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Charged current single pion production (CCπ+ ) and charged current quasi-elastic scatter-

ing (CCQE ) are the most abundant interaction types for neutrinos at energies around 1

GeV, a region of great interest to oscillation experiments. The cross-sections for these pro-

cesses, however, are not well understood in this energy range. This dissertation presents a

measurement of the ratio of CCπ+ to CCQE cross-sections for muon neutrinos on mineral

oil (CH2) in the MiniBooNE experiment. The measurement is presented here both with

and without corrections for hadronic re-interactions in the target nucleus and is given as a

function of neutrino energy in the range 0.4 GeV < Eν < 2.4 GeV. With more than 46,000

CCπ+ events collected in MiniBooNE, and with a fractional uncertainty of roughly 11%

in the region of highest statistics, this measurement represents a dramatic improvement in

statistics and precision over previous CCπ+ and CCQE measurements.



Measurement of the νµ charged current π+ to

quasi-elastic cross section ratio on mineral oil in a

0.8 GeV neutrino beam

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Steven K. Linden

Dissertation Director: Bonnie Fleming

2010



Contents

1 Introduction 4

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The History of Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Neutrinos in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Neutrinos Masses and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Neutrino Cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Charged Current π+ Production . . . . . . . . . . . . . . . . . . . . 16

1.5.2 Charged Current Quasi-Elastic Scattering . . . . . . . . . . . . . . . 22

1.5.3 Neutrino Cross-section Measurements . . . . . . . . . . . . . . . . . 24

1.6 The CCπ+ to CCQE Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 The MiniBooNE Experiment 28

2.1 The Booster Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The MiniBooNE Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 PMTs and Mineral Oil . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Electronics and Data Acquisition . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Event Simulation 41

3.1 Neutrino Flux Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 NUANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



3.3 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Event Reconstruction 53

4.1 Events and Sub-events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The S-Fitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Fast Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Full Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Flux Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Electron-like and Muon-like Sub-events . . . . . . . . . . . . . . . . 59

4.3 The P-Fitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Reconstruction of Event Kinematics . . . . . . . . . . . . . . . . . . . . . . 62

5 CCπ+ to CCQE Cross Section Ratio 64

5.1 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Observed and FSI-Corrected Ratios . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Signal Fraction and Cut Efficiency . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Neutrino Energy Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6.1 Cross section and flux uncertainties . . . . . . . . . . . . . . . . . . 88

5.6.2 Optical model uncertainties . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.3 Additional unisims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.4 Total Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Cross-checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7.1 Alternative Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7.2 Alternative Energy Reconstructions . . . . . . . . . . . . . . . . . . 100

5.7.3 Q2 Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.4 Pion Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7.5 Nucleon Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2



5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusion 135

3



Chapter 1

Introduction

1.1 Outline

This thesis presents a measurement of the ratio of neutrino CCπ+ to CCQE cross-sections.

Sections 1.2, 1.3, and 1.4 present an overview of the neutrino: the history of its discov-

ery (1.2), its place in the Standard Model of particle physics (1.3), and open questions

concerning it that lead beyond the Standard Model (1.4). Section 1.5 introduces the two

interactions with which the present analysis is concerned, discusses the standard ways of

modelling these interactions, and briefly reviews our current experimental knowledge of

these quantities. Section 1.6 addresses the importance of the measurement presented here,

the ratio of the CCπ+ and CCQE cross-sections.

Chapters 2-4 discuss the technology, software, and analysis tools used in making the

ratio measurement. The physical setup of the MiniBooNE experiment, including both

the Booster Neutrino Beam (BNB) and the MiniBooNE detector, is discussed in chapter

2. Chapter 3 discusses the Monte Carlo (MC) simulation of the neutrino beam, neutrino

interactions in the detector, and the detector response. This simulation provides predictions

for various quantities that are used in the analysis. Chapter 4 discusses the algorithms used

to reconstruct neutrino events from the raw data and obtain kinematic information for each

event.

4



The ratio analysis itself is discussed in chapter 5. Section 5.1 presents an overview of

the method used to extract the cross-section ratio. In section 5.2, the ratio we measure is

more precisely defined, and the observed and FSI-corrected ratios are distinguished. The

selection of CCπ+ and CCQE event samples is discussed in section 5.3. Sections 5.4 and

5.5 cover the correction factors obtained from MC: the signal fractions, cut efficiencies,

and energy unfolding matrix. Calculation of the systematic uncertainties on the ratio is

discussed in section 5.6. Section 5.7 goes through a number of studies and alternative

analyses that were performed as checks that the main analysis is adequate. The results of

the main analysis are presented in section 5.8. Chapter 6 offers some concluding remarks

on the measurement and its importance in the wider field of neutrino physics.

1.2 The History of Neutrinos

When nuclear beta decay was first studied in the 1910s and 1920s, it raised two puzzles.

First, the energy spectrum of the emitted electron was found to be continuous; however,

for a two-body decay energy conservation required the spectrum to be discrete. Second,

the decay appeared not to conserve angular momentum. In 1930, Wolfgang Pauli proposed

what he called a “desperate remedy” for these problems: that in addition to an electron,

beta decay produced an undetected neutral particle that carried the missing energy and

angular momentum. In 1932, James Chadwick discovered the neutron [1]; however, Chad-

wick’s particle was too massive to be the particle hypothesized by Pauli. In 1934, Hans

Bethe and Rudolf Peierls calculated an upper limit on the cross section of Pauli’s neutral

particle of about 10−34 cm2 [2], which rendered it undetectable by conventional means.

The idea of an undetectable particle caused great uneasiness in the empirically-minded

physics community, not least to Pauli himself, is reported to have said: “I have done a

terrible thing, I have postulated a particle that cannot be detected”. Nonetheless, this

solution was accepted in order to preserve energy conservation as a fundamental property

of nature. The particle was dubbed the “neutrino” by Enrico Fermi, who developed the
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first model of weak interactions [3]. Fermi’s model included the neutrino, thus putting

the particle, which had formerly been an ad hoc addition to the particle zoo, on firmer

theoretical footing.

Neutrinos were first detected by Clyde Cowan and Frederick Reines in 1956 [4] (much to

the relief of Wolfgang Pauli, who died just two years later). Cowan and Reines used a tank

of water lined with scintillating material to detect anti-neutrinos produced by a nuclear

reactor. The anti-neutrinos interacted with protons in the water to produce neutrons and

positrons. A neutron from the reaction would subsequently be captured by a nucleus,

emitting a photon; a positron would annihilate with an electron in the water, producing a

pair of photons. These photons stimulated light emission from the scintillators, which was

then detected by photomultiplier tubes. The coincidence of the signals from the positron

annihilation and the neutron capture indicated an anti-neutrino event.

In 1962, the detection of muon neutrinos by Leon Lederman, Melvin Schwartz, and

Jack Steinberger demonstrated that multiple “flavors” of neutrino exist [5]. When the tau

lepton was discovered at SLAC in the 1970s, a corresponding third flavor of neutrino was

also proposed. The tau neutrino was eventually observed by the DONUT collaboration in

2000 [6].

Neutrinos produced by the nuclear reactions that power the sun (solar neutrinos) were

observed by Ray Davis at Homestake in the 1960s [7]. In the Homestake experiment,

neutrinos were captured on chlorine nuclei, producing an isotope of argon; these argon

atoms could then be extracted from the tank and counted. The flux of solar neutrinos

measured by Davis was consistently about a third of the flux predicted by John N. Bahcall

in the standard solar model [8]. This became known as the “solar neutrino problem”; it is

now understood to be the first hint that neutrinos oscillate.

Further evidence for neutrino oscillations was found in 1988 by the Kamiokande ex-

periment [9], which observed a deficit of muon neutrinos from atmospheric cosmic ray

interactions; this deficit was confirmed in 1992 by the IMB experiment [10]. The successor

to Kamiokande was the Super-Kamiokande experiment, which in 1998 found strong evi-
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dence for muon neutrino oscillations [11, 12]. Evidence for the oscillation of solar neutrinos

was seen by the Kamiokande-II [13], GALLEX [14], SAGE [15], and SNO [16] experiments;

their findings were consistent with the hypothesis that the solar neutrino problem is due

to neutrino oscillations. The discovery of these flavor-changing oscillations has led to a

vigorous and diverse research program in neutrino physics over the past decade, aimed at

understanding the oscillations and their implications.

1.3 Neutrinos in the Standard Model

The Standard Model (SM) is a quantum field theory with the symmetry group:

U(1)× SU(2)× SU(3) (1.1)

The SU(3) group, associated with the conserved color charge, corresponds to the strong

force; the U(1) group, associated with weak hypercharge, and the SU(2) group, associated

with weak isospin, together correspond to the unified electroweak force.

The SM contains twelve spin-1
2 fermions and twelve spin-1 gauge bosons. The gauge

bosons of the SM are eight gluons, which mediate the strong interaction, one photon,

mediating the electromagnetic interaction, and three intermediate vector bosons (the W±

and the Z0), mediating the weak interaction. The fermions in the SM are six quarks, which

couple to all three of the fundamental forces, three charged leptons, which couple to the

electromagnetic and weak forces, and three neutral leptons, the neutrinos, which couple

only to the weak force. The SM also includes a single scalar (spin-0) particle, the Higgs

boson, which is associated with spontaneous electroweak symmetry breaking and is the

only SM particle that remains undetected. Every particle is also expected to couple to the

graviton, which carries the gravitational force, but this coupling is not part of the SM.

The electroweak Lagrangian after symmetry breaking can be written as the sum of

several terms:
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LEW = LK + LHiggs + LGauge + LHG + LY ukawa + LNC + LCC (1.2)

LK contains the kinetic terms, LHiggs contains the three-point and four-point self-

interactions of the Higgs boson, LGauge contains the three-point and four-point self-interactions

of the gauge bosons, LHG contains the coupling of the Higgs boson with the gauge bosons,

LY ukawa contains the Yukawa coupling of the Higgs boson with the fermions, and LNC

and LCC contain the neutral current and charged current couplings, respectively, of the

fermions with the gauge bosons.

The neutral current coupling term is:

LNC = eJemµ Aµ +
g

cos θW
(J3
µ − sin2θWJ

em
µ )Zµ (1.3)

where g is the weak coupling constant, θW is the Weinberg (weak mixing) angle, e is the

charge of the electron, A represents the gauge field associated with the photon, and Z

represents the gauge field associated with the Z0. Jem and J3 are the electromagnetic and

neutral weak currents, defined as:

Jemµ =
∑
f

qf f̄γµf (1.4)

J3
µ =

∑
f

If f̄LγµfL (1.5)

where f are the spinors representing the fermions of the Standard Model, γµ are the Dirac

matrices, qf is the electric charge of the fermion f , and If is its weak isospin. The subscript

L denotes the left-handed component of a spinor, which can be projected using the fifth

Dirac matrix:

ψL =
1− γ5

2
ψ (1.6)
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The charged current coupling term is:

LCC =
g√
2

(J+
µW

−,µ + J−µW
+,µ) (1.7)

where W± are the gauge fields associated with the W± bosons and J± are the charged

weak currents:

J+
µ =

∑
i=1,2,3

ūi,Lγµdi,L + ν̄i,Lγµli,L (1.8)

J−µ =
∑

i=1,2,3

d̄i,Lγνui,L + l̄i,Lγµνi,L (1.9)

where ui, di, li, and νi are the up-type quark, down-type quark, charged lepton, and

neutrino, respectively, in the ith generation.

As seen above, the weak interaction couples only to the left-handed component of

the fermions; it is thus not parity-conserving (in fact it is maximally parity-violating).

Because the neutrinos couple only to the weak force, only the left-handed components of

their spinors are included in the Standard Model; a right-handed neutrino would be sterile.

Quarks are included in the currents J+, J−, and J3 given above and are thus coupled

to the weak interaction by the charged and neutral current Lagrangians just as leptons

are. However, it has been found that the quark flavor eigenstates that enter these currents

are not identical to the quarks’ mass eigenstates (which are the eigenstates that enter the

strong interaction), but are instead linear combinations of them. The weak eigenstates

(indicated by a prime) of the down-type quarks can be related to their mass eigenstates

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix:


|d′〉

|s′〉

|b′〉

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



|d〉

|s〉

|b〉

 (1.10)

If this matrix were diagonal, then the weak eigenstates would be identical to the mass

eigenstates. In fact, the off-diagonal elements are smaller than the diagonal elements but
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are non-zero, meaning that each weak eigenstate consists primarily of the corresponding

mass eigenstate but with smaller contributions from the others. The result is that the

couplings between the up-type and down-type quarks in eqs. 1.8 and 1.9 do not couple

mass eigenstates exclusively within one generation. For example, the u quark couples with

the d′ weak eigenstate, which means that it couples with the d, s, and b mass eigenstates

with strengths given by Vud, Vus, and Vub.

The choice to write the down-type weak eigenstates as linear combinations of their

mass eigenstates, leaving the up-type weak eigenstates and mass eigenstates identical, is

arbitrary. One could, equivalently, define the up-type weak eigenstates in this way and leave

the down-type weak eigenstates and mass eigenstates identical. The physical effect is the

same: couplings between up-type and down-type mass eigenstates of different generations

are introduced.

The CKM matrix must be unitary, and due to this requirement it contains only four

free parameters. It can be parametrized in various ways, but frequently three mixing angles

and one CP-violating phase are used:

Uαi =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

(1.11)

The angle θ12, which governs the mixing of the three light quarks, is also called the

Cabibbo angle, θc.

Note that if neutrinos are massless, this CKM mixing occurs in the quark sector but

not in the lepton sector. This is done for the simple reason that CKM-like mixing of the

leptons cannot be meaningfully defined with massless neutrinos. What it means to say that

CKM mixing occurs among the quarks is that the flavor eigenstates (those that play a role

in the weak interaction) are linear combinations, or mixtures, of the mass eigenstates. If

neutrinos are massless, they have no mass eigenstates to be mixed. However, if, as is now
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believed, neutrinos do have non-zero mass, leptonic mixing can occur in exact analogy to

the CKM mixing of the quarks described above; this will be discussed in the next section.

1.4 Neutrinos Masses and Mixing

Over the past ten years, a preponderance of evidence has built up showing that neutri-

nos can change flavor, or “oscillate”. That is, neutrinos that are produced via reactions

involving charged leptons of one flavor may, after travelling a long distance, interact to

produce charged leptons of another flavor. It should be noted that this does not invalidate

the idea of neutrino flavor, because oscillations only occur over suitably long distances. In

other words, in the limit where the distance travelled by the neutrinos goes to zero, flavor

is conserved.

The mechanism responsible for flavor oscillation is believed to be neutrino mixing. If

this is the case, then the flavor eigenstates of the three neutrinos are not the same as

the mass eigenstates; rather, the flavor eigenstates are linear combinations of the mass

eigenstates. This is exactly analogous to the CKM mixing of the quark mass eigenstates.

This implies that neutrinos must have three non-degenerate masses, implying that at least

two of the neutrino masses are non-zero. The Standard Model can be extended in a

straightforward way to include massive neutrinos and to describe neutrino oscillation.

A given flavor eigenstate can then be written as a linear combination of mass eigenstates:

|να〉 =
∑
i

U∗αi|νi〉 (1.12)

Here α indexes flavor eigenstates and i indexes mass eigenstates. Uαi is the Maki-

Nakagawa-Sakata (MNS) neutrino mixing matrix, analogous to the CKM matrix for quarks.

Like the CKM matrix, the MNS matrix is typically parametrized with three angles and a

CP-violating phase. In addition, two Majorana phases, α1 and α2, are needed if neutrinos

are Majorana fermions.
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Uαi =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1



×


e
iα1
2 0 0

0 e
iα2
2 0

0 0 1


(1.13)

The time-evolution of a mass eigenstate i can be written as a plane wave:

|νi(xµ)〉 = e−i(p
µ
i xµ)|νi(0)〉 (1.14)

Here xµ denotes the neutrino’s position four-vector and pµi the momentum four-vector

of its ith mass eigenstate. Note that in the ultrarelativistic limit, pµi xµ ≈
m2
iL

2E , where

L = |~x| is the distance the neutrino has traveled and E is its energy. Because the the mass

eigenstates are non-degenerate, the amplitude of each eigenstate will vary at a different

rate. Thus, for a neutrino that is in a flavor eigenstate at t = 0, the relative amplitudes

of its component mass eigenstates will change as it propagates. Specifically, a neutrino in

flavor eigenstate α at t = 0 can be written as:

|να(xµ)〉 =
∑
i

U∗αie
−im

2
i L

2E |νi(0)〉 (1.15)

We can then write the probability that a neutrino in flavor state α at t = 0 will be

observed in flavor state β after having traveled a distance L as:

Pα→β = |〈νβ|να(0)〉|2 =

∣∣∣∣∣∑
i

U∗αiUβie
−im

2
i L

2E

∣∣∣∣∣
2

(1.16)

The parametrization of the mixing matrix given in equation 1.13 can be substituted

above to obtain the oscillation probability in terms of the mixing angles and CP-violating
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phase, but the resulting expression is very cumbersome. However, in cases where only

two neutrinos mix, all but one of the mixing angles may be neglected. In this case, the

oscillation probability is, in terms of the remaining mixing angle θ and the mass difference

between the two neutrinos ∆m2:

Pα→β = sin2 2θ sin2 ∆m2L

4E
(1.17)

This two-neutrino mixing expression is a valid approximation in experiments that,

due to their particular L
E , are only sensitive to one mass splitting. This is the case for

atmospheric neutrinos, oscillations of which are dominated by θ23 and νµ ↔ ντ mixing.

It is also the case for solar neutrinos, for which mixing is dominantly between νe and a

superposition of νµ and ντ ; the relevant mixing angle in this case is θ12. Measurements

using solar [17] and atmospheric [18] neutrinos have shown that θ12 = 33.9 ± 2.4◦ and

θ23 = 45 ± 7◦. In addition, these measurements have found the mass splittings to be

∆m12 = 8.0± 0.6 · 10−5 eV and ∆m23 ≈ ∆m13 = 2.4± 0.6 · 10−3 eV.

