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Abstract 

The design of a variable-temperature probe used to perform strain sensitivity 

measurements on LTS wires and HTS wires and tapes is described. The measurements 

are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be 

measured is wound and soldered on to a helical spring device, which is fixed at one end 

and subjected to a torque at the free end. The design goal is to be able to achieve  ± 0.8 % 

strain in the wire and tape. The probe is designed to carry a current of 2000A. 

 

1.0 Introduction 

The critical current density (Jc) of superconducting wires and tapes used in 

magnets is highly sensitive to axial strain and hence an accurate measurement of this 

strain dependence is critical for the proper design and application of high field magnets. 

Considerable effort has been dedicated in the past to these strain sensitivity studies and 

the greatest challenge has been obtaining a reliable and accurate measurement that calls 

for long samples in order to have considerable distance between the voltage taps whilst 

being limited in space by the size of the magnet bore. Many methods and techniques have 

been adapted and in general the studies fall into one of the two categories: monotonic 

axial loading technique or bending spring technique as claimed by Taylor et al. [1]. The 

axial loading technique is simpler and straight-forward and is very similar in principle to 

a tensile test measurement wherein a short sample is loaded axially by gripping and 

pulling at the ends. The grips also serve as the current leads measuring the critical current 

density as a function of axial strain. The main disadvantage of this technique is the length 

of the sample; which is usually short (~ 40 mm) [1] and hence the distance between the 

voltage taps are not sufficient for reliable and accurate measurements and consequently 

limiting the sensitivity of measurements [1]. Also, the axial loading technique typically 

allows only tensile measurements to be performed. The bending spring on the other hand 

helps overcome the constraint in the directionality of measurement and allows both 

tensile and compressive strains to be applied on the sample. The U-spring [2-4], Pacman 

[5] and Walters’s spring [1, 6-8] are some of the devices which use the concept of 

bending of a curved beam on which the sample is mounted. The U-spring has sample 

lengths approximately equal to the size of the magnet bores and the Pacman samples are 
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approximately the circumference of the bore (max length ~120 mm). The Walters’ spring 

device, originally proposed by C.R. Walters’ et al., is a helical spring with either a T-

shaped or rectangular cross section. The spring is fixed at one end and subjected to a 

torque at the free end which induces circumferential strain in the wire or tape mounted on 

the outside of the spring. The Walters’s spring can handle long samples ~ 800 mm [1, 6, 

7, 11], thus enabling reliable measurements to be performed. However, the spring also 

poses some constraints due to the material properties. In order to perform accurate high 

strain measurements the spring material needs to remain elastic in the measuring regime 

and thus a material which is highly elastic at high strains and low temperatures (4.2 K) is 

required. The material used for these springs are usually Ti-6Al-4V and CuBe (Beryllium 

Copper). The Ti-6Al-4V material exhibits higher elasticity ~ 1.3 % [1, 6, 8] compared to 

CuBe, but has poor solderability and thus requires some plating [1, 6, 9] prior to attaching 

the sample. CuBe does not pose problems for soldering but has lower elasticity 0.7 to 

0.8 % [7-8]. The soldering of the sample to the Walters’s spring device also induces 

thermal strains due to the difference in the co-efficient of thermal contraction in the 

different materials. As measured by [1] this causes only an additional strain to the 

intrinsic strain of the spring and hence can be accounted for. Also, the spring exhibits 

strain gradients across the cross section and along the length the effects of which can be 

minimized by optimizing the shape of the cross section and size of the spring. From the 

above literature review and investigation into a reliable strain measuring device we have 

designed a helical spring based on the methodology described by Walters’s and adapted 

by Taylor et al. The spring device described here has a T-shaped cross section and is 

capable of handling both wire geometry and tape geometry. The choice and design of this 

spring device also allows us to use our existing setup used for variable temperature 

studies of wires and tapes. The probe is essentially made of two concentric OFHC copper 

tubes which act as current and torque (load) carriers. The sample to be measured is 

mounted on the spring; the bottom of the spring is fixed and attached to the outer current 

tube which carries the current to the sample. The top of the spring is attached to the inner 

tube which carries the current from the sample. The torque is generated via a manual 

worm-gear setup that can handle a max.  torque ~ 60 N.m. and transmitted to the sample 

through the inner tube and spring assembly. The top of the outer tube is bolted on to the 



  TD-10-012 

 

dewar and hence is not free to rotate. The design discussed in this paper utilizes the major 

parts of the existing probe and thus enabling reliable cost efficient studies. The 

measurements will be performed on both Ti-6Al-4V and CuBe spring materials.  

 

2.0 Spring Design 

2.1 Theory: 

The working principle of the spring is similar to the bending of a curved beam. 

The spring can be described as a beam with a given cross-section wound on a cylinder 

with a specific pitch to obtain a helical pattern and thus each turn of the spring represents 

a curved section of the beam [6] as shown in the schematic figure 1. The torque applied at 

the end of the spring depending on its direction induces circumferential tensile strain on 

the outer radius of the spring above the neutral axis of the section and circumferential 

compressive strains below the neutral axis, the strain states are reversed with the direction 

of the torque. The strains can be analytically computed for a given section using the 

formula for strains in a curved beam. 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 1. Schematic of loading of the spring section 

 

As described in [6] the circumferential strain εθθ in a helical bending spring as a function 

of the radial distance r is given as: 

)/1( rrK n−=θθε                                                                                                               (1) 

SC wire or tape 

Section of spring 

(curved beam) 

Moment direction 

Neutral axis 
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where K is a factor that depends on applied angular displacement θ , the number of turns 

of the spring N and the pitch angle α: 

K = (θ / 2 π N) cos α                (2) 

The location of the neutral rn can be calculated by using the condition that the net force 

perpendicular to the cross-section of the spring is zero [6]: 

∫ = 0)()()( drrrErw θθε                 (3) 

where w is the width of the cross-section along the longitudinal axis of the spring which 

varies along the radius and E is the young’s modulus as a function of radius to account 

for spring material and wire material. Equation (3) can be solved analytically to locate the 

neutral axis and used in conjunction with eqn. (1) to obtain the strain in the section of the 

spring.  

2.2 Design Constraints: 

The first step towards designing the spring was to address the constraints imposed 

by our existing system and the performance goals. The two main types of spring cross 

sections under study [1, 6-7] have been rectangular and T-shape. Typically, the 

rectangular spring has been used for tapes and the T-shape for wires. Studies [6] have 

shown that the T-shape springs have greater torsional rigidity compared to the rectangular 

cross section and also the sinusoidal strain variations along the length of the sample is 

smaller in the T-shape. Also, a spring with an integer number of turns exhibits smaller 

strain oscillations and as the number of turns increase the spring becomes less rigid and 

its ability to withstand higher strains decreases. Thus a T-shape cross section with 4 turns 

was chosen as the design baseline. The outside diameter of the spring was constrained by 

the size of the current carrying tubes and the bore size. As the spring is attached to the 

inner tube which is concentrically placed within the outer tube, the inner diameter 1.62” 

of the outer tube was the limit. Accounting for minimal clearance for helium flow and the 

voltage tap wires, the outside diameter of the spring was chosen to be 1.25”. 
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2.3 Shape Optimization: 

The design and optimization of the spring cross section is critical to the design of 

the spring as it dictates the strain values to which the spring can be subjected, determines 

the corresponding angular displacement and the torque required to achieve it. An optimal 

cross section minimizes the ratio of the strain at the inner surface of the spring to the 

strain at the outer surface of the spring and also reduces the strain gradient across the wire 

or tape to be measured. The optimization procedure described here was originally 

proposed by Walters’ [6] and later adapted by Taylor et al. [1], the detailed calculations 

are shown in appendix 1. The steps involved are as follows: 

a) Maximize the outer diameter of the spring depending on the space available in the 

cryostat. In our case as mentioned in the design constraints the outer diameter of 

the spring was limited to 1.25” or 31.75 mm. 

b) Maximize the width (w2) at the inside of the section by choosing an appropriate 

pitch which is about ¼ of the outer diameter of the spring. The width at the inside 

is then ~ 0.8 * (pitch). In our case the pitch is 8 mm and the width is 7 mm. 

c) Minimize the width (w1) at the outside of the spring. For wires a width of about 

twice the diameter is chosen, here we chose a width of 5.5 mm to accommodate 

both 1 mm diameter wires and ~ 4.7 mm wide tapes. 

d) Assume a value for the inner radius (r2) and find the step position, i.e. where the 

45°  chamfer begins, such as to minimize the neutral radius and the strain ratio. 

