 

c = characteristic length 

T(x,7) = ^ 3 ^ 
Qc£ 
k 

/ 3 = ^ P k • 

Equations (lb) are the equations w ĥich will be used for the temperature field 
throughout the remainder of this report. 

Differential Equations for the Stress Field 

The equations for the stress field in the case of plane strain in the absence of 
body forces are as follows (1): 

SOx ^ ^Jxy ^ Q 
OTc oy ' 

Sr^y Say _ (^^) 

Sx By 

e^^ ^ [(1 + V) o^- V G] + aT , 
L 

ey = ^ [(1 + ^) a - V 9] + aT , 
, (2b) 

e^ = - ^ [ (1 + V) â  - V e ] + aT = constant , 
E 

_ 2(1 + V) ^ 
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w h e r e 

Ojj = n o r m a l s t r e s s c o m p o n e n t on s u r f a c e n o r m a l to t he x - a x i s 

Oy = n o r m a l s t r e s s c o m p o n e n t on s u r f a c e n o r m a l to t h e y - a x i s 

a^ = n o r m a l s t r e s s c o m p o n e n t on s u r f a c e n o r n a a l t o t he z - a x i s 

T = t a n g e n t i a l s t r e s s in y - d i r e c t i o n on s u r f a c e n o r m a l to x - a x i s xy 

Cjj. = s t r a i n in x - d i r e c t i o n 

£y = s t r a i n in y - d i r e c t i o n 

£ = s t r a i n in z - d i r e c t i o n 

7jj,„ = s h e a r s t r a i n in x y - p l a n e 

® = Ox + ^y + ^z 

V - P o i s s o n ' s r a t i o 

E = Y o u n g ' s m o d u l u s 

a = l i n e a r coe f f i c i en t of t h e r m a l e x p a n s i o n 

T = t e m p e r a t u r e . 

E q u a t i o n s (2a) r e p r e s e n t a f o r c e b a l a n c e on a s m a l l - v o l u m e e l e m e n t of t he body , 
w h e r e a s E q u a t i o n s (2b) a r e t he r e l a t i o n s h i p s b e t w e e n s t r e s s a n d s t r a i n . In a d d i t i o n to 
t h e s e e q u a t i o n s , t he s t r a i n s m u s t s a t i s f y c e r t a i n c o m p a t i b i l i t y c o n d i t i o n s in o r d e r to 
m a k e t he s t r a i n s c o n s i s t e n t w i t h t he d i s p l a c e m e n t s . F u r t h e r , t he s t r e s s - s t r a i n f i e l d s 
m u s t b e s u c h t h a t the d i s p l a c e m e n t s a n d r o t a t i o n s a r e c o n t i n u o u s w h e r e t he b o d y i s c o n ­
t i n u o u s . F i n a l l y , t h e s t r e s s e s m u s t b e c o n s i s t e n t wi th t he e x t e r n a l l y a p p l i e d f o r c e s a t 
the s u r f a c e of t h e body . 

In t he p r e s e n t s i t u a t i o n the only c o m p a t i b i l i t y e q u a t i o n w h i c h i s no t s a t i s f i e d 
t r i v i a l l y i s 

S^e B^e B̂ -Y 
" ^x " '̂ y " /xy 
Sy2 Sx^ SxSy 

Using Equations (2b) in Equation (3) leads to the following eqviation involving the s t r e s s e s 

^ ^ + :: vr^G^^ a ) = - aEV T . (4) 
ax^ axay ay^ --x ' -y/ 

Forget t ing for the moment the additional equations which may be needed, cons ider 
Equations (2a) and (4) which the s t r e s s e s mus t satisfy. As a m a t t e r of convenience a 
s t r e s s function 0(x, y) is usual ly defined with the following p rope r t i e s : 
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â 0 a20 â 0 
Ox = r , Oy = , T^y= . (5) 

ay"̂  ax^ axay 

F i r s t , it will be noted that Equations (2a) a r e sat isf ied t r iv ia l ly . On the other 
hand. Equation (4) will be sat isf ied if 0 is a solution of the equation 

V^0(x,y) = v2v^0(x,y) = ^ ^ V^T , (6a) 

7 O 
which, if V^T = - -^, becomes 

There fo re , a solution for 0 which sa t is f ies Equation (6b) and the additional condi­
tions to be requ i red will de t e rmine , by Equation (5), a.^, Oy, and T-^y. The remain ing 
s t r e s s a^ does not appear in Equations (2a) and (4) but is de te rmined as follows. F r o m 
the Sz equation of Equations (2b), O^, is exp res sed in t e r m s of the other s t r e s s e s , the 
t e m p e r a t u r e , and e^ (a constant): 

Oz = E (£z - ctT) + v{0^ + Oy) , 
(•7) 

a z 
E (e - aT) + vv'^(p 

It is then requ i red that the O^ component be consis tent with the axial forces acting 
on the body. If the body is un re s t r a ined at the ends, as is the case h e r e , then 

\ \ 0^ dxdy = \ \ ] E(£2 - aT) + vv^0^ dxdy = 0 , (8) 

where the in tegra l s extend over the c r o s s - s e c t i o n a l a r e a of the body. F r o m Equation (S) 
£z can be de te rmined and then a^ can be evaluated f rom Equation (7). 

In many cases it is easy to show by Green ' s t heo rem that \ y20dxdy = 0 and, hence, 

£2 = aTg^^, where T^.^- is the ave rage t e m p e r a t u r e of the body. In this case Ô  is given 
s imply by 

a^ = aE (Tg.y - T) + vV^0 . (8a) 

In addition to the preced ing equations ce r ta in bo\andary conditions and continuity 
conditions m u s t be sat isfied. At the f ree boundar ies of the body the s t r e s s e s mus t be 
consis tent with the applied fo rces . Hence, at the free boundar ies , 

nxOx + nyTxy = Fx , 

nxT"xy + HyOy = Fy , 
(9a) 

w^here nx and ny a r e the d i rec t ion cos ines of the outward no rma l vec to r , and F x and F y 
a r e the components of the external ly applied surface force . In t e r m s of the s t r e s s 
function. 
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a20 a20 

aŷ  axay ds ^ ax 
= F X > 

a20 
•n^ r:—^— + n 

a20 ^ _ d_ f ^ \ ^ p 
axay y ax^ ds v ay / y 

(9b) 

where -;— r e p r e s e n t s the der ivat ive in the d i rec t ion of the tangent vector of the boundary 
ds 

curve . F o r free boundar ies F ^ = Fy = 0 and, hence . 

ay 

= constant 

= constant 

(9c) 

on each free boundary separa te ly . In many cases cons idered , one or both constants in 
Equation (9c) a r e n e c e s s a r i l y ze ro f rom a considerat ion of the s y m m e t r y planes which 
in t e r sec t the f ree boundar ies . 

In addition to the f ree boundar ies jus t cons idered , s y m m e t r y boundar ies may 
somet imes be introduced to simplify the p rob lem. In this case the s t r e s s function is r e ­
quired to be symmet r i ca l with r e spec t to the s y m m e t r y surface . At a s y m m e t r y surface 
the following conditions a r e equivalent: 

an 

av20 

an 

0 

o r •< 

an 

a30 

an3 

0 

(10) 

where —— r e p r e s e n t s a no rma l der ivat ive at the s y m m e t r y surface . 
an 

F o r s imply connected bodies (no holes) Equations (6a), (9b), and (10) would suffice 
to de te rmine the s t r e s s function for the resul t ing d isp lacements and rotat ions would 
satisfy the continuity r equ i rement . However, for mult iply connected bodies (holes), 
additional conditions mus t be placed upon the s t r e s s function to a s s u r e continuity of the 
d isp lacements and the ro ta t ions . 

The following t r ea tmen t follows that of Southwell^^'. The s t r a in components in 
t e r m s of the d i sp lacements a r e 

"-= a 
au 
Ix 

av 
ay 7-xy 

au av 
ay ax 

where 

u = d isp lacement component in x -d i rec t ion 

V = d isp lacement component in y -d i rec t ion . 
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The only rotat ional component of i n t e r e s t h e r e is the z-component , wz, given by 

Hence, 

and 

a n d 

-^-i{t-X) • 

ax = "^^ ^ 2 ^-y ' 

au ^ 1 
^ = - Wz + 2 7xy , 

a ^ . 1 ^ a^v 
ay l " - ^ 2 ^ W = axay = 

ax \ - ^ - ^ 2 W = axay = 

aw^ a£y 1 by^y 

ay ax 2 ay 

ax 

a£ 
X 

ay 

} 

awz _ _ a£x i_ ayxy 

ay 2 ax 

a^w. z 
Evaluating with each of the preced ing express ions and equating these ex-

ax ay 
p r e s s i o n s leads to the compatibi l i ty re la t ion a l r eady cons idered . Equation (3). In addi­
tion, however , if Wz is continuous then 

C ^ z 

where the path of in tegrat ion is an a r b i t r a r y closed curve which does not c r o s s the 
boundar ies of the body but may enclose ho les . In t e r m s of the s t r a ins 

5 ^ z ^ C i ^ z ^ ^ z I J 
--— ds = S i - nv -T:— + n^ -^r— f ds 

as J L y ax ay j 

J I ^ V ax 2 ay y y v ay 
1 ^xy 

2 ax ds = 0 

In t e r m s of the s t r e s s function [ e x p r e s s £x and £y in t e r m s of Ox and Oy by el iminat ing 
Oz by means of Equation (7)]: 

Rf^^^ff}"-"- '"' 
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Hence, Equation (11) raust be sat isf ied if the rotat ion is to be continuous. 
be noted by applying Green ' s t heo rem to Equation (11) that 

It nnay 

(12) 

where in the l a s t summation of in tegra l s the integrat ions a r e over the paths which de­
fine the holes enclosed by the closed path s, and the surface in tegra l extends over the 
region of the body enclosed by the path s. F r o m Equation (6a) the surface in tegra l 
van ishes . If no holes a r e p r e sen t Equation (11) will be satisfied t r iv ia l ly for any path of 
integrat ion in the body which, however, may coincide with the external boundary of the 
body as a l imi t ing ca se . If holes a r e p r e s e n t then a path of integrat ion can be defined 
which includes only one hole , and then the preceding a rguments show that Equation (11) 
mus t be satisfied for this path of integrat ion or for any path which includes this hole; 
for example, a path defined over the hole boundary. There fore , if holes a r e p r e s e n t the 
continuity of Wz is a s s u r e d if Equation (11) is satisfied for each boundary curve . 
Equation (11) then is another condition imposed on the s t r e s s function which mus t be 
satisfied at each hole boundary if holes a r e p r e sen t . 

In a s imi l a r fashion the continuity of u and v can be es tabl ished by requir ing that 

I 
and 

au 
as 

av 
J as 

ds = 0 

ds = 0 . 

These r equ i remen t s resu l t in the following equations in t e r m s of the s t r e s s function: 

5 
5 

y ^ 

an 

n. 

n^ 

V 2 0 + ^ 
l-v 

2^ ctET 
V 0 + l-v 

ds = 0 

ds = 0 

(13) 

(14) 

Again by an applicat ion of Green ' s t heo rem it can be seen that these equations a r e s a t i s ­
fied t r iv ia l ly if no holes a r e p re sen t . If holes a r e p r e sen t Equations (13) and (14) mus t 
be satisfied for each hole boundary. Hence, Equations (12), (13), and (14) a r e to be 
satisfied for each hole boundary in o rde r to insure the continuity of the d isp lacement and 
the rotation components . 