Although these parameters have been reasonably well measured, a large number of open

questions relating to neutrino oscillations remain. θ13 is known, from reactor experiments,

to be less than 3.2◦, but no measurement of its value has yet been made. The CP-violating

phase δ only enters the oscillation probability expression in combination with θ13 and

cannot be measured until θ13 is known (if θ13 is non-zero). Thus the larger question

of whether neutrinos violate CP symmetry depends upon the determination of the last

mixing angle. The mass hierarchy also presents an unsolved question. We know from

measurements of the mass splitting in solar and atmospheric neutrinos that two of the

masses are much closer to one another than to the third mass. We do not, however, know

whether the outlier mass is above (the so-called “normal hierarchy”) or below (“inverted

hierarchy”) the close pair. We also do not know the absolute scale of the neutrino masses,

though an upper limit of about 0.63 eV have been obtained from cosmology [19] and a

somewhat weaker upper limit of 2.2 eV from tritium beta decay experiments [20, 21].
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A further question posed by the non-zero mass of the neutrino is whether the neutrino

is a Dirac or a Majorana fermion, that is, whether they obey the Dirac equation (eq. 1.18)

or the Majorana equation (eq. 1.19):

(iγµ∂µ −m)ψ(x) = 0 (1.18)

iγµ∂µψ(x)−mψc(x) = 0 (1.19)

where γ are the Dirac matrices, ψ is the spinor representing the neutrino, and ψc is the

charge conjugate of the spinor.

A Majorana fermion has the interesting property that it is its own anti-particle; in

terms of the spinor, ψ = −iγ2ψ. Thus, if neutrinos are Majorana particles, then anti-

neutrinos are simply neutrinos with right-handed helicity. In this case, the emission of a

neutrino is identical to the absorption of an anti-neutrino, and vice versa. This property

implies that neutrinoless double beta decay is allowed if the neutrino is a Majorana particle.

Whereas ordinary double beta decay involves the emission of two neutrinos, if the neutrino

is its own anti-particle then this can be replaced with the exchange of a (virtual) neutrino;

equivalently, one can think of this as the two emitted neutrinos annihilating with each

other. Searches for neutrinoless double beta decay are thus the most promising path to

determining the nature of the neutrino mass.

Note that we have so far assumed that the three neutrino masses are parameters that

must be determined empirically and added to the Standard Model “by hand”. It is, how-

ever, possible to posit additional beyond the Standard Model physics that leads to the

neutrino masses arising naturally and thus “explains” why they have the values they do.

Of particular interest is the so-called “see-saw mechanism” [22, 23], which posits heavy,

right-handed (sterile) partners for each of the three light neutrinos. These light and heavy

neutrino masses arise from the two eigenvalues of the neutrino mass matrix. In particular,

if neutrinos have a Majorana mass on the order of the GUT scale and a Dirac mass on the
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order of the electroweak scale, the light neutrino will have a mass on the order of 1 eV.

The small size of the neutrino masses would thus arise in a natural way. Note, however,

that this mechanism only works if neutrinos have both Dirac and Majorana mass terms.

This is one reason for the current interest in determining whether neutrinos are Dirac or

Majorana fermions.

1.5 Neutrino Cross-sections

The charged current and neutral current electroweak Lagrangians (eqs. 1.3, 1.7) can be

used to exactly calculate the cross-sections for interactions between neutrinos and charged

leptons. Cross-sections for neutrino interactions with free quarks can also be calculated

exactly, but this is of limited use because free quarks do not occur in nature. In practice,

most neutrino interactions with matter are with protons and neutrons, baryons containing

three valence quarks. At high interaction energies, these quarks can be treated as free, and

the cross-sections calculated for interactions with free quarks are a good approximation.

At lower energies, however, strong interactions play a significant role, and due to the non-

perturbative nature of QCD, the cross-sections cannot be calculated exactly.

A charged current interaction between a neutrino and a nucleon has the general form

νN → lX, where N can be either a proton or neutron, l is a charged lepton, and X

represents the hadronic final state. Using the charged current weak Lagrangian (eq. 1.7)

and the Feynman rules, we can write the transition amplitude for such a process as:

TCC(νN → lX) =
g2 cos θc

8
[l̄γµ(1− γ5)νµ]

gµν − qµqν
M2
W

q2 −M2
W

〈X|Jµ|N〉 (1.20)

where θC is the Cabibbo angle, qµ is the four-momentum of the W , and MW is the mass

of the W . For q2 << MW , this simplifies to:

TCC(νN → lX) =
GF cos θc√

2
[l̄γµ(1− γ5)νµ]〈X|Jµ|N〉 (1.21)

15



where we have also used the Fermi constant GF =
√

2g2

8M2
W

to simplify notation.

The leptonic current term Tl = [l̄γµ(1− γ5)νµ] involves no strong interactions and can

be calculated exactly. The hadronic term TH = 〈X|JµH |N〉 cannot be calculated exactly;

however, various models exist for parametrizing this term for different hadronic final states

X.

1.5.1 Charged Current π+ Production

Charged current π+ production (CCπ+ ) refers to any charged current interaction that

produces a single postively charged pion. The dominant mode for this interaction is reso-

nant pion production, in which the neutrino interacts with a nucleon, exciting that nucleon

into a resonant state which subsequently produces a pion in its decay. At low energies, the

dominant resonance is the ∆, a spin-3
2 state: νN → l−∆→ l−Nπ+.

Figure 1.1: Feynman diagrams for the most common CCπ+ resonant modes on a proton
and on a neutron.

The model most frequently used for resonant pion production is the Rein-Sehgal (RS)

model. This model forms the basis of the CCπ+ simulation used by MiniBooNE. A brief

overview of the model is given here; details can be found in [24].

The expression given for the charged current transition amplitude in eq. 1.21 contains

a leptonic current term and a hadronic current term. The leptonic current represents the

polarization vector of the exchanged boson (in this case, the W). It can be written in terms

of its left-handed, right-handed, and scalar components. In the rest frame of the hadronic

final state (the resonance rest frame, RRF), ignoring the lepton mass, the leptonic current
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is:

Tµl = −2
√

2Eν

√
−q2

Q2
(ueµL − ve

µ
R +
√

2uveµ0 ) (1.22)

where Q = |~q| is the momentum of the W in the lab frame and the following definitions

are used:

u =
Eν + El +Q

2Eν
(1.23)

v =
Eν + El −Q

2Eν
(1.24)

eµL =
1√
2

(0, 1,−i, 0) (1.25)

eµR =
1√
2

(0,−1,−i, 0) (1.26)

eµ0 =
1√
2

(1, 0, 0, 0) (1.27)

The hadronic current JHµ can also be transformed into the basis of the unit vectors eµL,

eµR, and eµ0 . At the same time, we will take a factor of the ∆ mass out of the hadronic

current:

Fµ =
JHµ
m∆

= (Ft, Fx, Fy, Fz) (1.28)

F+ = eµRFµ = − 1√
2

(Fx + iFy) (1.29)

F− = eµLFµ =
1√
2

(Fx − iFy) (1.30)

F0 =

√
−q2

Q2
RRF

eµ0Fµ = Ft +
Eq,RRF
QRRF

Fz (1.31)

where Eq,RRF and QRRF are the W energy and momentum, respectively, in the resonance

rest frame, which are related to the lab-frame quantities by:

QRRF =
mN

m∆
Q, q2 = E2

q −Q2 = E2
q,RRF −Q2

RRF (1.32)

Using these definitions, the full neutrino matrix element for the excitation can be writ-
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ten:

TCC(νN → l∆) = −4GF cos θcEν

(√
−q2

Q2
〈∆|uF− − vF+|N〉+

mN

m∆

√
2uv〈∆|F0|N〉

)
(1.33)

To obtain the differential cross-section for this resonance, we include the phase space

factors:
∂σ

∂q2∂Eq
=

1
64πmNE2

ν

∑
spins

|TCC(νN → l∆)|2 1
2π

Γ
(W −M∆)2 + Γ2

4

(1.34)

The term 1
2π

Γ
(W−M∆)2+Γ2/4

is the Breit-Wigner factor, where W is the observed invariant

mass of the resonance and Γ is the width of the resonance (for a resonance of negligible

width, this could be approximated with δ(W −M)).

Writing the transition amplitude in terms of its helicity components, this is:

∂σ

∂q2∂Eq
=
−G2

F cos2 θc
8π2

q2

Q2

Γ
(W −M∆)2 + Γ2

4

(u2σ− + v2σ+ + 2uvσ0) (1.35)

where σk are the partial cross-sections for absorption of a W of helicity k:

σ± =
m∆

mN

1
2

∑
jz

f2
±,jz (1.36)

σ0 = −mN

m∆

Q2

q2

∑
jz

f2
0,jz (1.37)

fk,jz = 〈N, jz + k|Fk|∆, jz〉 (1.38)

Equation 1.35 gives the differential cross section for a single resonance (in this case,

the ∆). However, a number of other resonances contribute to pion production, and these

resonances and their interferences must be taken into account. In the case of CCπ+, we

are interested in any processes that contribute to either the µ−π+p or µ−π+n final states.
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We can decompose the hadronic final states using Clebsch-Gordon coefficients:

|π+p〉 = |1, 1〉 ⊗
∣∣∣∣12 , 1

2

〉
=
∣∣∣∣32 , 3

2

〉
(1.39)

|π+n〉 = |1, 1〉 ⊗
∣∣∣∣12 ,−1

2

〉
=

1√
3

∣∣∣∣32 , 1
2

〉
+

√
2
3

∣∣∣∣12 , 1
2

〉
(1.40)

Modes of CCπ+ production thus include resonances of isospin 3
2 (∆ resonances) and reso-

nances of isospin 1
2 (N resonances). Using the Clebsch-Gordon coefficients, the transition

amplitude for a given final state can be written in terms of the transition amplitudes for

each ∆ and each N resonance. Resonances with the same spin and total angular momen-

tum must be allowed to interfere. The squared amplitudes for the π+p and π+n final states

are thus:

|TCC(νµp→ µ−π+p)|2 =
∣∣∣∑TCC(∆+

01)
∣∣∣2 +

∑
j=1,3

∣∣∣∑TCC(∆+
1j)
∣∣∣2

+
∑
j=3,5

∣∣∣∑TCC(∆+
2j)
∣∣∣2 +

∑
j=5,7

∣∣∣∑TCC(∆+
3j)
∣∣∣2 (1.41)

|TCC(νµn→ µ−π+n)|2 =

∣∣∣∣∣
√

1
3

∑
TCC(∆+

01) +

√
2
3

∑
TCC(N+

01)

∣∣∣∣∣
2

+
∑
j=1,3

∣∣∣∣∣
√

1
3

∑
TCC(∆+

1j) +

√
2
3

∑
TCC(N+

1j)

∣∣∣∣∣
2

+
∑
j=3,5

∣∣∣∣∣
√

1
3

∑
TCC(∆+

2j) +

√
2
3

∑
TCC(N+

2j)

∣∣∣∣∣
2

+
∑
j=5,7

∣∣∣∣∣
√

1
3

∑
TCC(∆+

3j) +

√
2
3

∑
TCC(N+

3j)

∣∣∣∣∣
2

(1.42)

where ∆lj and Nlj indicate the isospin 3
2 and isospin 1

2 resonances, respectively, with orbital

angular momentum l and spin j
2 . In the RS model, all resonances with mass less than 2

GeV are included in the summations.
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The amplitude for each resonance can be split into a factor for production of the

resonance and a factor for decay of the resonance to a π+N final state:

TCC(N∗) = f(N∗)η(N∗) (1.43)

where N∗ denotes a given resonance (either an N or a ∆), f is the production amplitude,

and η is the decay amplitude. The production amplitudes are the same as those given

in eq. 1.38. The decay amplitudes consist of a Breit-Wigner factor and a factor of the

branching ratio for decay of the resonance to π+N .

This completes the kinematics of the interaction. What remains is to complete the

dynamical part by obtaining the production and decay amplitudes. Rein and Sehgal use the

Feynman-Kislinger-Ravndal (FKR) quark model for hadrons to compute these amplitudes.

The FKR model treats a hadron as a relativistic harmonic oscillator with the Hamiltonian:

H = 3(p2
a + p2

b + p2
c) +

Ω2

36
[(ua − ub)2 + (ub − uc)2 + (uc − ua)2] + C (1.44)

where px is the 4-momentum of quark x and ux is its 4-position; Ω is a constant that must

be determined empirically. The propagator for baryons is 1
H . Using this Hamiltonian, Rein

and Sehgal write creation and annihilation operators for the oscillators. This Hamiltonian

includes only the strong interactions of the quarks, but electroweak interactions are included

by adding vector and axial vector interaction terms:

eµjVµ = eµ · 3
∑
a

Qa(/paγµe
iqua + γµe

iqua/pa) (1.45)

eµjAµ = eµ · 3
∑
a

Qa(/paZγµγ5e
iqua + Zγµγ5e

iqua/pa) (1.46)

where eµ is the polarization vector, Qa is a unitary spin matrix, q is the momentum transfer,

Z is an empirical renormalization constant for the axial vector current, and /p is the usual

Feynman slash notation: /p = γµpµ.
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Using this coupling and the creation operators for excited states of the baryon oscillator,

Rein and Sehgal compute the transition amplitudes and cross-sections for production of all

nuclear resonances below 2 GeV. The resulting expressions are long and are not reproduced

here. The transition amplitudes include separate vector and axial vector form factors, which

are assumed to have the form:

GV,A(q2) =
(

1− q2

4m2
N

) 1
2
−n
 1

1− q2

m2
V,A

2

(1.47)

where n is the number of oscillator quanta in the final resonance and mV and mA are

constants that must be obtained empirically. The vector mass, mV , has been measured

in electron scattering experiments to be 0.84 MeV [25]; the axial mass, mA, can only be

measured in neutrino interactions. Note that mV and mA do not refer to the physical mass

of any particles but are merely parameters of the model with units of mass.

The RS model shows significant disagreement with pion production data, particularly

at low Q2. A variety of modifications to the RS model have been proposed to give a

better fit to data. In the original RS calculation, the mass of the muon was ignored.

Several extensions of the model to include muon mass have been described [26, 27, 28, 29].

Including the muon mass improves the model’s agreement with data at low Q2 [30].

Newer models replace the vector and axial form factors with more general expressions

derived from the Rarita-Schwinger formalism [31, 32, 33], which include several form factors

CV,Ai . Fits to resonant production data from previous experiments have been performed

[30, 34], but in general new data is needed to test these models.

In the resonant processes described above, the neutrino effectively interacts with a

single nucleon. Coherent interactions of a neutrino with a whole nucleus can also result

in pion production. In the charged current case, this results in another CCπ+ channel,

νA→ l−π+A, where A represents the target nucleus. A variety of models exist for coherent

pion production [35, 36, 37, 38], but this interaction channel remains poorly understood and

the models’ predictions for the coherent pion production cross-sections vary by an order of
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magnitude. Recent results from K2K and SciBooNE [39, 40] show no evidence for charged

current coherent pion production; however, results from MiniBooNE and SciBooNE [41,

42, 43] do favor a coherent contribution to neutral current pion production, MiniBooNE

obtaining a 19.5±3.6% coherent fraction and SciBooNE 17.9±4.1%.

In addition to creating the possibility of coherent pion production, the use of a nuclear

medium as the target in a neutrino scattering experiment introduces some complications for

resonant interactions. The RS model assumes interactions of a neutrino with a free nucleon;

the cross-section is modified by the binding of the target nucleon within a nucleus. Further,

interior nucleons are screened by the nucleons on the surface, again modifying the cross-

section. These effects are typically treated using the relativistic Fermi gas model. This

model characterizes a nucleus with two parameters, the binding energy EB and the Fermi

momentum pF . The nucleons are treated as a degenerate gas, with all energy levels up

to pF filled. The struck nucleon must therefore have a momentum greater than pF in the

final state; this is known as Pauli blocking, and has the effect of reducing the cross section

at low Q2, where lower momenta for the outgoing nucleon are favored. The kinematics of

the interaction are also affected by the nucleon’s binding energy. Again, this decreases the

cross section at low Q2, because it restricts the available phase space of the final state by

requiring some of the transferred energy to be used to free the nucleon.

If a resonant interaction does occur, the products must first propagate through the

nucleus before they can be detected. Several more nuclear effects come into play at this

stage. First, the excited nucleon may de-excite through re-interaction, ∆N → NN , rather

than through decay. If the struck nucleon does decay and produce a pion, that pion must

then propagate through the nucleus and may either be absorbed or exchange charge with

a nucleon. All of these effects decrease the number of observable CCπ+ events.

1.5.2 Charged Current Quasi-Elastic Scattering

Charged current quasi-elastic scattering (CCQE ) refers to an interaction wherein a neu-

trino exchanges charge with a nucleon. The only such process possible for a neutrino is

22



νn→ l−p (the corresponding anti-neutrino process is ν̄p→ l+n). This interaction is called

“quasi-elastic” because both the initial and final states contain one lepton and one nucleon.

Figure 1.2: Feynman diagram for charged current quasi-elastic scattering.

CCQE scattering is the dominant interaction channel for neutrino energies on the order

of 1 GeV (about 40% of neutrino events in MiniBooNE are expected to be CCQE). As with

the CCπ+ cross section, the amplitude for CCQE scattering can be divided into leptonic

and hadronic terms. A parametrization of this amplitude is given by the Llewellyn-Smith

formalism [44]; it is of the form:

dσ

dQ2
=
M2GF cos2 θC

8πE2
ν

(
A(Q2)±B(Q2)

s− u
M2

+ C(Q2)
(s− u)2

M4

)
(1.48)

where Eν is the energy of the incident neutrino, M is the mass of the nucleon, and s and u

are the Mandelstam variables. The expressions for the coefficients A, B, and C in terms of

form factors are long, but assuming no T-violation in the neutrino-nucleon interaction, no

parity violation in the electromagnetic and strong interactions, and a leptonic mass much

smaller than the nucleon mass, they can be simplified to:

A(Q2) = Q2

M2

(
(1− Q2

4M2 )F 2
A − (1− Q2

4M2 )F 2
1 + Q2

4M2 (1− Q2

4M2 )F 2
2 + 4 Q2

4M2F1F2

)
B(Q2) = Q2

M2FA(F1 − F2) (1.49)

C(Q2) = 1
4(F 2

A + F 2
1 + Q2

4M2F
2
2 )

The amplitude thus depends on three form factors, F1 and F2 (the vector form factors),
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and FA (the axial form factor). Using conservation of vector current (CVC), the two

vector form factors can be related to the Dirac and Pauli electromagnetic form factors

and parametrized in terms of the vector mass mV , which has been measured in electron

scattering experiments. FA is parametrized in terms of the axial mass mA, which must be

measured in neutrino experiments.

The cross-section given in 1.48 treats the target nucleon as free. An extension of this

model to include bound nucleons is given by Llewellyn-Smith and Moniz in [45]. This

model treats the nucleus as a relativistc Fermi gas, as discussed above in connection with

nuclear effects in CCπ+ interactions.