This is done by choosing discrete values of r2 and the step position and 

calculating the neutral radius using eqn. (3) and the strains from eqn. (1). 

The procedure allows us to approximately determine the angular displacement of the 

spring for a given strain ratio and also gives the strain values at the inside and outside of 

the spring. In our design, the strain ratio is slightly greater than 1 (1.133) and thus the 

strain at the inside is slightly higher than the strain at the outside, although we are still 

able to achieve the design goal of ± 0.8 % strain at the outside. The strains here do not 

take into account the thermal contraction that would occur during measurements at 4.2 K. 

The cross section of the spring is shown in figure 2.  
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The torque required to achieve a certain strain at the outside of the spring can be 

calculated from the equations of stresses in a curved beam subjected to bending. In our 

design the strain at the outside is required to be ± 0.8 % and thus the torque is given by: 

o

oo

C

reA
T

...σ
=                   (4) 

Where σo is the stress which is a product of the strain and the young’s modulus (E) of the 

material,  

A is the area of the cross section in mm
2
,  

e = rc –rn, is the eccentricity in mm, rc is the centroid, rn is the neutral radius, 

Co = ro – rn, distance from neutral axis to outer surface in mm, ro is the outer radius. 

The detailed torque calculations are shown in appendix 1. 

 

                                                   

 

 

 

 

 

 

 

Figure 2 Schematic of the spring cross section with the dimensions 

Width w1 =5.5 mm 
Width w2 =7 mm 

Radius r2 =11 mm 

Step position =12.5 mm 

Outer radius =15.875 mm 

45°°°° 
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2.4 Analytical Model: 

The problem of a helical spring fixed at one end and subjected to a torque or 

twisting moment at the other end can be solved analytically as described in [10]. This 

approach helps to determine the rotation of the spring about its vertical axis, i.e. angular 

displacement of the free end with respect to the fixed end, the twisting of the spring 

segment about the axis of the spring wire and also the change in length that occurs as the 

spring is twisted for a given torque value. The solution is more accurate for springs of 

circular cross section and for springs of non-circular cross sections an approximate 

solution can be obtained by the following the assumptions described in [10]. The detailed 

calculations are shown in appendix 2. Figure 3 gives the schematic of the loading of a 

segment of the spring, .i.e. the torque applied and its components.  

 

 

Figure 3. Segment of spring showing the moment directions [10]. 

 

The total rotation of the free end of the spring about axis OY can be obtained by 

analyzing the segment shown above and is given by: 











+=

EI

CosM

GI

SinM
l b

p

t θθ
φ                (4) 
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The total rotation about the axis OX is given by: 











−=

EI

SinM

GI

CosM
l b

p

t θθ
ω                 (5) 

and hence the total change in length of the spring is given by: 

ωδ
2

D
=                   (6) 

where the length of the coil is given as, θπ secDnl =             (7) 

The torque M is resolved into components 

θMCosM b =  and θMSinM t = , i.e. bending and twisting components. 

G =0.4 E, which is the young’s modulus of the material. 

I and Ip are the area and polar moment of inertia of the cross section and  θ is the helix 

angle of the spring and D the diameter of the coil. 

The angular displacement for a given torque value obtained here is comparable to 

that determined in the optimization procedure. Also, the extra information on the total 

change in length can also be obtained from this analytical solution which is critical for 

the design of the spring and the probe. The total length of the spring has been designed to 

be 64.25 mm to accommodate the 4 turns (as shown in fig. 4) and also to be able to 

position the spring across the magnetic center line in the cryostat during the test. 

                        

Figure 4. (a) 3D Model of the spring (b) Section view of the spring 

64.25 mm 

 (a)  (b) 
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2.5 Finite Element Model: 

 A finite element model of the spring was developed to verify the analytical 

solution and also to better understand the complexities involved when the spring is 

subjected to torque loading at cryogenic temperatures. The analysis was performed on a 

3D model of the 4 turns of the spring, shown in fig 5 using the commercial software 

ANSYS. The model was meshed with 15665 solid brick elements and the load was 

applied by constraining the bottom face of the spring and applying an angular 

displacement at the top face of the spring. The analysis was performed for two different 

spring materials, Ti-6Al-4V and Beryllium Copper (alloy 25), the material properties of 

which are shown in table 1. 

 

Figure 5 Finite element model of the helical spring showing the loading scheme 

 

Fix bottom face 

Apply 

Angular 

Displacement 
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Property Ti-6Al-4V Beryllium Copper (alloy 25) 

293 K 4.2 K 293 K 4.2 K 

Young’s Modulus (GPa) 110 130 117.9 132.4 

Yield Strength (MPa) 904.6 1710 1189.65 1390.5 

Tensile Strength (MPa) 965.3 1771 1366.81 1526.5 

Table 1. Material properties of Ti-6Al-4V and Beryllium Copper [12, 13]. 

 

 The analysis was carried out in 2 load steps; the first step involves a cool 

down of the spring from 293 K to 4.2 K, the strain due to thermal contraction was found 

to be small in the order of 1e-9 to 1e-7 and hence can be ignored for practical purposes. 

However, in reality the sample will experience some thermal strain during the cool down 

as it would be soldered on the spring which can be deduced by attaching strain gages on 

the sample as a part of initial calibration studies. Nevertheless, it has been shown that 

these thermal strains do not alter the strain state of the spring [1]. 

Tensile Strain on Outer Surface

0.00
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Figure 6. Circumferential strain for angular displacements of 10°, 20° and 70° 

In the second load step, an angular displacement was applied to the top face of the 

spring to induce tensile or compressive stresses at the outer face of the spring. The 

70°°°°  

20°°°°  

10°°°°  
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simulation uses the nonlinear solution approximation due to the large deflections 

involved. Figure 6 shows the plot of the circumferential strain for given angular 

displacements applied in the counter clockwise direction inducing tensile strains at the 

outer face. The strains are measured along the mid line of the outer face where the wire 

would contact the spring. 

The strains exhibit a sinusoidal variation along the helical path, the magnitude of 

which increases with the applied angular displacements. Studies [1] have shown that 

these oscillations occur due to the twisting of the spring segments along their self-axes 

when subjected to torsion and can be minimized by choosing a rigid cross section, such 

as a T-shaped section and also with integer number of turns. Ideally, the circumferential 

strain is independent of the material of the spring although in reality some variation 

should be expected due to the difference in the thermal expansion coefficient of materials.  

 

 

Figure 7. Von-mises stress of Ti-6Al-4V spring at 70° angular displacement 
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Figure 8. Von-mises stress of CuBe spring at 70° angular displacement 

 

Figures 7 and 8 show the von-mises stresses in the Ti-6Al-4V and Beryllium 

Copper (CuBe) spring for an applied angular displacement of 70° ccw which induces 

0.8 % tensile strain at the outer surface of the spring. The Ti-6Al-4V spring is able to 

withstand the strain without any yielding although the CuBe spring experiences some 

yielding and in order to operate in the elastic regime, the loading should be reduced. The 

CuBe spring can withstand ~ 0.75% strain without yielding. Table 2 shows the loading 

chart and the correlation between applied angular displacement and circumferential strain. 