In addition to the continuity equations jus t descr ibed , the p r e s e n c e of holes can 
a lso introduce the p rob lem of cyclic cons tants . \^l However, if, as in the p r e sen t case , 
the external ly applied forces at the hole boundar ies a r e ze ro then the re is no p rob lem. 
Therefore , the p rob lem of cyclic constants will not be cons idered fur ther in this r epor t . 
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Final ly , it mus t be noted that , in genera l , t he re will be solutions of the homoge­
neous equation V^0 = 0 which will a l so satisfy the boundary conditions and the continuity 
equations; e. g. , 0 = constant . In such ins tances the resul t ing a r b i t r a r y constants mus t 
be specified before the numer i ca l work can proceed . That i s , the s t r e s s function mus t 
have a unique solution if it is to be de te rmined by a numer i ca l p rocedure . 

As in the case of the t e m p e r a t u r e p rob lem d imens ion less fo rms a r e m o r e con­
venient. Hence, Equations (6b), (8), (10), (11), e tc . become 

ii 
V40 = 1 , (15) 

T ) + V^0 i- dxdy = 0 , (16) 
a 

Qc2 / l - v 

d f M \ „ d 
ds V ax -̂  ' ds V ay 

a0 av^0 
-=r = 0 , - - = - - 0 , (18) 
3n an 

i — j V ^ 0 + T V ds = 0 , etc. , (19) 

w ĥe 

a E Q 4. ' 
— c^ 

l-v k 

and the other te rminology is as before . 

The d imens ion less form of the equations will be used throughout the r ema inde r of 
this r epor t . However, for s impl ic i ty the ba r designation will be dropped with the under­
standing that al l equations which follow a r e in d imens ion less form. 

Formula t ion of Equations for Numer ica l Solution 

The p rocedure used in a r r i v ing at a numer i ca l solution of the t h e r m a l - s t r e s s 
p rob lem is as follows: 

(1) Const ruc t a square m e s h which is superposed over the two-
dimensional geometry of the body. 

(2) Specify appropr i a t e interpolat ion formulas for r ep resen t ing a 
function of x and y in t e r m s of the point values at the m e s h points . 

(3) P e r f o r m the requ i red differential and in tegra l operat ions on the 
interpolat ion formulas to obtain suitable equations involving the 
point values of the function at the m e s h points . 
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(4) Solve the resu l t ing equations to obtain the point values of the func­
tion at the m e s h points and if n e c e s s a r y use the point values for 
fur ther opera t ions . 

These s teps of the p rocedure will now be desc r ibed in turn . In o rde r to make the 
p rocedure c lear a specific example will be used. As an example a 15-deg sl ice of an 
annular cylinder will be considered. In this example it will be a s s u m e d that heat is 
generated uniformly within the annulus and is removed uniformly at the inner radius by 
heat t r ans fe r to a coolant. 

Construct ion of the Mesh 

A geometr ica l square m e s h of unit length is superposed over the two-dimensional 
geomet ry of the body as indicated in F igure 1. Two types of physical mesh points a r e 
now^ defined. In te r io r m e s h points a r e defined to be those on or inside the boundar ies of 
the body. These a r e indicated in F igure 1 by solid dots . Ex te r io r mesh points a r e de ­
fined to be those points outside the boundar ies of the body which a r e requi red to com­
plete the "biharmonic a r r a y " for each in te r io r m e s h point cons idered as the center of 
the b iharmonic a r r a y . The b iharmonic a r r a y is defined by the geomet r ica l a r r a y shown 
in F igure 2a. The (0,0) point is the center of the a r r a y . In F igure 1 the ex te r io r points 
a r e indicated by c i r c l e s at the appropr ia te m e s h points . It will be noted that each 
in te r ior point in F igure 1 is the center of a complete b iharmonic a r r a y . The "Laplac ian 
a r r a y " as shown in F igure 2b would suffice for the t empera tu re - f i e ld p rob lems ; however , 
for the purpose of construct ing the mesh only once for both the t e m p e r a t u r e and s t r e s s 
p rob l ems , the method desc r ibed will be used throughout. F o r the t e m p e r a t u r e p rob l ems 
the ex te r io r points not needed can be e l iminated in the p rob lem solution. 

The use of ex te r io r points may appear s t range since function values at these 
points have no physical significance. However, they do have mathemat ica l significance 
since they cor respond to an analytic continuation of the function beyond the boundar ies . 
F o r example, the analyt ical formula for the t e m p e r a t u r e field has physical significance 
only when it is evaluated for points inside the body but it may neve r the l e s s be used to 
evaluate function values outside the body. The reason for using ex te r io r points in this 
way is that the boundary equations can be wr i t ten m o r e accura te ly for numer i ca l com­
putation. This is because cen t ra l difference interpolat ion formulas can be used even at 
the boundar ies , whereas without the ex te r io r m e s h points one-s ided interpolat ion fo rmu­
las would be requi red , and these a r e l e s s sa t i s fac tory . 

Interpolat ion F o r m u l a s 

The two-dimensional interpolat ion formulas given h e r e a r e obtained by a double 
application of Stirling's'-^) interpolat ion formula and t runcat ing the resu l t . F o r the t e m ­
p e r a t u r e function the five-point Laplacian a r r a y is used which is a ssoc ia ted with the 
following interpolat ion formula 

T ( r , s ) = T(0,0) + f [T(1,0) - T( -1 ,0 ) ] + j - [T(0, 1) - T(0 , -1 ) ] 

r2 
+ ^ [T(1,0) + T(-1 ,0) - 2T(0,0)] (20) 

s2 
+ - | - [T(0, 1) + T(0 , -1) - 2T(0,0)] . 
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Scheme 
• interior point 
O exterior point 
(£) boundory point 

48 49 50 51 

FIGURE 1, MESH WORK FOR SAMPLE PROBLEM (15-DEG SLICE OF ANNULUS) 

(-2 ,0) 

4 
(1 

(-! 

. ...d 

1) 

0) 

(-1,-1) 

1 — • — 
(0,2) 

(0,1) 

(C 

(0. 

r 

),o) 

-1) 

(0,-2) 
1 

(1 
0-DI 

IS 

1) 
x,y) 

I 
(1,0) 

(1, -1) 

A 

(2,0) 

' ) 

•1 

i 

AX 

y-oireciior 

(-direction 

(1,0) 

(0,1) 

r 

(0,0) 

1 

( 0 -1) 

P(« 

is 
(1 

,y) 

0) 

0 Bihormonic Array 

If (0,0) Point IS Located at(x„,i(,l Then for P(x,y) {;: 
X-XQ 

ti X 

y-Yo 
^ y 

b. Loplacian Array 

FIGURE 2. FUNDAMENTAL MESH-POINT ARRAYS FOR INTERPOLATION FORMULAS 



12 

F o r t h e s t r e s s p r o b l e m t h e 1 3 - p o i n t b i h a r m o n i c a r r a y i s u s e d w h i c h i s 
a s s o c i a t e d wi th t h e fo l lowing i n t e r p o l a t i o n f o r m u l a 

0 ( r , s ) = 0 (0 ,0 ) + j - [ 0 ( 1 , 0 ) - 0 ( - l , O ) + f [ 0 ( 0 , 1 ) - 0 ( 0 , - 1 ) ] 

+ ^ [ 0 ( 1 , 0 ) + 0 ( - l , O ) - 2 0 ( 0 , 0 ) ] 

+ - ^ [ 0 ( 0 , 1 ) + 0 ( 0 , - 1 ) - 2 0 ( 0 , 0 ) ] 

+ ^ [ 0 ( 1 , 1 ) + 0 ( - l , - l ) - 0 ( - l , l ) - 0 ( 1 , - 1 ) ] 

+ ' '^ ' '^^" ^̂  [ 0 ( 2 , 0 ) - 20 (1 ,0 ) - 0 ( -2 ,O) + 2 0 ( - l , O ) ] 

+ ^ [ 0 ( 0 , 2 ) - 20(0, 1) - 0 ( 0 , - 2 ) + 2 0 ( 0 , - 1 ) ] 

+ ^ [ 0 ( 1 , 1 ) + 0 ( 1 , - 1 ) - 20 (1 ,0 ) - 0 ( - l , - l ) - 0 ( - l , l ) + 2 0 ( - l , O ) ] 

r ^ s 
+ ^ [ 0 ( 1 , 1 ) + 0 ( - l , l ) - 20 (0 ,1 ) - 0 ( 1 , - 1 ) - 0 ( - l , - l ) + 2 0 ( 0 , - 1 ) ] 

+ "" "̂̂  " •̂^ [ 6 0 ( 0 , 0 ) - 4 0 ( 1 , 0 ) - 4 0 ( - l , O ) + 0 (2 ,0 ) + 0 ( - 2 , O ) ] 

+ ^ <^^^" ^̂  [ 6 0 ( 0 , 0 ) - 40(0 , 1) - 4 0 ( 0 , - 1 ) + 0 ( 0 , 2 ) + 0 ( 0 , - 2 ) ] 

+ ^ Y ~ t'^^^' ^) + ' ^ ( • ^ ' ^) + 0 ( i ' - i ) + 0 ( - i . - i ) 

- 20(0, 1) - 20 (1 ,0 ) - 2 0 ( - l , O ) 

- 20(0,-1) + 40(0,0)] . 

It will be noted that both interpolat ion formulas give the c o r r e c t value for the 
function when (r, s) co r responds to one of the m e s h points of the appropr ia te a r r a y . 
This p rope r ty of the interpolat ion formulas demons t r a t e s one of severa l supe r io r fea­
tu re s of interpolat ion formulas as cont ras ted to the frequently used two-dimensional 
Taylor s e r i e s expansions . 

Equations (20) and (21) a r e the fundamental formulas used throughout the r e s t of 
this r epor t to obtain equations involving the point values of the functions at the mesh 
points . Since the mesh length is defined to be unity in these fo rmulas , the unit of 
length c in the d imens ionless equations is chosen to be the physical length of the mesh . 
This choice simplif ies the numer i ca l equations which follow but does not give a con­
venient d imens ionless form to the final r e s u l t s . However, the final r e su l t s can be put 
into a m o r e convenient d imens ionless fo rm by mult iplying the d imens ion less t e m p e r a t u r e 

function, say, by ( ~ ) where a is perhaps the radius of the hole . In this way the 

d imens ion less fo rms a r e made independent of the pa r t i cu l a r m e s h spacing used . 
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Numer ica l Equations 

The n u m e r i c a l equations to be solved a r e obtained by using the interpolat ion formu­
las in the differential and in tegra l equations which define the p rob lem. This is done in 
such a way that the number of independent l inea r a lgebra ic equations involving the point 
values of the functions equals the number of point values of the function which a r e de ­
t e rmined . F o r example , in F igu re 1 the re a r e 51 point values to be de te rmined and, 
hence , 51 independent equations mus t be obtained. These equations will be l inear 
a lgebra ic equations because the interpolat ion fo rmulas , differential equat ions, and inte­
grat ion schemes used a r e l inea r . It should be noted, however , that the re is considerable 
a r b i t r a r i n e s s in se lect ing the equations, and a ce r ta in amount of caution is n e c e s s a r y to 
avoid the use of dependent equat ions. The bes t guide in this r e g a r d is probably a com­
bination of physical intuition and ma themat i ca l insight. 