1.5.3 Neutrino Cross-section Measurements

Although calculations of neutrino cross-sections had been made since 1934 [2], it was not

until the 1970s that measurements of these cross-sections became possible. The first gen-

eration of neutrino cross-section measurements consisted of bubble chamber experiments

performed during the 1970s and 1980s at ANL, BNL, FNAL, and CERN. These experi-

ments generally measured cross-sections in the energy range 0.5 GeV < Eν < 10 GeV, on

low-mass targets such as hydrogen or deuterium. Although they provided important data,

the precision of these measurements was severely limited by their low statistics and poor

knowledge of the neutrino fluxes.

The next generation of cross-section measurements was made with higher energy neu-

trino sources and using a variety of detector technologies. Experiments such as NuTeV,

CCFR, CHARM, and CDHS looked at neutrinos in the 20 GeV < Eν < 200 GeV en-

ergy range. These experiments had much higher statistics than their predecessors, and the

neutrino cross-sections at high energies were measured with high precision.

With the discovery of neutrino oscillations in the late 1990s, interest in low energy

neutrinos increased again. In order to perform sensitive oscillation searches, it is necessary

to know the neutrino-nucleon cross-sections to high precision. However, until quite recently,

for neutrinos with energy on the order of 1 GeV, the only cross-section data available was

24



Experiment Detector Target Date
ANL [46] Bubble chamber D2 1977
BEBC [47] Bubble chamber D2 1990
BNL [48] Bubble chamber D2 1981
GGM [49] Bubble chamber Propane-fron 1979
FNAL [50] Bubble chamber D2 1983
Serpukhov [51] Spark chamber Al 1985
SKAT [52] Bubble chamber CF3Br 1992

Table 1.1: CCQE cross-section measurements.

Experiment Detector Target Date
ANL [53, 54, 55] Bubble chamber D2 1973, 1979, 1982
BEBC [47, 56] Bubble chamber D2 1986, 1990
BNL [57] Bubble chamber D2 1986
FNAL [58] Bubble chamber D2 1978
K2K [59] Plastic scintillator C8H8 2008
SKAT [60] Bubble chamber CF3Br 1989

Table 1.2: CCπ+ cross-section measurements.

from bubble chamber experiments of the 1970s and 1980s. Besides having large error

bars, these data also come almost exclusively from targets with low nuclear mass. Modern

oscillation experiments, on the other hand, tend to use heavier nuclei in order to obtain

higher event rates; but this results in significant nuclear effects, concerning which the older

experiments have nothing to tell us. Thus, there is a pressing need for high-statistics,

high-precision cross-section measurements at low energies and on heavy nuclear targets.

1.6 The CCπ+ to CCQE Ratio

At neutrino energies on the order of 1 GeV, a region of great interest for oscillation exper-

iments, CCQE and CCπ+ are the two largest event classes. In MiniBooNE, for example,

these two channels account for roughly 64% of neutrino events. Due to their abundance

and relatively clean experimental signature, CCQE events are typically used as the signal

channel in neutrino oscillation searches. Accelerator-based appearance searches such as

MiniBooNE’s oscillation analysis look for an excess of νe CCQE events over background
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from a νµ source; likewise disappearance searches look for a deficit of νµ CCQE events from

a νµ source. The largest background to νµ CCQE events at these energies typically comes

from CCπ+ events in which the pion is not seen. Because of the abundance of CCπ+

events, this background tends to be very large; in MiniBooNE, for example, the CCπ+

background makes up about 20% of the νµ CCQE sample. To extract this background

while retaining sensitivity to small oscillation signals, νµ disappearance experiments re-

quire knowledge of the ratio of CCπ+ to CCQE cross sections as a function of energy to

a precision of better than 10%. No prior experiment, however, has measured this ratio to

better than about 20% precision, nor with an energy resolution finer than about 0.2 GeV.

Further, most previous experiments used hydrogen or deuterium targets, whereas modern

oscillation experiments typically use heavier nuclei, subjecting the interactions to nuclear

effects not encountered with a lower mass target.

In addition to disappearance analyses using CCQE events, auxilliary searches using

CCπ+ as the signal channel as well as CC inclusive searches are also possible. In these

cases, knowledge of the CCπ+ cross-section is necessary not for the removal of background

but for the prediction of signal rates. Although measuring rates in a near detector would

minimize the dependence of the signal prediction on external cross-section data, it remains

desirable to understand all oscillation signal channels as fully as possible.

Besides its direct application to neutrino oscillation searches, measurement of the CCπ+

cross-section is important for our understanding of neutrino-induced pion production. As

noted above, a variety of proposals for corrections to the Rein-Sehgal model of pion pro-

duction have been made; however, the ability of theorists to evaluate these models has

been limited by the paucity of cross-section data at low energies.

The CCQE and CCπ+ differential cross-sections can be measured directly and their

ratio calculated from the individual cross-sections. However, the sizeable uncertainties

on the neutrino flux in MiniBooNE limit the precision of such a procedure. In order to

eliminate the flux uncertainties, we can instead measure the ratio directly, in which case the

flux uncertainties largely cancel between the two samples. This type of ratio measurement
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provides the cleanest way of extracting the CCπ+ background from the CCQE signal in

νµ disappearance searches. It also provides data that theorists, armed with models for

CCQE scattering, can use to evaluate pion production models.

In addition to the ratio reported in this thesis, several other current and future ex-

periments have provided or will provide high-precision measurements of the CCQE and

CCπ+ cross-sections at low energy. Since the publication of this analysis, MiniBooNE has

also completed absolute CCQE [61] and CCπ+ [62] cross-section measurements. Other

experiments, including both dedicated cross-section experiments such as MINERνA and

oscillation experiments such as MINOS, NOνA, and T2K, will also be able to provide

measurements of these cross-sections in the near future.

In addition to these, several experiments employing liquid argon Time Projection

Chambers (LArTPCs), a relatively new detector technology, are underway or have been

proposed. In an LArTPC, charged particles passing through a volume of liquid argon

ionize electrons as they pass; an electric field is applied so that these electrons drift to

a read-out plane on one side of the TPC. This offers the modern equivalent of a bubble

chamber display, reconstructing high resolution images of the particles’ tracks. LArTPCs

offer a number of advantages over traditional neutrino detectors and promise to play an

important role in neutrino physics - both in oscillation studies and in cross-section mea-

surements. The ArgoNeuT experiment has collected data in the NuMI beam at Fermilab,

and despite its comparatively low statistics may be able to make CCπ+ and CCQE cross-

section measurements. MicroBooNE, which is to run in the MiniBooNE enclosure in the

Booster Neutrino Beam, will experience the same neutrino flux as MiniBooNE but will have

an advantage in systematics, and should be able to improve upon the ratio measurement

presented here as well as other MiniBooNE cross-section analyses.
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Chapter 2

The MiniBooNE Experiment

The MiniBooNE experiment was designed to search for νµ to νe oscillations with a ∆m2

between 0.2 eV2 and 10 eV2, evidence for which had been observed in anti-neutrinos by

the LSND experiment. The anti-neutrino flux in the LSND detector was peaked at a

neutrino energy of about 40 MeV, and the center of the detector was about 30 m from

the neutrino source. The MiniBooNE detector is situated in the Booster Neutrino Beam

(BNB) at Fermi National Accelerator Laboratory, with a neutrino energy spectrum peaked

at around 800 MeV; the detector is located 450 m from the neutrino source, giving an L/E

similar to that in the LSND experiment. MiniBooNE thus gives access to the same neutrino

oscillation parameter space as LSND. Results of the oscillation search in neutrino [63] and

anti-neutrino [64] modes showed no evidence for two-neutrino oscillation.

In addition to the primary oscillation search, the MiniBooNE experiment is ideal for

performing a number of neutrino cross section measurements. The Booster Neutrino Beam

provides a high-intensity neutrino source, offering MiniBooNE an advantage of about an

order of magnitude in statistics over any previous experiment in the case of CCπ+ and

CCQE interactions. Moreover, the neutrino flux is peaked at about 800 MeV, an energy

region of great interest to future oscillation searches but one that few previous experiments

have explored. This makes MiniBooNE eminently suitable for measuring the CCπ+ to

CCQE cross section ratio discussed in section 1.6.
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2.1 The Booster Neutrino Beam

Figure 2.1: The MiniBooNE detector in the Booster Neutrino Beam.

The Booster Neutrino Beam comprises three sequential stages: the primary (proton)

beam, the secondary (meson) beam, and the tertiary (neutrino) beam. A cartoon schematic

of the beamline is shown in figure 2.1, on which these three sections can be seen.

The primary (proton) beam is produced by a chain of three of Fermilab’s five accel-

erators. The process begins with hydrogen gas being converted to H− ions, which are

accelerated to 750 keV. The ions are passed to a linear accelerator, which brings them

up to 400 MeV. The electrons are then stripped away by carbon foil, and the protons are

passed to the Booster synchrotron, which accelerates them to 8 GeV and delivers them to

the Booster Neutrino Beamline. The protons are delivered in pulses lasting 1.6 µs, with

an average of four to five pulses per second. Each pulse consists of a series of 81 bunches 2

ns in length and separated by 19 ns. Each pulse typically delivers a total of about 4 · 1012

protons. The MiniBooNE data acquisition system (DAQ) is synchronized with the tim-

ing signals of the Fermilab accelerator network, so that data is recorded beginning 4.5 µs

before, and ending 19.2 µs after, each beam spill. As they pass down the beamline, the

protons go through several beam position monitors, which are routinely checked by the

person on shift in the MiniBooNE control room to ensure that the beam is on target. The

root mean square width of the beam just upstream of the target is 0.75 mm vertically

and 1.51 mm horizontally. The beam also passes through two toroids that measure the

number of protons on target (POT), located 5 and 50 m upstream of the target. The POT
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measurement is accurate to about 1% [65]. The data used in this analysis was collected

from August 2002 to December 2005 and corresponds to 5.579±0.01·1020 POT delivered

in about 1.4·108 beam spills.

The protons hit a beryllium target at the end of the primary beam. The target is

composed of seven cylindrical pieces or “slugs” of beryllium, each 10.16 cm long and 0.9525

cm in diameter. The slugs are suspended within a beryllium sleeve 0.9 cm thick and with

an inner radius of 1.37 cm; each slug is supported by three beryllium fins that connect to

the sleeve. Heat deposited in the target by the proton beam is dissipated by a stream of

forced air.

The interaction of the incident protons with the beryllium target produces the sec-

ondary (meson) beam. The products of the p-Be interactions are protons, neutrons, π±,

K±, and K0. π± are produced with a multiplicity of about 1.8 per reaction, protons

1.5, neutrons 1.3, K± 0.07, and K0 0.02. These products pass through a pulsed toroidal

electromagnet, the MiniBooNE “horn”, 185.4 cm long with a radius of 30 cm. A current

of 174±1 kA flows through the horn, producing a magnetic field of about 1 T; the az-

imuthal symmetry of the horn allows the magnetic field to be well-modelled by Ampere’s

Law. When running in neutrino mode, the horn focuses the positively charged products

of the p-Be interactions into the beamline while defocusing the negatively charged prod-

ucts; for anti-neutrino running, the direction of current flow in the horn is reversed and

the negatively charged products are focused. The horn increases the neutrino flux in the

MiniBooNE detector by about a factor of six over what it would be with no focusing. The

horn pulses at roughly 5 Hz and is timed so that the current peaks during each beam spill.

The beam passes through a 214 cm long concrete collimator before entering the decay

region. The collimator absorbs particles scattered at a large angle, which would not con-

tribute to the neutrino flux, in order to reduce radiation farther down the beamline. The

secondary hadrons then enter the decay pipe, an air-filled cylinder 45 m long and three

feet in radius. The tertiary (neutrino) beam is created in this region by the decay of sec-

ondary mesons. In addition, a small number of muons created by the decay of secondary
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Figure 2.2: The BNB magnetic focusing horn. The outer (grey) conductor is shown semi-
transparent to reveal the inner (green and blue) conductor and water cooling apparatus.

mesons subsequently decay to produce neutrinos. The branching ratios for these decays

are summarized in table 2.1.

Particle Lifetime (ns) Decay mode Branching ratio (%)
π+ 26.03 µ+ + νµ 99.9877

e+ + νe 0.0123
K+ 12.385 µ+ + νµ 63.44

π0 + e+ + νe 4.98
π0 + µ+ + νµ 3.32

K0
L 51.6 π− + e+ + νe 20.333

π+ + e− + ν̄e 20.197
π− + µ+ + νµ 13.551
π+ + µ− + ν̄µ 13.469

µ+ 2197.03 e+ + νe + ν̄µ 100

Table 2.1: The branching ratios for neutrino-producing decay modes.

A beam stop consisting of 10 feet of steel and 3 feet of concrete is located at the end

of the decay pipe. The beam stop absorbs all non-neutrino products from the decay of the

secondary meson beam, as well as any undecayed products of the initial p-Be interaction.

The remaining neutrinos then pass through 450 m of earth before entering the detector

enclosure. The center of the detector itself is located 541 m downstream of the center of

the beryllium target and 1.9 m above the center of the neutrino beam.

In neutrino mode, the beam is composed of 93.6% νµ with a 5.9% (0.5%) ν̄µ (νe)

contamination [66]. The average neutrino energy is roughly 800 MeV. The neutrino flux

is not directly measured, but the energy spectrum is obtained from a detailed simulation
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of the Booster Neutrino Beam. A discussion of this simulation, including more detailed

information on the composition of the neutrino beam, can be found in section 3.1.

2.2 The MiniBooNE Detector

A brief overview of the MiniBooNE detector is given in this section. For a detailed treat-

ment, see [67].

The MiniBooNE detector is a spherical carbon steel tank 12.2 m in diameter filled with

818 tons of mineral oil. The tank is located below ground level in a cylindrical vault 13.7

m in diameter with walls roughly half a meter thick. A room above the detector houses

electronics and utilities. The vault is covered by dirt with a minimal depth of 3 m to

provide partial shielding against cosmic rays.

Within the outer tank is a second spherical shell 11.5 m in diameter. This shell divides

the tank into two optically isolated regions. The outer volume is a “veto region” designed to

identify and reject cosmic rays and neutrino events that are not fully contained within the

main detector volume. The inner volume is the “signal region”. Though the inner and outer

regions are optically isolated, the oil is free to circulate between them. All surfaces in the

signal region are painted black to reduce light re-scattering for clean event reconstruction;

all surfaces in the veto region are painted white to increase light re-scattering and increase

veto sensitivity.

2.2.1 PMTs and Mineral Oil

The inner side of the spherical shell that divides the inner and outer tank regions is lined

with 1280 photomultiplier tubes (PMTs). These PMTs are distributed roughly uniformly

across the shell and face inward, toward the center of the detector; this results in photo-

cathode coverage of 11.3% of the inner sphere. An additional 240 PMTs are located in

the veto region, mounted on the outer tank wall. The veto PMTs are arranged in pairs;

each pair is situated back to back, with the PMTs oriented perpendicular to a line from
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the center of the tank.

Figure 2.3: The MiniBooNE detector.

Of the 1280 PMTs in the signal region, 958 are Hamamatsu R1408, taken from the

LSND experiment. The remaining 322 PMTs are Hamamatsu R5912 bought for Mini-

BooNE. Because the R5912 PMTs have better time and charge resolution than the R1408,

all 958 of the new PMTs were used in the signal region. Figure 2.4 shows the distribution

of the new and old PMTs in the signal region. The 240 PMTs used in the veto region

were selected from among the LSND PMTs for having the lowest dark rates. Each PMT

has an 8” diameter. The R5912 PMTs have a time resolution of about 1.1 ns and a single

photo-electron (1-PE) charge resolution of 50%; the R1408 PMTs have a time resolution

of about 1.7 ns and a 1-PE charge resolution of 140%. The PMTs are operated at ap-

proximately 2000 V, resulting in a gain of 1.6 · 107. The efficiency of the PMTs varies as

a function of wavelength, peaking at about 390 nm. Each PMT was tested individually

to measure its time and charge resolution, angular acceptance, dark rate, and operating

voltage; precise knowledge of these is necessary for event simulation and reconstruction.
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After being tested, the R1408 PMTs were cleaned to remove oil residue from LSND and

were coated with a black encapsulant from the base to the bottom of the globe to prevent

contamination of the oil by components of the base. Details of the PMTs’ functionality

can be found in [68]. Over the course of comissioning and running, 37 PMTs have failed.

Figure 2.4: Layout of PMTs in the signal region. Clear circles indicate R1408 PMTs and
black circles indicate R5912.

The MiniBooNE tank is filled with 9.5 · 105 liters of undoped Exxon/Mobile Marcol 7

light mineral oil. The oil provides both the nuclear target for the incoming neutrinos and

a medium in which the charged products of an interaction can produce light; consequently,

both its properties as a target and its optical properties needed to be considered in making

the choice of mineral oil over another medium, for example, water. The density of mineral

oil, 0.845 g/cm3, is somewhat lower than that of water, providing fewer nuclear targets

and slightly lower event rates; a denser oil would have too viscous to allow recirculation.

However, the optical properties of mineral oil are superior to those of water for the purposes

of MiniBooNE. Its index of refraction, roughly 1.468 for visible light, is higher than that

of water (1.33). This results in both a higher ratio of Čerenkov light to scintillation and

a lower Čerenkov threshold. The higher ratio of Čerenkov light allows superior event

reconstruction than would be possible with water, and the lower Čerenkov threshold gives

MiniBooNE access to lower neutrino energies than would be possible with water. The oil

has an extinction length of about 25 m or longer for 460 nm light, and no more than 25%
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of photons originating in the center of the tank are lost before they reach the position of

the PMTs. All materials that were to be in contact with the oil were tested for possible

contaminants by being immersed in the oil for a long period of time (a week or more), at

room temperature and at 66◦C, after which the extinction length of the oil waas measured

and compared with a control sample.

2.2.2 Electronics and Data Acquisition

The information recorded during an event consists of charge and timing values in each of

the PMTs. The MiniBooNE electronics takes the signals generated by the PMTs, digitizes

the charge and timing information, stores the data temporarily, and reads out the data if

a trigger is received. The data acquisition electronics, which are re-used from the LSND

experiment, are housed in a total of fourteen VME crates: ten crates for the signal region

PMTs, two for the veto region PMTs, one for the trigger, and one for calibration time

inputs and beam monitoring. The PMTs are organized in groups of 24 handled by each

preamp/HV board. The PMTs were sorted into these groups by their measured dependence

of gain on voltage; the voltage supplied to each group is tuned to the PMTs’ gain so that

a uniform gain is achieved across the entire ensemble of PMTs. The MiniBooNE PMT

electronics were re-used (after being tested and refurbished) from LSND.

