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NUMERICAL SOLUTION OF FUEL-ELEMENT
THERMAL~-STRESS PROBLEMS

Robert F. Redmond, Harry Pollack, Alton E. Klickman,
William S. Hogan, Harold M. Epstein,
and Joel W. Chastain

In developing a method of numerical analysis for the solution of thermal-
stress problems special emphasis was given to fuel elements with internal coolant
channels. Numerical techniques for reducing the partial differential equation sys-
tem to a form suitable for numerical solution and a new iterative method of solving
large systems of linear algebraic equations were employed. Computer codes were
devised to obtain the numerical solution of the thermal-stress problems and were
used to obtain numerical results for single-hole and seven-hole hexagonal elements
and plate-type elements. Comparisons were made between analytical results and
numerical results for the case of the simple annulus shape.

INTRODUCTION

The performance of reactor fuel elements is affected and frequently limited by the
occurrence of thermal stresses., Hence, a design problem constantly encountered is the
prediction of the thermal stresses which will occur in a given reactor fuel element. The
problem of analyzing for the thermal stresses is usually complicated by the geometry of
the fuel elements, The {uel elements may have holes and will probably require a two-
dimensional description.

This report describes a general method of numerical analysis which can be applied
to a wide range of two~dimensional thermal-stress problems. These numerical methods
have been coded for the IBM-704 computer and have been used to analyze a number of
fuel-element geometries.

The procedure followed is to develop the appropriate partial differential equations
which describe the problem, to approximate the differential equations by difference
equations, and then to solve the resulting difference equations. The major difficulty
normally encountered in this procedure is the solution of the difference equations.

There may be as many as 500 to 1000 linear algebraic equations to solve simultaneously,
and this is a formidable task even for the IBM-704. The method of solution adopted in
this work was an iterative procedure. This method has advantages and disadvantages
which will be discussed later.

The remaining parts of this report give the details of the problem formulation,
the iterative method of solution, and the numerical results. Finally, the miethods and
results are evaluated and discussed.



FORMULATION OF THE PROBLEM

@

The problem considered is that of determining the plane-strain thermal-stress
distributions in cylindrical bodies which may have irregular boundaries and which may
contain cylindrical holes. It is assumed that all physical properties are constant in the
problem and that the material is isotropic and homogeneous. The body is assumed to
have uniform internal heat generation and to be cooled by heat transfer to a coolant.
The heat-transfer coefficient is assumed to be constant.

The assumptions regarding the heat generation and heat transfer could easily be
modified if more detailed information were available. The results also will apply to
plane-stress problems with minor changes in the coefficients,

Throughout this report the body under study will be oriented in such a way that the
z-axis is parallel to the cylindrical body and the cross section of the body will be de-
picted in the xy=~plane. All quantities will be assumed to be independent of the z
coordinate.

Differential Equations for the Temperature Field

The analysis of the thermal-stress problem can be broken down into two parts.
First, the temperature distribution must usually be determined; and, second, the re-
sulting thermal stresses must be determined. Consider first the two-dimensional tem-
perature problem in the xy plane, The equations to be satisfied by the temperature are
as follows:

32T (x,y) R 22T (%, v)

_ g2 _
2 52 =V T(x,y) =

K

Q
k

oT (xg, ¥s)
on

= 0, at insulated or symmetry surfaces |, (la)

aT(XS> vs) h
— = - T T(xg,yg), at heat-transfer surfaces ,

where

T(x,y) = temperature above the mean coolant temperature at the point
(x, y) in the body

Q = volumetric heat source
k = thermal conductivity
h = heat-transfer coefficient

(25,yVg) = coordinates of a point on the surface ‘



o
—— = normal derivative in the direction outward from the surface.
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These equations are more convenient for numerical work when they are expressed
in dimensionless form as follows:

2T o 2T (x. v
3 T(X,Y) + d T(X)Y) = VZT(;,;) =-1 ,

3%2 3y2
aT(Xs; Ys)
—a_r;— = 0, at insulated or symmetry surfaces , (1b)
T (xs, ys) L
= = - BT(xg,vs), at heat-transfer surfaces |,
where
- x = —_n
X=7, ¥*= %7 n=-=x
c = characteristic length
—— - T(x
T, y) = Sl
Qc
k
hc
P=x

Equations (1b) are the equations which will be used for the temperature field
throughout the remainder of this report.

Differential Equations for the Stress Field

The equations for the stress field in the case of plane strain in the absence of
body forces are as follows (1):

0,  OTy
= Ty o0
(2a)
BTXY Boyzo
ox oy
€X=é[(l+v)ox—v@]+onT,
=1 -
ey—E [(l+v)oY v 0]+ al ,
) (2D)
€Z=E[(l+v) O, =V ©] +aT = constant ,
2(1 + v
7xy=—'E—)"Txy )



where

0, = normal stress component on surface normal to the x-axis
Oy = normal stress component on surface normal to the y=-axis
O, = normal stress component on surface normal to the z~axis

Txy = tangential stress in y-direction on surface normal to x-axis
€, = strain in x-direction
€y = strain in y-direction
€, = strain in z~direction

Yxy = shear strain in xy-plane

0=0,+ Oy + 0,

v = Poisson's ratio

E = Young's modulus

o = linear coefficient of thermal expansion
T = temperature,

Equations (2a) represent a force balance on a small-volume element of the body,
whereas Equations (2b) are the relationships between stress and strain, In addition to
these equations, the strains must satisfy certain compatibility conditions in order to
make the strains consistent with the displacements., Further, the stress-strain fields
must be such that the displacements and rotations are continuous where the body is con~
tinuous. Finally, the stresses must be consistent with the externally applied forces at
the surface of the body.

In the present situation the only compatibility equation which is not satisfied
trivially is
2 2
< ) €y 3 Vxy
+ = . (3)
dy2 dx2 oxdy

Using Equations (2b) in Equation (3) leads to the following equation involving the stresses

>0 23%T o
y o XY o, X . vv2(0X+ oy) = - ocEVZT . (4)
dxc 2 oxdy dy?

Forgetting for the moment the additional equations which may be needed, consider
Equations (2a) and (4) which the stresses must satisfy. As a matter of convenience a
stress function ¢(x, y) is usually defined with the following properties:



o ¥ T 32 "
= —— = —_— = - . 3
o2 Y a2 T sy

First, it will be noted that Equations (2a) are satisfied trivially, On the other
hand, Equation (4} will be satisfied if ¢ is a solution of the equation

V4¢(x, y) = VZVZCi)(x, y) = ﬁdj V2T , (6a)

which, if V2T = - —1%—, becomes

vi(x, y) = < %—) < -f—> : (6b)

Therefore, a solution for ¢ which satisfies Equation (6b) and the additional condi-
tions to be required will determine, by Equation (5), o, Oy and Ty,. The remaining
stress O, does not appear in Equations (2a) and (4) but is determined as follows. From
the €, equation of Equations (2b), Oz is expressed in terms of the other stresses, the
temperature, and €, (a constant):

O, = E (ez - aT) + V(ox+ cy) ,
(7)

0, = E (€, - aT) + V2o

It is then required that the 0, component be consistent with the axial forces acting
on the body. If the body is unrestrained at the ends, as is the case here, then

‘g‘goz dxdy = XS {E(ez - aT) + w%} dxdy = 0 (8)

where the integrals extend over the cross~sectional area of the body. From Equation {8)
€z can be determined and then 0, can be evaluated from Equation (7).