The FEA was used to verify few cases and in general the spring experiences 

0.012 % of circumferential strain per degree of rotation. The FEA results (strains) are in 

good agreement with the analytical solution for small angular rotation and the variation in 

about 4% for the max. angular rotation of 70°. The analytical solution is based on pure 

bending of a curved beam and does not take into account the lateral compression; a strain 
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gage calibration will help determine the strains experienced by the sample more 

accurately.  

Angular Displacement 

(Degrees) 

Circumferential Strain at Outer Surface of Spring (%) 

Analytical 

)/1( rrK n−=θθε  

FEA 

(Average Strain along 

midline) 

0 0.00  

4 0.05  

8 0.09  

10 0.12 0.12 

12 0.14  

16 0.19  

20 0.24 0.23 

24 0.28  

28 0.33  

32 0.38  

36 0.43  

40 0.47  

44 0.52  

48 0.57  

52 0.62  

56 0.66  

60 0.71  

64 0.76  

68 0.81  

70 0.83 0.81 

Table 2. Angular displacements and corresponding circumferential strains: analytical and 

FEA 

 

3.0 Design of the Probe 

The probe mainly constitutes an assembly of two concentric tubes; the outer tube 

and the inner tube, made of OFHC copper. The tubes serve as current carriers and also 

provide the structural basis for the transmission of torque. The outer diameter of the 

assembly is 1.75” (44.45 mm) and is able to handle a current of 2000 A at 4.2 K. The 
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schematic of the probe assembly is shown in figure 9. The strain applied to the spring is 

based on the methodology used by Walters’ et al. and Cheggour et al.  

 

Figure 9. Schematic of the probe setup (Walters’ spring shown here courtesy of NIST). 

 

3.1 Strain Application Procedure: 

The strain to be applied on the test sample originates in the form of a torque 

generated by a worm-gear assembly. The worm-gear pair is capable of handling a 

maximum torque of ~ 60 N. m. An aluminum bronze gear wheel with 50 teeth was 

Maximum twist applied ±±±± 70°°°° 

Inner Tube 

Torque transfer dowel pin 

Walters’ spring 

Fixed end 

Constant torque 

transmission (ideally) 

Outer Tube 

Current out 

Current in 
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chosen to allow for fine torque settings. The gear wheel is mounted on top of the inner 

tube through dowel pins to transmit the torque. A G10 block provides electrical insulation 

between the tube and the gear as shown in figure 10. 

  

 

 

 

 

               

                 

Figure 10. 3D model of inner tube assembly 
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Figure 10 shows the assembly in the zero torque position with a gap ‘dl’ between 

the G10 block and the gear. This gap helps accommodate the change in length 

experienced by the spring during strain application. The analytical solution predicts a 

maximum change in length of ± 1 mm, while the FEA gives a maximum of  ± 0.75 mm, 

the design here allows a maximum of ± 4 mm. The top of the spring is connected to the 

inner tube through dowel pins and the bottom of the spring is bolted to a copper thimble. 

The thimble helps to transfer the current from the outer tube (not shown here) that 

envelopes the inner tube to the test sample and also helps to fix the bottom of the spring 

relative to its top by bolting it to the outer tube. The flex cables are connected to the 

current flags welded to the inner tube. 

 The gear set is enclosed within a gear box which is surrounded by a vacuum 

chamber held at a low-medium vacuum level of 1e-4 torr. This helps to protect the torque 

generation and transmission system from any moisture and dirt that might cause 

operational difficulties shown in fig. 11. 

                   

                            

(a) 

  

  

                            (b)  

Figure 11. (a) Gear box assembly   (b) Vacuum chamber around the gear box 

3.2 Strain Measurement: 

 A measurement setup (shown in fig. 12) has been designed similar to that 

described in [6, 7] to enable the deduction of the strain applied to the sample. The 

measurement assembly consists of a concentric tube and rod enclosed within the inner 
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tube assembly. The tube called the ‘protractor shaft’ has an outer diameter of 12 mm and 

is made of aluminum.  

 

                                     

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

              

 

Figure 12. Setup to measure the angular displacement of the spring 

  

Angle Measurement 

Assembly 
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 A 2 piece G10 block is bolted to the bottom of the shaft and a plate with a 

protractor scale on it is mounted at the top of the shaft just as the shaft clears the gear box. 

The G10 block has slots which fit into the keys machined at the top of the spring and thus 

electrically insulates the shaft from the spring. Concentric and contained within the 

protractor shaft is a G10 rod called the ‘pointer shaft’. The bottom of the pointer shaft is 

bolted to the copper thimble and at the top a pointer needle is pinned into it. When the 

torque is applied the protractor scale rotates relative to the pointer and the difference 

between the two gives the angular displacement of the top of the spring.  The angle read 

from the scale can then be used to find the strain applied to the spring using the 

relationship described in section 2.1, equations (1) and (2). 

3.3 Probe Assembly: 

 The strain measurement setup is contained within the inner tube and spring 

assembly which is enveloped by the outer tube assembly. The top of the outer tube is 

bolted to the top plate of the cryostat which constrains the rotation and the bottom is 

connected to an extension cup. The extension cup is made of OFHC copper and bolts to 

the outer tube at the top and to the current and torque transfer thimble and the spring at 

the bottom. The function of this cup is to transfer the current from the outer tube to the 

sample and also to transmit the torque from the spring to the outer tube. 

 The gear box and the vacuum chamber are supported by struts which bolt to the 

top plate of the cryostat. The top plate of the vacuum chamber is made of transparent 

polycarbonate (lexan) to aid the reading of the angular displacement. The current cables 

capable of handling 2000 A are connected to the outer and inner tubes via the flags 

welded to them. The inner tube flags can be rotated ± 77° without interference. Insulating 

G10 tubes with o-rings provide the necessary electrical insulation and helium seals 

between the outer and inner tube and also between inner and the protractor shaft. The full 

assembly of the probe is shown in fig. 13. 
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Figure 13. Full assembly of probe 
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4.0 Resistance Calculations: 

 The probe assembly has many interconnections and in order to ensure that the 

current is being fully transmitted to and from the sample without much loss the gap or 

junction resistances at the interconnections have to be low enough. Studies [14] were 

conducted in the past on similar probes to correlate current and contact resistance and it 

has been shown that a resistance of 1 µΩ or lower is needed for a current of 2000 A to be 

transported at liquid helium temperatures through the sample. The contact and splice 

resistances for the different junctions have been calculated using the methodology 

described in [14].  

4.1 Contact Resistance: 

 Contact resistance between two bodies is due to two factors, constriction 

resistance and contaminant resistance. The constriction resistance is due to the existence 

of surface asperities (surface roughness) and thus the true load bearing area Ab would be 

much less than the apparent contact area Aa that would exist in the absence of asperities. 

The force by which these bodies are held together plays an important role by flattening 

the asperities (humps), increasing the contact area and thus reducing the constriction 

resistance. The constriction resistances at the outer current tube and the extension cup 

interface (figure 14, (a)) and also at the base, i.e. extension cup and copper thimble 

(figure 14, (b)) interface were analytically determined assuming no contamination at the 

interface.   

 The interfaces are held together by screws and we assume a tightening torque of 1 

N.m. per screw. For a standard steel nut [15] assuming a friction coefficient of 0.15 the 

force transmitted to the interface by the screw can be given by: 

D

T
F

2.0
=                                                                                                                           (8) 

where, 

T – Tightening torque 

D – Nominal thread diameter of the screw/bolt 

Since the material of the contacting bodies is the same there is no relative thermal 

contraction between them, the small contribution from the screw can be neglected. 
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According to [14] the asperities can be assumed to be humps of spherical segments with 

an average diameter, d of 4 microns and a radius of curvature, r of 0.4 micron. 