The raw signal, VPMT , generated on a PMT is convolved in the electronics with a

decaying exponential with a time constant of about 700 ns to produce the integrated signal

Vq. The value of Vq is read out and digitized at a frequency of 10 MHz to obtain the

digitial charge information. If Vpmt crosses a threshold of 2 mV, corresponding roughly

to 0.1 photo-electrons, an asynchronous discriminator fires, triggering a voltage ramp, Vt,

and signalling the synchronous discriminator to fire on the next tick of the 10 MHz clock.

Vt is read out and digitized on this clock-tick and the subsequent one, and then returns

quickly to baseline. These two successive measurements of Vt provide the voltage time

slope, which is then used to extrapolate to baseline and determine the initial hit time at

which Vpmt crossed the threshold. The charge and time information is processed by eight-
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channel cards, with sixteen cards per crate. Digitization is performed by 8-bit flash ADCs,

synchronously with the 10 MHz clock.

Figure 2.5: Illustration of signals in the PMT electronics.

Data for an event is read out if one of the physics triggers is set to “true”; 19.2 µs of data

are stored for each event. The states of the physics triggers depend on the states of seven

hit “comparators”, which in turn depend on PMT hit information, and three external

triggers, which depend on information from outside MiniBooNE. The comparators and

external triggers are summarized in table 2.2.

The physics triggers used are:

Beam: This is the main physics trigger for the experiment; it depends solely on the first

external trigger, E1, and requires only the “beam to MiniBooNE” signal from ACNET. It

is given priority over any other trigger. The primary MiniBooNE neutrino data, including

all data used in this analysis, was collected from this trigger.

NuMI: This is triggered when beam is sent to the NuMI beamline, the other neutrino
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Name Condition Purpose
E1 External signal Beam trigger
E2 External signal NuMI, strobe, and debuncher trigger
E3 External signal Calibration trigger
C1 Tank Hits ≥ 10 Activity monitor
C2 Tank Hits ≥ 24 Michel electron
C3 Tank Hits ≥ 200 High-energy neutrino
C4 Tank Hits ≥ 100 Neutrino candidate
C5 Tank Hits ≥ 60 Supernova ν candidate
C6 Veto Hits ≥ 6 Cosmic veto
C7 Veto Hits ≥ 4 Cosmic activity

Table 2.2: The external triggers and internal comparators upon which the MiniBooNE
physics triggers depend.

beam at Fermilab. Although off-axis from this beam, the MiniBooNE detector does see

a small flux of neutrinos from NuMI. The NuMI beam is timed so as not to be on at the

same time as the BNB. The NuMI trigger is given priority over any other trigger.

Strobe: This trigger fires at a rate of 2.01 Hz when the beam trigger is off, collecting

data on detector activity when there is no beam.

Laser: This depends solely on the external trigger E3 and is triggered when light is

transmitted to the dispersion flasks in the detector for calibration (see section 2.2.3).

Cube: This is triggered by activity in a calibration cube (see section 2.2.3) and is used

for cosmic ray calibration.

Tracker: This is triggered by a coincidence in the muon tracker hodoscope (see section

2.2.3) and is used for cosmic ray calibration.

Supernova: This requires C5 and ¬C6; it is used to collect candidates for supernova

neutrino events (where ¬ is the logical “not” operator).

Michel: This is designed to trigger on stopped muons decaying within the detector; it

requires C4 and C6 (to tag the muon) followed 3 to 15 µs later by C3 and ¬C6 (to tag the

electron).

Big ν: This requires C3 and ¬C6 to tag neutrino candidates outside the beam window.

Veto: This requires only C6.
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Tank: This requires only C5.

2.2.3 Calibration

MiniBooNE uses a laser calibration system to measure and monitor the performance of

the individual PMTs as well as to perform in situ measurements of the oil attenuation

length. This system uses a pulsed diode laser which transmits pulses of light via optical

fiber to four dispersion flasks in the detector. The laser pulses are about 100 ps in length

and the light is peaked at a wavelength of 397 nm. The flasks, each a 10 cm diameter

sphere, illuminate all the PMTs in the detector with roughly equal intensity. Laser pulses

are also delivered to a bare optical fiber that illuminates a ∼ 10◦ cone of PMTs at the

bottom of the detector; this is used to study light scattering in the detector. The laser

operates at a rate of 3.33 Hz; it is asynchronous with the beam from the accelerator, but a

beam extraction timing pulse vetoes the laser so that it does not fire during a beam event.

Timing and charge calibration constants for each PMT were obtained from the laser data.

These constants allow the conversion of raw PMT hit times to calibrated hit times and of

raw charge information into photo-electron units.

Nature provides another calibration source in the form of cosmic muons. To take

advantage of cosmic muon events in the detector, a hodoscope scintillator is positioned

above the detector and seven scintillator cubes within the detector’s signal region. The

hodoscope consists of two layers of plastic scintillator separated by one meter and tracks

incoming muons with an angular resolution of ∼ 1.9◦. The scintillator tubes, placed at

various depths within the detector, are 5 cm on each side, except for the deepest cube,

which is 7.6 cm on each side, in order to increase its signal rate. The flux of cosmic ray

muons is large enough (about 1 muon per cm2 per minute) that a significant number will

stop and decay within one of the scintillator cubes. Muons decay via only one channel:

µ− → e− + ν̄e + νµ. The electron created in the decay is known as a Michel electron. In

events where a cosmic muon decays in one of the scintillor cubes, the muon’s trajectory and

momentum and the origin of the Michel electron can be determined from the hodoscope
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Tµ (MeV) Angular Resolution Energy Resolution
95 ± 4 5.4◦ 12%
155 ± 5 3.2◦ 7%
229 ± 7 2.2◦ 7.5%
407 ± 9 1.4◦ 4.6%
584 ± 9 1.1◦ 4.2%
771 ± 9 1.0◦ 3.4%

Table 2.3: Muon angle and energy resolution. The six values of Tµ for which the resolutions
were measured correspond to the six scintillator cubes; each cube has access to a muon
energy determined by its depth.

and scintillator cubes alone, without reference to the PMTs; this provides a way of tuning

energies and particle positions in event reconstruction. Once this tuning is done, the

detector’s resolution in muon energy and muon angle can be measured by comparing the

values obtained from the calibration system with those obtained from event reconstruction.

These resolutions are shown in table 2.3 and figure 2.6.

This muon calibration can only performed for muons that pass through the hodoscope

and stop in a scintillator cube, and therefore only for muons with a roughly vertical trajec-

tory. Our muon energy reconstruction (discussed in chapter 4), however, is not sensitive to

the absolute orientation of the muon track, so data for nearly vertical muons is sufficient for

calibration. Any bias resulting from calibration to muons with vertical orientation only will

contribute to energy smearing, which is corrected through our energy unfolding procedure

(discussed in section 5.5).
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Figure 2.6: Muon energy and angle resolution for muons stopping in the 2 m deep cube
(¡Tµ¿ = 407MeV).
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Chapter 3

Event Simulation

As mentioned in section 1.1, a detailed simulation of neutrino events in the detector is

needed to perform the cross section ratio measurement. The simulation is needed to ob-

tain values for signal fraction and cut efficiency (see section 5.4) as a function of energy.

Additionally, a comparison of true and reconstructed neutrino energies in simulated events

is needed in order to unfold the neutrino energy distributions of data events into physically

meaningful quantities (see section 5.5). Event reconstruction (chapter 4) also requires a

simulation of the detector response to charged particles in the tank.

The event simulation in MiniBooNE is divided into three parts. First, a simulation of

the proton beam’s interaction with the Beryllium target and the subsequent meson decays

produces a prediction for the neutrino flux at MiniBooNE. Second, NUANCE is used to

simulate the interactions of neutrinos with protons and neutrons in the mineral oil and

nuclear re-interactions of the resulting products. Finally, a detector simulation is used to

track the final state products of these interactions and simulate the detector response.

3.1 Neutrino Flux Prediction

A Geant4 [69] Monte Carlo (MC) simulation is used to simulate the interaction of protons

with the Beryllium target and the subsequent meson decays. The geometry of this MC
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consists of a detailed simulation of the last 50 m of the Booster beamline, the target

hall (including the horn), and the 50 m decay region. Magnetic fields, particularly that

created by the MiniBooNE horn, are included in the simulation; the horn’s magnetic field

is modeled as a 1/R field between the inner and outer conductors, with a maximum of 1.5

T at the narrowest point. Electromagnetic and hadronic interactions and decays are taken

into account in the tracking of each particle in the simulation.

The MC generates protons 1 cm upstream of the target with random transverse posi-

tions and directions drawn from Gaussian distributions. The width of the position distri-

butions is 1.51 mm in the x-direction and 0.75 mm in the y-direction and the width of the

directional distributions is 0.66 mrad in the x-direction and 0.40 mrad in the y-direction.

A very small number of these protons interact outside the beamline (with the aluminum

of the horn, for example), due to the divergence of the beam or to scattering, but most are

incident on the beryllium target. Seven types of particles (π±,K±,K0, p, n) are generated

by the p-Be interactions. These particles are then tracked and any decay products are also

propagated through the geometry, with the branching ratios in table 2.1 governing their

decays. The output of the simulation is a neutrino flux distribution; whenever a neutrino

is produced with a momentum such that it will intersect with the detector, it is added to

the distribution.

Customized cross section tables based on the Glauber model [70] are used for interac-

tions of protons, neutrons, and pions with beryllium and aluminum. A customized model,

based on external data, is used for particle production in p-Be interactions. The energies

involved in these interactions are below the threshold for charm production. However,

strange production does occur at these energies, allowing kaons to be created. The prod-

ucts of the p-Be interactions are thus protons, neutrons, pions, and kaons. Proton, neutron,

and K− production are handled by the MARS simulation package [71]; the contribution

of K− to the neutrino flux is expected to be small. Contributions from semi-leptonic hy-

peron decays, which are simulated using FLUKA [72], are also expected to be small. A

Sanford-Wang parametrization [73] is used for π± and K0 production. This treats these
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cross-sections as having the form:

∂2σ

∂p∂Ω
= c1p

c2

(
1− p

pB − c9

)
exp

(
−c3p

c4

pc5B
− c6θ(p− c7pB cosc8 θ)

)
(3.1)

where p and θ are the momentum and angle of the product meson (in the laboratory

frame), pB is the momentum of the incident beam proton, and ci are empirically obtained

parameters. For pion production, the parameters are chosen to fit data provided by the

HARP [74] and BNL E910 [75] experiments. For K0 production, data from E910 and KEK

[76] are used. The parameter c9 was set to 1.00 in the pion production fits, but was allowed

to vary in the kaon fit. The c3 parameter was also set to 1.00 in the π+ fit and was varied

only in the first iteration of the fit procedure for the π− fit. This was done because the

data used in the fit covered only a limited range of proton momentum, resulting in some

strong correlations among the parameters.

Modelling pion production correctly is especially important, as 97% of neutrinos in the

detector are predicted to come from the decay of pions. The HARP experiment measured

double differential cross-sections (as functions of pion momentum and pion angle) for π+

and π− production using 8.89 GeV/c protons incident on replicas of the MiniBooNE beryl-

lium target. The kinematics of the experiment allowed cross-section measurements in the

region 0.75 GeV/c < pπ < 6.5 GeV/c and 30 mrad < θπ < 210 mrad. The full covariance

matrices reported by HARP were used to account for bin-to-bin correlations. The BNL

E910 experiment measured the same double differential cross-sections, but with incident

protons at four different momenta (6.4, 12.3, 17.5, and 17.6 GeV/c), for 0.4 GeV/c < pπ <

5.6 GeV/c and 30 mrad < θπ < 300 mrad. Because a covariance matrix was not reported

by E910, uncertainties on each bin were treated as uncorrelated in the MiniBooNE flux

prediction.

Neutral kaons are produced in the p-Be interactions with equal K0
S and K0

L components,

the latter of which is important in that its decay produces a νe or ν̄e about 40% of the

time. However, due to both the long decay time of the K0
L mesons and their not being
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Product c1 c2 c3 c4 c5 c6 c7 c8 c9

π+ 220.7 1.080 1.000 1.979 1.32 5.572 0.0868 9.686 1.00
π− 213.7 0.9379 5.454 1.210 1.284 4.781 0.07338 8.329 1.00
K0 15.13 1.975 4.084 0.928 0.731 4.362 0.048 13.300 1.278

Table 3.1: Sanford-Wang parameters in eq. 3.1 for production of pions and neutral in the
p-Be interactions. These were obtained through fits to data from [74, 75, 76]. Further
details, including the full covariance matrices, can be found in [66].

Product c1 c2 c3 c4 c5 c6 c7

K+ 11.70 0.88 4.77 1.51 2.21 2.17 1.51

Table 3.2: Feynman scaling parameters in eq. 3.2 for production of positive kaons in the p-
Be interactions. These were obtained through fits to data from [77, 78, 79, 80, 81, 82, 83, 84].
Further details, including the full covariance matrices, can be found in [66].

focused by the horn, their contribution to the neutrino flux is small compared to the K+.

The K+ production model is based on a variety of experiments [77, 78, 79, 80, 81, 82, 83,

84] using proton beams with momenta between 9.5 and 24 GeV/c. Feynman scaling is used

to extrapolate these data to the 8.89 GeV/c Booster beam. The production cross-section

in this parametrization is given by:

∂2σ

∂p∂Ω
=
p2

E
c1

(
a−

p‖

pmax‖

)
exp

(
−c2pT − c3

∣∣∣∣∣ p‖

pmax‖

∣∣∣∣∣
c4

− c5p
2
T − c7

∣∣∣∣∣pT p‖

pmax‖

∣∣∣∣∣
c6)

(3.2)

where p and E are the momentum and energy of the produced K+, pT is the transverse

component of its momentum, p‖ is the parallel component of its momentum, pm‖ ax is the

maximal possible parallel momentum for a given interaction (all in the center of mass

frame), and ci are again empirically determined constants.

Using the brute force method of generating protons one by one and recording their neu-

trino products would be too computationally intensive to produce the MC statistics needed

for the experiment. Therefore, several techniques are used to improve the statistics in a

computationally efficient way. First, the parent particles of the neutrinos are “redecayed”;

whenever a neutrino is produced, the decay of its parent is simulated 1000 at the same

position but with kinematics randomly drawn from decay distributions each time. Simi-
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larly, every time a muon is produced in the secondary beam, its propagation and possible

decay are simulated twenty times; to correct for the resulting overproduction of neutrinos,

those neutrinos produced by muon decay are weighted by a factor of 1
20 . To reduce sta-

tistical uncertainties in the high energy tail of the neutrino energy distribution, the cross

sections for meson production in the p-Be interactions are multiplied by an exponential of

the longitudinal meson momentum; the resulting neutrinos are weighted by the inverse of

this exponential. These enhancements result in better statistics for neutrinos produced by

muons and for those in the high energy tail of the distribution, while preserving the shape

of the neutrino flux by virtue of the lower event weights of those neutrinos.

The predicted MiniBooNE flux versus neutrino energy in neutrino mode is shown in

figure 3.1. Figure 3.2 shows the contribution to the νµ flux from each of the four most

important meson-decay channels. As the figure shows, nearly all neutrinos below about 2

GeV are produced by decaying pions; above 3 GeV the flux is dominated by the decay of

K+, while between 2 and 3 GeV these two sources are both significant.

Figure 3.1: The predicted flux by neutrino species in neutrino mode.
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Figure 3.2: The predicted flux of muon neutrinos by parent meson in neutrino mode.

3.2 NUANCE

Neutrino interactions within the detector are simulated with the Fortran-based package

NUANCE v3 [85]. The momentum distributions for each neutrino species generated by the

beam MC serves as the input to NUANCE. From these distributions, NUANCE generates

spectra for each possible channel of neutrino interaction. There are 99 event channels in

NUANCE, which is capable of simulating interactions over the wide range of 100 MeV to

1 TeV.

CCQE events are simulated using the Llewellyn-Smith model [44], discussed in section

1.5.2, with the axial mass tuned to M eff
A = 1.23± 0.20 GeV for interactions on carbon to

fit νµ CCQE cross-section data [87]. For interactions on hydrogen (i.e. on a free nucleon),

an axial mass of M eff
A = 1.13 GeV is used. This is essentially a compromise between the

MiniBooNE measured value of 1.23 GeV and the consensus value of 1.03 GeV from CCQE

measurements on deuterium. Simulation of resonant interactions is based on the Rein-

Sehgal model [24] (discussed in section 1.5.1) and simulation of deep inelastic scattering

(DIS) is based on the GRV model [88, 89], using parton distribution functions.

In MiniBooNE’s mineral oil (CH2), a small number of neutrino interactions occur on
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Name Interaction Contribution
CCQE νµn→ µ−p 40%
CCπ+ νµp(n)→ µ−π+n(p) 24%
NCEl νµp(n)→ νµp(n) 16%
NCπ0 νµp(n)→ νµπ

0p(n) 8%
CCπ0 νµn→ µ−π0p 4%
Other 8%

Table 3.3: The most abundant event channels in MiniBooNE and their contributions to
the total number of neutrino events in the detector.

the bare protons of the hydrogen atoms. Most interactions, however, are with a nucleon

in a carbon nucleus; in this case, nuclear effects must be taken into account. The nucleus

is treated as a relativistic Fermi Gas using the formalism of Smith and Moniz [45] with

Fermi momentum pF = 220 ± 30 MeV/c and binding energy EB = 34 ± 9 MeV/c2.

This model results in adjustments to the neutrino cross sections due to Fermi motion.

Nuclear shadowing is also taken into account through the Pauli blocking parameter κ =

1.019 ± 0.011. The dependence of the predicted cross sections on this nuclear model is

considered as a possible source of systematic error in section 5.7.5.

Neutrino interactions are treated as being instantaneous. After simulating the neutrino

interaction itself, NUANCE also simulates re-interactions of the products within the target

nucleus. The products of the initial interaction are propagated in 0.3 fm steps and at each

step are subject to possible hadronic interactions within the nuclear medium. When a

particle moves beyond the nuclear radius (2.5 fm for carbon), it is recorded in the final

state particle stack. The output of NUANCE consists of a list of these final state particles

and their momenta along with truth information concerning the event channel, the energy

of the initial neutrino, etc.

3.3 Detector Simulation

A Geant3-based Monte Carlo program [86] is used to simulate particle propagation and

interactions in the tank and the detector response. The detector MC takes as input the final
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state particle information generated by NUANCE. It then tracks these particles, taking

full account of Čerenkov radiation, scintillation, particle decays, and hadronic interactions.