In many cases it is easy to show by Green's theorem that §v2¢dxdy = 0 and, hence,

€5 = T4y, where T,y is the average temperature of the body. In this case 0, is given
simply by

0, = 0E (Ty - T) + vV . (8a)

In addition to the preceding equations certain boundary conditions and continuity
conditions must be satisfied. At the free boundaries of the body the stresses must be
consistent with the applied forces. Hence, at the free boundaries,

Ny Ox T nyTxy = Fx ,
(9a)
nxTxy + nyoy = Fy ,

where ny and ny are the direction cosines of the outward normal vector, and Fx and Fy
are the components of the externally applied surface force, In terms of the stress
function,



d2¢ R2¢ a2\

2
Jy Ox Oy ds ox

nyx Fy ,

(9b)

_n52_¢+n§i?:__é_<éi>_};
X %oy OV RE T T \&y/ Ty

where - represents the derivative in the direction of the tangent vector of the boundary

ds
curve. For free boundaries Fyx = Fy = 0 and, hence,
@i = constant ,
ox

(9¢)
£

oy

on each free boundary separately. In many cases considered, one or both constants in
Equation (9c) are necessarily zero from a consideration of the symmetry planes which
intersect the free boundaries,

= constant ,

In addition to the free boundaries just considered, symmetry boundaries may
sometimes be introduced to simplify the problem. In this case the stress function is re-
quired to be symmetrical with respect to the symmetry surface. At a symmetry surface
the following conditions are equivalent:

r -

op op
——— 2 O —_— 0
on ’ on ’
< < 10
320 M e (0
=0 s —_— =0 s
§ on § on3

where = represents a normal derivative at the symmetry surface.

For simply connected bodies (no holes) Equations (6a), (9b), and (10) would suffice
to determine the stress function for the resulting displacements and rotations would
satisfy the continuity requirement. However, for multiply connected bodies (holes),
additional conditions must be placed upon the stress function to assure continuity of the
displacements and the rotations.

The following treatment follows that of Southwell(2), The strain components in
terms of the displacements are

L v du | v
"% 0 YTy WTE TR
where

u = displacement component in x~-direction

v = displacement component in y-direction.
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The only rotational component of interest here is the z-component, wgz, given by

w3 (E-8)

Hence,
cw L
= V2T Txy
EL-I— = - wg t — Y
Sy z T 5 ¥Ry
and
d az o€
(Wz+1'ny>— < ='—L,
Sy 2 oxoy | ox
_a—<_w+iy>_52u o€
3% Ty TSy T Sy
and
ow,, ) 8€Y ) i B'yxy
dy ox 2 oy ’
oW, _ O€x +i a’ny
ox Jy 2 ox '
32w
Evaluating with each of the preceding expressions and equating these ex-

oy

pressions leads to the compatibility relation already considered, Equation (3). In addi-
tion, however, if wy is continuous then

Owg,
§ ds ds =0

H

where the path of integration is an arbitrary closed curve which does not cross the
boundaries of the body but may enclose holes. In terms of the strains

dw 3w, 3w
§ Bsz ds=§v {-ny——-—ax +nx——"—ayz} ds

dey 1 ayxy> oy 1 8yxy>
=§{“x<‘g;:“z‘—ay (3 77 T }d“"

In terms of the stress function [express €x and €y in terms of 0x and Oy by eliminating
0, by means of Equation (7)]:

d 20, GQET _
§§;{v P+ 2= r ds=0 . (11)
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Hence, Equation (11) must be satisfied if the rotation is to be continuous. It may
be noted by applying Green's theorem to Equation (11) that

802 e 02
§sg{v ¢+ T ds = v Ve + l—vJL dxdy +

i ) 2 oET -

-Z§si_§;{v¢+—_—l'7’}ds—o, (12)
1

where in the last summation of integrals the integrations are over the paths which de-
fine the holes enclosed by the closed path s, and the surface integral extends over the
region of the body enclosed by the path s. From Equation (6a) the surface integral
vanishes. If no holes are present Equation (11) will be satisfied trivially for any path of
integration in the body which, however, may coincide with the external boundary of the
body as a limiting case. If holes are present then a path of integration can be defined
which includes only one hole, and then the preceding arguments show that Equation (11)
must be satisfied for this path of integration or for any path which includes this hole;
for example, a path defined over the hole boundary. Therefore, if holes are present the
continuity of wy is assured if Equation (11) is satisfied for each boundary curve.
Equation (11) then is another condition imposed on the stress function which must be
satisfied at each hole boundary if holes are present,

In a similar fashion the continuity of u and v can be established by requiring that

e
ozlg/
&

It
o

and

ey
|&
o
wm
Il
(o]

These requirements result in the following equations in terms of the stress function:
' ) 2 aET _
yx--my| | VF 5| ds=0 (13)

e -oe] [+ 2] armo

Again by an application of Green's theorem it can be seen that these equations are satis-
fied trivially if no holes are present. If holes are present Equations (13) and {14) must
be satisfied for each hole boundary. Hence, Equations (12), (13), and (14) are to be
satisfied for each hole boundary in order to insure the continuity of the displacement and
the rotation components.

In addition to the continuity equations just described, the presence of holes can
also introduce the problem of cyclic constants. (2) However, if, as in the present case,
the externally applied forces at the hole boundaries are zero then there is no problem.
Therefore, the problem of cyclic constants will not be considered further in this report,
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Finally, it must be noted that, in general, there will be solutions of the homoge-
neous equation v4¢ = 0 which will also satisfy the boundary conditions and the continuity
equations; e. g., ¢ = constant. In such instances the resulting arbitrary constants must
be specified before the numerical work can proceed. That is, the stress function must
have a unique solution if it is to be determined by a numerical procedure.

As in the case of the temperature problem dimensionless forms are more con-
venient. Hence, Equations (6b), (8), (10), (11), etc. become

V4 =1 (15)
ez — 4 — — —
SS{<——————@ il >+—1_V ¢>} dxdy = 0 (16)
k
—9=<—5—ﬁ->=o, ﬂ:<§:>=o, (17)
ds \ ox ds oy
3 v 29
— =0, =— =0 , (18)
on on
§gn—{v26+’r} ds=0 , etc. , (19)
where
- o)
PreEe L
1-v k

and the other terminology is as before,
The dimensionless form of the equations will be used throughout the remainder of

this report. However, for simplicity the bar designation will be dropped with the under-
standing that all equations which follow are in dimensionless form.

Formulation of Equations for Numerical Solution

The procedure used in arriving at a numerical solution of the thermal-stress
problem is as follows:

(1) Construct a square mesh which is superposed over the two-
dimensional geometry of the body.

(2) Specify appropriate interpolation formulas for representing a
function of x and y in terms of the point values at the mesh points.

(3) Perform the required differential and integral operations on the
interpolation formulas to obtain suitable equations involving the
point values of the function at the mesh points.
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(4) Solve the resulting equations to obtain the point values of the func-
tion at the mesh points and if necessary use the point values for
further operations.

These steps of the procedure will now be described in turn. In order to make the
procedure clear a specific example will be used. As an example a 15-deg slice of an
annular cylinder will be considered. In this example it will be assumed that heat is
generated uniformly within the annulus and is removed uniformly at the inner radius by
heat transfer to a coolant,

Construction of the Mesh

A geometrical square mesh of unit length is superposed over the two-dimensional
geometry of the body as indicated in Figure 1. Two types of physical mesh points are
now defined. Interior mesh points are defined to be those on or inside the boundaries of
the body. These are indicated in Figure 1l by solid dots. Exterior mesh points are de~
fined to be those points outside the boundaries of the body which are required to com-
plete the "biharmonic array' for each interior mesh point considered as the center of
the biharmonic array. The biharmonic array is defined by the geometrical array shown
in Figure 2a. The (0, 0) point is the center of the array. In Figure 1l the exterior points
are indicated by circles at the appropriate mesh points, It will be noted that each
interior point in Figure 1 is the center of a complete biharmonic array. The '"Laplacian
array' as shown in Figure 2b would suffice for the temperature-field problems; however,
for the purpose of constructing the mesh only once for both the temperature and stress
problems, the method described will be used throughout. For the temperature problems
the exterior points not needed can be eliminated in the problem solution.

The use of exterior points may appear strange since function values at these
points have no physical significance., However, they do have mathematical significance
since they correspond to an analytic continuation of the function beyond the boundaries.
For example, the analytical formula for the temperature field has physical significance
only when it is evaluated for points inside the body but it may nevertheless be used to
evaluate function values outside the body. The reason for using exterior points in this
way is that the boundary equations can be written more accurately for numerical com-
putation. This is because central difference interpolation formulas can be used even at
the boundaries, whereas without the exterior mesh points one-sided interpolation formu-
las would be required, and these are less satisfactory.