 

                                                        

 (a)               (b) 

Figure 14. Interfaces contributing to resistance of current flow 

 

The humps cannot lie closer than one per area of d
2
 and thus the average pressure on the 

apparent contact area is given by: 

Aa

F
Pa =                   (9) 

The average load per hump is given by: 

Pi = Pa * d2                (10) 

Outer Current Tube 

Extension Current and 

Torque Transfer Cup 

Current and Torque 

Transfer Thimble 

Contact Region (1) 

Contact Region (2) 
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Considering a purely elastic deformation for a ball contacting a semi-infinite plane body 

of the same material the Poisson’s ratio is 0.3, which is valid for iron, nickel and copper. 

The diameter of a single spot is given by: 

r
E

Pi
a .11.1 3=                 (11) 

where, E – Elastic modulus of the material, copper in our case. 

The average pressure in the load bearing area is given by: 

a

dxxa
a

Pi

p

a

∫ −

= 0

22

3
..

.

.5.1

π
              (12) 

The true load bearing area can be determined as following: 

ab A
P

Pa
A =                 (13) 

Assuming that the humps are far enough from each other as to contribute individually to 

the constriction resistance, the individual conductance can be summed. The total 

constriction resistance can thus be calculated as below: 

bA
R

.4

ρ
=                 (14) 

where, ρ is the residual resistivity of the material. The constriction resistances determined 

using equation (14) for the different interfaces was found to be less than 1 µΩ. The 

detailed calculations for the contact regions (1) and (2) shown in figure 14 are presented 

in appendix 3. 

4.2 Splice Resistance: 

 The superconductor sample under investigation experiences a resistance to the 

current flow at the input and output, i.e. where the current is supplied and where it is 

drawn from. This resistance contribution is from the joint resistance of the solder between 

the sample and the copper leads and can be investigated and determined by considering a 

section or splice model as described in [16]. The loss will be minimized by having more 

turns soldered and it is recommended to maintain this resistance value in the nano-ohm 

levels.  
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Figure 15. Image showing the splice interface regions. 

 

 In our case splice resistances exist at the solder joint between the current and 

torque transfer thimble and the sample at the bottom of the spring and also between the 

extension piece and sample at the top of the spring as shown in figure 15. Two turns of 

the sample will be soldered at each end and for simplicity of calculations the length of the 

joint is considered to be homogenous and is equal to twice the diameter of the sample. As 

the helix angle is very small (figure 15 shows a larger pitch) the sample can be assumed 

to be perpendicular to the sample axis. 

 

Figure 16. Model for the estimation of joint resistance [14]. 

Extension Piece 

Current and Torque 

Transfer Thimble 

 

Superconductor Sample 

 

Splice Interface (2) 

Splice Interface (1) 
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Considering the current flow direction as shown in figure 16 the junction resistance can 

be calculated as follows: 

The resistance per unit length of the copper is given by: 

CuCu

Cu

td

L
R

..

.

π
ρ

=                 (15) 

The contact resistance across the solder, per unit length in the x-direction is given by: 

Ld

t
r

Sr

SrSr

..

.

π
ρ

=                 (16) 

where,  

ρCu and ρSr are the resistivities, 

tCu and tSr are the thicknesses,  

dCu and dSr are the diameters of copper and solder, respectively and L is the length and is 

considered as unity in the calculations. 

Thus the voltage of copper relative to the superconductor is given by: 

dx

xdI
rxV

)(
)( =                 (17) 

and 

RxI
dx

xdV
).(

)(
=                 (18) 

The voltage is taken to be uniform at V=0. Solving equations (17) and (18) for zero and 

maximum current, we get: 

LL

xx

t
ee

ee
rRIxV αα

αα

−

−

−
+

= 2/1).()(             (19) 

where α = (R/r)1/2 and It is the maximum current, 2000 A in our case. 

The voltage at L can be obtained from equation (19) by substituting L = 2 mm, length for 

2 turns and consequently the junction resistance is obtained as follows: 

t

L
j

I

V
R =                 (20) 

The detailed calculations are shown in appendix 3 and the junction resistances at the two 

interfaces were found to be in the order of nano-ohms. 
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5.0 Current Lead Optimization 

 The outer and inner tubes or leads carry the current from an external DC power 

source to and from the test sample and at any time are expected to carry a current of 2000 

A. The portion of the leads outside the cryostat that is exposed to the outer environment 

carries the heat from the atmosphere into the cryostat resulting in the evaporation of the 

liquid helium. In order to minimize the rate of evaporation of helium whilst keeping the 

leads sufficiently cool the thermal design of the leads was considered. 

5.1 Thermal Model: 

 Heat transfer occurs due to conduction of heat from the warm end (top surface) of 

the leads to the cold end (portion immersed in helium), due to evaporation of liquid 

helium and due to the convection between the helium vapor and the current lead surface. 

There is also heat generation from within the system due to the joule’s heating caused by 

the flow of current. This heat generation term depends on the temperature dependent 

resistivity of the lead material. Neglecting the effects of radiation, the time dependent 

behavior of the system can be described by the following PDEs [14]. 

 

t

T
TTCT

A

hp

A

tIT

x

T
Tk

x
p ∂

∂
=−−+





∂
∂

∂
∂

)()()(
)()(

)(
2

2

δϑ
ρ

          (21) 

t
C

xA

Cm
T

A

hp
p

p

∂
∂

=
∂
∂

−−
ϑ

ϑδϑ
ϑϑ

ϑ νν

ν

ν

ν

)()(
)(

)(
&

           (22) 

Where, 

T = Cu temperature, [K] 

ϑ = He vapor temperature, [K] 

p = cooled perimeter, [m] 

A= Cu cross section, [m
2
] 

Aν = He vapor cross section, [m
2
] 

I = current, [A] 

K(T) = Cu thermal conductivity, [W/ cm K] 

ρ(T) = Cu electrical resistivity, [Ω. Cm] 

Cp
ν
 = He vapor specific heat, [J/g K] 

Cp = Cu specific heat, [J/g K] 
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δ(T) = Cu density, [g/cm
3
] 

δ
ν
(T) = He vapor density, [g/cm

3
] 

h = heat transfer coefficient, [W/cm
2
 K] 

m = He vapor mass flow rate, [g/s] 

For steady state conditions, i.e. constant current, the equations become: 

0)(
)()(

)(
2

2

=−−+





∂
∂

∂
∂

ϑ
ρ

T
A

hp

A

tIT

x

T
Tk

x
                 (23) 

0
)(

)( =
∂
∂

−−
xA

Cm
T

A

hp p ϑϑ
ϑ

ν

ν

ν

&
                  (24) 

The heat flux into the liquid He bath from the leads is given by: 

0
2.4

=
∑ ∂

∂
=

x
cu

x

T
kAQ      in W              (25) 

The rate of evaporation of helium is given by: 

h

Q

dt

dm
m

∆
==&                 in g/s            (26) 

where ∆h is the latent heat of evaporation of helium. 

5.2 Lock’s Optimization: 

 The geometry of the current lead plays an important role in the thermal efficiency 

of the system. A smaller lead cross section reduces the conduction of heat into the system 

but also increases the resistance and thereby the joule’s heat generation and the inverse 

effects are true for larger cross sections. For a given value of current through the lead, 

there exists an optimal length to cross section ratio which will minimize the heat leak into 

the system and also reduce the boil-off of liquid helium. 