Each visible photon radiated (by any process) is tracked individually.

Several modifications have been made to Geant3 for the detector simulation. Models for

Dalitz decay of neutral pions (π0 → e+e−γ) and muon decay (µ→ eνν̄) have been added.

Geant3’s default simulation of muon capture has also been modified. In the default con-

figuration, Geant3 treats captured muons as simply disappearing; in the MiniBooNE MC

the products of muon capture (low energy photons and neutrons) are correctly modelled.

The default hadronic interaction model, GFLUKA, has been replaced with GCALOR [90].

This is because the GFLUKA model has been found to significantly overpredict pion charge

exchange and underpredict pion absorption when compared with data [91].

The MiniBooNE optical model handles the creation, propagation, and detection of pho-

tons in the 250 to 650 nm range using 39 parameters to describe attenuation length, scat-

tering, reflections, PMT efficiencies, scintillation, and fluorescence. The MC allows photon

production via Čerenkov radiation, scintillation, or fluorescence and allows the photons to

interact in the tank via fluorescence, Rayleigh or Raman scattering, or absorption.

The index of refraction n of the oil used in MiniBooNE was found empirically [92] to

be a function of temperature and wavelength:

n(λ, T ) =
(
nD + C0

(
1
λ2
− 1
λ2
D

))
(1− C1(T − T0)) (3.3)

where λD = 589.3 nm (the wavelength of the test laser used), T0 = 293.15 K, nD = 1.4684

(the index of refraction at λD and T0), and C0 and C1 are empirically determined constants,

4240 ± 157 nm2 and (3.66 ± 0.04) ·10−4 K−1, respectively.

Čerenkov radiation, the primary source of photons producing PMT hits in MiniBooNE,

occurs when a charged particle moves faster than the speed of light in the surrounding

medium. The oil’s index of refraction at 589.3 nm and 293.15 K is 1.4684±0.0002, resulting

in a phase velocity cn of 1
n =0.681c±0.0001c for light. For a particle with speed v, Čerenkov
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radiation is emitted at a characteristic angle:

θCer = arccos
(cn
v

)
(3.4)

Using the relativistic relation between velocity and kinetic energy T , this can be written

as:

θCer = arccos

(
1
n

[
(T +m)2

(T +m)2 −m2

] 1
2

)
(3.5)

The Čerenkov threshold, the minimal kinetic energy a particle must have to produce

Čerenkov radiation, is for a particle of mass m:

TCer = m

(√
n2

n2 − 1
− 1

)
(3.6)

The passage of charged particles through the mineral oil also excites or ionizes electrons

in the surrounding atoms. The de-excitation of these atoms produces scintillation light.

Because the atoms do not de-excite instantaneously, the scintillation light is delayed by a

time on the order of tens of nanoseconds. Unlike Čerenkov radiation, scintillation light is

isotropic. The scintillation yield is proportional to the energy lost by the particle; however,

quenching reduces flux of scintillation light that reaches the phototubes. Birk’s law gives

the energy flux of scintillation light in relation to the energy loss of the particle responsible:

dEsci
dx

=
dE
dx

1 + kB1
dE
dx + kB2(dEdx )2

(3.7)

The constants kB1 = 0.014 g cm2 MeV−1 and kB2 = 0 were found empirically.

A further possible source of light is fluorescent molecules in the medium. These

molecules may be excited by high energy photons and produce visible wavelength photons

in their de-excitations. Spectrofluorometer measurements found four different fluorescers

in the mineral oil, with lifetimes ranging from 1 to 33 ns [93], of which one, with a time

constant of 33 ns, dominates the fluorescent emission [94]. The time constants and emission
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profiles of these fluorescers were measured and are included in the MC simulation.

The processes to which photons propagating through the mineral oil are susceptible in

the MC are scattering, absorption, and fluorescence. Photons may scatter either elastically

(Rayleigh scattering) or inelastically (Raman scattering). In the case of Rayleigh scattering,

the wavelength of the photon is unchanged; in Raman scattering, the photon loses some

energy by exciting the molecule on which it scatters. The MC model for Rayleigh and

Raman scattering is based on measurements of scattering in Marcol 7 mineral oil [95, 96].

Rayleigh scattering accounts for about 95% of scattering in the oil.

Photons travelling through the oil can also contribute to fluorescence. In this case,

rather than being excited by a higher energy photon (as discussed above), a fluorescent

molecule may be excited by a visible photon; in this case, fluorescence is effectively a

scattering phenomenon rather than a source of visible light. The difference between flu-

orescence and Raman scattering is that in fluorescence, the initial photon is absorbed

completely while in Raman scattering it only loses some of its energy. Fluorescence is thus

a resonant process, whereas Raman scattering can occur with light of any frequency. Like

Raman scattering, however, fluorescence can shift the wavelength of the scattered light.

The response of the fluorophores in the oil was measured as a function of wavelength, and

the wavelength shifting is included in the optical

Absorption refers to any process by which a photon is lost without producing secondary

photons that are visible to the PMTs. The absorption rate is not measured directly, but

measurements were made of the total extinction rate; the absorption rate is defined as the

total extinction rate minus the contributions from scattering and fluorescence. Figure 3.3

shows the total extinction rate at 10 cm as well as the contributions of various processes.

Data collected by the strobe trigger is added to the MC to simulate detector activity

during periods when the beam is off. This allows the MC events to include hits from

radioactivity and any other sources of light not modelled in Geant.

The output of the Geant3 detector simulation is the energy and arrival time of each

visible photon that reaches a PMT. This information is passed to a FORTRAN program
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Figure 3.3: Extinction rates in Marcol 7 mineral oil. The black curve indicates the total
extinction rate; the coloured curves indicate the contributions of each component. Not
shown are the contributions from Raman scattering (which is very small) and from absorp-
tion (which is not measured independently, but is assumed to account for the remainder of
extinction. The solid curves and data points come from measurements of the oil [95]; the
dashed curves are extrapolations.
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that convolutes each arriving photon with the charge response function for the appropriate

PMT; these response functions were obtained empirically for each individual PMT. The

simulated response function is then subjected to an algorithm that duplicates in software

the processing performed by the analog-to-digital converter in hardware (discussed in sec-

tion 2.2.2). The information output by the DAQ simulation is then in exactly the same

form as the raw data recorded in the detector.
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Chapter 4

Event Reconstruction

4.1 Events and Sub-events

The task of event reconstruction in MiniBooNE is to convert raw PMT data into informa-

tion on particle tracks and momenta. Each PMT’s discriminator can fire, triggering the

recording of hit information, at most once every 200 ns. The products of a typical neutrino

interaction propagate through the tank for a time on the order of tens of ns before stopping

or decaying. Photons produced immediately by these products (“prompt light”) can take

up to 40 ns to traverse the tank and reach a PMT. The emission of delayed light (e.g. from

scintillation) in the detector decays exponentially with a time constant of about 30 ns.

Because the time during which light from a given particle is produced is typically shorter

than the 200 ns window of the discriminator, each PMT can only register one hit due to

that particle.

The raw data available for use in event reconstruction consists of a charge and time value

for each of the 1,280 PMTs. From this data, there are seven quantities to be reconstructed

for a given final state particle: the 4-vertex of the particle’s track (~r0, t0), the direction

(θ0, φ0), and the particle’s initial energy (E0). If a track is approximated as a straight line

segment, it can be parametrized with these seven quantities. These track parameters can

be thought of as a seven-dimensional vector ~x.
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An event in the MiniBooNE detector is defined to comprise all PMT data during the

19.2 µs DAQ window; the data actually coming from light produced by the products of

a neutrino interaction typically covers a much shorter time, on the order of a few µs.

In practice, the data from an event can be divided into still shorter units called “sub-

events”. A sub-event is defined as any group of more than 10 PMT hits with no more

than 10 ns between consecutive hits. An event might contain many sub-events or it might

contain just one sub-event. Each sub-event typically corresponds to a particle track in the

detector. For example, a muon created in a neutrino interaction will propagate through

the oil, producing light and triggering PMT hits until it loses enough energy to drop below

the Čerenkov threshold. Eventually it will decay, producing an electron; the electron will

then briefly radiate and produce PMT hits before dropping below Čerenkov threshold.

The cluster of hits associated with the muon will typically consitute one sub-event and

the cluster associated with the electron will constitute another. This is illustrated in 4.1,

which shows the sub-event structure of a typical CCQE event. The first task in event

reconstruction, then, is, for each sub-event, to transform the set ~q and ~t of charge and time

data on the PMTs into a track parametrization ~x. Once a track is associated with each

sub-event, reconstruction of event kinematics can proceed.

When two Čerenkov-radiating particles are produced simultaneously, both of their

tracks will be contained in a single sub-event. This is typically the case, for example,

for the muon and the pion in a CCπ+ event. The Stancu fitters used for this analysis are

not capable of resolving two tracks in the same sub-event. In the case of two simultaneous

tracks, the more energetic track is reconstructed. This means that in a CCπ+ event, it

is impossible to reconstruct both the muon and the pion. The more energetic track is

therefore reconstructed and assumed to be the muon. MC predicts that this will result in

a mis-identification of the pion as the muon in roughly 32% of CCπ+ events. This muon

mis-ID ultimately has the effect of a bias in the neutrino energy reconstruction (see section

4.4). This bias is among the effects that the energy unfolding procedure, which will be

discussed in section 5.5, is intended to correct.
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Figure 4.1: The sub-event structure of a typical CCQE event. The first cluster of hits
corresponds to the muon and the second cluster to the electron produced when the muon
decays. The inset shows a closer view of the first sub-event.

A least log likelihood method is used to find the track parameters ~x for a sub-event

from the charge and time information ~q, ~t. Conceptually, there are two components to this

method: first, an algorithm is needed to predict the probability that ~q and ~t are observed

for a given track ~x; second, the values for ~x that maximize the probability of the observed

~q and ~t must be found. For the latter step, the minimization package MINUIT [97] is used.

MINUIT takes as input a function to be minimized, the parameters to be varied, lower

and upper limits on each parameter, the step size for each parameter, and the initial guess

or “seed” for each parameter. It would be too computationally intensive to simply feed

MINUIT all the raw hit information and perform a simultaneous fit for all seven parameters

of ~x. Therefore, a series of improving guesses and minimizations is performed, as described

in the following sub-sections.

4.2 The S-Fitter

The fitter used for this analysis is the Stancu Fitter or S-Fitter, developed primarily by

Ion Stancu. This fitter uses three iterations of the likelihood maximization procedure to
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obtain, respectively, the “fast”, “full” and “flux” fits.

4.2.1 Fast Fit

Approximating the source of the light for a sub-event as the point ~r0 and time t0 at the

beginning of a particle’s track and assuming that only Čerenkov light is produced, one can

write the probability that a PMT i measures light at time ti as a Gaussian with the PMT’s

measured time resolution of 1.8 ns as the spread:

PC(ti|~r0, t0) =
1√
2πσ

exp

(
−(ti − t0 − |~ri − ~r0|/cn)2

2σ2

)
(4.1)

where ~ri is the position of PMT i and cn is the speed of light in the oil. The probability for

the full set of N PMTs to measure light at a set of times ~t is the product of the individual

probabilities for each PMT:

PC(~t|~r0, t0) =
N∏
i=1

1√
2πσ

exp

(
−(ti − t0 − |~ri − ~r0|/cn)2

2σ2

)
(4.2)

This expression for PC(~t|~r0, t0) is called the time likelihood function. The Stancu Fast

Fit is achieved by maximizing the time likelihood function with respect to the track pa-

rameters ~r0 and t0. The fitter is seeded with the charge-averaged position:

~r0 =
∑N

i=1 qi~ri∑N
i=1 qi

(4.3)

where qi is the number of photons measured by PMT i.

This maximization procedure gives the Fast Fit for ~r0 and t0. The fit time t0 is used to

classify each PMT hit as either prompt (if the hit time is less than 4 ns after t0) or late (if

the hit time is more than 4 ns after t0). Prompt PMT hits are assumed to be due mainly

to Čerenkov light and late PMT hits mainly to scintillation; values for the Čerenkov and

scintillation photon fluxes, ΦC and Φs, are thus obtained. Fast Fit values for the θ and φ

(specifying the particle’s direction) are then obtained simply by taking the charge-averaged
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direction of prompt PMT hits with respect to the vertex fit ~r0. A Fast Fit value for the

energy E of the particle producing the track is obtained from the total charge.

4.2.2 Full Fit

The track parameters obtained by the Fast Fitter are used as the seed values for the Stancu

Full Fitter. Whereas the Fast Fitter uses only the time likelihood function, the Full Fitter

uses both a modified time likelihood function and a charge likelihood function.

The predicted number of photons (or, equivalently, the predicted charge) measured by

a PMT i due to a track with parameters ~x can be written as the sum of contributions from

Čerenkov and scintillation light:

Qi = QC,i +Qs,i (4.4)

QC,i =
εi

(~ri − ~r0)2
ΦC(E)F (cos θi, E)fC(cos ηi)exp

[
−(~ri − ~r0)2

λc

]
(4.5)

Qs,i =
εi

(~ri − ~r0)2
Φs(E)fs(cos ηi)exp

[
−(~ri − ~r0)2

λs

]
(4.6)

where εi is the PMT quantum efficiency, ΦC (Φs) is the Čerenkov (scintillation) flux of

photons, fixed to the values obtained by the Fast Fitter, λC (λs) is the attenuation length

for Čerenkov (scintillation) photons, ηi is the angle of incidence of the light, fC (fs) is the

PMT response for Čerenkov (scintillation) light, θi is the angle between the particle track

and the vector pointing from the track’s vertex to PMT i, E is the particle’s energy, and

F is the angular distribution of Čerenkov light.

The probability that PMT i measures a number of photons qi can be written as a

Poisson distribution about the expected value Qi:

P (qi|~r0, t0, E) =
1
qi!
Qqii e

−Qi (4.7)
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As with the timing likelihood function, we can generalize to the charge likelihood func-

tion, that is, the probability for the set of N PMTs with expected charges ~Q to actually

measure charges ~q by taking the product of the individual probabilities:

P (~q|~r0, t0, E) =
N∏
i=1

1
qi!
Qqii e

−Qi (4.8)

The time likelihood function PC(ti|~r0, t0) given in eq. 4.1 assumed that only Čerenkov

light (prompt light) was produced. A corresponding time likelihood function Ps that

assumes only scintillation light (late light) can be constructed simply by convolving the

expression for PC with an exponential decay as a function of time. The full time likelihood

for an individual PMT can be written using these two terms and the predicted Čerenkov

and scintillation charge for the PMT:

P (ti|~r0, t0) =
QC,i
Qi

PC(ti|~r0, t0) +
Qs,i
Qi

Ps(ti|~r0, t0) (4.9)

The Full Fitter obtains the track parameters ~r0 and t0 by maximizing the total likelihood

function, which is just the product of the charge likelihood (eq. 4.7) and the imporived

time likelihood (eq. 4.9):

P (~q,~t|~r0, t0, E) =
N∏
i=1

P (ti|~r0, t0)P (qi|~r0, t0, E) (4.10)

The Full Fit direction and energy are then obtained in the same way as in the Fast Fit,

but using the new 4-vertex.

4.2.3 Flux Fit

The final stage of the S-Fitter is the Flux Fit. In this step, the values for ~r0, t0, θ, and

φ are held constant while the Čerenkov and scintillation light strengths ΦC and Φs are

varied. A new value for the energy E of the particle is then obtained using the fit values

for ΦC and Φs.
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4.2.4 Electron-like and Muon-like Sub-events

As noted above, the discussion of the S-Fitter so far has assumed that the source of light

for a sub-event is point-like. This is a good approximation in the case that the light is

produced by an electron, which Čerenkov radiates only briefly. It is not, however, a good

approximation for many other particles; a muon, for example, typically has a long track

and Čerenkov radiates for a comparatively long time. The reconstruction scheme described

above, in which a point-like source is assumed, is therefore the reconstruction scheme for

the so-called “electron hypothesis”, that is, the hypothesis that the particle responsible for

the sub-event is an electron or positron.

A modified reconstruction scheme exists for the corresponding “muon hypothesis”. This

scheme is the same as that described above, except that the light is assumed to come from

two point-like sources located symmetrically about the mid-point of the particle’s track,

with each source responsible for half of the Čerenkov and half of the scintillation light

detected by the PMTs. This introduces an additional parameter, the length of the track

(or, in this model, the distance between the two sources) for which the fitter extracts a

value. The Fast, Full, and Flux fits are then performed just as for the electron hypothesis,

but with this additional parameter also varied in the likelihood maximizations.

For each sub-event, a fit is performed using both the electron hypothesis and the muon

hypothesis. A comparison of the likelihood functions with the best fit for each hypothesis

is used to determine whether the sub-event is electron-like or muon-like; the fit values

from the appropriate hypothesis are then used for subsequent stages of reconstruction and

analysis.

4.3 The P-Fitter

The P-Fitter was developed primarily by Ryan Patterson. While most of this analysis

uses the S-Fitter, the P-Fitter is used for an alternative reconstruction study described in

section 5.7.2. The primary differences between the P-Fitter and the S-Fitter are described
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here; a full description of the P-Fitter can be found in [94]

The P-Fitter assumes that the source of light observed for a sub-event is a line segment

corresponding to the track the particle responsible. This is in contrast to the S-Fitter,

which approximates a track with one or two point-like sources. Čerenkov radiation and

scintillation along the track is allowed to be non-uniform, but for each process the proba-

bility density for emission ρ(s, E) is assumed to be a function only of the distance s from

the event vertex and the initial energy E of the particle. This density is normalized to∫∞
−∞ ρ(s, E)ds = 1. Using these probability densities, we can write new expressions for the

predicted charge QC,i and Qs,i measured by PMT i due to Čerenkov and scintillation light

as integrals over the particle’s path:

QC,i = ΦC(E)εi
∫ ∞
−∞

ρC(s, E)F (cos θi, s, E)fC(cos ηi)
T (~r)

(~ri − ~r)2
ds (4.11)

Qs,i = Φs(E)εi
∫ ∞
−∞

ρs(s, E)fs(cos ηi)
T (~r)

(~ri − ~r)2
ds (4.12)

where ~r is the vector pointing from the center of the tank to point s along the track,

T (~r) is the transmission of light through the oil and glass (which was assumed to be an

exponential decay in equations 4.5 and 4.6), and other terms are as defined in section 4.2.

Note that ~r, η, and θ are now implicitly functions of s, which parametrizes the track.

F , the Čerenkov emission profile, is also allowed to depend explicitly on s; that is, the

emission profile changes as the particle propagates and loses energy. Note also that while

we integrate from negative to positive infinity, ρ(s, E) will be non-zero only between the

track vertex (s = 0) and the point at which the particle either ceases to radiate or exits

the detector.