Interpolation Formulas

The two~-dimensional interpolation formulas given here are obtained by a double
application of Stirling's(3) interpolation formula and truncating the result. For the tem-
perature function the five-point Laplacian array is used which is associated with the
following interpolation formula

T(r,s) = T(0,0) + 3 [T(1,0) - T(-1,0)] + 5 [T(0,1) - T(0,~1)]

2
+ 12— | T(1,0) + T(-1,0) - 2T(0, 0)] (20)

2
+ ‘SE‘ [T(0, 1) + T(0,-1) - 2T(0,0)]
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@©
0

h
@ interior point
O exterior point
@ boundary point

FIGURE 1, MESH WORK FOR SAMPLE PROBLEM (15-DEG SLICE OF ANNULUS)

@
(0,2)
1
I ax
. - ® A &
(LN (o,1) un (o,n P (x,y)
F=18-Plx,y) ay P
BEBENNSwE S
-2,00 | 1,00 oo | (1o (2,0) (1,00 00 | 1,0
(-1, {0,-) (-1 (0,-)
‘L I y-direction
(0,-2) - -
L x-direction
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i (0,0) Point 1s Located at (x,,y) Then for P{x,y) { ax
7Y
ay
A-33156

FIGURE 2, FUNDAMENTAL MESH-POINT ARRAYS FOR INTERPOLATION FORMULAS
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For the stress problem the 13-point biharmonic array is used which is
associated with the following interpolation formula

B(x,s) = $(0,0) + & [$(1,0) - $(=1,0) + § [#(0, 1) = ¥(0, ~1)]

+ _rZ_Z_ [#(1,0) + $(-1,0) - 2¢(0,0)]
+ 52 [9(0,1) + #(0,-1) = 26(0, 0)]
I (61,1 + $(=1,-1) - $(-1,1) - &(1,-1)]
2 .
+ r(r.l.z____l) [$(2,0) - 2¢(1,0) = $(-2,0) + 2¢(-1,0)]
2 _
+ s(s“ - 1) [6(0,2) - 2¢(0, 1) - $(0, -2) + 2¢(0, ~1)]
2
rs
o LOL 1) + 61, -1) - 20(1,0) - 9(-1,-1) - @(=1,1) + 26(-1, 0],
2
F S (8L, 1) + (-1, 1) - 26(0, 1) - &(1,-1) = $(-1,-1) + 26(0, ~1)]

4

rz'(r2 - 1)
24

+ [69(0,0) = 4H(1,0) -~ 49(~1,0) + ¢(2,0) + ¢(-2,0)]

» 22e2= 1) (69(0,0) - 48(0, 1) - 40(0,-1) + $(0,2) + (0, -2)]

rz‘sz
[H(1,1) + d(-1,1) + ¢(1,-1) + &(-1,-1)

T

- 26(0, 1) - 28(1,0) - 2¢(-1, 0)
- 29(0, -1) + 46(0,0)] .

It will be noted that both interpolation formulas give the correct value for the
function when (r, s) corresponds to one of the mesh points of the appropriate array.
This property of the interpolation formulas demonstrates one of several superior fea-
tures of interpolation formulas as contrasted to the frequently used two-dimensional
Taylor series expansions.,

Equations (20) and (21) are the fundamental formulas used throughout the rest of
this report to obtain equations involving the point values of the functions at the mesh
points, Since the mesh length is defined to be unity in these formulas, the unit of
length ¢ in the dimensionless equations is chosen to be the physical length of the mesh.
This choice simplifies the numerical equations which follow but does not give a con-
venient dimensionless form to the final results. However, the final results can be put
into a more convenient dimensionless form by multiplying the dimensionless temperature

2
function, say, by < §-> where a is perhaps the radius of the hole, In this way the

dimensionless forms are made independent of the particular mesh spacing used.
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Numerical Equations

The numerical equations to be solved are obtained by using the interpolation formu-
las in the differential and integral equations which define the problem. This is done in
such a way that the number of independent linear algebraic equations involving the point
values of the functions equals the number of point values of the function which are de-
termined. For example, in Figure 1 there are 51 point values to be determined and,
hence, 51 independent equations must be obtained. These equations will be linear
algebraic equations because the interpolation formulas, differential equations, and inte-
gration schemes used are linear. It should be noted, however, that there is considerable
arbitrariness in selecting the equations, and a certain amount of caution is necessary to
avoid the use of dependent equations. The best guide in this regard is probably a com-
bination of physical intuition and mathematical insight.

Probably the best procedure to be followed in writing the appropriate number of
equations is to associate every mesh point with a specific equation. The equation
selected should involve the point value of the function as strongly as possible. This last
requirement while not imperative will facilitate the numerical solution and will help in
avoiding dependent equations.

The interior points present no special problems, for the natural choice is to
associate the equation v%¢ = 1 or V2T = -1 with each interior point. For example, re-
ferring to Figure 1, the eleventh equation for the stress problem would read

(V49) 1, = 208(11) - 8[$(12) + B(5) + B(10) + B(19)]
+ 2[6(6) + H(4) + O(18) + ¢(20)]
+ [H(13) + H(1) + &(9) + ¥(27)] = 1
The eleventh equation for the temperature problem would read
(V2T)p; = = 4T(11) + T(12) + T(5) + T(10).+ T(19) = - 1

Note that these equations were obtained by applying the differential operators at Point 11
to the interpolation formulas.

The exterior points, however, do present special problems. The general proce-
dure is to associate an exterior point with a nearby boundary point (not necessarily a
mesh point) and a boundary equation appropriate to that boundary. The boundary equa-
tion is obtained by using an interpolation formula centered at an interior point near the
boundary point and performing the required operations on it., For example, referring
to Figure 1, Mesh Point 6 is associated with Boundary Point 8 at the corner. Boundary
Point & in turn is associated with interior Mesh Point 12 where an interpolation formula

can be written. Thus, for the temperature problem the boundary equation —g—’I—‘ =01is
n

written at Boundary Point 8 using an interpolation formula centered at Mesh Point 12.
Or, in detail, the equation for Mesh Point 6 for the temperature problem is obtained
as follows:
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<_B.I_> =n aT-l-n-al=0
r, s

X dr

- sin 15° {—%— [T(13) - T(11)] + r [R(13) + T(11) - 2T(6)]}

+ cos 15° {é— [T(6) - T(20)] + s [T(6) + T(20) - 2T(6)]} =0 ,

where (r, s) are the coordinates of Boundary Point 8 referred to interior Mesh Point 12
as origin, On the other hand, since Mesh Point 2 is not involved in the Laplacian array
about any interior mesh point, this mesh point is eliminated by simply writing the
equation: T(2) = O,

2
For the stress problem Mesh Point 2 is associated with the equation S ¢ =0,
n
written at Boundary Point 8, while Mesh Point 6 is associated with the equation —g—%— =0,

written also at Boundary Point 8, Thus, two independent boundary conditions are
applied to the same boundary point and referred to the same interior mesh point as an
interpolation center,

In this fashion the required number of independent equations are obtained which
can then be used to determine the point values of the temperature and the stress func-
tion at the mesh points. The stress-function solution in turn can be used with the inter-
polation formulas to determine the stress values at any desired point,

A detailed specification of the example of Figure 1 can be found in Appendix A,
However, several important features might be mentioned here. A study of the problem
reveals that the stress function is arbitrary only to a constant., Accordingly, the equa-
tion for Mesh Point 39 is arbitrarily taken to be $(39) = 0. At the inside radius an
integral equation [ Equation (18)] must be written; this equation is arbitrarily associated
with Point 32, Also, it may be noted that particular care must be exercised at the cor-
ners to avoid dependent equations, For example at Boundary Point 8 the equation

%}%— = 0 is written. At Boundary Point 9 (the same point but with a different normal

vector) the equations %}%— = 0 and éw(p = 0 could be written and would satisfy the boundary

op  op o¢
T Yy
same point and, hence, such a procedure will lead to a dependent equation which cannot
be used,

conditions on this boundary. However, are not independent at the

The line integrals encountered are reduced to linear algebraic equations by apply-
ing a simple trapezoidal rule to integrand values obtained at equally spaced boundary
points. The integrands are evaluated by means of the usual interpolation formulas. The
average temperature over the cross section of the body which is required in Equation (8)
is obtained by a crude arithmetic average of the temperature values at the interior mesh
points.
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Hence, as a result of the procedures described above the problem of Figure 1 has
been reduced to solving 51 linear algebraic equations for first the temperature and then
the stress functions. Although this size problem can be solved directly by a matrix in~
version this approach becomes impossible as the number of equations becomes large.
Hence, iterative types of solution are of interest for their application to the stress prob-
lem. The following section of the report describes an iterative procedure studied and
used in this connection,

Before taking up the iterative procedure it should be mentioned that the prepara=
tion of the coefficient matrix for a large~scale problem can be a formidable task in itself.
Consequently, all the numerical schemes for generating the coefficient matrix elements
and processing the solutions have been coded for machine computation. In this way a
minimum amount of hand-prepared input data is used. This not only simplifies the setup
of the problem but reduces the possibility for errors. The hand-prepared input re-
quired for a problem setup is described in Appendix A,

ITERATIVE METHOD OF SOLUTION

As already mentioned the numerical method of solution reduces to the solution of a
number of simultaneous linear algebraic equations. Consider, therefore, such a system
of equations given by

Ap=a | (22)

where

! 2]

*2 2z

?3 23

¢ = , a= ,

or 2R
and A is a nonsingular RxR matrix., The ¢y, ¢, ... etc. are the unknowns to be
determined.