 J. M. Lock [17] proposed an optimization procedure for copper leads based on the 

general solution of the problem of a current lead in good thermal exchange with an 

evaporating cryogenic fluid. For steady state flow, all the heat entering or created in an 

element ‘dx’ of the lead (shown in figure 17) must be transferred to the gas and thus the 

heat flow equation becomes: 

dTnCdx
xA

I
dQ p=+

)(

2ρ
              (27) 

where,  
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n – moles per second of the evaporating gas 

A(x) – cross section area of the lead 

ρ – resistivity of the copper lead 

Cp – molar specific heat of the gas at constant pressure 

Q – heat flow by conduction down the conductor 

 

 

 

 

 

 

 

Figure 17. Schematic model of an elemental length of lead showing the direction of heat 

flow [17]. 

 

The heat flow due to conduction is given by: 

dx

dT
xAQ )(κ=                   (28) 

Using eqn. (28) and assuming that the heat flow down the conductor is the only source of 

evaporation of the cryogenic fluid, equation (27) can be solved. 

Lock’s results give an optimized lead geometry given the residual resistivity of the 

material (shown in figure 18). Since the residual resistivity is a parameter that can vary 

largely from sample to sample, a good knowledge of the lead material properties is 

necessary for the design. We chose a commonly available copper lead with a RRR = 100 

Conduction of Heat 

down the copper lead 

Current Flow in the 

leads 
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(i.e. the residual resistivity ratio is 100) for which the residual resistivity is 1.69 e-9 Ω cm. 

The warm end of the current lead is considered to be at 300 K. 

 

Figure 18. Result from Lock’s analysis showing relationship between lead geometry and 

residual resistivity. 

 

From the above plot, given the resistivity and warm end temperature we obtain the 

optimal geometry parameter: 
cm

A
e

A

lI

opt

53.3=







 

The length of the lead cooled by helium vapor is l = 100 cm, the current is 2000 A and 

thus the optimal cross section area is Aopt = 0.606 cm
2
. Table 3 gives the dimensions of 

the current lead and their cross sectional areas and as can be seen the actual cross 

sectional areas are much larger than the optimal section required. To have efficient 

cooling holes were drilled on the tubes to reduce the cross sectional areas. A simple 

geometrical consideration of a circular annulus was considered to determine the number 
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and size of the holes that could be cut from the tube. From prior experience [14] it was 

found that the distance between adjacent holes should be at least twice their diameter and 

the ratio of the volumes of the leads with and without the holes should be close to unity. 

The detailed calculations are presented in Appendix 4. 

 

Geometrical Parameter Outer Current Lead Inner Current Lead 

Outer Diameter (cm) 4.445 3.175 

Inner Diameter (cm) 4.115 2.54 

Cross Sectional Area (cm
2
) 2.219 2.849 

Table 3. Geometry of current leads 

5.3 LEADX Simulation: 

LEADX is a program [18] that helps simulate the behavior of current leads. It is 

an iterative solver, which solves equations (23) and (24) for either copper or brass 

material. The program begins with an initial assumption for the mass flow rate of the 

cooling gas and given geometry to iteratively arrive at the accurate solution. The 

following are the parameters that were used in the simulation. 

 

M-flow, mass flow rate of cooling gas 0.0008 Kg/sec 

Current, Total current in the leads 4000 amp 

Length, Length of gas cooled lead 1 m 

Perimeter, cooling surface of the lead/ unit length 0.449 m 

C-area, conductor cross sectional area 0.0005 m
2
 

RRR, residual resistivity ratio of lead 100   

Iteration, number of iterations 300   

Effect dia., effective diameter of gas path 0.042 m 

Warm end temp, temp. at warm end of lead 300 K 

Cold end temp, temp. at cold end of lead 4.2 K 

 

Figure 19 shows the plot of the temperature profile along the lead obtained from this 

simulation. The profile shows a smooth transition of a polynomial curve from the cold 

end to the warm end without any jumps or discontinuities which confirms that the design 

will not lead to any instabilities or thermal run off in the system. 
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Figure 19. Temperature profile in the lead for a warm end temperature of 300 K using 

LEADX simulation. 

 

6.0 Structural Analysis 

The major mechanical load in the system is the torsion applied to the test sample. 

This torque is transmitted from the gear box to the sample via the inner current lead and 

eventually to the outer current lead. The inner lead is not constrained and is free of 

stresses, while the outer current lead and all the torque transmitting dowel pins and 

screws will experience shear stresses due to this torsion.  

6.1 Torsion of Outer Tube: 

The outer tube is subjected to a torque at the bottom while the top end is fixed. 

This loading scenario is that of a hollow cylinder fixed at one end and subjected to a 

torque at the other end, only the problem is complicated due to the holes that will be 

drilled in the tube for thermal design. Nonetheless the calculations were performed by 

reducing the cross section by 50% (a very conservative assumption) and it was found that 

the stresses are within safe operating limits. The detailed calculations are presented in 
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appendix 5. A finite element analysis was also performed to verify the analytical solution. 

Figure 20 shows the plot of the von mises stresses in the tube. The stresses in the body of 

the tube are around 14 MPa as predicted from the analytical calculations. There are stress 

concentrations near the holes as expected although the values lie well below the shear 

yield limit for copper of 88 MPa. 

 

 

 

Figure 20. Plot of von-mises stresses in the outer current tube 
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6.2 Shear Stresses in Pins/Bolts: 

The dowel pins and bolts that transfer the torque are assumed to be under pure 

torsion and thus under direct shear stress. The shear stresses are found by the simply 

dividing the force exerted by the cross sectional area of the pin or bolt. In the case of 

bolts the diameter corresponding to the stress area is used. The shear yield of the material 

is assumed to be 40% of the tensile yield strength. The calculations show that all the pins 

and fasteners are being operated within the safe loading limits. The detailed calculations 

are shown in appendix 5. 

 

7.0 Summary 

A probe to perform strain sensitivity studies on LTS wires and HTS wires and 

tapes was designed. The probe uses a modified version of the Walter’s spring device for 

the mounting of the sample and application of strain. The helical spring was designed 

based on the methodology described by Walters’ et al. and Taylor et al. and is able to 

handle both wires and tapes. The measurements will be performed on two different spring 

materials: Ti-6Al-4V and Beryllium copper (CuBe). The design allows the Ti-6Al-4V 

spring to reach strain levels of ± 0.8 % and the CuBe to reach ± 0.7 %. Finite element 

analysis of the spring was performed and the results are promising, the strains are within 

5% of the analytical solution and a sinusoidal oscillation of the strains along the helix 

was observed similar to that described by Taylor et al. The spring has 4 turns and total 

height of 64.25 mm. 

The probe was designed to fit an existing setup used to perform critical current 

density studies. The sample to be tested is mounted on the spring and the strain is applied 

using a hand operated worm gear setup. The angular displacement of the spring is 

measured by means of a protractor and pointer as described in section 3. The gear box is 

contained within a vacuum chamber to protect it from moisture and dirt. The worm gear 

can handle a torque of ~ 60 N. m. The design allows for the change in length of the 

spring that occurs as the spring is strained by means of dowel pins. 

The current leads which are also the torque transferring members are designed 

and optimized using the methodology described by J. M. Lock for copper leads in a 

cryostat. The leads are capable of handling a current of 2000 A. The interconnections and 
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joints in the assembly were designed to have minimum contact resistance to allow 

efficient flow of current.  