P robab ly the bes t p rocedure to be followed in wri t ing the appropr ia te number of 
equations is to a ssoc ia te every m e s h point with a specific equation. The equation 
se lected should involve the point value of the function as s t rongly as poss ib le . This las t 
r equ i r emen t while not impera t ive will faci l i tate the n u m e r i c a l solution and will help in 
avoiding dependent equat ions. 

The in te r io r points p r e s e n t no special p r o b l e m s , for the na tu ra l choice is to 
a ssoc ia te the equation V 0 = 1 or V T = - 1 with each in te r io r point. F o r example, r e ­
fe r r ing to F i g u r e 1, the eleventh equation for the s t r e s s p rob lem would read 

(V40)j^^ = 200(11) - 8[0(12) + 0(5) + 0(10) + 0(19)] 

+ 2[0(6) + 0(4) + 0(18) + 0(20)] 

+ [0(13) + 0(1) + 0(9) + 0(27)] = 1 . 

The eleventh equation for the t e m p e r a t u r e p rob lem would r ead 

(V^T)]Li = - 4T(11) + T(12) + T(5) + T(10).+ T(19) = - 1 . 

Note that these equations were obtained by applying the differential ope ra to r s at Point 11 
to the interpolat ion fo rmulas . 

The ex te r io r points , however , do p re sen t special p r o b l e m s . The genera l p r o c e ­
dure is to a s soc ia t e an ex te r io r point with a nearby boundary point (not n e c e s s a r i l y a 
mesh point) and a boundary equation appropr ia te to that boundary. The boundary equa­
tion is obtained by using an interpolat ion formula centered at an in te r io r point nea r the 
boundary point and per forming the requi red operat ions on it. F o r example , r e f e r r i n g 
to F igure 1, Mesh Point 6 is a ssoc ia ted with Boundary Point 8 at the co rne r . Boundary 
Point 8 in turn is assoc ia ted with in te r io r Mesh Point 12 where an interpolat ion formula 

aT 
can be wri t ten . Thus , for the t e m p e r a t u r e p rob lem the boundary equation -:r— = 0 is 

an 
writ ten at Boundary Point 8 using an interpolat ion formula cen te red at Mesh Poin t 12. 
Or, in detai l , the equation for Mesh Point 6 for the t e m p e r a t u r e p rob lem is obtained 
as follows: 
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aT ^ aT L aT „ 
" n „ rr + n . . rr = 0 an / r. s ^ ar y as 

s m lin 15° I i [T(13) - T( l l ) ] + r [R(13) + T(l l ) - 2T(6)] 

+ cos 15° j i - [T(6) - T(20)] + s [T(6) + T(20) - 2T(6)] [ = 0 , 

where (r, s) a r e the coordinates of Boundary Poin t 8 r e f e r r e d to in te r io r Mesh Point 12 
as or igin. On the other hand, since Mesh Point 2 is not involved in the Laplacian a r r a y 
about any in te r io r m e s h point, this m e s h point is e l iminated by s imply wri t ing the 
equation: T(2) = 0. 

av^0 
F o r the s t r e s s p rob lem Mesh Point 2 is a ssoc ia ted with the equation = 0, 

an 
a0 

wri t ten at Boundary Point 8, while Mesh Point 6 is a s soc ia t ed with the equation -̂— = 0, 
wr i t ten a lso at Boundary Poin t 8. Thus , two independent boundary conditions a r e 
applied to the same boundary point and r e f e r r e d to the same in te r io r m e s h point as an 
interpolat ion cen te r . 

In this fashion the requ i red number of independent equations a r e obtained which 
can then be used to de te rmine the point values of the t e m p e r a t u r e and the s t r e s s func­
tion at the m e s h points . The s t ress - func t ion solution in tu rn can be used with the in te r ­
polation formulas to de te rmine the s t r e s s values at any des i r ed point. 

A detai led specification of the example of F igure 1 can be found in Appendix A. 
However, s eve ra l innportant fea tures might be mentioned h e r e . A study of the p rob lem 
revea ls that the s t r e s s function is a r b i t r a r y only to a constant . Accordingly, the equa­
tion for Mesh Point 39 is a r b i t r a r i l y taken to be 0(39) = 0. At the inside radius an 
in tegral equation [Equation (18)] mus t be writ ten; this equation is a r b i t r a r i l y assoc ia ted 
with Point 32. Also , it may be noted that pa r t i cu l a r ca re mus t be exe rc i sed at the co r ­
n e r s to avoid dependent equations. F o r exaniple at Boundary Point 8 the equation 

-^ = 0 is wr i t ten . At Boundary Point 9 (the same point but with a different n o r m a l 

vector) the equations -•^ = 0 and -^^ = 0 could be wr i t ten and would satisfy the boundary 

conditions on this boundary. However, r-—,-r-—, and -:r— a r e not independent at the 

an ax dy 
same point and, hence, such a p rocedure will lead to a dependent equation which cannot 
be used. 

The l ine in tegra l s encountered a r e reduced to l inear a lgebra ic equations by apply­
ing a s imple t rapezoida l rxile to integrand values obtained at equally spaced boundary 
points . The in tegrands a r e evaluated by means of the usual interpolat ion fo rmulas . The 
average t e m p e r a t u r e over the c r o s s sect ion of the body which is r equ i red in Equation (8) 
is obtained by a crude ari thnaetic ave rage of the t e m p e r a t u r e values at the in te r io r m e s h 
points . 
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Hence, as a r e su l t of the p rocedu re s desc r ibed above the p rob lem of F igure 1 has 
been reduced to solving 51 l inea r a lgebra ic equations for f i r s t the t e m p e r a t u r e and then 
the s t r e s s functions. Although this size p rob lem can be solved d i rec t ly by a m a t r i x in­
ve r s ion this approach becomes imposs ib le as the number of equations becomes l a r g e . 
Hence, i t e ra t ive types of solution a r e of i n t e re s t for the i r applicat ion to the s t r e s s p r o b ­
l em. The following section of the r epor t de sc r ibe s an i t e ra t ive p rocedure studied and 
used in this connection. 

Before taking up the i t e ra t ive p rocedure it should be mentioned that the p r e p a r a ­
tion of the coefficient m a t r i x for a l a r g e - s c a l e p rob lem can be a formidable task in itself. 
Consequently, al l the numer i ca l schemes for generat ing the coefficient m a t r i x e lements 
and p roces s ing the solutions have been coded for machine computation. In this way a 
min imum amount of hand -p repa red input data is used. This not only simplif ies the setup 
of the p rob lem but r educes the poss ib i l i ty for e r r o r s . The hand -p repa red input r e ­
quired for a p rob lem setup is desc r ibed in Appendix A. 

ITERATIVE METHOD OF SOLUTION 

As a l r eady mentioned the numer ica l method of solution reduces to the solution of a 
number of s imul taneous l inear a lgebra ic equations. Consider , the re fo re , such a sys tem 
of equations given by 

A0 = (22) 

where 

a = 

and A is a nonsingular RxR m a t r i x . The 0^, 02, 
de te rmined . 

^R 

etc . a r e the unknowns to be 

An i tera t ion scheme for solving Equation (22) can be employed. Of the many 
i te ra t ion schem.es, the extrapolated Liebmann p r o c e s s has a number of advantages for 
machine computation. ('̂ ) This method will be desc r ibed and re la ted to a minimizat ion 
p r o c e s s for i te ra t ing on Equation (22); this connection eas i ly es tab l i shes the convergence 
of the extrapola ted Liebmann p r o c e s s applied to an equation re la ted to Equation (22): 

http://schem.es
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o r 

where 

A ' ^ A 0 = A'^C 

B0 = b , 

B = A ' ^ A 

b = A'^a . 

That is Equation (23) is s imply obtained by multiplying Equation (22) by the t ranspo 
m a t r i x A ,A . The m a t r i x B defined in this way is a posi t ive definite ma t r i x . 

Minimizat ion P r o c e s s for I te ra t ion 

The minimizat ion scheme desc r ibed h e r e is c losely re la ted to s eve ra l other 
i te ra t ion schemes but apparent ly it has not appeared in the l i t e r a t u r e . 

The res idua l vec tor r is defined by 

r = A0 - a , 

and the length squared of r is given by 

| r | ^ = r • r = |A0 - a|^ . 

The i te ra t ion scheme a s s u m e s that t he re is an es t ima te for the vec tor 0: 

0n(s) = 
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That i s , at this stage of the n*" i te ra t ion the e lements 0^, 02, . • • , 0 s - 1 have been 
i t e ra ted , but the e lements 0g, 0g-).i, • • • , 0 R have not been i t e ra t ed as yet. Then it is 
de s i r ed to de te rmine 0̂ "*" in such a way that |r| 2 is min imized . To de te rmine the way 
this choice mus t be made 0^(s+l) is put into Equation (25) for 0 and it is r equ i red that 

ai 
a0 n + l 

which gives 

However, 

a|r|2 

a0^+^ 
= 2r • 

ar 

S0f^ 
2(A0 - a) • A 

Us+1) 

^0n+l 
s 

= 0 

= 1 

* s , 

a0 

i>t' 
= 0 

and, t he re fo re . 

or in de ta i l . 

k 

[A0"(s-l-l) - a]j,^ • Aj^s = 0 , 

HI 
k i 

A ^ ^ 0 ^ ( s + l ) - a ^ ^ ^ k s = 0 ' 

j . n 
or using the notation for the res idua l vec tor cor responding to 0^ (s+1). 

y rn (s+1) A^^ = 0 , (26) 

wh« 

r g ( s + l ) = ^ Aj^i ^ (^+1) - ^k 

An express ion for 0 can be obtained by noting that 

r J ( s+ l ) = r J ( s ) + A ^ ^ 0n+l _ 0n 
s s 

(27) 

Putt ing the l a s t express ion into Equation (25) gives finally 

€' - € 
1^' 

^— ^ ^ks < (-) 

•ks 

(28) 
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This , then, is the new^ value of 0s which min imizes the square of the res idua l 
vec tor . F u r t h e r , s ince the vec to r s 

A I s 

^2s 

a r e l inea r ly independent and the minimizat ion p r o c e s s will be complete only if Equa­
tion (26) is satisfied for al l values of s, it follows that the re exis ts only the minimum, 
given by the solution A0 = c. Hence, the i te ra t ion scheme will always converge to the 
t rue solution. 

The Extrapola ted Liebmann P r o c e s s 

There exis ts an in te res t ing re la t ionship between the minimizat ion p r o c e s s jus t 
desc r ibed and the extrapolated Liebmann p r o c e s s applied to the t r ansposed sys t em 
A ' ^ A 0 = A ^ a . 

Thus, consider f i r s t the sys tem 

A0 = a . 