An iteration scheme for solving Equation (22) can be employed. Of the many
iteration schemes, the extrapolated Liebmann process has a number of advantages for
machine computation, (4) This method will be described and related to a minimization
process for iterating on Equation (22); this connection easily establishes the convergence
of the extrapolated Liebmann process applied to an equation related to Equation (22):


http://schem.es

16
ATag =ATs R
or

B¢

1
on
-
—

23)
where

B=ATA

b=aTa ,

That is Equation (23) is simply obtained by multiplying Equation {22) by the transpose of
matrix A,AT. The matrix B defined in this way is a positive definite matrix.

Mi.nimization Process for Iteration
The minimization scheme described here is closely related to several other
iteration schemes but apparently it has not appeared in the literature.
The residual vector r is defined by
r=Adp-a , (24)
and the length squared of r is given by
Irf=r+ r=[A}-al? . (25)
The iteration scheme assumes that there is an estimate for the vector ¢:
¢Xf+l

+1
2

¢n(s) =

s-1 .
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That is, at this stage of the nth iteration the elements ¢1, ¢2, ..., ®5.] have been
iterated, but the elements ¢g, 541, ..., PR have not been iterated as yet. Then it is
desired to determine ¢1g+ in such a way that |r] 2 is minimized. To determine the way
this choice must be made ¢$7(s+1) is put into Equation (25) for ¢ and it is required that

dlrl® - 0

S

>

which gives

arz or o
—U—=2- = 2(A¢-a)- A =0

r =
a¢2+1 a¢2+1 a¢g+1
However,
n
Od(s+1)
B A
]
=1, r=s ,

and, therefore,

Z LAG (s+1) = aly + A =0,

-

or in detail,

n
Z{Z Ay ¢ﬁ (s +1) - ak} A =0,
k £

or using the notation for the residual vector corresponding to <I>Iz1 {s+1},

n — £
z o (s¥1) A, =0, (26)

k

where

e (s+1) =z Ay OF (s+1) - 3y
2

An expression for <IJrsl+1 can be obtained by noting that

n _ n nt+l _ 4n
rp(s+1) = r)(s) + A, { <1>S ¢s] . (27)
Putting the last expression into Equation (25) gives finally

ntl _
g =

¢n

¢ oo —L _HMa
2
EAksk
k

Ks Tk (8) - (28)
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This, then, is the new value of $g which minimizes the square of the residual
vector, Further, since the vectors ‘

Als

AZs

are linearly independent and the minimization process will be complete only if Equa-

tion (26) is satisfied for all values of s, it follows that there exists only the minimum
given by the solution A¢ = ¢, Hence, the iteration scheme will always converge to the
true solution.

The Extrapolated Liebmann Process

There exists an interesting relationship between the minimization process just
described and the extrapolated Liebmann process applied to the transposed system
ATAg = AT,

Thus, consider first the system

AP =a

The extrapolated Liebmann iteration scheme for the transposed system (Bgg# 0) is

n+l n a n
('bs = ¢s h {ZBsﬂ ¢B(s) h bs}
Bgs 7

n+1l n a n
el {ZAkS rk(s)} . (29)
ZAks k

k

or

Thus, Equation (29) differs only from Equation (28) in that a appears in Equa-
tion (29). This significant result apparently has not appeared in the literature. The
question naturally arises as to what choices of a in Equation (29) will assure convergence.
This question is easily answered by considering the residual vector change during the
iteration., It is easily demonstrated that the square of the residual vector will never in-
crease if 0<a<2, It suffices to observe that
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rN(s)|?

O
i

= | (s+1)|2 -

rn(s) 2

r(s) + A { P (s+1) - ¢n(s)} ‘2 -

2:7(s) - A {¢n(s+1) _ ¢n(s)}, + [ A {gbn(s-l-l) - (iJn(S)} j! 2
ZZ rn(s) Ay {¢n+l - ¢Isl} + }jAﬁs {¢rsl+l - ¢>r81}2
2 k
(g
= - + «
zAks ZA}Z:S
k
- 2
13 m g
-
2
ks

Clearly for 0<o<2 the square of the residual vector will never increase at any step of the
iteration scheme.

5 2

{Z Apg rll:(s) ‘L
2 k

4

(-20 + onz)

Another question of importance is the best choice of a. At each step a = 1 gives
the greatest decrease in the square of the residual vector; however, some other choice
of @ may well give a larger decrease after a number of iterations than the choice o = 1,
This question of the optimum choice of o is a complex one, In general, there is little
to be done other than experiment with different @ choices to determine the best a choice
for a given problem. To be sure for special matrices something more can be said about
the optimum choice of o but these are special cases.

The iteration scheme given by Equation (29) can be performed rather efficiently by
a high-speed computer. Thus, define

1

Kl = s (30)
° Bss
r(s) = ) Apg@ls) - ay (31)
y/
n ntl n
0 Qbs = ¢S - ¢s . (32)
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Then

n n

é(bs:'““szAksrk(s) s I<s<R , (33)
k
n _ .n,_ n

rk(s) = rk(s 1) + Ak, -1 6¢S_1 , 2< s<R+1, (34)

n n-1
rk(l) =T (R+1) . (35)
The iteration starts with an estimate for ¢;, s=1, .., R. From this rli(l) is cal-

culated by Equation (31). Then (59’)% is calculated from Equation (33). Then r11<(2) is cal-
culated from Equation (34). Then (5@5% is calculated from Equation (33). This continues

until rli(R+l) is calculated by Equation (34). Then by Equation (35) the second iteration

cycle is started and the process is repeated. The iteration is stopped when the residual
vector has become small enough. This procedure reduces the computation considerably

over say computing each rﬁ(s) by Equation (31) directly each time.
The iteration routine described by Equations (30) through (35) has been coded for

computation on the IBM~704, The details of the code will be found in Appendix A. Some
of the results of the iteration scheme will be described in a later section of the report.

Terminal Block Extrapolation

The iteration routine described by Equations (30) through (35) may be improved by
a process which might be called '"terminal block extrapolation'', This process is
carried out by adding to the most recently computed vector ¢ntl (obtained at the end of
the nth iteration cycle) a correction proportional to the ¢ vector. Thus,

$(K) = o™ 4 koo™

The factor K can now be determined such that ¢(K) reduces the residual as much as
possible. Thus, if

r(K)= AP (K) - a ,
r=A¢rtl - g ,
Sr = ASP™
then

rZ(K) = r2 + 2Kr ¢+ Or + K2 ((51‘)2 .



21

Clearly r2(K) is minimized if
r -+ Or

(87)2

K= -

and, since r + 0r < 0, K> 0. Using this optimum choice in the expression for rZ(K)
gives

2
2(K) = £2 - (r - Or)
UK) = (6r)2

r2 (1 - cos? 9)

rZ(K) = r% sin% 0

bl
where

o) o)
cos 6 = r r __r r

JEyenz ozl s

Thus, this important result indicates that the terminal block extrapolation with the
optimum value for K will reduce the residual vector significantly if the vectors r and or
are nearly parallel., By virtue of the fact that ér is obtained in such a way that r is
shortened &r cannot be perpendicular to r but rather the minimization process tends to
make Or and r parallel. Hence, a combination of the minimization iteration process and
the terminal block extrapolation process appears to be a very promising method for
solving linear algebraic systems of equations.