Finally the mechanical soundness of the system was also verified by performing 

calculations to ascertain that the stresses in the structural members and pins and fasteners 

were within the safe operating limits. 
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Optimization Procedure for Helical Spring Cross Section 

Proposed by Walters' et al. [6], adapted by Taylor et al. [1] 

Step 1. Maximize the outer diameter of the spring: 

Outer diameter, mm D 31.75:=  

Outer radius, mm r1 15.875:=  

Step 2. Maximize the width of the section inside: 

Pitch of the spring between turns is about 1/4 of  
outer diameter, mm 

p 8:=  

Width inside is 0.8 times pitch, mm w2 7:=  

Step 3. Minimize the width of the section outside: 

Width is chosen to accommodate wires of dia 1mm and 
tapes of max. width 4.7 mm 

w1 5.5:=  

Step 4. Assume r2 and step position to minimize rn and strain ratio: 

Inner radius of the spring, mm r2 11:=  

Step position of the spring, mm sp 12.5:=  

To find the optimal neutral radius (rn) : 

Neutral radius can be found by evaluating the integral shown below: 

∫ = 0)()()( drrrErw θθε
 

The integral is evaluated over the 3 regions of the cross section 
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Integral limits for the different sections 

11

12.5

r7 1
rn

r
−





⋅
⌠


⌡

d rn 7 ln 11( )⋅ 17.680100510157788078−( )⋅ 10.5+→  

i.e. 10.5 - 0.89 rn 

upper limit for the second integral, mm b1 sp
w2 w1−( )

2
+:=  

b1 13.25=  

width is eqn of tapered line with -ve slope and intercept sum of co-ords, 12.5+7 

12.5

13.25

r19.5 r−( ) 1
rn

r
−





⋅
⌠


⌡

d 0.38624370841752762275− rn⋅ 4.96875+→  

i.e. 4.97 - 0.39 rn 

13.25

15.875

r5.5 1
rn

r
−





⋅
⌠


⌡

d 0.99411395790588271217− rn⋅ 14.4375+→  

i.e. 14.44 - 0.99 rn 

Equating the total integral to zero, we get 10.5+4.97+14.44 = (0.89+0.39+0.99)rn 

Therefore neutral radius in mm rn
10.5 4.97+ 14.44+( )

0.89 0.39+ 0.99+
:=  rn 13.176=  
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To calculate strain ratio 

Angular displacement, radians θ 68
3.14

180
⋅:=  

θ 1.186=  

Number of turns in the spring N 4:=  

Helix angle of the spring, radians α 7.18
3.14

180
⋅:=  

α 0.125=  

Strain eqn. factor K
θ cos α( )⋅

2 3.14⋅ N⋅
:=  

K 0.047=  

Strain at the inner surface εi K 1
rn

r2
−





⋅:=  

εi 9.269− 10
3−

×=  

Strain at the outer surface εo K 1
rn

r1
−





⋅:=  

εo 7.965 10
3−

×=  

Strain ratio  εr
εi−

εo
:=  εr 1.164=  
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Torque required  

The torque required to produce a certain strain value can be calculated as follows: 

1. Specify a strain constraint, in our case we want to achieve 0.8% strain at the outer surface 

The torque is given by: 

o

oo

C

reA
T

...σ
=

 

Young's modulus of Ti6Al4V at 4.2 K, MPa  Et 130000:=  

Young's modulus of CuBe at 4.2 K, MPa  Ec 132000:=  

Stress at the outer surface, MPa σoc 0.008Ec⋅:=  σot 0.008Et⋅:=  

σoc 1.056 10
3

×=  σot 1.04 10
3

×=  

To calculate centroid and area of cross section 

section width height area ybar xbar a*ybar a*xbar

1 7 1.5 10.5 11.75 4 123.375 42

2 5.5 0.75 4.125 12.875 4 53.1094 16.5

3 5.5 2.625 14.4375 14.5625 4 210.246 57.75

4 0.75 0.75 0.28125 12.75 1 3.58594 0.28125

5 0.75 0.75 0.28125 12.75 7 3.58594 1.96875

summation 29.625 393.902 118.5

 

Centroid of the section, mm ybar
393.902

29.625
:=  ybar 13.296=  

xbar
118.5

29.625
:=  xbar 4=  

Area of cross section, mm2 A 29.625:=  
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Distance from neutral axis to outer surface, mm Co r2 rn−( )−:=  Co 2.176=  

Eccentricity, mm e ybar rn−:=  e 0.12=  

Torque required, N.m. Tt
σot A⋅ e⋅ r1⋅( )

Co 1000⋅
:=  

For Ti6Al4V spring, N.m. Tt 26.983=  

Tc
σoc A⋅ e⋅ r1⋅( )

Co 1000⋅
:=  

For CuBe spring, N.m. Tc 27.399=  
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Appendix 2 

Formula from applied mechanics, Fuller and Johnston, MIT, 1919 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analytical Solution for Torsion of Helical Spring with T-Shaped 

Cross Section 

Number of turns in the spring n 4:=  

Mean diameter, mm D 13.29632⋅:=  

Helix angle, radians θ
7.18 3.14⋅( )

180
:=  

(corresponds to 7.18 degrees) 

total length of helix, mm l
n 3.14⋅ D⋅( )

cos θ( )
:=  l 336.64=  

Moment of inertia about y axis, mm4 I 59.62:=  

Polar moment of inertia, mm4 Ip 100.2:=  

Young's modulus of Ti alloy at 4.2K, N/mm2 E 132000:=  

Poisson's ratio at 4.2K ν 0.31:=  

Shear modulus at 4.2K, N/mm2 G
E

2 1 ν+( )⋅
:=  

G 5.038 10
4×=  

Parameter  K1
sin θ( ) sin θ( )⋅( )

G Ip⋅( )
:=  K1 3.091 10

9−×=  

K2
cos θ( ) cos θ( )⋅( )

E I⋅
:=  K2 1.251 10

7−×=  
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Summation of parameters K K1 K2+:=  
K 1.282 10

7−×=  

If applied torque is, N mm M 30000:=  

Angle of twist, rad φ M l⋅ K⋅:=  φ 1.294=  

φd
φ 180⋅( )

3.14
:=  φd 74.205=  

Angle of twist, deg 

To calculate angular rotation about spring section axis 

Parameter K3
cos θ( ) sin θ( )⋅( )

G Ip⋅( )
:=  

K3 2.455 10
8−×=  

K4
sin θ( ) cos θ( )⋅( )

E I⋅
:=  

K4 1.575 10
8−×=  

KII K3 K4−:=  

KII 8.803 10
9−×=  

ω M l⋅ KII⋅:=  

Rotation about spring axis ω 0.089=  

Total change in length, mm δ
D ω⋅( )

2
:=  δ 1.182=  
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Appendix 3 

Resistance Calculations - Contact Resistance 

Contact Region (1) – Outer Current Tube and Extension Cup Interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume tightening torque on the screw  
for a total of 12 screws, N.m 

T 12:=  

Screw size (nominal diameter), metric, m D 3 10
3−

⋅:=  

Co-efficient of friction µ 0.15:=  

Force, N F
T

0.2 D⋅
:=  F 2 10

4
×=  

Ignore stresses due to thermal contraction, same material 

Inner diameter of the outer tube, m di 1.62525.4⋅ 10
3−

×:=  di 0.041=  

Height of end cap in contact, m l 30 10
3−

⋅:=  l 0.03=  

Apparent contact area, m2 Aa 3.14 di⋅ l⋅:=  Aa 3.888 10
3−

×=  

Average pressure, Pa Pa
F

Aa 2.14 10
4−

⋅+
:=  Pa 4.876 10

6
×=  

Average load per hump, N Pi Pa 4 10
6−

⋅( )2⋅:=  Pi 7.801 10
5−

×=  

Elastic modulus of copper, Pa E 110 10
9

⋅:=  

Radius of the hump, m r 4 10
5−

⋅:=  

contact area of single spot, m a 1.11

3
Pi r⋅( )

E









⋅:=  a 3.385 10
7−

×=  
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Contact Region (2) –Extension Cup and Copper Thimble Interface 