Computing these integrals for each PMT would make the likelihood maximization un-

acceptably slow. Therefore, an approximation is used. We begin by defining an effective

acceptance, J(s), which absorbs all the terms in the integrand except the emission proba-

bility density and the Čerenkov emission profile:
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JC(s) = εifC(cos ηi)
T (~r)

(~ri − ~r)2
(4.13)

Js(s) = εifs(cos ηi)
T (~r)

(~ri − ~r)2
(4.14)

We then approximate J(s) with a parabola:

JC(s) = jo,C + j1,Cs+ j2,Cs
2 (4.15)

Js(s) = jo,s + j1,ss+ j2,ss
2 (4.16)

The predicted charges for Čerenkov and scintillation light, then, are:

QC,i = ΦC(E)
(
j0,C

∫ ∞
−∞

ρs(s, E)F (cos θi, s, E)ds+ j1,C

∫ ∞
−∞

ρs(s, E)F (cos θi, s, E)sds

+ j2,C

∫ ∞
−∞

ρs(s, E)F (cos θi, s, E)s2ds

)
(4.17)

Qs,i = Φs(E)
(
j0,s

∫ ∞
−∞

ρs(s, E)ds+ j1,s

∫ ∞
−∞

ρs(s, E)sds+ j2,s

∫ ∞
−∞

ρs(s, E)s2ds

)
(4.18)

The integrands in the scintillation equation now depend only on E. The integrands in

the Čerenkov equation also depend on θi(s), the angle between the particle’s direction and

a line connecting the particle with PMT i, which in turn depends on the distance |~r0 − ~ri|

between the track’s vertex and PMT i and on the initial angle θi(0). The integrals, then,

depend on three parameters, and can be computed ahead of time for various values of

these parameters. Rather than evaluating an integral for each PMT at each step of the

maximization, a table of these pre-computed values is consulted.

The P-Fitter then proceeds in much the same way as the S-Fitter, but using the more

detailed charge predictions in equations 4.17 and 4.18. The P-Fitter reconstructs muons

slightly better than the S-Fitter, but runs about ten times more slowly. For a comparison

of the S-Fitter and P-Fitter in the ratio analysis, see section 5.7.2
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4.4 Reconstruction of Event Kinematics

The neutrino energy Eν of an event is reconstructed using the muon energy and direction

obtained from the Stancu fitters. For events in the CCπ+ sample, it is the StancuFlux

fit for muon energy that is used in this reconstruction; for the larger CCQE sample, the

faster StancuFull fit is used. This results in a bias that makes the reconstructed neutrino

energies for the two samples incommensurable. This difficulty is overcome by the energy

unfolding scheme (see section 5.5), which is applied separately to each sample. A check

of the analysis was also performed using the StancuFull fit for muon energy in the CCπ+

as well as the CCQE sample; this variation showed a negligible difference in the resulting

cross-section ratio as compared to the main result (see section 5.7.2).

Treating the interaction as a two-body collision and assuming that the target nucleon

is at rest within the nucleus and the incident neutrino is moving in the z-direction, we can

write the neutrino energy for an event as:

Eν =
1
2

2mpEµ +m2
1 −m2

p −m2
µ

mp − Eµ + cos θµ
√
E2
µ −m2

µ

(4.19)

where θµ is the angle of the muon with respect to the z-axis, Eµ is the energy of the muon,

mµ is the mass of the muon, mp is the mass of the proton, and m1 is the mass of the

neutron for CCQE events and the mass of the nucleon resonance for CCπ+ events. For

the purpose of neutrino energy reconstruction, the resonance is assumed to be the ∆(1232)

for all CCπ+ events.

Note that by treating all events as two-body collisions, we are ignoring the effect of the

pion on event kinematics in CCπ+ events. This approximation is necessary because the

pion cannot be reconstructed using the standard fitters. Including the pion, the kinematics

for a CCπ+ event would give:

Eν =
1
2

2mp(Eµ + Eπ)− 2pµ · pπ +m2
1 −m2

p −m2
µ

mp − Eµ − Eπ + cos θµ
√
E2
µ −m2

µ + cos θπ
√
E2
π −m2

π

(4.20)
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The systematic effect of the use of eq. 4.19 instead of 4.20 on the CCπ+ reconstructed

energy distribution is one of the smearing effects that our energy unfolding procedure

(section 5.5) is intended to correct.
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Chapter 5

CCπ+ to CCQE Cross Section

Ratio

5.1 Analysis Method

The cross-section for a neutrino interaction α is defined as:

σα =
Nα

ΦνTNtargets
(5.1)

where Nα is the true number of events of type α, Ntargets is the number of nuclear targets

in the detector, T is the length of time during which neutrinos are incident on the target,

and Φν is the flux of incident neutrinos.

Because the incident neutrino flux and the number of nuclear targets are fixed properties

of the beam and the detector (i.e. independent of the process we are considering), Ntargets

and Φν must be the same for any two processes α and β (where α and β are, for instance,

CCπ+ and CCQE ). Therefore we can write the ratio of the α and β cross-sections as:

σα(Eν)
σβ(Eν)

=
Nα(Eν)
Nβ(Eν)

. (5.2)

Note that in writing the cross sections and numbers of events as functions of Eν only,
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we are implicitly integrating over Q2 and cos(θµ).

For a given process α and a given set of cuts associated with α, we can relate the number

of events passing those cuts, Nα−cuts, to the true number of events of type α present in the

data, Nα, with:

Nα−cuts = f−1
α ∗ εα ∗Nα (5.3)

where fα is the signal fraction and ε the cut efficiency for process α and the given cuts.

The signal fraction is defined as the fraction of events Nα−cuts that are also true α events;

the cut efficiency is defined as the fraction of true α events Nα that also pass the cuts. In

other words, if we denote true α events that pass the α cuts as Nα−cuts,α, then:

fα =
Nα−cuts,α
Nα−cuts

(5.4)

εα =
Nα−cuts,α

Nα
(5.5)

Given a set of events that pass cuts, we can find the true number of events Nα, if fα

and εα are known:

Nα = ε−1
α ∗ fα ∗Nα−cuts (5.6)

We can apply this relation independently to each energy bin. However, because the

reconstructed energy we measure for the Nα−cuts events differs from the true energy, in

order to make the relation useful we must include an energy unfolding correction. Therefore

we write the relation between the true number of α events in the ith true energy bin, Nα,i,

and the number of events passing cuts in the jth reconstructed energy bin, Nα−cuts,j (we

will use index i to refer to true energy bins and j to refer to reconstructed bins throughout)

as:
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Nα,i = ε−1
α,i ∗

∑
j

Uij ∗ fα,j ∗Nα−cuts,j (5.7)

where fα,j and εα,i are now the signal fraction and cut efficiency for the appropriate recon-

structed and true energy bins, respectively. Uij , the energy unfolding correction, is defined

by this equation; it is a matrix that acting on a reconstructed energy distribution returns

the corresponding true energy distribution. For now, we’ll just assume that such a matrix

exists; in section 5.5, the method of actually constructing Uij will be discussed.

Note that while the signal fractions are defined as functions of reconstructed energy,

the cut efficiencies must be defined in terms of true energy, because for events that are not

reconstructed, no reconstructed energy is defined. Therefore, we apply the signal fraction

correction before and the cut efficiency correction after unfolding.

Thus, we can write the ratio of the α to β cross-sections for energy bin i as:

Ri =
σα,i
σβ,i

=
ε−1
α,i ∗

∑
j Uij ∗ fα,j ∗Nα−cuts,j

ε−1
β,i ∗

∑
j Uij ∗ fβ,j ∗Nβ−cuts,j

(5.8)

Plugging in the definitions of signal fraction and cut efficiency, the ratio can be re-

written purely in terms of numbers of events in data and Monte Carlo:

Ri =
σα,i
σβ,i

=

NMC
α,i

NMC
α−cuts,α,i

∗
∑

j Uij ∗
NMC
α−cuts,α,j
NMC
α−cuts,j

∗NData
α−cuts,j

NMC
β,i

NMC
β−cuts,β,i

∗
∑

j Uij ∗
NMC
β−cuts,β,j
NMC
β−cuts,j

∗NData
β−cuts,j

(5.9)

5.2 Observed and FSI-Corrected Ratios

So far we have spoken in a general way of measuring the ratio between two cross sections

α and β. In this analysis, we are interested in CCπ+ processes: νµp→ µ−pπ+ (NUANCE

channel 3), νµn→ µ−nπ+ (NUANCE channel 5), and νµA→ µ−Aπ+ (NUANCE channel

97); and the CCQE process: νµn → µ−n. We must, however, carefully decide exactly

what we are measuring before we define what counts as a signal event for each of these

processes.
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For our primary measurement, we define “effective” CCπ+ and CCQE (or CCπ+-like

and CCQE-like ) signal events as follows:

Effective CCπ+:

1. Final state particles (FSP) must include one µ− and no other muons.

2. FSP must include one π+ and no other pions.

3. FSP must not include any hadrons other than protons, neutrons, or pions.

Effective CCQE:

1. FSP must include one µ− and no other muons.

2. FSP must not include any hadrons other than protons or neutrons.

“Final state particles” here refers to particles that emerge from the target nucleus.

Note that it does not include additional particles subsequently produced in detector.

The CCπ+-like to CCQE-like cross section ratio is then found according to equation

5.9. The ratio found this way is called the observable cross section ratio. This amounts to

a measurement of events as they appear after any nuclear re-interactions take place. This

result is not corrected for nuclear effects and is thus independent of any model for such

re-interactions.

The composition of effective CCπ+ and CCQE samples, before cuts, is shown in figure

5.1. The effective CCπ+ sample consists primarily of CCπ+ events, with small but signif-

icant contributions from DIS and multi-pion events at higher energies. Effective CCQE

events are, likewise, primarily CCQE with additional contributions from CCπ+ resonant

and, to a lesser extent, CCπ0. Figure 5.2 compares the effective and true Monte Carlo

samples in generated neutrino energy, before cuts. Note that there are fewer effective

than true CCπ+ events at all energies, whereas there are more effective than true CCQE

events above 0.6 GeV (and roughly equal numbers below 0.6 GeV). Taken together with

the effective sample composition plots, these indicate that the dominant effect driving the

difference between true to effective samples is that a large number of true CCπ+ events
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are effective CCQE events. These are presumably events in which the pion is absorbed in

the nucleus.

Figure 5.1: Composition of effective CCπ+ (left) and CCQE (right) events before cuts
vs. generated neutrino energy. Black: CCπ+ resonant, red: CCπ+ coherent, dark blue:
CCQE, purple: DIS, light blue: multi-pion, green: CCπ0.

Figure 5.2: Effective (red) and true (black) samples of CCπ+ (left) and CCQE (right)
before cuts, vs. generated neutrino energy.

Prior experiments [55, 57, 59], however, have all reported measurements in which the

effects of final state interactions (FSI) in the target nucleus have been removed using MC.

Solely for the purpose of comparison, we extracted a similar FSI-corrected ratio. In this

case, we define CCπ+ and CCQE signal events based on the NUANCE channel by which

the events were produced. NUANCE channels 3, 5, and 97 are defined as CCπ+ signal and

NUANCE channel 1 is defined as CCQE signal. Thus, the FSI-corrected measurement is

a measurement of the cross section ratio at the initial event vertex, before any hadronic

re-interactions. The signal fractions and cut efficiencies for the FSI-corrected ratio include
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corrections for intra-nuclear hadron re-scattering based on the MC’s model for nuclear

effects. It must be noted that this is not in any way an independent measurement from

the observed ratio discussed above; the difference between the two results comes entirely

from the nuclear model assumed in the MC. The FSI-corrected measurement is made only

in order to allow a comparison with previous measurements.

The MC’s model for hadronic re-interactions depends on parameters with associated

uncertainties. The corrections for final state interactions, therefore, introduces new sys-

tematic uncertainty into the FSI-corrected result. These systematic errors are discussed in

section 5.6.

5.3 Event Selection

CCQE events can be identified in the MiniBooNE data by looking for the outgoing muon

and the electron to which it decays at the end of its track (the “Michel electron”). CCQE

events should therefore include exactly two sub-events, one each for the muon and Michel

electron. The requirement that we see the Michel electron means that our CCQE sample

will include fully contained events only (that is, events in which the muon decays before

leaving the tank).

The CCQE cuts were chosen to maximize the efficiency of the sample while also min-

imizing background. Note that it was the efficiency and purity of the total sample that

were considered in optimizing the selection; the purity and efficiency in any given energy

bin might not be optimal with these cuts. The following cuts are used to select this sample:

1. Exactly two sub-events

2. First sub-event in beam window (4400 < SplitEvent aveTTim < 6400)

3. Veto region hits < 6 for both sub-events

4. Distance between Michel electron and end of muon track < 100 cm.

5. Signal region (“tank”) hits > 200 for first sub-event and < 200 for second sub-event
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6. R < 500 cm. for first sub-event, where R is the distance of the muon vertex from the

center of the tank.

Figure 5.3: CCQE Box After Cuts vs. E gen (GeV) (Monte Carlo). Left: all events; right:
only background. Black: total, red: CCQE, blue: CCπ+ resonant, gold: CCπ+ coherent,
green: CCπ0,purple: Multi-pion

Figure 5.3 shows the composition of the CCQE box after cuts. Table 5.1 shows the

fractional contributions of the most important processes to the CCQE box, dividing each

process into CCQE-like and non-CCQE-like events. As we would expect, CCπ+ resonant

events constitute by far the most important background for CCQE. The MC used for

this analysis contains 516,643 true CCQE events for 5.579E20 protons on target. 181,379

events pass the CCQE cuts and 134,226 of the events passing cuts are true CCQE. The

CCQE data sample after cuts contains 195,482 events.

CCπ+ events are identified by tagging the outgoing muon, the Michel electron at the

end of its track, and the Michel electron produced by the pion. As with the CCQE sample,

the requirement that we see the Michel at the end of the muon track means that we select

only fully contained events. Note that the events we refer to as CCπ+ here actually include

two quite distinct processes: resonant pion production, in which a neutrino interacts with

a nucleon to produce a ∆+ or a ∆++ which then decays to produce a pion, and coherent

pion production, in which the pion is produced via the reaction of a neutrino with the

nucleus.

As with CCQE, the CCπ+ cuts were chosen to maximize the total purity and efficiency
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Figure 5.4: Effects of Cuts on CCQE sample in E rec (GeV) (Monte Carlo). Black: 2
sub-events and beam window cuts, red: vcut, dark blue: tcut, green: R cut, light blue: all
cuts

of the sample. The CCπ+ sample uses the following cuts:

1. Exactly three sub-events

2. First sub-event in beam window (4400 < SplitEvent aveTTim < 6400)

3. Veto region hits < 6 for all sub-events

4. Signal region hits > 175 for first sub-event

5. 20 < Signal region hits < 200 for subsequent sub-events

6. r nu < 500 cm., r mi1 < 500 cm., r mi2 < 500 cm, where r nu is the distance of the

interaction vertex from the center of the tank and r mi1 and r mi2 are the distances

of the two Michel electrons from the center of the tank.

7. Distance from closest Michel electron to end of muon track < 150 cm.

Figure 5.5 shows the composition of the CCπ+ box after cuts. Table 5.2 gives the

fractional contributions of the most important processes to the CCπ+ box. Note that

while the coherent distribution is here shown separately from the resonant (and is included

for comparison in the plot showing the backgrounds) it is properly a contribution to the

signal, not to the background, in this analysis. The background is dominated by CCQE
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Process Channels Percent of Box
CCQE (CCQE-like ) 1 72.3
CCπ+ Resonant (CCQE-like ) 3, 5 8.0
CCπ+ Coherent (CCQE-like ) 97 0.2
CCπ0(CCQE-like ) 4 2.1
Multi-pion (CCQE-like ) 17-26, 79-84 0.02
DIS (CCQE-like ) 91, 92 < 0.01
Other (CCQE-like ) 2.1
CCQE (not CCQE-like ) 1 1.5
CCπ+ Resonant (not CCQE-like ) 3, 5 10.6
CCπ+ Coherent (not CCQE-like ) 97 0.9
CCπ0(not CCQE-like ) 4 1.8
Multi-pion (not CCQE-like ) 17-26, 79-84 0.6
DIS (not CCQE-like ) 91, 92 0.04
Other (not CCQE-like ) 3.8

Table 5.1: Composition of the CCQE sample. In the measurement of the observed cross
section ratio, rows 1-7 (CCQE-like ) are defined as CCQE signal events. In the measure-
ment of the FSI-corrected ratio, rows 1 and 8 are defined as CCQE signal.

and (at lower reconstructed energies) by multi-pion resonant processes. Figure 5.6 shows

the effect of each cut on the distribution of true Monte Carlo CCπ+ events. The MC

sample contains a total of 308,352 CCπ+ events for 5.579E20 protons on target. 42,390

MC events pass the CCπ+ cuts, of which 36,844 are true CCπ+ events. The CCπ+ data

sample after cuts contains 46,649 events.

5.4 Signal Fraction and Cut Efficiency

To obtain the signal fraction and cut efficiency for the CCπ+ and CCQE samples, we pass

a sample of Monte Carlo events through the reconstruction, perform the event selection

cuts, and compare the results with the truth information. From their definitions (given in

section 5.1), we see that:

fα,j =
Nα−cuts,α,j
Nα−cuts,j

(5.10)

εα,i =
Nα−cuts,α,i

Nα,i
(5.11)
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Figure 5.5: CCπ+ Box After Cuts vs. E gen (GeV) (Monte Carlo). Left: all events; right:
only non-resonant contributions. Black: total, red: CCπ+ resonant, blue: CCπ+ coherent,
dark green: CCQE, purple: Multi-pion resonant, light green: CCπ0, light blue: DIS

Figure 5.6: Effects of Cuts on CCπ+ sample in E rec (GeV) (Monte Carlo). Black: 3
sub-events and beam window cuts, red: vcut, blue: tcut, green: all cuts.
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Process Channels Percent of Box
CCQE (CCπ+-like ) 1 2.2
CCπ+ Resonant (CCπ+-like ) 3, 5 80.4
CCπ+ Coherent (CCπ+-like ) 97 5.9
CCπ0(CCπ+-like ) 4 0.9
Multi-pion (CCπ+-like ) 17-26, 79-84 2.4
DIS (CCπ+-like ) 91, 92 0.2
Other (CCπ+-like ) 1.1
CCQE (not CCπ+-like ) 1 3.0
CCπ+ Resonant (not CCπ+-like ) 3, 5 1.2
CCπ+ Coherent (not CCπ+-like ) 97 0.02
CCπ0(not CCπ+-like ) 4 0.6
Multi-pion (not CCπ+-like ) 17-26, 79-84 1.4
DIS (not CCπ+-like ) 91, 92 0.3
Other (not CCπ+-like ) 1.9

Table 5.2: Composition of the CCπ+ sample. In the measurement of the observed cross
section ratio, rows 1-7 (CCπ+-like ) are defined as CCπ+ signal events. In the measurement
of the FSI-corrected ratio, rows 2, 3, 9, and 10 are defined as CCπ+ signal.

where a subscript α− cuts denotes events that pass the cuts associated with process α, a

subscript α denotes true α events, and the combined subscript denotes true α events that

pass the α cuts.