As an indication of the important gains in convergence which can be obtained a
simple problem was solved by both the iteration scheme of Equation (29) and the itera-
tion scheme augmented by terminal block extrapolation. The equation to be solved was:

-2 1 0 <Z>l -1
1 -2 1 <1>2 = (-1
0 1 -2 <1>3 -1

with the solution ¢1 = <].‘>3 = 1,5 and ¢2. = 2.0, Table 1 shows the residual vector
squared for every other iteration and the K-value for the extrapolation for every itera-
tion., The solution vectors after 24 iterations in the two cases were:

(1) No extrapolation

¢ = 1.5020347
$ = 2.0026662
¢3 = 1.5017260
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TABLE 1. COMPARISON OF RESIDUALS WITH AND WITHOUT EXTRAPOLATION
No Extrapolation Extrapolation Extrapolation
Square of Square of Factor,
Residual Vector Residual Vector K
0 8.24 x 102 8.24 x 1072
1,41 x 1073 6x 107> 0- 19
2 .41 x 1.36 x 10 0. 025
-4 -4 1.33
4 8.91x 10 3.93x 10 1.35
-4 -5 0.019
6 5.34x 10 4.10x 10 6 78
8 3.18 x 107* 4 -7 0- 17
. x 10 .92 x 10 0.51
-4 -8 3.14
10 1.89 x 10 8.18x 10 -0.081
1.12x 1074 1 -8 3.63
12 .12 x 10 .07 x 10 0. 44
-5 -10 0.19
14 6.73x 10 8.62x 10 5 60
-5 -10 ~-0,083
16 4.01x 10 1.62x 10 2.02
3 Lo~ -11 0.74
18 2.39 x 10 4,89 x 10 0.048
-5 -14 7.02
20 1.42 x 10 2.53x 10 -0, 12
-6 -15 0.96
22 8.48 x 10 9.29 x 10 0.60
- - 0.05
24 5.06 x 107° 8.15 x 10710

.43
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(2) Extrapolation every iteration

¢; = 1.5000001

¢ = 2.0000005

$3 = 1.5000003.
In each case the initial guess was

¢; = 1.4000000

¢, = 1. 9800000

$5 = 1.6000000.

It will be noted from Table 1 that the extrapolation process has accelerated the
convergence immensely. It will also be noted from the solution vectors after 24 itera-
tions that the accuracy is much better in the case of the extrapolation case. In fact the
small errors in the last digit are apparently round-off error accumulation.

It is also of interest to compare the terminal extrapolation procedure with the
iteration procedure using an optimum value for a in Equation (29). By experiment an
optimum value of a = 1, 49 was found. After 25 iterations the residual vector squared
was 2,89 x 10~15 compared to a value of 2,48 x 10-16 for the terminal block extrapola-
tion case. Hence, the terminal block extrapolation was superior in this case to using an
optimum value for a. Of course, in most cases the optimum value for o will not be
known, and this points out the superiority of the terminal block extrapolation since no
additional information about the system is required. To be sure some additional compu-~
tation is required to carry out the terminal block extrapolation, but this is a small
amount compared to the computations required for one iteration cycle in a large problem.

Studies of a similar nature must be carried out on larger systems to determine the

usefulness of the terminal block extrapolation process on large-scale systems. The
effect of extrapolating every nth iteration must also be studied.

NUMERICAL RESULTS

Preliminary Studies

In this part of the report some results are described which were obtained by
applying the methods presented above. First, the sample problem of Figure 1 will be
considered, and then some results for other geometries will be reviewed.

The simple annulus problem of Figure 1 can be solved analytically. In addition,
the 51 equations which result from the numerical formulation can be solved directly.
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Thus, the validity of the numerical approximations can be determined by comparing the

results of these two methods of solution. The results from the iterative method of solu-

tion can then be compared with the results of the other solutions. In this way the effect .
of a smaller mesh spacing can also be studied.

The analytical solutions for the dimensionless temperature function and stress
function(l) for the annulus of Figure 1 are as follows:

2 _ _2 2 2 2 _ 2
b a b‘!,lnr r a}’

e T T T .
where
a = 10, inside radius
b = 14, outside radius
r = dimensionless radius
B =0.024,
and
¢(r)=Alogr+Brzlogr+Cr2+D+—Z—i—, (37)
where
A=-2141.1244
B = - 24,500000
C = 76, 243957
D= 2779.2375.

The stress function given by Equation (37) is based on the condition of ¢ = 0, at r = b.

The same problem was then solved using the numerical procedures described in
this report, first, by a direct matrix inversion and then by the iteration method. A
comparison of the results from the various procedures is given in Tables 2 through 6;
however, these results need some further explanation, The iteration solution was
started with an initial guess rather close to the correct answer. The initial guesses
used are shown in parentheses next to the iteration values. Then an iteration solution
was performed with the mesh spacing halved. The results of this solution at the mesh
noints of the coarser mesh are also shown in the tables.

First, it may be noted from the matrix-inversion results given in the tables that
even for a coarse mesh the numerical schemes give rather good results for the solution
of the problem. In the case of the temperature function there is about a 0. 02 difference
between the analytical and the matrix-inversion solution. This is a rather uniform
difference and it is not surprising since the temperature level enters the problem in a .
rather weak connection, The iteration results are not too meaningful if only the
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TABLE 2. TEMPERATURE FUNCTION

The,y)
Qa?
-
Full Mesh Half Mesh,
Interior Matrix 300 300
Point Analytical Inversion Iterations Iterations
11 2.076 2.095 2.095 (2.095) 2.076 (2.075)
12 2.087 2.107 2,106 (2.110) 2.088 (2.085)
17 2.009 2.028 2.029 (2.030) 2,008 (2.010)
18 2.047 2.066 2.066 (2.065) 2.046 (2.045)
19 2.072 2.091 2.091 (2.090) 2.072 (2.070)
20 2.086 2.105 2.105 [2.105) 2,086 (2.085)
25 2.002 2.021 2,021 (2.020) 2.001 {(2.000)
26 2,042 2.061 2.062 (2.060) 2.042 (2.040)
27 2.070 2,089 2.089 (2.089) 2.069 (2.070)
28 2.085 2.104 2.104 (2.105) 2.085 (2.085)
33 2.000 2.019 2,019 (2.020) 2,000 (2.000)
34 2.041 2.060 2.060 (2.060) 2.040 (2.040)
35 2.070 2.088 2.088 (2.090) 2,068 (2.070)
36 2.085 2,104 2.104 (2.105) 2.085 (2.085)
37 2.090 2.109 2.109 (2.110) 2.090 (2.090)
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TABLE 3, STRESS FUNCTION
¢ x 104
aE x Qa?
1-v  k
Full Mesh Half Mesh,
Interior Matrix 300 300
Point Analytical Inversion Iterations Iterations
11 - 3,371 - 3,531 - 3.598 (- 3.5) - 3.060 (- 3.0)
12 - 0.577 - 0,606 - 0.631 (- 0.5) - 0.491 (- 0,5)
17 -11,4538 -11,951 -11,937 (-12,0) -11.316 (-11.0)
18 - 8.493 - 8,881 - 8,931 (- 9.0) - 8,303 (- 8.5)
19 - 4,181 - 4,389 - 4,455 (- 4,5) - 4,387 (- 4.5)
20 - 0,949 - 1,003 - 1,027 (- 1.0) - 9,971 (- 1.0)
25 -11,566 -12,066 -12,035 (-12.0) -11,427 (-11,5)
26 - 9.051 - 9.468 - 9.502 (- 9.5) - 8.965 (- 9.0)
27 - 4,699 - 4,934 - 4,998 (- 5.0) - 4,660 (- 4.5)
28 - 1,227 - 1,284 - 1.308 (-~ 1.5) - 1.208 (- 1,0)
33 -11,572 -12,074 -12,045 (-12,0) -11,434 (-11,5)
34 - 9,234 - 9.654 - 9.680 (- 9.5) - 9.149 (- 9.0)
35 - 4,874 - 5,114 - 5,176 (- 5.0) - 4,832 (- 5.0)
36 - 1.312 - 1,368 - 1,399 (- 1.5) - 1,293 (- 1.0)
37 0 0 0 (0) 0 (0)
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TABLE 4. STRESS COMPONENT

ox x 102

aE Qal

1-v  k

Full Mesh Half Mesh,
Interior Matrix 300 300
Point Analytical Inversion Iterations Iterations