The extrapolated Liebmann i tera t ion scheme for the t r ansposed sys tem (BggT^ 0) is 

^n+1 ,n a 
0 =0 

s S B ss 
I^^^>)-^ 

o r 
, n+1 , n 
0 =0 

s s 

a 

A. ks 

{1 n . 
^ks \ ( ^ ) (29) 

Thus, Equation (29) differs only froni Equation (28) in that a appea r s in Equa­
tion (29). This significant resu l t apparent ly has not appeared in the l i t e r a t u r e . The 
question na tura l ly a r i s e s as to what choices of a in Equation (29) will a s s u r e convergence. 
This question is eas i ly answered by considering the res idua l vector change during the 
i tera t ion. It is eas i ly demons t ra ted that the square of the res idua l vector will never in­
c r e a s e if 0<a<2. It suffices to observe that 
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6 = I r^ (s+1) -"(s) 

r ^ ( s ) + A j 0"(s-l-l) - 0^(s) 

= 2 r ^ ( s ) • A \ 0^(s-J-l) - 0 ^ ( s ) ^ + 

^ - r ^ ( s ) 

A -{ 0 ^ ( s + l ) - 0^(s) 

2a 

ks [̂  s sj /_ ks [_ s 

k 

^ k s ^k(^) 

A ks 

+ a 

{1 
2 k 

H / 
A k s rk(^) 

A ks 

= zS rg(s) A,„ ^ 0̂ +1 - 0̂ ^ + y A,2„ i 0̂ +1 - 0̂  

I H / 

^ s ^k(^) 

= ( - 2 a + a2) — ^ 

A 
ks 

C l e a r l y fo r 0<a<2 the s q u a r e of t he r e s i d u a l v e c t o r w i l l n e v e r i n c r e a s e a t a n y s t e p of the 
i t e r a t i o n s c h e m e . 

A n o t h e r q u e s t i o n of i m p o r t a n c e i s t he b e s t c h o i c e of a. A t e a c h s t e p a = 1 g ives 
the g r e a t e s t d e c r e a s e in t he s q u a r e of t he r e s i d u a l v e c t o r ; h o w e v e r , s o m e o t h e r c h o i c e 
of a m a y w e l l g ive a l a r g e r d e c r e a s e a f t e r a n u m b e r of i t e r a t i o n s t h a n the c h o i c e a = 1. 
T h i s q u e s t i o n of t he o p t i m u m c h o i c e of a i s a c o m p l e x o n e . In g e n e r a l , t h e r e i s l i t t l e 
to b e done o t h e r t han e x p e r i m e n t w i t h d i f f e r e n t a c h o i c e s to d e t e r m i n e the b e s t a c h o i c e 
fo r a g iven p r o b l e m . To b e s u r e fo r s p e c i a l m a t r i c e s s o m e t h i n g m o r e can be s a i d a b o u t 
the o p t i m u m c h o i c e of a b u t t h e s e a r e s p e c i a l c a s e s . ^ > 

T h e i t e r a t i o n s c h e m e g iven b y E q u a t i o n (29) c a n b e p e r f o r m e d r a t h e r e f f i c i en t ly b y 
a h i g h - s p e e d c o m p u t e r . T h u s , def ine 

Ms = 
1 

B 
(30) 

ss 

^k(s) = ̂  Ak^0?(s) - â  , 

, ,n ^n+1 
6 0 = 0 

s s 
P : 

(31) 

(32) 
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T h e n 

0 s = - a M s ) A k s r(J(s) , l < s < R , (33) 

r j ( s ) = r J J ( s - l ) + A ^ ^ ^ _ ^ 60^_^ , 2 < s < R+1 , (34) 

rJJ(l) = rJJ"^ (R+1) . (35) 

The i te ra t ion s t a r t s with an es t imate for 0g, s = 1, . . , R. F r o m this rT^(l) is ca l ­
culated by Equation (31). Then 6 0 | is calculated from Equation (33). Then r,l(2) is ca l -

1 
culated f rom Equation (34). Then 60^ is calculated from Equation (33). This continues 

until r / (R+l ) is calculated by Equation (34). Then by Equation (35) the second i tera t ion 

cycle is s t a r t ed and the p r o c e s s is repeated . The i te ra t ion is stopped when the res idua l 
vector has become smal l enough. This p rocedure reduces the computation considerably 

over say computing each r^(s) by Equation (31) d i rec t ly each t ime . 

The i tera t ion routine descr ibed by Equations (30) through (35) has been coded for 
computation on the IBM-704. The detai ls of the code will be found in Appendix A. Some 
of the r e su l t s of the i te ra t ion scheme will be desc r ibed in a l a t e r sect ion of the repor t . 

Te rmina l Block Extrapolat ion 

The i te ra t ion routine descr ibed by Equations (30) through (35) may be improved by 
a p r o c e s s which might be called " t e rmina l block extrapolat ion". This p r o c e s s is 
c a r r i e d out by adding to the mos t recent ly computed vector 0n+l (obtained at the end of 
the rv-"- i te ra t ion cycle) a cor rec t ion propor t ional to the 60"^ vec tor . Thus, 

0(K) = 0''"''^ + K60' ' . 

The factor K can now be de te rmined such that 0(K) reduces the res idua l as much as 
poss ib le . Thus, if 

r(K) = A0 (K) - a , 

r = A0^+1 - a , 

6r = A60^ , 

then 

r^(K) = r^ + 2Kr • 6r + K^ (6r)^ . 
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Clear ly r (K) is min imized if 

K = 
r • 6r 

(6r)2 

and, since r • 5r < 0, K > 0. Using this opt imum choice in the express ion for r2(K) 
gives 

= r2 (1 - cos2 0) , 

r^(K) = r^ sin^ 0 , 

where 

cos 9 = 
5r 

N/(r2)(6r)2 kri 

Thus, this important resu l t indicates that the t e rmina l block extrapolat ion with the 
optimum value for K will reduce the res idual vector significantly if the vec to r s r and 6r 
a r e nea r ly pa ra l l e l . By vi r tue of the fact that 6r is obtained in such a way that r is 
shor tened 6r cannot be perpendicu la r to r but r a the r the minimizat ion p r o c e s s tends to 
make 6r and r pa ra l l e l . Hence, a combination of the minimizat ion i tera t ion p r o c e s s and 
the t e rmina l block extrapolat ion p r o c e s s appea r s to be a very p romis ing naethod for 
solving l i nea r a lgebra ic sy s t ems of equations. 

As an indication of the impor tant gains in convergence which can be obtained a 
s imple p rob lem was solved by both the i te ra t ion scheme of Equation (29) and the i t e r a ­
tion scheme augmented by t e rmina l block extrapolat ion. The equation to be solved was: 

2 1 

1 - 2 

0 1 

A /*i\ 

/ \ ' 

/ - 1 

- 1 

with the solution 0i = 0o = 1,5 and 02 = 2. 0. Table 1 shows the res idua l vector 
squared for every other i t e ra t ion and the K-value for the extrapolat ion for every i t e ra ­
tion. The solution vec to r s after 24 i te ra t ions in the two cases were : 

(1) No extrapolat ion 

01 = 1.5020347 

02 = 2. 0026662 

03 = 1.5017260 
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T A B L E 1. COMPARISON O F R E S I D U A L S WITH AND WITHOUT E X T R A P O L A T I O N 

0 

2 

10 

12 

14 

16 

20 

22 

24 

No E x t r a p o l a t i o n 
S q u a r e of 

R e s i d u a l V e c t o r 

8 . 2 4 x 10 -2 

1.41 X 10"^ 

8 . 9 1 X 1 0 " ^ 

5. 34 X 1 0 " * 

3 . 18 X 10""* 

1.89 X lO"'* 

1. 12 X 1 0 " ^ 

6 . 7 3 X 10"^ 

4 . 0 1 X 10"^ 

2 . 3 9 X 10"^ 

1.42 X 10"^ 

8 . 4 8 X 10"^ 

5 . 0 6 X 10"^ 

E x t r a p o l a t i o n 
S q u a r e of 

R e s i d u a l V e c t o r 

8 . 2 4 X 10 -2 

1.36 X 1 0 " ^ 

3 . 9 3 X 1 0 " ^ 

4 . 10 X 10"^ 

4 . 9 2 X 10"^ 

8. 18 X 10"^ 

1.07 X 10"^ 

8 . 6 2 X 1 0 " ^ ° 

1.62 X 10"-^° 

4 . 8 9 X 10"^^ 

2 . 5 3 X l O ' ^ ' * 

9. 29 X 1 0 " ^ ^ 

8 . 1 5 X 10"^^ 

E x t r a p o l a t i o n 
F a c t o r , 

K 

0. 10 
- 0 . 0 2 5 

1.33 
1. 35 

0 . 0 1 9 
6 . 7 8 

0. 17 
0. 51 

3. 14 
- 0 . 0 8 1 

3 . 6 3 
0 . 4 4 

0. 19 
5 . 6 0 

- 0 . 0 8 3 
2 . 0 2 

0 . 7 4 
0 . 0 4 8 

7. 02 
- 0 . 12 

0 . 9 6 
0 . 6 0 

0. 05 
5 . 4 3 
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(2) Extrapola t ion every i te ra t ion 

01 = 1, 5000001 

02 = 2,0000005 

03 = 1. 5000003. 

In each case the initial guess was 

01 = 1.4000000 

02 = 1. 9800000 

03 = 1. 6000000. 

It will be noted f rom Table 1 that the extrapolat ion p r o c e s s has acce l e r a t ed the 
convergence immense ly . It will a lso be noted f rom the solution vec to r s after 24 i t e r a ­
tions that the accu racy is much be t t e r in the case of the extrapolat ion case . In fact the 
smal l e r r o r s in the l a s t digit a r e apparent ly round-off e r r o r accumulat ion. 

It is a l so of in te res t to compare the t e rmina l extrapolat ion p rocedure w^ith the 
i te ra t ion p rocedure using an opt imum value for a in Equation (29). By exper iment an 
opt imum value of a = 1. 49 was found. After 25 i t e ra t ions the res idua l vector squared 
was 2. 89 X 10"^^ compared to a value of 2. 48 x 10-1° for the t e r m i n a l block ext rapola­
tion c a s e . Hence, the t e rmina l block extrapolat ion was super io r in this case to using an 
opt imum value for a. Of cou r se , in mos t cases the opt imum value for a will not be 
known, and this points out the super ior i ty of the t e rmina l block extrapolat ion since no 
addit ional information about the sys tem is requi red . To be sure some additional compu­
tation is requi red to c a r r y out the t e rmina l block extrapolat ion, but this is a smal l 
amount compared to the computations requ i red for one i te ra t ion cycle in a l a rge prob lem. 

Studies of a s imi l a r na ture mus t be c a r r i e d out on l a r g e r sy s t ems to de te rmine the 
usefulness of the t e r m i n a l block extrapolat ion p r o c e s s on l a r g e - s c a l e s y s t e m s . The 
effect of extrapolat ing every n*" i tera t ion mus t a lso be studied. 

NUMERICAL RESULTS 

P r e l i m i n a r y Studies 

In this pa r t of the repor t some resu l t s a r e descr ibed which were obtained by 
applying the methods p resen ted above. F i r s t , the sample p rob lem of F igu re 1 will be 
cons idered , and then some resu l t s for other geomet r ies will be reviewed. 

The s imple annulus p rob lem of F igure 1 can be solved analyt ical ly . In addition, 
the 51 equations which resu l t f rom the numer ica l formulat ion can be solved d i rec t ly . 
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Thus, the validity of the numer i ca l approximat ions can be de te rmined by coinparing the 
r e su l t s of these two methods of solution. The r e su l t s f rom the i te ra t ive method of solu­
tion can then be compared with the r e su l t s of the other solut ions. In this way the effect 
of a sma l l e r m e s h spacing can a lso be studied. 