 

 

 

 

 

 

 

 

 

 

 

 

Value of integral Int
a
2
1.57⋅( )
2

:=  Int 8.996 10
14−

×=  

Numerator in the avg. pr expression Nr
1.5 Pi⋅ 1.57⋅( )

3.14 a⋅ 2⋅
:=  Nr 86.413=  

Average pressure in the load bearing area, Pa p
Nr

a
:=  p 2.553 10

8
×=  

Ratio of avg. pressures Rt
p

Pa
:=  Rt 52.356=  

True load bearing area, m2 Ab
Aa

Rt
:=  Ab 7.426 10

5−
×=  

Residual resistivity, Ω.m ρ 1.68 10
10−

⋅:=  

Total constriction resistance, Ω R
ρ

4 Ab⋅
:=  R 5.656 10

7−
×=  

Assume tightening torque on the screw 
for 10 screws, N.m 

T 10:=  

Screw size (nominal diameter), metric, m D 2.5 10
3−

⋅:=  

Co-efficient of friction µ 0.15:=  

Force, N F
T

0.2 D⋅
:=  F 2 10

4
×=  

Ignore stresses due to thermal contraction, same material 
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Outer diameter of the ring, m do 1.25 25.4⋅ 10
3−

×:=  do 0.032=  

Inner diameter of the ring, m di 11 10
3−

⋅:=  di 0.011=  

Apparent contact area, m2 Aa 3.14
do

2







2
di

2







2

−








⋅:=  

Aa 6.963 10
4−

×=  

Area of flat head screws, m2 af
3.14 5.5

2
⋅ 10⋅ 10

6−
⋅

4
:=  af 2.375 10

4−
×=  

Average pressure, Pa Pa
F

Aa af−
:=  Pa 4.358 10

7
×=  

Average load per hump, N Pi Pa 4 10
6−

⋅( )2⋅:=  Pi 6.973 10
4−

×=  

Elastic modulus of copper, Pa E 110 10
9

⋅:=  

Radius of the hump, m r 4 10
5−

⋅:=  

Contact area of single spot, m a 1.11

3
Pi r⋅( )

E









⋅:=  a 7.026 10
7−

×=  

Value of integral Int
a
2
1.57⋅( )
2

:=  Int 3.875 10
13−

×=  

Numerator in the avg. pr expression Nr
1.5 Pi⋅ 1.57⋅( )

3.14 a⋅ 2⋅
:=  Nr 372.208=  

Average pressure in the load bearing area, Pa p
Nr

a
:=  p 5.298 10

8
×=  

Ratio of avg. pressures Rt
p

Pa
:=  Rt 12.155=  
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Resistance Calculations - Splice Resistance 

Splice Interface (1) – Copper Thimble and Sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

True load bearing area, m2 Ab
Aa

Rt
:=  Ab 5.729 10

5−
×=  

Residual resistivity, Ω.m ρ 1.68 10
10−

⋅:=  

Total constriction resistance, Ω R
ρ

4 Ab⋅
:=  R 7.331 10

7−
×=  

Residual resistivity of copper at 4.2K, Ω.m ρcu 1.48 10
10−

⋅:=  

Residual resistivity of solder at 4.2K, Ω.m ρsr 2 10
9−

⋅:=  

Outer diameter of copper ring, m φcu 31.7510
3−

⋅:=  

Outer diameter of solder, m φsr 32.3510
3−

⋅:=  

Thickness of copper ring, m tcu 1 10
3−

⋅:=  

Thickness of solder, m tsr 0.3 10
3−

⋅:=  

Copper resistance per unit length, Ω R
ρcu 1⋅

3.14 φcu⋅ tcu⋅
:=  R 1.485 10

6−
×=  

Contact resistance across solder per unit length, 
Ω 

r
ρsr tsr⋅( )

3.14 φsr⋅ 1⋅
:=  r 5.907 10

12−
×=  

Factor  α
R

r
:=  α 501.326=  

Length of contact consider 2 turns, 
m 

L 2 10
3−

⋅:=  Circumference (πd) x 2  
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Splice Interface (1) – Copper Thimble and Sample 

 

 

 

 

 

 

 

 

 

 

 

Critical current, Amp It 2000:=  

Factor product F α L⋅:=  F 1.003=  

Geometric factor f
e
F

e
F−

+( )
e
F

e
F−

−( )
:=  f 1.311=  

Voltage, V VL It f⋅ r R⋅⋅( ):=  VL 7.765 10
6−

×=  

Junction resistance, Ω Rj
VL

It
:=  Rj 3.882 10

9−
×=  

Residual resistivity of copper at 4.2K, Ω.m ρcu 1.48 10
10−

⋅:=  

Residual resistivity of solder at 4.2K, Ω.m ρsr 2 10
9−

⋅:=  

Outer diameter of copper ring, m φcu 31.7510
3−

⋅:=  

Outer diameter of solder, m φsr 32.3510
3−

⋅:=  

Thickness of extension piece, m tcu 4.87510
3−

⋅:=  

Thickness of solder, m tsr 0.3 10
3−

⋅:=  

Copper resistance per unit length, Ω R
ρcu 1⋅

3.14 φcu⋅ tcu⋅
:=  R 3.045 10

7−
×=  

Contact resistance across solder per unit length, 
Ω 

r
ρsr tsr⋅( )

3.14 φsr⋅ 1⋅
:=  r 5.907 10

12−
×=  

Factor  α
R

r
:=  α 227.056=  
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Length of contact consider 2 turns, 
m 

L 2 10
3−

⋅:=  circumference (πd) x 2  

Critical current, Amp It 2000:=  

factor product F α L⋅:=  F 0.454=  

Geometric factor f
e
F

e
F−

+( )
e
F

e
F−

−( )
:=  f 2.351=  

Voltage, V VL It f⋅ r R⋅⋅( ):=  VL 6.307 10
6−

×=  

Junction resistance, Ω Rj
VL

It
:=  Rj 3.154 10

9−
×=  
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Appendix 4 

Optimization of Current Leads – J. M. Lock’s Method 

 

 

 

 

From Lock's plot for copper, assuming the residual resistivity as 1.69e-8 Ω.cm (RRR=100) 

The optimum geometric parameter is as follows: 

Length of the conductor, cm l 100:=  

Current, amperes I 2000:=  

Conductor cross section, cm^2 A
l I⋅( )

3.3 10
5

⋅
:=  A 0.606=  

To calculate the diameter and the number of holes that can be cut from the 

leads 

1. Outer Tube: 

Outer diameter, cm OD 1.75 2.54⋅:=  OD 4.445=  

Inner diameter, cm ID 1.62 2.54⋅:=  ID 4.115=  

Wall thickness, cm t
OD ID−( )

2
:=  t 0.165=  

Cross sectional area of the tube, cm^2 Ao
3.14

4






OD

2
ID
2

−( )⋅:=  

Ao 2.219=  

Area to be removed, cm^2 Acut Ao A−:=  Acut 1.613=  
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Outer radius, cm R1
OD

2
:=  R1 2.223=  

Inner radius, cm R2
ID

2
:=  R2 2.057=  

Assume the diameter of the hole to be cut 

Hole dia, cm c 0.8:=  

Outer radius of outer tube: 

Distance from the chord to the center, cm do R1( )
2 c

2






2

−:=  do 2.186=  

Distance from top of curve to chord, cm ho R1 do−:=  ho 0.036=  

Area at top to be added, cm2 
Atop R1

2
acos

do

R1







⋅





do R1
2

do
2

−⋅−:=  

Atop 0.019=  

Inner radius of outer tube: 