11 0.199 0.208 0.202 -0.098
12 -0.006 0.010 -0.014 -0.122
17 0.312 0.346 0.376 0.389
18 0.406 0.439 0.441 0.494
19 0.297 0.319 0.318 0.379
20 0.108 0.122 0.118 0.135
25 0.090 0.095 0.073 0.071
26 0.375 0.399 0.393 0.485
27 0.345 0.371 0.371 0.484
28 0.176 0.204 0.198 0.231
33 0 0.002 0.008 -0.013
34 0.358 0.369 0.347 0.351
35 0.359 0.358 0.354 0.321
36 0.199 0.165 0.181 0.164
37 0 0 0,013 0.001
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TABLE 5, STRESS COMPONENT

oy * 102

aE  Qal

I-v  k

Full Mesh Half Mesh,
Interior Matrix 300 300
Point Analytical Inversion Iterations Iterations

11 -1.465 -1.492 - 1,440 -1.739
12 -2.426 -2,546 -2.566 -2.999
17 5.089 5.287 5.158 -5.238
18 1.233 1.298 1.360 -1.101
19 -1.184 -1.208 -1,142 -1.262
20 -2.393 -2.498 -2.519 -2.313
25 5.995 6,225 6.037 5,787
26 1,704 1,798 1,850 1,727
27 -0.979 -0.994 -0.916 -0.963
28 -2.354 -2.469 -2.478 -2.336
33 6,322 6.552 6.286 6. 142
34 1.874 1,980 2,022 1.912
35 -0.904 -0,907 -0.830 -0.892
36 -2.338 -2,453 -2.455 -2, 347

37 -2,652 -3.000 -3.064 -2,573
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TABLE 6. STRESS COMPONENT

T xy X 102
oE Qal
1-v k
Full Mesh Half Mesh,
Interior Matrix 300 300
Point Analytical Inversion Iterations Iterations
11 0.529 0.414 0.412 0.406
12 0.590 0. 641 0.592 0.613
17 -0.995 -1,094 -1,052 -1.108
18 -0, 155 -0,208 -0,213 -0,259
19 0,254 0,232 0.225 0,311
20 0.394 0.385 0.389 0.508
25 -0.596 -0,648 -0.595 -0.554
26 -0,122 -0,150 -0,153 -0.156
27 0.111 0,102 0,094 0.136
28 0.196 0,182 0,187 0.207
33 0 0 0.000 -0,001
34 0 0 0,000 0.000
35 0 0 0.000 0.000
36 0 0 0.000 0.000
37 0 0 0.000 0.000
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four-figure results displayed are considered, However, the iteration process has re-~

duced the residuals considerably from the initial values given by the initial guess. Thus,

a temperature function has been determined which is much smoother than the initially .
chosen function. The one-half-mesh results are also much closer to the analytical

solution, but the initial values used are also much closer to the analytical solution,

In the case of the stress~function results shown in Table 3, the comparison be-
tween the analytical and matrix-inversion results is again good considering the coarsec
mesh employed. The iteration results are more meaningful here than in the tempera-
ture case, The comparison between the matrix~inversion and the 300-iteration results
is rather good, and the results agree rather well with the analytical results. Again, a
stress function has been generated by the iteration process which is much smoother than
the initial guess. The same comments can be made about the stress components given
in Tables 4 through 6, which were computed from the stress-function results, Com-
paring the half~mesh results with the full-mesh results, it is noted that the half-mesh
results for the temperature and stress functions are nearer to the analytical solutions,
in general. However, comparing the stress components it is noted that the full-mesh
results are more accurate than the half-mesh results, The explanation of this is that
the convergence of the half-mesh problem is slower than for the full-mesh problem,
and, hence, after 300 iterations a ''smoother' function is obtained in the coarse~-mesh
case, The stress components involve differential operations upon the stress function,
and, hence, any lack of smoothness in the stress function will be evident in the stress
components, This illustrates an important point: the best numerical procedure is a
compromise between the requirement of a coarse mesh for better convergence and the
requirement of a fine mesh for better accuracy in the interpolation formulas,

The iteration process used for this sample problem employed an acceleration fac-
tor of @ = 1. Some studies were made with the sample problem which involved varying
the value of a. It was found that after several hundred iterations the choice a =1 re~
duces the residual about the same as or more than any other choice of a. On the other
hand if after several hundred iterations the a-value is changed to a higher value, it is
found that the residuals will decrease more rapidly than if the a = 1 value were main-
tained. Thus, it appears as if some procedure of changing the a~value during the
iteration might be superior to keeping the a-value constant,

Fuel-Element Studies

Single~Fole Hexagonal Element

The fuel element shown in Figure 3 was also studied. In these cases analytical
solutions are not available, and the large number of mesh points required make direct
matrix~inversion methods undesirable if not impractical. The problem formulation is
similar in every respect to the sample problem of the annulus. A symmetry section is
isolated as shown in Figure 3 and the mesh work is constructed. The equations are
formulated, the coefficient matrix is constructed, and the iterative process is applied to
obtain an approximate solution,

Of particular significance is the maximum tensile stress, In the case of the
annulus the maximum tensile stress occurs at the inside surface. In the case of the ‘
single~hole hexagonal elements the maximum tensile stress occurs at Point A in
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Figure 3., It is interesting to compare these maximum tensile stresses which occur in
the hexagonal elements with the maximum tensile stresses which occur in "equivalent"
annuli of the same inside radius andthe sameareaasthe single-hole hexagonal elements.
Figure 4 shows a graph of the maximum tensile stress for the different types of ele-
ments for several values of the -& ratio, where t is the length indicated in Figure 3 and
a is the hole radius. It will be noted that the maximum stresses are greater in the case
of the hexagonal elements than the corresponding annular elements and that the deviation
becomes more significant percentagewise as the ;,I{ value decreases., It should be re-
marked, however, that the single-hole hexagonal results shown in Figure 4 were ob-

tained from the iteration-method results, and there may be some error incurred in
using these approximate solutions,

Seven-Hole Hexagonal Element

The seven-hole hexagonal element shown in Figure 5 was also investigated. The
symmetry section shown was subjected to the same type of analysis as described
previously. The results for the maximum tensile stress are given in Figure 4. It will

be noted that the results for the %— = 0.5 and % = 0.8 cases lie rather close to the

single-hole hexagonal results but that the -g— = 0. 2 is considerably different, While this

difference may be real it should be mentioned that in the seven-hole -g— = 0.2 case 339

mesh points were used which is larger than the other cases by more than 100 mesh
points, As a result of this the convergence is poorer in this case than in the others,
Further, the maximum tensile stress for the -g— = 0.5 and %— = 0. 8 seven-hole cases is
in the x-vy plane and is found in the Region A noted in Figure 5, On the other hand, the
maximum tensile stress for the 'Er = 0. 2 seven-hole case is 0, and is located in the
Region B noted in Figure 5, An investigation of the % = 0.2 case has shown that the
temperatures determined are not reasonable and that probably the convergence is not
satisfactory. The 0y depends upon the difference of the temperature at the point and the
average temperature and, hence, 0, is quite sensitive to the temperature values. On
the other hand, the other stresses in the problem are virtually independent of the tem-
perature values., If the 0, stresses are disregarded in this case the maximum stress is
then found to be in Region A and to have a value much closer to the single-hole 'E{ =0.2
value.

Hence, it is concluded that the maximum tensile stress in the case of the seven-
hole hexagonal element is essentially the same as that in the single-~hole hexagonal ele-
ment over the -g— range covered, although this conclusion may be somewhat uncertain for
% = 0.2. The maximum tensile stress occurs in a location in a part of the seven-hole
element which is quite similar to the single~hole hexagonal-element symmetry section.