The analyt ical solutions for the d imens ionless t e m p e r a t u r e function and s t r e s s 
function(l) for the annulus of F igure 1 a r e as follows: 

T(r) = ^ g - + ^ ^ l n i - - " / ^ , (36) 
2a j3 4 ^ a2 h^ -> 

where 

a = 10, inside radius 

b = 14, outside radius 

r = dinaensionless radius 

^ = 0.024, 

and 
2 

0(r) = A log r + B r^ log r + C r^ + D + ^— , (37) 
64 

where 

A = - 2141.1244 

B = - 24.500000 

C = 76.243957 

D = 2779.2375. 

The s t r e s s function given by Equation (37) is based on the condition of 0 = 0, at r = b . 
The same p rob lem was then solved using the numer ica l p rocedu re s desc r ibed in 

this r epor t , f i r s t , by a d i r ec t m a t r i x invers ion and then by the i te ra t ion niethod. A 
compar ison of the r e su l t s f rom the var ious p rocedures is given in Tables 2 through 6; 
however, these r e su l t s need some fur ther explanation. The i te ra t ion solution was 
s ta r ted with an init ial guess r a the r close to the c o r r e c t answer . The initial guesses 
used a r e shown in pa ren theses next to the i te ra t ion va lues . Then an i tera t ion solution 
was per formed with the m e s h spacing halved. The r e su l t s of this solution at the mesh 
points of the c o a r s e r m e s h a r e a lso shown in the tab les . 

F i r s t , it may be noted f rom the m a t r i x - i n v e r s i o n r e su l t s given in the tables that 
even for a coa r se mesh the numer i ca l schemes give r a the r good re su l t s for the solution 
of the p rob lem. In the case of the t e m p e r a t u r e function the re is about a 0. 02 difference 
between the analyt ical and the m a t r i x - i n v e r s i o n solution. This is a r a the r uniform 
difference and it is not su rp r i s ing since the t e m p e r a t u r e level en te r s the p rob lem in a 
r a the r weak connection. The i tera t ion r e su l t s a r e not too meaningful if only the 
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TABLE 2. TEMPERATURE FUNCTION 

T ( x , y ) 

Qa_2 
k 

Full Mesh Half Mesh, 
In ter ior Matr ix 300 300 

Point Analytical Invers ion I te ra t ions I tera t ions 

11 
12 
17 
18 
19 
20 
25 
26 
27 
28 
33 
34 
35 
36 
37 

2.076 
2.087 
2.009 
2.047 
2.072 
2.086 
2.002 
2.042 
2.070 
2.085 
2.000 
2. 041 
2. 070 
2.085 
2.090 

2.095 
2. 107 
2. 028 
2.066 
2.091 
2. 105 
2.021 
2.061 
2. 089 
2. 104 
2.019 
2.060 
2.088 
2. 104 
2. 109 

2.095 (2.095) 
2. 106 (2. 110) 
2.029 (2.030) 
2.066 (2.065) 
2.091 (2.090) 
2. 105/2. 105) 
2.021 (2.020) 
2.062 (2.060) 
2.089 (2. 089) 
2. 104 (2. 105) 
2.019 (2.020) 
2.060 (2.060) 
2.088 (2.090) 
2. 104 (2. 105) 
2. 109 (2. 110) 

2.076 
2.088 
2.008 
2.046 
2. 072 
2. 086 
2.001 
2.042 
2.069 
2.085 
2.000 
2.040 
2.068 
2.085 
2.090 

(2.075) 
(2.085) 
(2.010) 
(2.045) 
(2.070) 
(2.085) 
(2.000) 
(2.040) 
(2.070) 
(2.085) 
(2.000) 
(2.040) 
(2.070) 
(2.085) 
(2.090) 
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T A B L E 3 . S T R E S S F U N C T I O N 

0 X 104 
a E X Q a ^ 
1-v k 

I n t e r i o r 
P o i n t A n a l y t i c a l 

F u l l M e s h 
M a t r i x 300 

I n v e r s i o n I t e r a t i o n s 

Half M e s h , 
300 

I t e r a t i o n s 

11 
12 
17 
18 
19 
20 
25 
26 
27 
28 
33 
34 
35 
36 
37 

- 3 . 3 7 1 
- 0 . 5 7 7 
- 1 1 . 4 5 8 
- 8 . 4 9 3 
- 4 . 1 8 1 
- 0 . 9 4 9 
- 1 1 . 5 6 6 
- 9 . 0 5 1 
- 4 . 6 9 9 
- 1 .227 
- 1 1 . 5 7 2 
- 9 . 2 3 4 
- 4 . 8 7 4 
- 1.312 

0 

- 3 . 5 3 1 
- 0 . 6 0 6 
- 1 1 . 9 5 1 
- 8 . 8 8 1 
- 4 . 3 8 9 
- 1 .003 
- 1 2 . 0 6 6 
- 9 . 4 6 8 
- 4 . 9 3 4 
- 1 .284 
- 1 2 . 0 7 4 
- 9 . 6 5 4 
- 5 . 1 1 4 
- 1 .368 

0 

- 3 . 5 9 8 
- 0 . 6 3 1 
- 1 1 . 9 3 7 
- 8 . 9 3 1 
- 4 . 4 5 5 
- 1 .027 
- 1 2 . 0 3 5 
- 9 . 5 0 2 
- 4 . 9 9 8 
- 1 .308 
- 1 2 . 0 4 5 
- 9 . 6 8 0 
- 5 . 1 7 6 
- 1 .399 

0 

- 3 .5 ) 
- 0 . 5 ) 
- 1 2 . 0 ) 
- 9 . 0 ) 

[- 4 . 5 ) 
- 1.0) 
- 1 2 . 0 ) 
- 9 . 5 ) 
- 5 .0 ) 

[- 1.5) 
- 1 2 . 0 ) 
- 9 . 5 ) 
- 5 .0) 
- 1.5) 
0) 

- 3 . 0 6 0 { 
- 0 . 4 9 1 
- 1 1 . 3 1 6 
- 8 . 3 0 3 
- 4 . 3 8 7 
- 9 . 9 7 1 
- 1 1 . 4 2 7 
- 8 . 9 6 5 
- 4 . 660 
- 1 .208 
- 1 1 . 4 3 4 
- 9 . 1 4 9 
- 4 . 8 3 2 
- 1 .293 

0 

- 3 .0 ) 
- 0 . 5 ) 
- 1 1 . 0 ) 
- 8 .5 ) 

(- 4 . 5 ) 
- 1.0) 
- 1 1 . 5 ) 
- 9 . 0 ) 
- 4 . 5 ) 
- 1.0) 
- 1 1 . 5 ) 
- 9 . 0 ) 
- 5 .0 ) 
- 1.0) 
0) 
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T A B L E 4, S T R E S S C O M P O N E N T 

7x X 102 

I n t e r i o r 
P o i n t 

11 
12 
17 
18 
19 
20 
25 
26 
27 
28 
33 
34 
35 
36 
37 

A n a l y t i c a l 

0. 199 
- 0 . 0 0 6 

0. 312 
0 . 4 0 6 
0 . 2 9 7 
0. 108 
0 . 0 9 0 
0 . 3 7 5 
0 . 3 4 5 
0. 176 

0 
0 . 3 5 8 
0 . 3 5 9 
0. 199 

0 

a E Qa2 

1-v k 

F u l l M e s h 
M a t r i x 

I n v e r s i o n 

0 . 2 0 8 
0 . 0 1 0 
0 . 3 4 6 
0 . 4 3 9 
0. 319 
0 . 122 
0 . 0 9 5 
0 . 3 9 9 
0 . 3 7 1 
0 . 2 0 4 
0. 002 
0 . 3 6 9 
0 . 3 5 8 
0. 165 

0 

300 
I t e r a t i o n s 

0 . 2 0 2 
- 0 . 0 1 4 

0 . 3 7 6 
0 . 4 4 1 
0 . 3 1 8 
0. 118 
0 . 0 7 3 
0 . 3 9 3 
0 . 3 7 1 
0. 198 
0. 008 
0 . 3 4 7 
0 . 3 5 4 
0. 181 
0. 013 

Half M e s h , 
300 

I t e r a t i o n s 

- 0 . 0 9 8 
- 0 . 1 2 2 

0 . 3 8 9 
0 . 4 9 4 
0. 379 
0. 135 
0 . 0 7 1 
0 . 4 8 5 
0 . 4 8 4 
0 . 2 3 1 

- 0 . 0 1 3 
0 . 3 5 1 
0. 321 
0. 164 
0. 001 
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I n t e r i o r 
P o i n t 

11 
12 
17 
18 
19 
20 
25 
26 
27 
28 
33 
34 
35 
36 
37 

T A B L E 5. 

A n a l y t i c a l 

- 1 . 4 6 5 
- 2 . 4 2 6 

5 . 0 8 9 
1.233 

- 1 . 184 
- 2 . 3 9 3 

5 . 9 9 5 
1 .704 

- 0 . 9 7 9 
- 2 . 3 5 4 

6 . 3 2 2 
1.874 

- 0 . 9 0 4 
- 2 . 3 3 8 
- 2 . 6 5 2 

S T R E S S C O M P O N E N 

Oy X 102 

a E Qa2 

1-v k 

F u l l M e s h 
M a t r i x 

I n v e r s i o n 

- 1 . 4 9 2 
- 2 . 5 4 6 

5 . 2 8 7 
1 .298 

- 1 . 2 0 8 
- 2 . 4 9 8 

6 . 2 2 5 
1.798 

- 0 . 9 9 4 
- 2 . 4 6 9 

6 . 5 5 2 
1.980 

- 0 . 9 0 7 
- 2 . 4 5 3 
- 3 . 0 0 0 

T 

300 
I t e r a t i o n s 

- 1.440 
- 2 . 5 6 6 

5. 158 
1.360 

- 1 . 142 
- 2 . 5 1 9 

6 . 0 3 7 
1.850 

- 0 . 9 1 6 
- 2 . 4 7 8 

6 . 2 8 6 
2 . 0 2 2 

- 0 . 8 3 0 
- 2 . 4 5 5 
- 3 . 0 6 4 

Half M e s h , 
300 

I t e r a t i o n s 

- 1 . 7 3 9 
- 2 . 9 9 9 
- 5 . 2 3 8 
- 1 . 101 
- 1 . 2 6 2 
- 2 . 3 1 3 

5 . 7 8 7 
1 .727 

- 0 . 9 6 3 
- 2 . 3 3 6 

6. 142 
1.912 

- 0 . 8 9 2 
- 2 . 3 4 7 
- 2 . 573 
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T A B L E 6. S T R E S S C O M P O N E N T 

a E Qa2 

1-v k 

I n t e r i o r 
P o i n t A n a l y t i c a l 

F u l l M e s h 
M a t r i x 

I n v e r s i o n 
300 

I t e r a t i o n s 

Half M e s h , 
300 

I t e r a t i o n s 

11 
12 
17 
18 
19 
20 
25 
26 
27 
28 
33 
34 
35 
36 
37 

0. 529 
0. 590 

- 0 . 9 9 5 
- 0 . 1 5 5 

0 . 2 5 4 
0. 394 

- 0 . 5 9 6 
- 0 . 1 2 2 

0. I l l 
0. 196 

0 
0 
0 
0 
0 

0. 414 
0 . 641 

- 1 . 0 9 4 
- 0 . 2 0 8 

0 . 2 3 2 
0 . 3 8 5 

- 0 . 6 4 8 
- 0 . 1 5 0 

0 . 102 
0. 182 

0 
0 
0 
0 
0 

0 . 4 1 2 
0 . 5 9 2 

- 1 . 0 5 2 
- 0 . 2 1 3 

0 . 2 2 5 
0 . 3 8 9 

- 0 . 5 9 5 
- 0 . 1 5 3 

0 . 0 9 4 
0. 187 
0 . 0 0 0 
0 . 0 0 0 
0 . 0 0 0 
0 . 0 0 0 
0 . 0 0 0 

0 . 4 0 6 
0 . 6 1 3 

- 1 . 108 
- 0 . 2 5 9 

0 . 3 1 1 
0. 508 

- 0 . 5 5 4 
- 0 . 1 5 6 

0. 136 
0. 207 

- 0 . 0 0 1 
0 . 0 0 0 
0 . 0 0 0 
0. 000 
0 . 0 0 0 
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four-f igure r e su l t s displayed a r e cons idered . How^ever, the i te ra t ion p r o c e s s has r e ­
duced the res idua ls considerably f rom the initial values given by the init ial guess . Thus, 
a t e m p e r a t u r e function has been de te rmined which is much smoother than the initially 
chosen function. The one-ha l f -mesh r e su l t s a r e a lso much c lose r to the analyt ical 
solution, but the init ial values used a r e a lso much c lose r to the analyt ical solution. 