We can obtain all the distributions necessary to calculate fα and εα for both CCπ+

and CCQE by comparing truth and reconstructed information from the Monte Carlo.

Figures 5.7 and 5.8 show these distributions; figures 5.9 and 5.10 show the resulting signal

fractions and cut efficiencies. The effect of each cut on signal fraction and efficiency is

shown in figures 5.11 and 5.12 and tables 5.3 and 5.4.

To see how features of the signal fraction plots arise, figure 5.9 may be compared with

figures 5.3 and 5.5, which show the box compositions. The drop in CCπ+ signal fraction

as one moves to higher Eν is largely due to the CCQE background, which peaks around

1.25 GeV and falls off more slowly than the signal events. The low signal fraction at high

Eν is not a big concern, as this region is of limited use in any case due to low statistics

in the data. The CCQE signal fraction, on the other hand, is nearly flat at about 0.8

except for a precipitous drop at very low Eν ; figure 5.3 indicates that this occurs because
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the CCQE events fall off much more quickly than CCπ+ (the largest background at all

energies) at low Eν , so that the signal is swamped. Above about 0.6 GeV, the CCπ+

background becomes roughly proportional to the CCQE signal, so signal fraction remains

more or less constant. The sharp drop at low energies is not cause for concern because

CCπ+ events are not reconstructed below 0.5 GeV, so this region of the CCQE box does

not end up being used in the ratio analysis.

The cut efficiency plots may be compared with figures 5.4 and 5.6, which show the

effects of each cut on the samples. As one might expect, the tank hits cut for the first sub-

event (thits > 175 and thits > 200 for CCπ+ and CCQE respectively) tends to remove

low-energy events. The fact that we require full containment of the events (through vhits

and sub-event cuts), on the other hand, tends to remove high-energy events. Thus the

shapes of the cut efficiency plots for CCQE and CCπ+ are very similar: both peak a little

below 1 Gev, drop off quickly below this due to the thits requirement, and drop off more

slowly in the other direction due to the containment requirement.

Figure 5.7: CCπ+ and CCQE Boxes After Cuts vs. E rec (GeV) (Monte Carlo). Left:
CCπ+; right: CCQE. Black: all events, red: Signal (CCπ+ or CCQE respectively) only.
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Figure 5.8: True CCπ+ and CCQE events vs. E gen (GeV) (Monte Carlo). Left: CCπ+;
right: CCQE. Black: before cuts, red: after cuts.

Figure 5.9: Effective (red) and FSI-corrected (black) signal fractions in CCπ+ (left) and
CCQE (right).

5.5 Neutrino Energy Unfolding

To correct or “unfold” reconstructed energy to true energy, we must find an operator U

that acting on the reconstructed distribution Nrec returns the true distribution Ntrue.

Typically, this will be constructed as a matrix Uij such that
∑

j Uij ∗Nrec,j = Ntrue,i. The

standard way to construct Uij consists of three steps:

1. Create a “migration matrix” A by binning Monte Carlo events in true and recon-

structed energy; Ai,j is the number of MC events in true energy bin i and reconstructed

energy bin j.

2. Obtain a “smearing” matrix Sji = Aij∑
l Ail

. This has the property that
∑

i Sji ∗Ntrue,i =
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Figure 5.10: Effective (red) and FSI-corrected (black) cut efficiencies in CCπ+ (left) and
CCQE (right).

Figure 5.11: CCπ+ Cut Efficiency and Signal Fraction by Cut Left: Cut Efficiency vs.
E gen (GeV); right: Signal Fraction vs. E rec (GeV). Black: 3 sub-events and beam window
cuts, red: vcut, blue: tcut, green: all cuts

Nrec,j .

3. Invert the smearing matrix to obtain an unfolding matrix U = S−1. This has the

desired property that
∑

j Uij ∗Nrec,j = Ntrue,i

However, this method has certain notorious problems due to the numerical instability

of matrix inversion. Specifically, the matrix inversion method tends to magnify small

perturbations in the reconstructed distribution into very large variations in the unfolded

distribution. Due to these fluctuations, results assigning negative numbers of events to

certain bins frequently arise. To avoid these problems, we use an alternative, Bayesian

method that does not require matrix inversion. Our method is equivalent to that proposed

in [98], where further discussion can be found.
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Figure 5.12: CCQE Cut Efficiency and Signal Fraction by Cut Left: Cut Efficiency vs.
E gen (GeV); right: Signal Fraction vs. E rec (GeV). Black: 2 sub-events and beam window
cuts, red: vcut, dark blue: tcut, green: R cut, light blue: all cuts

Cut Cut Efficiency Signal Fraction
3 sub-events, beam window 13.3% 86.13%
vhits < 6 for all s.e. 13.1% 87.68%
thits > 175 for first s.e. 12.3% 87.12%
All cuts 11.95% 86.68%

Table 5.3: CCπ+ Cut Efficiency and Signal Fraction by Cut

If there are Nrec,j events in reconstructed energy bin j, the number Nij of those events

that we expect to come from true energy bin i can be written as:

Ni,j = P (i|j)Nrec,j (5.12)

where P (i|j) is the conditional probability for an event to be in true bin i, given that it

is in reconstructed bin j. The total number of events expected to be in true energy bin i,

N̂true,i, is the sum over j:

Cut Cut Efficiency Signal Fraction
2 sub-events, beam window 46.3% 53.6%
vhits < 6 for all s.e. 37.0% 62.9%
thits cuts 32.7% 63.7%
R cut 30.4% 63.8%
All cuts 26.3% 73.9%

Table 5.4: CCQE Cut Efficiency and Signal Fraction by Cut
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N̂true,i =
∑
j

Ni,j =
∑
j

Nrec,jP (i|j) (5.13)

The circumflex on the N̂true,i is there to remind us that this is the expected number of

events in bin i, not necessarily the true number.

The unfolding problem will now be solved if we can find a general expression for P (i|j).

For such an expression, we turn to Bayes’s theorem for conditional probabilities:

P (i|j) =
P (j|i)P (i)
P (j)

(5.14)

P (i|j) is thus expressed in terms of the converse conditional probability and the total

prior probabilities of i and j. P (j) can rewritten as a sum over i:

P (i|j) =
P (j|i)P (i)∑
i P (j|i)P (i)

(5.15)

This expression can then be plugged into eq. 5.13:

N̂true,i =
∑
j

P (j|i)P (i)∑
l P (j|l)P (l)

Nrec,j (5.16)

We now have an expression for the unfolding matrix in terms of the prior probabilities

P (i) and the conditional probabilities P (j|i). Both of these can be obtained from the

Monte Carlo, which represents our a priori best guess for the true energy distribution.

Note that P (j|i)P (i) is, up to a factor of the total number of Monte Carlo events, the

migration matrix Ai,j . In terms of the migration matrix, then:

N̂true,i =
∑
j

Ai,j∑
lAl, j

Nrec,j (5.17)

To obtain an unfolding matrix, then, we first bin the MC events in reconstructed

and true energy to form the migration matrix A; then we calculate the unfolding matrix

Ui,j = Ai,j∑
l Al,j

. This is in practice very similar to the matrix inversion method described
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above, except that rather than normalizing each bin of true neutrino energy in the migration

matrix to unity (which gives the smearing matrix S, which then needs to be inverted), we

normalize each bin of reconstructed energy, directly obtaining the unfolding matrix U . The

element Uij can be thought of as representing the fraction of events in reconstructed bin j

that are also in true bin i.

When Ntrue and Nrec are the MC distributions we have used to generate Uij , it is

trivially true that Ntrue,i =
∑

j Uij ∗Nrec,j . However, in practice there will be a difference

between the Monte Carlo and data distributions, so that while:

NMC
unfolded,i ≡

∑
j

Uij ∗NMC
rec,j = NMC

true,i (5.18)

holds, the same is not exactly true of the data distributions:

Ndata
unsmeared,i ≡

∑
j

Uij ∗Ndata
rec,j 6= Ndata

true,i (5.19)

Although we don’t know a priori how large this difference will be, we can gauge its

significance by comparing generated Monte Carlo with unfolded data (see figure 5.17).

Figure 5.13: Reconstructed vs. True Neutrino Energy (GeV) (Monte Carlo) Left: CCπ+;
right: CCQE.

To confirm that this unfolding method works, a simple closure test was performed. An

unfolding matrix was constructed from a subset of the Monte Carlo and was then used to

unfold a statistically independent Monte Carlo subset. The results, shown in figures 5.15
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Figure 5.14: Unsmearing Matrices (GeV). Left: CCπ+; right: CCQE.

and 5.16, confirm the soundness of the method.

Figure 5.15: True vs. Unsmeared Distributions vs. ν Energy (GeV) (Monte Carlo) Left:
CCπ+, right: CCQE; black: true, red: unsmeared

Because the unfolding matrix is dependent on the initial distributions in our MC, this

method introduces a bias toward these initial distributions. This is to be expected, given

that this method is essentially Bayes’s theorem with those initial distributions as the prior

probabilities. However, this additional dependence on MC introduces an additional source

of systematic uncertainty into the measurement, which must be accounted for. This may

be contrasted with the matrix inversion method, which is unbiased, because the initial

MC distribution is normalized out of the smearing matrix. Because it is completely unbi-

ased, the matrix inversion method has no compunction against giving wildly fluctuating,

unphysical results. These results tend to be highly sensitive to the input reconstructed

distribution, with the result that statistical uncertainties in the reconstructed distribu-
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Figure 5.16: Unsmeared/True Ratio vs. ν Energy (GeV) (Monte Carlo) Left: CCπ+, right:
CCQE

tion are typically inflated by many orders of magnitude in the unfolded distribution. By

choosing the Bayesian method over the matrix inversion method, we essentially trade huge

statistical uncertainties for reasonable systematic uncertainties.

To gauge the significance of the bias introduced by the Monte Carlo, we can compare

the unsmeared data distributions with the CCπ+ and CCQE distributions generated by

the Monte Carlo. If there is a significant bias away from the “correct” data distribution,

then we would expect to see significant disagreement between the unfolded data and the

Monte Carlo. Figure 5.17 shows this comparison for both CCπ+ and CCQE; figure 5.18

gives the ratio of unfolded data to generated Monte Carlo. These plots confirm that there

is no large data-MC discrepancy in either of these distributions.

Figure 5.17: Corrected data (red) and Monte Carlo generated (black) distributions for
CCπ+ (left) and CCQE (right).
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Figure 5.18: Ratio of corrected data to Monte Carlo generated distributions. Left: CCπ+,
right: CCQE

If we were including uncertainties on the distributions of signal events in our calculation

of systematic error, we would not need to worry any further about the bias; the parameter

space covered by the MC variations would include the point that corresponds with reality,

and the true unsmeared distribution would thus be within our error bars. However, because

we do not include variations on certain parameters that affect only signal events (see section

5.6), we need to account for the bias in some other way. We do this by including an iteration

of the unfolding process as a contribution to the systematic uncertainty; this also provides

another check that nothing is going wrong in the unfolding process. To iterate, we reweight

the Monte Carlo to match the corrected data, using the ratios shown in figure 5.18. From

the reweighted Monte Carlo, we form new unfolding matrices for CCπ+ and CCQE (as

well as obtaining new purities and efficiencies) and apply these to the raw data to obtain

new results for the corrected distributions.

The plot on the left in figure 5.19 compares the ratio after the initial analysis with the

ratio after a single iteration. The plot on the right shows both of these as well as the ratio

after a further iteration. Figure 5.20 shows the ratio of each of these iterated results to the

initial result. The first iteration is included as a unisim variation (see section 5.6) in our

uncertainties.
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Figure 5.19: Ratio after zeroth (black), first (red), and second (blue) iterations.

Figure 5.20: Ratio of ratios. Red: first iteration to zeroth iteration; blue: second iteration
to zeroth iteration.
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5.6 Systematic Uncertainties

As seen in the preceding sections, the results of the analysis depend on our detector sim-

ulation as well as flux and cross section predictions from Monte Carlo. These simulations

depend on parameters that are not known exactly and thus have uncertainties associated

with them; these uncertainties translate into systematic uncertainties on the results of the

analysis. To evaluate the uncertainty on the measured CCπ+ to CCQE ratio, we must

therefore vary the parameters on which our simulations depend within their uncertainties.

If the central value of an underlying parameter i of the simulations is denoted αcvi

and the uncertainty on its value is δi, then to test the dependence of our result on the

uncertainty in that parameter, we can run a new simulation in which the value of parameter

i is changed to αui = αcvi +δi and all other parameters are unchanged. This simulation will,

in general, produce altered predictions for all the quantities used in our analysis except for

the values from the raw data itself. We can then repeat the analysis using the predictions

from the new simulation in place of the central value predictions to obtain a new result.

In MiniBooNE parlance, this technique, in which a single simulation parameter is varied,

is called a “unisim” variation.

Many of the parameters on which the simulations depend, however, are correlated. Al-

tering each parameter one by one in a series of unisims would fail to take these correlations

into account. Therefore in these cases we use a “multisim” variation. In a multisim, the

correlated parameters are varied within the region of parameter space allowed by their

uncertainties. This ensures that correlations among the varied parameters are properly in-

cluded in the final error matrices and also reduces the computational load compared with

running a separate unisim for each parameter.

The unisims and multisims used in the cross section analysis are:

1. Meson production multisims: These four multisims vary meson production in the

beryllium target. The four multisims are:

- π+ production
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- π− production

- K+ production

- K0 production

2. Beam unisims: Variations in a group of uncorrelated parameters relating to the horn

and to interactions in the beryllium target. The parameters are:

- nuclear inelastic cross section

- nuclear quasi-elastic cross section

- pion inelastic cross section

- pion quasi-elastic cross section

- pion total cross section

- skin depth (penetration of horn current inside the conductor, creating a magnetic field

in the inner conductor)

- horn current

3. Cross section multisim: Variations in the neutrino interaction cross sections.

4. π0 yield multisim: Variations in the production of π0s in neutrino interactions in

the detector.

5. Tank re-interaction multisim: Variations in the model for hadronic re-interactions

in the Geant3 detector simulation.

6. Nuclear re-interaction multisim: Variations in the model for hadronic re-interactions

in the target nucleus used by NUANCE (included only for FSI-corrected measurement).

7. Optical model multisim: Variations in the 39 parameters of the model used to

simulate light propagation in the mineral oil and PMT response.

8. Unfolding iteration unisim: Variation to account for uncertainty due to the bias

introduced by our neutrino energy unfolding method (see section 5.5).
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9. Event selection unisim: Variation in CCπ+ selection cuts (see section 5.7.1).

10. Event reconstruction unisim: Variation using an alternative event reconstruction

scheme (see section 5.7.2).

11. Q2 reweighting unisim: Variation with CCπ+ events reweighted to enforce agree-

ment with MC in Q2 (see section 5.7.3).

12. π+ momentum distribution unisim: Variation in the momentum distribution of

π+s produced in CCπ+ events (see section 5.7.4).

These uncertainties were divided into three groups which were calculated separately:

uncertainties associated with the flux, neutrino cross sections, and hadronic re-interactions

in the tank (numbers 1-5 above); those associated with the optical model and re-interactions

in the target nucleus (6 and 7); and those from miscellaneous additional sources (8-12).

More detailed information on the uncertainties assigned to each parameter can be found

in [66] (for flux-related uncertainties), [67] (for optical model uncertainties), and [85] (for

neutrino cross-section and hadronic re-interaction uncertainties).

In the error propagation analysis we calculate each variable which appears in the ratio

measurement equation for each multisim or unisim excursion. In particular, it is to be

noted that we calculate the unfolding matrix separately for each excursion and use it to

unfold the neutrino energy for the data corrected for background from the same excursion.

The error matrix elements for the set of multisims for a given error source are obtained

using the following formula:

Mij (x) =
1

s− 1

s∑
k=1

(
xki − xcvi

)(
xkj − xcvj

)
(5.20)

where xkj denotes the value of variable x in the kth multisim in ith bin, and xcvi is the value

of the variable x in the ith bin for the central value (CV) Monte Carlo. The total error
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matrix is a sum of contributions from all error sources:

Mij = Mij

(
π+ production

)
+Mij

(
π− production

)
+Mij

(
K+ production

)
+ Mij

(
K0 production

)
+Mij (beam unisim) +Mij (cross section)

+ Mij

(
π0yield

)
+Mij (optical model)

+ Mij (data statistics) +Mij (MC statistics) (5.21)

The total error for a i-th bin is

∆xtotali =
√
Mii (5.22)

In most MiniBooNE analyses the distribution for which the error matrix is calculated

has a form such that it can be fit with a smooth and decreasing function. In such a case

we can sum over all error matrix elements to obtain the normalization error. However,

the CCπ+ to CCQE ratio has different behavior - it is an increasing function up to 2.5

GeV neutrino energy but this does not represent an increase in the number of events.

At neutrino energies greater than 2.5 GeV there are several spikes typical for the case of

division by a number close to zero.

Taking into account the behavior of the ratio distribution, we used bins only up to 2.4

GeV in both the optical model and flux/cross section uncertainties. The statistical errors

are taken into account by using Monte Carlo samples with the same number of events as

in the data.

5.6.1 Cross section and flux uncertainties

Cross section and flux uncertainties are, in accordance with standard MiniBooNE practice,

calculated together by a single software package; the individual contributions of each of

the unisims and multisims can, however, be extracted by the package. In both samples

for the CCπ+ to CCQE ratio analysis, we distinguish a signal and background. To avoid

double counting we propagate errors for each sample separately up to the calculation of the
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ratio itself. For the cross section uncertainties, most of the errors are only applied to the

background of each respective sample. Thus, in each respective sample, we omit from the

calculation uncertainties associated with the cross section of that sample’s signal events,

which is in essence what is being measured. The nuclear model parameters, pF and EB are

applied to both samples because they can change the total number of events. Also, CCQE

normalization errors were applied to the CCQE sample to take into account the 10% cross

section normalization uncertainty. In the cross section error matrix, two parameters are not

connected with the neutrino interaction, but with the pion propagation in the tank, pion

absorption and pion charge exchange. Again, these are included here, instead of with the

detector simulation where they would more logically belong, for technical reasons relating

to the MiniBooNE analysis software. In table 5.5 the set of uncertainties applied is shown.