Plate~-Type Element

In addition to the hexagonal elements, two plate configurations were investigated.
These element shapes are shown in Figure 6. For these studies only the corner regions
shown were included. The plate was terminated as shown and a symmetry condition was
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FIGURE 3, SINGLE-HOLE HEXAGONAL FUEL ELEMENT
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FIGURE 5, SEVEN-HOLE HEXAGONAL FUEL ELEMENT
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applied. All other surfaces were regarded as free surfaces. For these studies only the
Ox, Oy, Txy stress components were of significance since the 0, distribution depends
upon the average temperature over the entire plate. The maximum dimensionless
stresses were found as given in Table 7 in the regions noted in Figure 6,

TABLE 7. MAXIMUM TENSILE STRESS (2)
IN PLATES

Omax

oE Qa?l

1-v k

Maximum Tensile Stress, ©

Plate 1 0.379

Plate 2 0. 350

(a) These stresses are made dimensionless using for "a" the plate half
thickness.

DISCUSSION OF RESULTS AND CONCLUSIONS

The numerical approach to the solution of thermal-stress problems as described
in this report has been shown to be quite satisfactory in principle. The use of inter-
polation formulas to specify linear algebraic equations involving the unknown values of a
function at mesh points has been described, The solution of the resulting set of equa=-
tions has been shown to give rather good results even for a rather coarse mesh.

An iterative procedure has been described which guarantees convergence and
tends to smooth the function. However, the convergence of the method is such that
rather close initial values must be determined if reasonable computer running times
are used,

Computer codes have been developed which generate the required matrix elements,
carry out the approximate iterative solutions, and process the solutions to yield the de-
sired stresses.

The results obtained by applying these numerical procedures to a number of prob-
lems indicate that a more satisfactory method of solving the matrix equations is de-
sirable. Several possibilities for making this improvement might be indicated here.
One possibility is to employ a direct matrix~inversion method either for the complete
problem or for a coarse-mesh problem. The method coded by Boehm(6) which employs
matrix partitioning appears to be the most satisfactory for systems which may have up
to 375 equations, Running~time estimates are not available. However, it was noted that
a particular system of 158 equations required 30 min on the IBM-704, If running times
with 375 equations are prohibitive or if more than 375 mesh points are considered, the
matrix-inversion method could be applied to a coarser mesh. The solution from the
coarse-mesh problem obtained in this way could then be used to interpolate a distribu-~
tion for a finer mesh. This distribution could then be used as a good initial guess to
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use with the iteration routine described in this report. Even the coarse-mesh solution
might be improved by iterating it with the iteration routine to reduce the round-off error
incurred in the matrix-inversion process.

As indicated in the report previously, the optimum strategy might be to change the
value of a during the iteration process. A more thorough study of the effect of different
o choices might lead to a procedure with improved convergence.

Alternate iteration schemes might also be considered. However, the integral
equations and boundary conditions as treated in this report make the usual line methods
somewhat impractical. It is possible, however, to extend the minimization scheme of
iteration to consider simultaneous changes of the values along a line or in a block.
However, these extensions of the method also require further study before their possible
worth can be determined. It can certainly be said though that the residual vector length
can be reduced at least as much by a simultaneous change of n-values as it can by n
consecutive changes of the n-values. Of course, the advantage would be if the simul-
taneous change would lead to a much larger decrease in the length of the residual vector.
Naturally, the gain achieved would have to have more than balance the increased com-
plexity of the arithmetic,

While these suggested devices might prove advantageous, the most practical
scheme seemns to be the terminal block extrapolation method already described in this
report. This method appears to offer high promise for a usable iteration scheme without
the need for a close initial guess. Some small-size problems indicate that large gains
can be made in accelerating the convergence by employing this method. Studies need to
be made, however, with larger scale systems before the terminal block extrapolation
can be evaluated.
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APPENDIX A

SETUP OF PROBLEM FOR MACHINE COMPUTATION

It is the purpose of this appendix to present the manner of setup to be employed in
order to prepare a physical problem for IBM~-704 computation, As an illustration the
complete specification is given of the annulus problem shown in Figure 1l in the text, It
is not the intention here to supply running instructions for the machine programs.

Problem Subroutines

The normal problem involves the use of six programs which can be used separately
or in series. These programs are presented below., The input terms are described
later.

Program 1. The Iteration Program

This program requires as input the coefficient matrix and the transpose of the
coefficient matrix on tape and the initial guess for the solution vector on punched cards.
Also, on punched cards the number of iterations is specified, the a~value is specified,
and the printout frequency is specified. The input tape is prepared by Program 4 and
the punched cards are prepared by hand. The output tape is used either in Program 5
or Program 6 or both,

Tape Input: Tape from Logical 6 of Program 4 should be mounted on Logical 6.
Tape Output: Tape from Logical 7
Printout: At every printout cycle the solution vector, the change in the

solution vector, and the residual vector are listed. In addition,
the square of the residual vector is listed.

Program 2. The Coefficient-Matrix Program
for the Temperature Problem

This program prepares the coefficient matrix from the input information regard-
ing the geometry of the body and the mesh work,

Card Input:
Fixed Point —= Fortran DIP

IE, IB, IC, NMAX, MMAX, IPMSN, ICN, IBDSN, IEXPNS, ITABCO,
MA, NA, IBDSNA.

Floating Point - Fortran DIP

HCK, RA, SA, XNA, YNA,
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Output: On Logical Tape 3 will be written the matrix elements and their
associated column indices. Also, any error-detection messages
will be written on Logical Tape 3. On Logical Tape 6 will be
written in binary the matrix elements and their associated column
indices, one row per record. Logical Tape 6 is saved and used as
input for Program 4.

Printout: The input data and the output data are listed.

Program 3. The Coefficient-Matrix Program
for the Stress Problem

This program prepares the coefficient matrix from the input information regard-
ing the geometry of the body and the mesh work.,

Card Input:
Fixed Point = Fortran DIP

MMAX, NMAX, IE, IB, IC, NI, N2, N3, N4, IPMSN, ICN, IBDSN,
IEXPNS, ITABCO, MA, NA, IBDSNA.

Floating Point - Fortran DIP

RTSD 1, RTSD 2, RTSD 3, X¢UT, SC, R1, X¢, RA, SA,
XNA, YNA.

Output: On Logical Tape 3 will be written to matrix elements and their
associated column indices. Also, any error-detection messages
will be written on Logical Tape 3. On Logical Tape 6 will be
written in binary the matrix elements and their associated column
indices, one row per record., Logical Tape 6 is saved and used
as input for Program 4.

Printout: The input data and the output data are listed.

Program 4., Transpose-Matrix Program

This program prepares the transpose matrix and prepares a tape for the input to
Program 1.

Tape Input: Tape from Logical 6 of Program 2 or 3 should be mounted on
Logical 6 for this program.

Card Input:
Fixed Point = Fortran DIP

1E,
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Output: The original matrix, with column indices, and the transpose
matrix, with column indices, are written on Logical Tape 3.
The same information is written in binary on Logical Tape 5
which is saved and used as input to Program 1.

Printout: The matrix elements and the transpose-matrix elements are listed.

Program 5. Temperature-Data-
Processing Program

This program uses the temperature solution to generate the temperature terms of
the integral equations: Equations (11), (13), and (14).

Card Input:
Fixed Point - Fortran DIP
N1, N2, N3, N4, NMAX, MMAX, IB, IC, IE, MA, NA, IBDSNA, ITABCO.
Floating Point — Fortran DIP
X¢UT, SC, R1l, HCK, RA, SA, XNA, YNA.

Tape Input: Tape from Logical 7 of Program 1 for the temperature solution
should be mounted on Logical 6 for this program.

Output: The values for the temperature terms, called the right-hand
sides, of the integral equations in Program 3 will be written on
Liogical Tape 3. They will be designated as RHS 1, RHS 2, and
RHS 3. These values should be punched in Fortran DIP, Floating-
Point format and designated as RTSD 1, RTSD 2, and RTSD 3,
respectively, and used as input in Program 3. Any error-
detection messages will be written on Logical Tape 3. Logical
Tape 6 should be saved and used as input to Program 6,

Program 6, Data-Processing Program

This program processes the temperature and stress~function solutions and deter-
mines the stress components at the interior mesh points.