In the case of the s t ress - func t ion r e su l t s shown in Table 3, the compar i son be ­
tween the analyt ical and m a t r i x - i n v e r s i o n r e su l t s is again good consider ing the coa r se 
mesh employed. The i te ra t ion r e su l t s a r e m o r e meaningful he re than in the t e m p e r a ­
ture case . The compar i son between the m a t r i x - i n v e r s i o n and the 300- i tera t ion r e su l t s 
is r a the r good, and the r e su l t s ag ree r a t h e r well with the analyt ica l r e s u l t s . Again, a 
s t r e s s function has been generated by the i te ra t ion p r o c e s s which is much smoother than 
the initial guess . The same comments can be made about the s t r e s s components given 
in Tables 4 through 6, which were computed f rom the s t ress - func t ion r e s u l t s . Com­
par ing the ha l f -mesh re su l t s with the fu l l -mesh r e s u l t s , it is noted that the ha l f -mesh 
r e su l t s for the t e m p e r a t u r e and s t r e s s functions a r e n e a r e r to the analyt ical solut ions, 
in genera l . However, compar ing the s t r e s s components it is noted that the ful l -mesh 
re su l t s a r e m o r e accu ra t e than the ha l f -mesh r e s u l t s . The explanation of this is that 
the convergence of the ha l f -mesh prob lem is s lower than for the fu l l -mesh prob lem, 
and, hence, after 300 i te ra t ions a " smoo the r " function is obtained in the c o a r s e - m e s h 
case . The s t r e s s components involve differential operat ions upon the s t r e s s function, 
and, hence, any lack of smoothness in the s t r e s s function will be evident in the s t r e s s 
components . This i l l u s t r a t e s an impor tant point: the bes t numer i ca l p rocedure is a 
compromise between the r equ i r emen t of a coa r se m e s h for be t te r convergence and the 
r equ i rement of a fine m e s h for be t t e r accu racy in the interpolat ion forniu las . 

The i te ra t ion p r o c e s s used for this sample p rob lem employed an acce le ra t ion fac­
tor of a = 1, Some studies were made with the sample p rob lem which involved varying 
the value of a. It was found that after s eve ra l hundred i t e ra t ions the choice a = 1 r e ­
duces the res idua l about the same as or m o r e than any other choice of a. On the other 
hand if after s eve ra l hundred i te ra t ions the a-value is changed to a higher value, it is 
found that the res idua l s will d e c r e a s e m o r e rapidly than if the a = 1 value were ma in ­
tained. Thus, it appea r s as if some p rocedure of changing the a-value during the 
i te ra t ion might be super io r to keeping the a-value constant . 

F u e l - E l e m e n t Studies 

Single-Hole Hexagonal Element 

The fuel e lement shown in F igure 3 was a lso studied. In these ca ses analyt ical 
solutions a r e not avai lable , and the l a rge number of mesh points requi red make d i rec t 
ma t r ix - inve r s ion methods undes i rable if not imprac t i ca l . The p rob lem formulat ion is 
s imi la r in every respec t to the sample problem of the annulus. A s y m m e t r y sect ion is 
isolated as shown in F igure 3 and the m e s h work is const ructed. The equations a r e 
formulated, the coefficient m a t r i x is constructed, and the i te ra t ive p r o c e s s is applied to 
obtain an approximate solution. 

Of pa r t i cu la r significance is the maximum tens i le s t r e s s . In the case of the 
annulus the max imum tensi le s t r e s s occurs at the inside surface . In the case of the 
s ingle-hole hexagonal e lements the max imum tens i le s t r e s s occurs at Point A in 
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Figu re 3. It is in te res t ing to compare these max imum tens i le s t r e s s e s which occur in 
the hexagonal e lements with the max imum tens i le s t r e s s e s which occur in "equivalent" 
annuli of the same inside radius and the same a r e a as the s ingle-hole hexagonal e l emen t s . 
F igure 4 shows a graph of the max imum tens i le s t r e s s for the different types of e l e ­
men t s for s eve ra l values of the ^ r a t io , where t is the length indicated in F igure 3 and 
a is the hole r ad ius . It will be noted that the max imum s t r e s s e s a r e g r ea t e r in the case 
of the hexagonal e lements than the cor responding annular e lements and that the deviation 
becomes m o r e significant percentagewise as the ^ value d e c r e a s e s . It should be r e -
m a r k e d , however , that the s ingle-hole hexagonal r e su l t s shown in F igu re 4 were ob­
tained f rom the i t e ra t ion-method r e s u l t s , and the re may be some e r r o r i ncu r r ed in 
using these approximate solut ions. 

Seven-Hole Hexagonal Element 

The seven-hole hexagonal e lement shown in F igure 5 was a l so invest igated. The 
s y m m e t r y sect ion shown was subjected to the same type of ana lys i s as desc r ibed 
previous ly . The r e su l t s for the max imum tens i le s t r e s s a r e given in F igu re 4, It will 

be noted that the r e su l t s for the — = 0.5 and — = 0 . 8 ca ses l ie r a the r close to the 
a t ^ 

s ingle-hole hexagonal r e su l t s but that the -^ = 0. 2 is considerably different. While this 
difference may be r ea l it should be mentioned that in the seven-hole — = 0. 2 case 339 
m e s h points were used which is l a r g e r than the other cases by m o r e than 100 m e s h 
points . As a resu l t of this the convergence is poo re r in this case than in the o the r s . 
F u r t h e r , the max imum tens i le s t r e s s for the -— = 0, 5 and —• = 0. 8 seven-hole ca ses is 

Si a, 

in the x -y plane and is found in the Region A noted in F igure 5, On the other hand, the 
max imum tens i le s t r e s s for the -*- = 0, 2 seven-hole case is a^ and is located in the 
Region B noted in F igu re 5. An invest igat ion of the -^ = 0. 2 case has shown that the 
t e m p e r a t u r e s de te rmined a r e not reasonable and that probably the convergence is not 
sa t i s fac tory . The o^, depends upon the difference of the t e m p e r a t u r e at the point and the 
average t e m p e r a t u r e and, hence, Ô  is quite sensi t ive to the t e m p e r a t u r e va lues . On 
the other hand, the other s t r e s s e s in the p rob lem a r e v i r tua l ly independent of the t e m ­
p e r a t u r e va lues . If the a^ s t r e s s e s a r e d i s r ega rded in this case the max imum s t r e s s is 
then found to be in Region A and to have a value much c lose r to the s ingle-hole ^ = 0 . 2 
value . 

Hence, it is concluded that the max imum tens i le s t r e s s in the case of the seven-
hole hexagonal e lement is essen t ia l ly the same as that in the s ingle-hole hexagonal e l e ­
ment over the ^ range covered, although this conclusion may be somewhat uncer ta in for 
— = 0. 2. The max imum tens i le s t r e s s occur s in a location in a p a r t of the seven-hole 
e lement which is quite s imi l a r to the s ingle-hole hexagonal -e lement s y m m e t r y sect ion. 

P l a t e -Type Element 

In addition to the hexagonal e lements , two plate configurations were invest igated. 
These e lement shapes a r e shown in F igu re 6. F o r these s tudies only the co rne r regions 
shown were included. The plate was t e rmina ted as shown and a s y m m e t r y condition w^as 
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Symmetry 
section 

A-point where moximum 
tensile stress wos found 

FIGURE 3. SINGLE-HOLE HEXAGONAL FUEL ELEMENT 

(O 
(0 
w 

0.6 

0.5 

0.4 

E 

I 02 

0.1 

' 
1 

^ 

^^ 

F 
or 

^^'^ 

S 

h 

quivolent 
mulus 

W 

ingle ho 
exogonol 

—< > 

F ^ 
o-se 

A / 

ven-hole 

) 

results 

OJ 0.2 0.3 0.4 05 06 0.7 

Geometrical Parameter, \ 

60 •£ 
8 
V 

a. 
50 -•• 

a. 

40 

c 
< 

30 ^ 

o 
> 

20 

10 

UJ 

E o 

2 
• > 

a> 
Q 

0.8 0.9 1.0 

A-3SIS7 

FIGURE 4. COMPARISON OF MAXIMUM STRESSES BETWEEN SINGLE-HOLE 
AND SEVEN-HOLE HEXAGONAL ELEMENTS AND THE EQUIVA­
LENT ANNULUS 



33 

Symmetry 
section 

FIGURE 5. SEVEN-HOLE HEXAGONAL FUEL ELEMENT 
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a p p l i e d . A l l o t h e r s u r f a c e s w e r e r e g a r d e d a s f r e e s u r f a c e s . F o r t h e s e s t u d i e s on ly the 
•-̂ X' ^ v ^xv s t r e s s c o m p o n e n t s w e r e of s i g n i f i c a n c e s i n c e t h e Og. d i s t r i b u t i o n d e p e n d s 
upon t h e a v e r a g e t e m p e r a t u r e o v e r t h e e n t i r e p l a t e . T h e m a x i m u m d i m e n s i o n l e s s 
s t r e s s e s w e r e found a s g iven in T a b l e 7 in t h e r e g i o n s n o t e d in F i g u r e 6. 

T A B L E 7. MAXIMUM T E N S I L E STRESS(^) 
IN P L A T E S 

^ m a x 

oE Q a ? 
1-v k 

M a x i m u m T e n s i l e S t r e s s , a 

P l a t e 1 0. 379 

P l a t e 2 0. 350 

(a) These stresses are made dimensionless using for "a" the plate half 
thickness. 

DISCUSSION O F R E S U L T S A N D CONCLUSIONS 

The n u m e r i c a l a p p r o a c h to the s o l u t i o n of t h e r m a l - s t r e s s p r o b l e m s a s d e s c r i b e d 
in t h i s r e p o r t h a s b e e n shown to b e qu i t e s a t i s f a c t o r y in p r i n c i p l e . T h e u s e of i n t e r ­
p o l a t i o n f o r m u l a s to spec i fy l i n e a r a l g e b r a i c e q u a t i o n s i n v o l v i n g the unknown v a l u e s of a 
func t ion a t m e s h p o i n t s h a s b e e n d e s c r i b e d . T h e s o l u t i o n of t he r e s u l t i n g s e t of e q u a ­
t i o n s h a s b e e n shown to give r a t h e r good r e s u l t s even fo r a r a t h e r c o a r s e m e s h . 