Distance from the chord to the center, cm di R2( )
2 c

2






2

−:=  di 2.018=  

Distance from top pf curve to chord, cm hi R2 di−:=  hi 0.039=  

Area at bottom to be removed, cm2 
Abot R2

2
acos

di

R2







⋅





di R2
2

di
2

−( )⋅−:=  

Abot 0.021=  
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Ratio of volumes of outer tube with and without holes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area of rectangle, cm^2 Arec c t⋅:=  Arec 0.132=  

Cross sectional area of 1 hole, cm^2 Ahole Arec Atop+ Abot−:=  

Ahole 0.13=  

Number of holes n 8:=  

Total CS area, cm^2 At Ahole n⋅:=  At 1.044=  

Total CS to be cut, cm^2 Acut 1.613=  

Length of the tube, cm L 129.4247:=  

Volume of tube, cm^3 Vt Ao L⋅:=  Vt 287.162=  

Number of holes nh 55 8⋅:=  nh 440=  

Volume of holes, cm3 Vh
3.14 0.8

2( )⋅ t( )⋅ nh⋅

4
:=  

Vh 36.496=  

Volume of tube with holes, cm^3 Vth Vt Vh−:=  Vth 250.666=  

Ratio of volumes Rv
Vt

Vth
:=  Rv 1.146=  
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2. Inner Tube: 

Outer diameter, cm OD 1.25 2.54⋅:=  OD 3.175=  

Inner diameter, cm ID 1 2.54⋅:=  ID 2.54=  

Wall thickness, cm t
OD ID−( )

2
:=  t 0.317=  

Cross sectional area of the tube, cm^2 Ao
3.14

4






OD

2
ID
2

−( )⋅:=  

Ao 2.849=  

Area to be removed, cm^2 Acut Ao A−:=  Acut 2.243=  

Outer radius, cm R1
OD

2
:=  R1 1.587=  

Inner radius, cm R2
ID

2
:=  R2 1.27=  

Assume the diameter of the hole to be cut 

Hole dia, cm c 0.4:=  

Outer radius of outer tube: 

Distance from the chord to the center, cm do R1( )
2 c

2






2

−:=  do 1.575=  

Distance from top of curve to chord, cm ho R1 do−:=  ho 0.013=  
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Area at top to be added, cm2 
Atop R1

2
acos

do

R1







⋅





do R1
2

do
2

−( )⋅−:=  

Atop 3.376 10
3−

×=  

Inner radius of outer tube: 

Distance from the chord to the center, cm di R2( )
2 c

2






2

−:=  di 1.254=  

Distance from top of curve to chord, cm hi R2 di−:=  hi 0.016=  

Area at bottom to be removed, cm2 
Abot R2

2
acos

di

R2







⋅





di R2
2

di
2

−( )⋅−:=  

Abot 4.231 10
3−

×=  

Area of rectangle, cm^2 Arec c t⋅:=  Arec 0.127=  

Cross sectional area of 1 hole, cm^2 Ahole Arec Atop+ Abot−:=  

Ahole 0.126=  

Number of holes n 6:=  

Total CS area, cm^2 At Ahole n⋅:=  At 0.757=  

Total CS to be cut, cm^2 Acut 2.243=  
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Ratio of volumes of outer tube with and without holes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length of the tube, cm L 138.4374:=  

Volume of tube, cm^3 Vt Ao L⋅:=  Vt 394.378=  

Number of holes nh 75 6⋅:=  nh 450=  

Volume of holes, cm3 Vh
3.14 0.4

2( )⋅ t( )⋅ nh⋅

4
:=  

Vh 17.945=  

Volume of tube with holes, cm^3 Vth Vt Vh−:=  Vth 376.433=  

Ratio of volumes Rv
Vt

Vth
:=  Rv 1.048=  
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Appendix 5 

Shear Stress Calculations 

Outer Current Tube: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length of the outer current tube, mm L 50.9525.4⋅:=  L 1.294 10
3

×=  

Outer Diameter of the tube, mm D 1.75 25.4⋅:=  D 44.45=  

Inner diameter of the tube, mm 
d 1.62525.4⋅:=  d 41.275=  

Polar moment of inertia of the cross section 

accounting for only 50% of section, mm4 Ip
0.5 3.14⋅

32
D
4

d
4

−( )⋅:=  

Ip 4.913 10
4

×=  

Shear modulus of copper, MPa G 45000:=  

Total torque applied, N.mm T 30000:=  

Angular of twist, rad φ
T L⋅( )

G Ip⋅
:=  φ 0.018=  

Angular of twist, deg φd φ
180

3.14
⋅:=  φd 1.007=  

Shear stresses 

Shear stress in the probe, MPa τmax
T D⋅

2 Ip⋅
:=  τmax 13.57=  

Shear yield of copper, MPa Ssy 0.4 220⋅:=  Ssy 88=  

Factor of safety n
Ssy

τmax
:=  n 6.485=  

The design is within the safe limits 
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   Thus the design is within safe operating limits. 

 

 

 

 

 

Shear stress in dowel pins connecting transition piece and spring 

Diameter of the Torque circle, mm D 26.875:=  D 26.875=  

Torque applied on tube, N.mm T 30000:=  

Shear force due to torque on pins, N F
T

D
:=  F 1.116 10

3
×=  

Dia of dowel pins, mm d 3:=  

Area of cross section of pins, mm2 A
3.14 d

2
⋅

4
:=  A 7.065=  

Number of shear areas n 1:=  

Shear stress on pins, MPa τ
F

n A⋅
:=  τ 158.001=  

Shear stress if 6 pins used, MPa τn
τ

6
:=  τn 26.334=  

Tensile Yield strength of 18-8 (304SS) is ~ 200 MPa 

Shear yield strength of structural steel, MPa Ssy 0.4 200⋅:=  Ssy 80=  

Factor of safety f
Ssy

τn
:=  f 3.038=  
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Thus the design is within safe operating limits. 

 

 

 

 

 

 

Shear stress in screws for bottom copper thimble  

Diameter of the Torque circle, mm D 23.875:=  D 23.875=  

Torque applied on tube, N.mm T 30000:=  

Shear force due to torque on pins, N F
T

D
:=  F 1.257 10

3
×=  

Minor dia of M2.5 screw, mm d 1.938:=  

Area of cross section of pins, mm2 A
3.14 d

2
⋅

4
:=  A 2.948=  

Number of shear areas n 1:=  

Shear stress on screws, MPa τ
F

n A⋅
:=  τ 426.187=  

Shear stress if 10 screws used, MPa τn
τ

10
:=  τn 42.619=  

Tensile Yield strength of 18-8 (304SS) is ~ 200 MPa 

Shear yield strength of structural steel, MPa Ssy 0.4 200⋅:=  Ssy 80=  

Factor of safety f
Ssy

τn
:=  f 1.877=  
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Thus the design is within safe operating limits. 

 

 

 

 

 

Shear stress in screws for outer extension tube  

Diameter of the Torque circle, mm D 1.62525.4⋅:=  D 41.275=  

Torque applied on tube, N.mm T 30000:=  

Shear force due to torque on pins, N F
T

D
:=  F 726.832=  

Minor dia of M3 screw, mm d 2.387:=  

Area of cross section of pins, mm2 A
3.14 d

2
⋅

4
:=  A 4.473=  

Number of shear areas n 1:=  

Shear stress on screws, MPa τ
F

n A⋅
:=  τ 162.502=  

Shear stress if 6 screws used, MPa τn
τ

12
:=  τn 13.542=  

Tensile Yield strength of 18-8 (304SS) is ~ 200 MPa 

Shear yield strength of structural steel, MPa Ssy 0.4 200⋅:=  Ssy 80=  

Factor of safety f
Ssy

τn
:=  f 5.908=  