Card Input:
Fixed Point -~ Fortran DIP
IE, MMAX, NMAX, IPMSN, ITABCO.
Floating Point — Fortran DIP

V, R¢.
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Tape Input: The tape from Logical 7 of Program 1 for the stress problem
should be mounted on Logical 6. The tape from Logical 7 of
Program 1 for the temperature problem should be mounted on
Logical 7 for this program.

Output: The average temperature, TBAR, for the body is written on
Logical Tape 3. Also, the stress distribution and the tempera-
ture distribution for the body are written on Logical Tape 3,
The maximum and minimum stresses are written on Logical
Tape 9, which should be listed.

Input Terminology

Terms Only Applicable to Annular, Single-
Hole, and Seven-Hole Hexagonal Symmetry
Elements When Oriented as in Figures

N1 - Number of boundary points on center-hole boundary (including end points)

N2 - Number of boundary points on diagonal radial-symmetry line (including end
points)

N3 - Number of boundary points on outer free boundary (including end points)

N4 -~ Number of boundary points on off-center hole boundary (including end points);

N4 = 0 for single~-hole problems

R® - Radius of center hole in mesh units
R1 ~ Radius of off-center hole in mesh units
X¢ - X-distance of left-most point of square mesh from center of the center hole

in mesh units

XOUT - X-~distance of right-most point of body from center of central hole in mesh
units

SC - X~-distance of off-center hole center from center of central hole in mesh units
(single~hole case SC = X0 + 2)

General Terms

MMAX -~ Total number of rows in rectangle of the square mesh
NMAX - Total number of columns in rectangle of the square mesh

1E - Total number of equations in the system = total number of the physical mesh

points .
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Total number of physical mesh points for which harmonic or biharmonic
equations are not written

Total number of boundary points
hc
x =P

Poisson's ratio

Correspondence Table

ITABCO -~ This table (IE entries) lists the sequence numbers of the geometrical mesh

points in the sequence corresponding to the physical mesh points. The
geometrical-mesh~point sequence starts at the upper left corner of the
rectangle and continues from left to right row by row until the lower right
corner of the rectangle is reached. The physical-mesh sequence starts at
the physical mesh point with the smallest geometrical sequence number and
proceeds by numbering the physical mesh points according to their order in
the geometrical sequence, The physical mesh points are those used in the
physical problem, i.e., interior and exterior points, The geometrical mesh
includes all the mesh points in the covering rectangle (see Figure 1 in text).

Geometry Tables

IBDSNA

SA

XNA

YNA

NA

This table lists the boundary~point sequence numbers in sequence; hence,
this table is the sequence 1, 2, 3, ..., IC.

This table (IC entries) lists the Ax displacement of each boundary point from
the selected interior expansion point in mesh units.

This table (IC entries) lists the Ay displacement of each boundary point from
the selected interior expansion point in mesh units.

This table (IC entries) lists the x-component of the unit outward normal vec-
tor at each boundary point,

This table (IC entries) lists the y~-component of the unit outward normal vec-
tor at each boundary point,

This table (IC entries) lists the row number of the interior expansion point
for each boundary point.

This table (IC entries) lists the column number of the interior expansion
point for each boundary point,



Equation Tables

IPMSN - This table (IB entries) lists in order the physical-mesh sequence numbers
which are to be considered as exterior mesh points.

ICN - This table (IB entries) lists the number of the equation type to be written for
each exterior point. The ordering in this table corresponds to the IPMSN
table.

IBDSN - This table (IB entries) lists the boundary-point number at which the boundary
equation will be written for each exterior point.

IEXPNS - This table (IB entries) lists the physical-mesh-point sequence number about
which the boundary point is expanded for each exterior point,

Equation Type Numbers

The necessary equations are utilized in the programs according to an equation-
type number. These numbers are as follows:

Temperature Problem

Equation
Type Number Equation
1 VeT = - 1
2 _a_T_ =0
on
oT
3 — - T
arl B
4 T=0
Stress Problem
Equation
Type Number Equation
1 vip =1
2 $=0
o
3 —_— =0
on
2
4 ..a_._q_s.. =0
on
o
5 ——?- =0
dy
6 g?_ =0
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Stress Problem (Continued)

Equation
Type Number Equation
op op s .
7 —— = =L at specified point
o 2
8 = V49 + Ty ds = 0 on center hole
o 2
9 — 3 V“¢0 + T» ds = 0 on off-center hole
on
d 2
10 x = Ny V4 + T | ds = 0 on off-center hole

Example of Problem Setup for Simple Annulus

As an example of the setup for a typical problem, consider the simple annulus of
Figure 1 in the text. The following data are immediately obtained:

Nl= 4
Nz = 4
N3= 5
N4= 0
R$ = 10.0
Rl1= 0
X¢= 8.0
XOUT = 14.0
XC =10.0
MMAX = 8
NMAX = 9
IE = 51
IB = 36
IC =20



InEut Tables

Sequence ICN .
Number IPMSN Temperature Stress IBDSN IEXPNS
1 1 4 4 7 11
2 2 4 4 8 12
3 3 4 4 5 17
4 4 4 4 6 18
5 5 2 3 7 11
6 6 2 3 8 12
7 7 4 6 9 12
8 8 4 6 4 17
9 9 2 3 5 17
10 10 2 3 6 18
11 13 2 5 10 12
12 14 4 6 10 iz
13 15 4 6 3 17
14 16 3 5 3 17
15 21 2 5 11 20
16 22 4 6 11 20
17 23 4 6 2 25
18 24 3 5 2 25
19 29 2 5 12 28
20 30 4 6 12 28
21 31 4 6 1 33
22 32 3 8 1 33
23 38 2 6 13 37
24 39 4 2 13 37
25 40 4 5 20 33
26 41 2 3 19 33
27 42 2 3 18 34
28 43 2 3 17 35
29 44 2 3 16 36
30 45 2 3 15 37
31 46 4 5 14 37
32 47 4 4 19 33
33 48 4 4 18 34
34 49 4 4 17 35
35 50 4 4 16 36
36 51 4 4 15 37
Physical-Mesh Physical-Mesh
Sequence Number ITABCO Sequence Number ITABCO
1 5 11 23
2 6 12 24
3 12 13 25
4 13 14 26
5 14 15 28
6 15 16 29
7 16 17 30
8 20 18 31 .
9 21 19 32
10 22 20 33



Physical-Mesh Physical-Mesh
Sequence Number ITABCO Sequence Number ITABCO
. 21 34 37 52
22 35 38 53
23 37 39 54
24 38 40 56
25 39 41 57
26 40 42 58
27 41 43 59
28 42 44 60
29 43 45 61
30 44 46 62
31 46 47 66
32 47 48 67
33 48 49 68
34 49 50 69
35 50 51 70
36 51

Discussion of Example Problem Setup

It will be apparent that the problem specification given is not unique. However,
this nonuniqueness should present no problems as long as independent equations are
utilized. Several points may be elaborated, however.

Boundary Points 14 and 20 are actually not on the boundary., They are specified
for convenience in order to write for physical Mesh Points 46 and 40 a symmetry con-
dition in the form of equation Type 5 for the stress problem.

The association of IPMSN 32 with IBDSN 1 and IEXPNS 33 for the stress problem
is somewhat ambiguous since ICN 8 is the integral equation. However, the association
is meaningful for the temperature problem and the tables are kept identical in the tem-
perature and stress problems where possible, Actually, for the integral equations the
information given in IBDSN and IEXPNS is not used,

It should also be noted that entirely different tables of ICN must be used for the
temperature and stress problems, The other tables may be different or may be identi~-
cal. However, the ITABCO tables must be identical in the two problems. This, of
course, means that trivial points are introduced in the temperature problem which are
eliminated by temperature equation Type 4 at these points.

The equation Type 5 and 6 in the stress problem are Equations (9c¢) which can re-
place Equations (9b). This follows since by Equations (9c)

3
&

constant

» on free boundaries

3¢

constant
® Sy

1
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These constants must be zero for both free boundaries since at the ends of both free

boundaries a symmetry surface is met where %nq)— = 0 for a different normal direction.

In the case of the seven-hole hexagonal element only _g__@_ = 0 for the off-center hole
» _»

Yy
boundary and, hence, equation Type 7 is also needed here, i.e., . = B; at specified

point on the boundary or %—E— = constant.