An i t e r a t i v e p r o c e d u r e h a s b e e n d e s c r i b e d w h i c h g u a r a n t e e s c o n v e r g e n c e a n d 
t e n d s to s m o o t h t h e func t ion . H o w e v e r , t he c o n v e r g e n c e of t he m e t h o d i s s u c h t h a t 
r a t h e r c l o s e i n i t i a l v a l u e s m u s t be d e t e r m i n e d if r e a s o n a b l e c o m p u t e r r u n n i n g t i m e s 
a r e u s e d . 

C o m p u t e r c o d e s h a v e b e e n d e v e l o p e d w h i c h g e n e r a t e t h e r e q u i r e d m a t r i x e l e m e n t s , 
c a r r y out t h e a p p r o x i m a t e i t e r a t i v e s o l u t i o n s , a n d p r o c e s s t h e s o l u t i o n s to y i e l d t he d e ­
s i r e d s t r e s s e s . 

T h e r e s u l t s o b t a i n e d by a p p l y i n g t h e s e n u m e r i c a l p r o c e d u r e s to a n u m b e r of p r o b ­
l e m s i n d i c a t e t h a t a m o r e s a t i s f a c t o r y m e t h o d of s o l v i n g t h e m a t r i x e q u a t i o n s i s d e ­
s i r a b l e . S e v e r a l p o s s i b i l i t i e s fo r m a k i n g t h i s i m p r o v e m e n t m i g h t b e i n d i c a t e d h e r e . 
One p o s s i b i l i t y i s to e m p l o y a d i r e c t m a t r i x - i n v e r s i o n m e t h o d e i t h e r fo r t he c o m p l e t e 
p r o b l e m o r fo r a c o a r s e - m e s h p r o b l e m . T h e m e t h o d c o d e d b y B o e h m ( 6 ) w h i c h e m p l o y s 
m a t r i x p a r t i t i o n i n g a p p e a r s to b e t he m o s t s a t i s f a c t o r y fo r s y s t e m s w h i c h m a y h a v e up 
to 375 e q u a t i o n s . R u n n i n g - t i m e e s t i m a t e s a r e not a v a i l a b l e . H o w e v e r , it w a s n o t e d t ha t 
a p a r t i c u l a r s y s t e m of 158 e q u a t i o n s r e q u i r e d 30 m i n on the I B M - 7 0 4 . If r u n n i n g t i m e s 
wi th 375 e q u a t i o n s a r e p r o h i b i t i v e o r if m o r e t h a n 375 m e s h p o i n t s a r e c o n s i d e r e d , the 
m a t r i x - i n v e r s i o n m e t h o d cou ld b e a p p l i e d to a c o a r s e r m e s h . T h e s o l u t i o n f r o m the 
c o a r s e - m e s h p r o b l e m o b t a i n e d in t h i s w a y cou ld t h e n b e u s e d to i n t e r p o l a t e a d i s t r i b u ­
t ion fo r a f i n e r m e s h . T h i s d i s t r i b u t i o n cou ld t h e n be u s e d a s a good i n i t i a l g u e s s to 
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use with the i te ra t ion routine desc r ibed in this r epor t . Even the c o a r s e - m e s h solution 
might be improved by i te ra t ing it with the i te ra t ion routine to reduce the round-off e r r o r 
i ncu r r ed in the m a t r i x - i n v e r s i o n p r o c e s s . 

As indicated in the r epor t previous ly , the opt imum s t ra t egy might be to change the 
value of a during the i te ra t ion p r o c e s s . A m o r e thorough study of the effect of different 
a choices might lead to a p rocedure with improved convergence . 

Al te rna te i t e ra t ion schemes might a l so be cons idered . However, the in tegra l 
equations and boundary conditions a s t r e a t e d in this r epor t make the usual l ine methods 
somewhat i m p r a c t i c a l . It is poss ib le , however , to extend the minimiza t ion scheme of 
i t e ra t ion to cons ider s imul taneous changes of the values along a l ine or in a block. 
However, these extensions of the method a l so r equ i r e fur ther study before the i r poss ib le 
worth can be de te rmined . It can cer ta in ly be said though that the res idua l vec tor length 
can be reduced at l e a s t a s much by a s imul taneous change of n -va lues as it can by n 
consecut ive changes of the n -va lue s . Of cou r se , the advantage would be if the s imul ­
taneous change would lead to a much l a r g e r d e c r e a s e in the length of the res idual vec tor . 
Natural ly , the gain achieved would have to have m o r e than balance the inc reased com­
plexity of the a r i t h m e t i c . 

While these suggested devices might prove advantageous, the mos t p rac t i ca l 
scheme s e e m s to be the t e r m i n a l block extrapolat ion method a l r e a d y desc r ibed in this 
r epor t . This method appea r s to offer high p r o m i s e for a usable i te ra t ion scheme without 
the need for a c lose init ial guess . Some s m a l l - s i z e p rob l ems indicate that l a r g e gains 
can be made in acce l e ra t ing the convergence by employing this method. Studies need to 
be made , however , with l a r g e r scale sy s t ems before the t e r m i n a l block extrapolat ion 
can be evaluated. 
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APPENDIX A 

SETUP OF PROBLEM FOR MACHINE COMPUTATION 

It is the purpose of this appendix to p r e sen t the manne r of setup to be employed in 
o r d e r to p r e p a r e a physical p rob lem for IBM-704 computation. As an i l lus t ra t ion the 
complete specif icat ion is given of the annulus p rob l em shown in F i g u r e 1 in the text . It 
is not the intention h e r e to supply running ins t ruc t ions for the machine p r o g r a m s . 

P r o b l e m Subrout ines 

The no rma l p rob lem involves the use of six p r o g r a m s which can be used separa te ly 
or in s e r i e s . These p r o g r a m s a r e p re sen ted below. The input t e r m s a r e desc r ibed 
l a t e r . 

P r o g r a m 1. The I te ra t ion P r o g r a m 

This p r o g r a m r e q u i r e s as input the coefficient m a t r i x and the t r anspose of the 
coefficient m a t r i x on tape and the init ial guess for the solution vec tor on punched c a r d s . 
Also , on punched ca rds the number of i t e ra t ions is specified, the a-value is specified, 
and the pr intout frequency is specified. The input tape is p r e p a r e d by P r o g r a m 4 and 
the punched ca rds a r e p r e p a r e d by hand. The output tape is used e i ther in P r o g r a m 5 
or P r o g r a m 6 or both. 

Tape Input: Tape f rom Logical 6 of P r o g r a m 4 should be mounted on Logical 6. 

Tape Output: Tape f rom Logical 7 

Pr in tout : At every pr intout cycle the solution vec to r , the change in the 

solution vec to r , and the res idua l vec tor a r e l i s ted . In addition, 
the square of the res idua l vec tor is l i s ted . 

P r o g r a m 2. The Coeff icient-Matr ix P r o g r a m 
for the T e m p e r a t u r e P r o b l e m 

This p r o g r a m p r e p a r e s the coefficient nnatrix f rom the input information r e g a r d ­
ing the geomet ry of the body and the mesh work. 

Card Input: 

Fixed Point - F o r t r a n DIP 

IE, IB, IC, NMAX, MMAX, IPMSN, ICN, IBDSN, lEXPNS, ITABCO, 
MA, NA, IBDSNA. 

Float ing Point - F o r t r a n DIP 

HCK, RA, SA, XNA, YNA. 
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Output: On Logical Tape 3 will be wr i t ten the m a t r i x e lements and the i r 
a s soc ia ted column indices . Also , any e r r o r - d e t e c t i o n m e s s a g e s 
will be wr i t ten on Logical Tape 3. On Logical Tape 6 will be 
wr i t ten in b inary the m a t r i x e lements and the i r a s soc ia ted column 
indices , one row p e r r eco rd . Logical Tape 6 is saved and used as 
input for P r o g r a m 4. 

Pr in tout : The input data and the output data a r e l i s ted . 

P r o g r a m 3. The Coeff icient-Matr ix P r o g r a m 
for the S t r e s s P r o b l e m 

This p r o g r a m p r e p a r e s the coefficient m a t r i x f rom the input information regard­
ing the geometry of the body and the m e s h work. 

Card Input: 

Fixed Point - F o r t r a n DIP 

MMAX, NMAX, IE, IB, IC, NI, N2, N3, N4, IPMSN, ICN, IBDSN, 
lEXPNS, ITABCO, MA, NA, IBDSNA. 

Float ing Point - F o r t r a n DIP 

RTSD 1, RTSD 2, RTSD 3, X0UT, SC, R l , X0, RA, SA, 
XNA, YNA. 

Output: On Logical Tape 3 will be wr i t t en to m a t r i x e lements and the i r 
a ssoc ia ted column indices . Also , any e r r o r - d e t e c t i o n m e s s a g e s 
will be wr i t ten on Logical Tape 3. On Logical Tape 6 will be 
wr i t t en in b ina ry the m a t r i x e lements and the i r a s soc ia t ed column 
indices , one row pe r r eco rd . Logical Tape 6 is saved and used 
as input for P r o g r a m 4. 

Pr in tout : The input data and the output data a r e l i s ted . 

P r o g r a m 4. T r a n s p o s e - M a t r i x P r o g r a m 

This p r o g r a m p r e p a r e s the t r anspose m a t r i x and p r e p a r e s a tape for the input to 
P r o g r a m 1. 

Tape Input: Tape f rom Logical 6 of P r o g r a m 2 or 3 should be miounted on 
Logical 6 for this p r o g r a m . 

Card Input: 

Fixed Point - F o r t r a n DIP 

I E . 
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Output: The or iginal m a t r i x , with column indices , and the t r anspose 
m a t r i x , with column indices , a r e wr i t ten on Logical Tape 3, 
The same information is wr i t ten in b ina ry on Logical Tape 5 
which is saved and used a s input to P r o g r a m 1. 

Pr in tout : The m a t r i x e lements and the t r a n s p o s e - m a t r i x e lements a r e l i s ted . 

P r o g r a m 5. T e m p e r a t u r e - D a t a -
P r o c e s s i n g P r o g r a m 

This p r o g r a m use s the t e m p e r a t u r e solution to genera te the t e m p e r a t u r e t e r m s of 
the in tegra l equations: Equations (11), (13), and (14). 

Card Input: 

F ixed Poin t — F o r t r a n DIP 

NI , N2, N3, N4, NMAX, MMAX, IB, IC, IE, MA, NA, IBDSNA, ITABCO. 

Float ing Poin t - F o r t r a n DIP 

X0UT, SC, R l , HCK, RA, SA, XNA, YNA. 

Tape Input: Tape f rom Logical 7 of P r o g r a m 1 for the t e m p e r a t u r e solution 
should be mounted on Logical 6 for this p r o g r a m . 

Output: The values for the t e m p e r a t u r e t e r m s , cal led the r ight -hand 
s ides , of the in tegra l equations in P r o g r a m 3 will be wr i t ten on 
Logical Tape 3. They will be designated a s RHS 1, RHS 2, and 
RHS 3. These values should be punched in F o r t r a n DIP, F loa t ing-
Point format and designated as RTSD 1, RTSD 2, and RTSD 3, 
respec t ive ly , and used a s input in P r o g r a m 3. Any e r r o r -
detection m e s s a g e s will be wr i t ten on Logical Tape 3, Logical 
Tape 6 should be saved and used as input to P r o g r a m 6. 

P r o g r a m 6. D a t a - P r o c e s s i n g P r o g r a m 

This p r o g r a m p r o c e s s e s the t e m p e r a t u r e and s t ress - func t ion solutions and d e t e r ­
mines the s t r e s s components at the in te r io r m e s h points . 

Card Input: 

F ixed Poin t — F o r t r a n DIP 

IE , MMAX, NMAX, IPMSN, ITABCO. 

Float ing Point - F o r t r a n DIP 

V, R0, 
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Tape Inpiit: The tape f rom Logical 7 of P r o g r a m 1 for the s t r e s s p rob lem 
should be mounted on Logical 6. The tape f rom Logical 7 of 
P r o g r a m 1 for the t e m p e r a t u r e p rob lem should be mounted on 
Logical 7 for this p r o g r a m . 

Output: The ave rage t e m p e r a t u r e , TBAR, for the body is wr i t ten on 
Logical Tape 3, Also , the s t r e s s d is t r ibut ion and the t e m p e r a ­
t u r e dis t r ibut ion for the body a r e wr i t t en on Logical Tape 3, 
The max imum and min imum s t r e s s e s a r e wr i t t en on Logical 
Tape 9, which should be l i s ted . 

Input Terminology 

T e r m s Only Applicable to Annular , Single-
Hole, and Seven-Hole Hexagonal Symmet ry 
E lements When Oriented as in F i g u r e s 

NI - Number of boundary points on cen te r -ho le boundary (including end points) 

N2 - Number of boundary points on diagonal r a d i a l - s y m m e t r y line (including end 

points) 

N3 - Number of boundary points on outer f ree boundary (including end points) 

N4 - Number of boundary points on off-center hole boundary (including end points); 

N4 = 0 for s ingle-hole p rob lems 

R0 - Radius of center hole in m e s h units 

R l - Radius of off-center hole in m e s h units 

X0 - X-d is tance of l e f t -mos t point of square m e s h f rom center of the center hole 
in m e s h units 

XOUT - X-dis tance of r i gh t -mos t point of body f rom center of cen t ra l hole in m e s h 
units 

SC - X-dis tance of off-center hole center f rom center of cen t ra l hole in m e s h units 
(s ingle-hole case SC = XO + 2) 

General T e r m s 

MMAX - Total number of rows in rec tangle of the square m e s h 

NMAX - Total number of columns in rec tangle of the square m e s h 

IE - Total number of equations in the sys tem = total number of the physical m e s h 
points 
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IB - Total number of physical m e s h points for which ha rmon ic or b iharmonic 
equations a r e not wr i t ten 

IC - Total niunber of boundary points 

he 
HCK - £ ^ = |3 

V - P o i s s o n ' s ra t io 

Cor respondence Table 

ITABCO - This table (IE entr ies) l i s t s the sequence number s of the geomet r i ca l m e s h 
points in the sequence cor responding to the physica l m e s h points . The 
geome t r i ca l -mesh -po in t sequence s t a r t s at the upper left co rne r of the 
rec tangle and continues f rom left to r ight row by row until the lower r ight 
co rne r of the rec tangle is reached . The p h y s i c a l - m e s h sequence s t a r t s at 
the physical m e s h point with the sma l l e s t geomet r ica l sequence number and 
p roceeds by number ing the physical m e s h points accord ing to the i r o r d e r in 
the geomet r i ca l sequence . The physical m e s h points a r e those used in the 
physical problena, i . e . , i n t e r io r and ex te r io r points . The geomet r ica l m e s h 
includes a l l the m e s h points in the cover ing rec tangle (see F igu re 1 in text) . 

Geometry Tables 

IBDSNA - This table l i s t s the boundary-point sequence numbers in sequence; hence , 
this table is the sequence 1, 2, 3, . . . , IC. 

RA - This table (IC entr ies) l i s t s the Ax d isp lacement of each boundary point f rom 
the se lec ted in te r io r expansion point in m e s h un i t s . 

SA - This table (IC entr ies) l i s t s the Ay d isp lacement of each boundary point f rom 
the se lec ted in t e r io r expansion point in m e s h uni t s . 

XNA - This table (IC entr ies) l i s t s the x-component of the unit outward no rma l v e c ­
tor at each boundary point. 

YNA - This table (IC entr ies) l i s t s the y-component of the unit outward no rma l v e c ­
tor at each boundary point. 

MA - This table (IC entr ies) l i s t s the row number of the in te r io r expansion point 
for each boundary point. 

NA - This table (IC entr ies) l i s t s the column number of the in te r io r expansion 
point for each boundary point. 
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Equation Tables 

IPMSN - This table (IB entr ies) l i s t s in o r d e r the phys i ca l -m es h sequence numbers 
which a r e to be cons idered a s ex te r io r m e s h points , 

ICN - This table (IB entr ies) l i s t s the number of the equation type to be wr i t ten for 
each ex te r io r point. The o rde r ing in this table co r re sponds to the IPMSN 
table . 

IBDSN - This table (IB entr ies) l i s t s the boundary-point number at which the boundary 
equation will be wr i t ten for each ex te r io r point. 

lEXPNS - This table (IB entr ies) l i s t s the phys ica l -mesh-po in t sequence number about 
which the boundary point is expanded for each ex te r io r point. 

Equation Type Numbers 

The n e c e s s a r y eqtiations a r e ut i l ized in the p r o g r a m s accord ing to an equation-
type number . These numbers a r e as follows: 

Equation 
Type Number 

1 

3 

4 

T e m p e r a t u r e P r o b l e m 

Equation 

V^T : 

BT 

Sn 

ST ^ 
Sn 

1 

= 0 

/3T 

T = 0 

S t r e s s P r o b l e m 

Equation 
Type Number 

1 

2 

3 

Equation 

V 4 0 : 

0 = 
50 

3^0 

= 1 

0 

= 0 

= f 
an 

Sy 

Sx 
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S t r e s s P r o b l e m (Cont inued) 

E q u a t i o n 
T y p e N u m b e r E q u a t i o n 

—^ = —^ a t s p e c i f i e d p o i n t 
ox ox 

b ^— -l SJ^<p + T K d s = 0 on c e n t e r h o l e 

b -< V^0 + T ^ d s = 0 on o f f - c e n t e r h o l e 

10 J? I X T n x H Bn 
V^0 + T d s = 0 on o f f - c e n t e r h o l e 

E x a m p l e of P r o b l e m S e t u p fo r S i m p l e A n n u l u s 

A s a n e x a m p l e of t h e s e t u p f o r a t y p i c a l p r o b l e m , c o n s i d e r t h e s i m p l e a n n u l u s of 
F i g u r e 1 in t h e t e x t . T h e fo l lowing d a t a a r e i n a m e d i a t e l y o b t a i n e d : 

N I = 4 

N2 = 4 

N3 = 5 

N4 = 0 

R 0 = 1 0 . 0 

R l = 0 

X 0 = 8 . 0 

XOUT = 14. 0 

XC = 1 0 , 0 

MMAX = 8 

NMAX = 9 

I E = 51 

IB = 36 

IC = 20 
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Sequence 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Physical-

IPMSN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
13 
14 
15 
16 
21 
22 
23 
24 
29 
30 
31 
32 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Mesh 
Sequence Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Temp 
ICN 

lerature 

4 
4 
4 
4 
2 
2 
4 
4 
2 
2 
2 
4 
4 
3 
2 
4 
4 
3 
2 
4 
4 
3 
2 
4 
4 
2 
2 
2 
2 
2 
4 
4 
4 
4 
4 
4 

ITABCO 

5 
6 
12 
13 
14 
15 
16 
20 
21 
22 

Stres 

4 
4 
4 
4 
3 
3 
6 
6 
3 
3 
5 
6 
6 
5 
5 
6 
6 
5 
5 
6 
6 
8 
6 
2 
5 
3 
3 
3 
3 
3 
5 
4 
4 
4 
4 
4 

s 

Physical-
Sequen 

IBDSN 

7 
8 
5 
6 
7 
8 
9 
4 
5 
6 
10 
10 
3 
3 
11 
11 
2 
2 
12 
12 
1 
1 
13 
13 
20 
19 
18 
17 
16 
15 
14 
19 
18 
17 
16 
15 

Mesh 
ce Number 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

lEXPNS 

11 
12 
17 
18 
11 
12 
12 
17 
17 
18 
12 
12 
17 
17 
20 
20 
25 
25 
28 
28 
33 
33 
37 
37 
33 
33 
34 
35 
36 
37 
37 
33 
34 
35 
36 
37 

ITABCO 

23 
24 
25 
26 
28 
29 
30 
31 
32 
33 
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Physical-Mesh 
Sequence Number 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

ITABCO 

34 
35 
37 
38 
39 
40 
41 
42 
43 
44 
46 
47 
48 
49 
50 
51 

Physical-Mesh 
Sequence Number 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

ITABCO 

52 
53 
54 
56 
57 
58 
59 
60 
61 
62 
66 
67 
68 
69 
70 

Discuss ion of Example P r o b l e m Setup 

It will be apparent that the p rob lem specification given is not unique. However, 
this nonuniqueness shoiold p r e s e n t no p rob l ems as long as independent equations a r e 
ut i l ized. Severa l points m a y be e labora ted , however . 

Boundary Poin t s 14 and 20 a r e ac tual ly not on the boundary. They a r e specified 
for convenience in o r d e r to wr i te for physical Mesh Po in t s 46 and 40 a s y m m e t r y con­
dition in the fo rm of equation Type 5 for the s t r e s s p rob lem. 

The assoc ia t ion of IPMSN 32 with IBDSN 1 and lEXPNS 33 for the s t r e s s p rob lem 
is somewhat ambiguous since ICN 8 is the in tegra l eqviation. However, the assoc ia t ion 
is meaningful for the t e m p e r a t u r e p rob lem and the tables a r e kept identical in the t e m ­
p e r a t u r e and s t r e s s p r o b l e m s where poss ib le . Actual ly, for the in tegra l equations the 
information given in IBDSN and lEXPNS is not used. 

It should a lso be noted that en t i re ly different tab les of ICN mus t be used for the 
t e m p e r a t u r e and s t r e s s p r o b l e m s . The other tab les may be different or may be ident i ­
cal . However, the ITABCO tables m u s t be identical in the two p r o b l e m s . Th i s , of 
cou r se , means that t r iv ia l points a r e introduced in the t e m p e r a t u r e p rob lem which a r e 
e l iminated by t e m p e r a t u r e eqixation Type 4 at these points . 

The equation Type 5 and 6 in the s t r e s s p rob lem a r e Equat ions (9c) which can r e ­
place Equations (9b). This follows since by Equations (9c) 

—— = constant 
ox 

T-— = constant 
dy 

r on f ree boundar ies 
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These constants mus t be ze ro for both f ree boundar ies s ince at the ends of both f ree 

boundar ies a s y m m e t r y surface is me t where -r— = 0 for a different no rma l d i rec t ion . 
on 

In the case of the seven-hole hexagonal e lement only —— = 0 for the off-center hole 
dy 

b<P S0 
boundary and, hence , eqiiation Type 7 is a l so needed h e r e , i. e. , = —— at specified 

Sx ox 
B0 

point on the boundary or = constant . 
Sx 