In calculating the error matrix for the CCπ+ to CCQE ratio we reprocessed each sample

separately with different sets of parameters in the cross section multisims. For each sample,

1000 files, corresponding to 5.48E20 POT, were reprocessed with 100 draws.

Error CCπ+ CCQE

pF (ccpip) yes yes
pF (ccqe) yes yes
pF (other) yes yes
EB(ccpip) yes yes
EB(ccqe) yes yes
EB(other) yes yes
MQE
A yes no

M1π
A no yes
κ yes no

CCQE Norm yes no
M coh
A no yes

pi Abs (in tank) yes yes
pi cex (in tank) yes yes

Table 5.5: The set of errors used in the cross section errors analysis.

Contributions to the flux uncertainties come in two main forms. First, there are un-

certainties in the production cross-sections in the p-Be interactions that generate the sec-

ondary (meson) beam. These are constrained by data from other experiments, as discussed
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Figure 5.21: ε−1Ū
(
f ∗Ndata

)
- corrected data (CCQE-like )
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Figure 5.22: Observed cross section ratio for three sources of errors.

in section 3.1. Second, there are several uncorrelated variations that collectively constitute

the “beam unisims”. These include hadronic interactions in the beryllium and aluminum,

the roughly 0.5% uncertainty in the horn current, and uncertainty on the skin depth of the

horn’s inner conductor. Uncertainties in the geometry of the beamline simulation are not

included, as it was found that variations within the construction tolerances have a negligi-

ble effect on the neutrino flux prediction. The contributions to the total flux uncertainty

for each neutrino species are shown in table 5.6. Note that these are just the total sizes of

the uncertainties; in the actual calculation of systematic uncertainties for the analysis, the

appropriate uncertainty for each energy bin is used.

In the flux and cross-section error analysis for CCπ+ to CCQE ratio we observed that

only three sources of uncertainty are significant: π+ production, the beam unisims, and

the cross-sections. Note that the latter includes both the principal background processes

for each sample (CCπ+ in the CCQE sample and CCQE and multi-pion in the CCπ+

sample) and the cross-sections for hadronic re-interactions in the mineral oil. In figure
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CCπ+: ε−1Ū
(
f ∗Ndata

)
- corrected data, FSI-corrected
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Figure 5.23: CCQE: ε−1Ū
(
f ∗Ndata

)
- corrected data, FSI-corrected

92



0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CCPiP/CCQE Corrected

 production+!

total err
cv

CCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.2

0.4

0.6

0.8

1

1.2

1.4

CCPiP/CCQE Corrected

beam unisim
total err
cv

CCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CCPiP/CCQE Corrected

xsec
total err
cv

CCPiP/CCQE Corrected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CCPiP/CCQE CorrectedCCPiP/CCQE Corrected

Figure 5.24: CCπ+ to CCQE ratio for three sources of errors.
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Figure 5.25: The CCπ+ to CCQE ratio with cross section and flux uncertainties. Cross
section errors are included only in the background for each sample; uncertainties on the
nuclear parameters and on pion propagation are included in both signal and background.
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Source of Uncertainty νµ ν̄µ νe ν̄e

Proton delivery 2.0% 2.0% 2.0% 2.0%
Proton optics 1.0% 1.0% 1.0% 1.0%
π+ production 14.7% 1.0% 9.3% 0.9%
π− production 0.0% 16.5% 0.0% 3.5%
K+ production 0.9% 0.2% 11.5% 0.3%
K0 production 0.0% 0.2% 2.1% 17.6%
Horn field 2.2% 3.3% 0.6% 0.8%
Nucleon cross-sections 2.8% 5.7% 3.3% 5.6%
Pion cross-sections 1.2% 1.2% 0.8% 0.7%

Table 5.6: Variations in the total flux prediction for each neutrino species in neutrino mode
for each of the sources of systematic uncertainty.

5.21 the corrected CCπ+-like and CCQE-like event distributions for the observed cross

section measurement are shown separately for each of these three sources of error. The

left column shows all multisim excursions; the central column shows the CV results with

errors calculated according to eqs. 5.21 and 5.22; and the right column shows the fractional

error. The uncertainties on the observed CCπ+ to CCQE ratio are similarly presented

in figure 5.22. The biggest errors come from the cross section uncertainties and the flux

errors mostly cancel out as expected.

Figures 5.23 and 5.24 show the corrected data distributions and cross section ratio with

the same three sources of error for the FSI-corrected measurement. Figure 5.25 shows the

observed CCπ+ to CCQE cross section ratio with all flux and cross section uncertainties.

5.6.2 Optical model uncertainties

The MiniBooNE optical model is discussed in chapter 3.

The optical model multisims are variations of the Monte Carlo in which the 39 param-

eters of the optical model have been varied within their uncertainties. These parameters

are correlated, necessitating a multisim rather than a unisim treatment. The covariance

matrix relating the variations among these parameters was built through an iterative pro-

cess. An initial guess at a covariance matrix was made, based on measurements of the

39 parameters. From this initial matrix, 3000 draws were made, giving 3000 parameter
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sets consistent to within uncertainties with the measured values of the parameters. For

each parameter set, a data to MC comparison was made of electrons from muon decay in

cosmic ray events, and a χ2 was obtained using statistical error only. Each of the 3000

parameter sets was then assigned a weight based on this χ2. A new covariance matrix

was then formed by taking the weighted average 3000 draws. The procedure was repeated

until agreement between the data and MC ceased to improve. Eighty parameter sets were

drawn from the final covariance matrix and the full Monte Carlo was run with each set.

As with the cross-section and flux multisims, the ratio analysis was repeated in its entirety

for each Monte Carlo variation.

Uncertainties in pion absorption and charge exchange within the target nucleus, which

are only included in the error analysis for the FSI-corrected measurement, are handled

together with the optical model variations. These variations are achieved by reweighting

Monte Carlo events in which absorption or charge exchange occurred. The variations used

are 35% for pion absorption and 50% for pion charge exchange.

Figures 5.26 and 5.27 show the corrected data for the observed ratio measurement with

optical model errors. Figure 5.28 shows the observed cross section ratio with optical model

errors only. Figures 5.29 through 5.31 show the corresponding plots for the FSI-corrected

ratio.

Figure 5.26: CCπ+: ε−1Ū
(
f ∗Ndata

)
- corrected data; effective
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Figure 5.27: CCQE: ε−1Ū
(
f ∗Ndata

)
- corrected data; effective

Figure 5.28: Observed ratio with OM errors

5.6.3 Additional unisims

Five further unisim variations were performed to assess sources of uncertainty more specific

to the ratio analysis. These were variations in the energy unfolding, the event selection,

the muon energy reconstruction, the Q2 distribution for CC1π+, and the pion momentum

distribution for CC1π+. The energy unfolding variation was discussed in section 5.5; the

other four unisims will be discussed in section 5.7. None of these unisims gave an error of

more than about 3% in the high-statistics region around 1 GeV.

5.6.4 Total Uncertainties

The errors from cross-section and flux, the optical model, the additional unisims, and

statistics are added in quadrature in each energy bin to obtain the total uncertainties. In

the region with highest statistics, around 1 GeV in neutrino energy, there is roughly an
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Figure 5.29: CCπ+: ε−1Ū
(
f ∗Ndata

)
- corrected data, FSI-corrected

Figure 5.30: CCQE: ε−1Ū
(
f ∗Ndata

)
- corrected data, FSI-corrected

Figure 5.31: Left: FSI-corrected CCπ+ to CCQE ratio with optical model uncertainties
only. Right: Fractional errors on ratio from optical model multisims.
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8% fractional error due to hadron re-scattering in the oil, 6% from neutrino cross-sections,

4% from the detector simulation, 2% from the neutrino flux prediction, and 2% from the

statistics of the two samples. In the FSI-corrected measurement, uncertainties on hadronic

re-interactions within the struck nucleus contribute an additional error of about 6%. Added

in quadrature, these give a total uncertainty of about 11% for the observed ratio and 13%

for the FSI-corrected ratio at 1 GeV.

5.7 Cross-checks

Several checks were performed to confirm the soundness of the ratio analysis, to test the

sensitivity of the result to the methodology used, and to identify and account for possible

sources of systematic uncertainty not included in the standard MiniBooNE error analysis.

5.7.1 Alternative Cuts

The cuts used for the main analysis (see section 5.3) were chosen to optimize signal frac-

tion and cut efficiency for each sample. The choice of cuts for each sample was made

independently. The selection cuts chosen include different requirements on the distance of

the Michel electrons from the end of the muon track and on the number of signal region

hits for the CCQE and CCπ+ samples. In principle, there is nothing wrong with this;

regardless of what cuts are used, as long as they are applied correctly to both data and

Monte Carlo, we will obtain the proper cut efficiencies, signal fractions, and unfolding

matrices for each sample. However, as a check that this is true, as well as a test of the

sensitivity of our result to the particular cuts chosen, the analysis was re-performed using

an alternative set of CCπ+ selection cuts. The alternative cuts are the same as those for

the main analysis, except that the Michel distance cut and the tank hits cut have been

changed to be the same as those for the CCQE sample. The alternative CCπ+ cuts are

thus:

1. Exactly three sub-events
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2. First sub-event in beam window (4400 < SplitEvent aveTTim < 6400)

3. Veto region hits < 6 for all sub-events

4. Signal region hits > 200 for first sub-event

5. Signal region hits < 200 for subsequent sub-events

6. r nu < 500 cm., r mi1 < 500 cm., r mi2 < 500 cm, where r nu is the distance of the

interaction vertex from the center of the tank and r mi1 and r mi2 are the distances

of the two Michel electrons from the center of the tank.

7. Distance from closest Michel electron to end of muon track < 100 cm.

The cut efficiency and signal fraction using the alternative cuts (figure 5.32) are slightly

worse than with the standard cuts. This is to be expected, as the standard cuts were tuned

to maximize the overall cut efficiency and signal fraction. Figure 5.33 compares the CCπ+

to CCQE ratio using the two sets of cuts. There is no significant difference between the

results, indicating that the differences in cuts between CCQE and CCπ+ do not pose a

problem. This also indicates that the result is not highly sensitive to our choice of cuts.

The modified cuts analysis is included as a unisim variation (see section 5.6) in our errors.

Figure 5.32: Signal fraction (left) and cut efficiency (right) for CCπ+ using standard (black)
and alternative (red) cuts.
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Figure 5.33: Left: CCπ+ to CCQE ratio with standard (black) and modified (red) cuts.
Right: Ratio of ratios; modified cuts/CV

5.7.2 Alternative Energy Reconstructions

The CCπ+ reconstruction used for the main analysis uses the StancuFlux fit for muon

energy (see section 4.2 for a discussion of these fitters). However, the CCQE reconstruction

uses the muon energy from the StancuFull fit. The reconstructed neutrino energies for

CCπ+ and CCQE, which are dependent on muon energy, are thus not directly comparable.

In principle, this is not a problem, because in both event samples an unfolding correction

is applied to transform reconstructed neutrino energy to true neutrino energy. However, as

a check to make sure that this difference in reconstruction between the two samples does

not have an effect on the ratio, we have repeated the ratio analysis with a subset of the

Monte Carlo, using the muon energy from the StancuFull fit for CCπ+ as well as CCQE.

We used the FSI-corrected ratio for this comparison. Because the FSI corrections apply

the same way to both the principal ratio and the ratio using alternative reconstruction,

it is sufficient to look only at the FSI-corrected ratio; agreement of the two versions of

reconstruction in the FSI-corrected ratio implies agreement in the observed ratio.

Figure 5.34 shows, for both StancuFull and StancuFlux reconstruction, the Monte

Carlo and data distributions in reconstructed neutrino energy of events passing CCπ+

cuts. There is a significant difference between the shapes of the distributions; that using

StancuFull is broader and peaked higher than that using StancuFlux.
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The signal fraction and cut efficiency for CCπ+ events in the two reconstructions are

compared in figure 5.35. While the efficiency remains more or less the same, the signal

fraction appears to improve dramatically with the StancuFull reconstruction. However,

the improvement in signal fraction above about 1 GeV comes primarily from the fact that

events in the lowest few bins in the StancuFlux reconstruction (which have high purity)

are shifted into higher bins in the StancuFull reconstruction. This is illustrated in figure

5.36, which plots the reconstructed neutrino energy using StancuFull against that using

StancuFlux for events in the CCπ+ sample. The total signal fraction with StancuFull

reconstruction is about 90%, as compared to about 87% for StancuFlux.

Figure 5.37 shows the CCπ+ unsmearing matrices for StancuFlux and StancuFull. The

unsmearing matrix for StancuFull is mostly diagonal. The unsmeared distributions and the

ratio for the two reconstructions are compared in figure 5.38. The unsmearing procedure

corrects both reconstructed distributions to nearly the same Eν,true distribution and the

result for the ratio is consistent. The ratio result obtained using StancuFull reconstruction

is included as a variation in calculating our systematic uncertainties.

Figure 5.34: CCπ+ sample after cuts vs. reconstructed neutrino energy for Monte Carlo
(left) and data (right). Black: StancuFlux reconstruction; red: StancuFull reconstruction.

A second check of the sensitivity of the result to our energy construction was performed

by repeating the ratio analysis using the P-Fitter rather than the S-Fitter (see sections 4.2

and 4.3) and comparing it with the principal analysis. Before showing the results of this
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Figure 5.35: Cut efficiency (left) and signal fraction (right) for CCπ+ sample. Black:
StancuFlux reconstruction; red: StancuFull reconstruction.

Figure 5.36: Eν,full vs. Eν,flux for all Monte Carlo events passing CCπ+ cuts (left) and
for CCπ+ events only (right).

Figure 5.37: Unsmearing matrices for CCπ+ with StancuFlux reconstruction (left) and
StancuFull reconstruction (right)
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Figure 5.38: Unsmeared CCπ+ data (left) and CCπ+ to CCQE ratio (right) vs. Eν,true.
Black: StancuFlux reconstruction; red: StancuFull reconstruction.

Figure 5.39: Ratio of corrected CCπ+ data using StancuFull reconstruction to the same
using StancuFlux reconstruction.
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check, we will compare the behavior of several variables used in event reconstruction with

the two fitters.

Figures 5.40 and 5.41 compare the P-Fitter and S-Fitter (StancuFull) reconstructions

for the event vertex. For each variable the plot on the left shows the data distributions,

as reconstructed with the P-Fitter (the points with error bars) and the S-Fitter (the blue

curve). The plot on the right shows the resolution (MC - data) in these variables. The

radial (R) distribution requires some explanation. In the case of the P-Fitter analysis the

event vertex is simply the origin of the muon track, while in the principal analysis it is

given by the 4-vertex fit of the Stancu reconstruction. The S-Fitter has a tendency to

pull events near the edge of the detector inward, resulting in the distinctive shape seen in

the radial distribution. This in turn affects the vertex coordinates, as is best seen in the

resolution plot for the z coordinate. The effect this has on the acceptance is accounted for

in the signal fraction and cut efficiency corrections described in section 5.4.

Figure 5.42 gives the same comparisons for the muon direction. The uz variable shown

here is of some interest, as it enters into the calculation of Q2. There is a slight deficit

of P-Fitter events at the forward angles (uz > 0.9) as compared with the S-Fitter. This

should have a negligible effect on the Eν distribution, which is more sensitive to the visible

muon energy than to uz, but it will have a small effect on the Q2 distribution.

In all of the above plots and allowing for the observed shape differences, it is clear that

the P-Fitter gives a better resolution. However, as will be seen below, the difference is not

enough to cause a significant change in the cross-section ratio.

The muon visible energy, with the same comparison of the P-Fitter and StancuFull

reconstructions, is shown in figure 5.43. The agreement is reasonably good; this is to be

expected, as in both cases the energy is ultimately derived from the total charge. However,

as seen in the resolution plot, both overestimate the muon energy due to the extra charge

created primarily by the pion. Thus the principal analysis uses the StancuFlux energy,

which is based on the charge in the muon ring only, rather than the StancuFull. The

bottom panels compare this (StancuFlux) energy to a loosely calibrated P-Fitter energy.
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Figure 5.40: Comparison of StancuFull and One-track event vertex x (top) and y (bottom)
coordinates. On the left are the data distributions with One-track as points with error
bars and StancuFull as blue curve normalized to the same number of events. On the right
are the resolution plots for each.
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Figure 5.41: Comparison of StancuFull and One-track event vertex z (top) and R (bottom)
coordinates. On the left are the data distributions with One-track as points with error bars
and StancuFull as blue curve normalized to the same number of events. On the right are
the resolution plots for each.
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Figure 5.42: Comparison of StancuFull and One-track muon direction ux (top) and uy
(middle) and uz (bottom). On the left are the data distributions with One-track as points
with error bars and StancuFull as blue curve normalized to the same number of events.
On the right are the resolution plots for each.
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This calibrated energy is simply aE + b where E is the raw P-Fitter energy and where a

and b are determined by the threshold and the peak muon visible energy. The motivation

for using this variable was to have an energy which, like the StancuFlux energy, was closer

to the true visible energy of the muon in case the Enu unfolding algorithm was unstable

for a large difference in the reconstructed and true energies. As it turns out the Bayesian

unfolding procedure is quite robust and gives consistent results, as will be seen, whether

one uses the raw P-Fitter energy or this corrected one.

Figures 5.44 and 5.45 give these same comparisons for the reconstructed neutrino energy

Eν and momentum transferQ2. Again the top panels use the Full (raw) muon visible energy

in calculating these while the bottom panels are for the Flux (corrected) muon energy. The

difference in the reconstructed Eν , which comes almost entirely from the difference in muon

visible energy, is removed by the unfolding procedure with consistent results for whatever

visible energy is used. The difference in reconstructed Q2 comes from both the muon energy

and the small discrepancy in uz. Note that we do not extract a ratio as a function of Q2

because of the disagreement between data and MC in that variable (see section 5.7.3).

In obtaining the CCπ+ to CCQE ratio for this comparison, we repeated all procedures

used for the main analysis but with the P-Fitter used for the CCπ+ sample. As described

previously the muon energy for the P-Fitter has been calibrated; a ratio was calculated

using both the calibrated and uncalibrated versions. The CCQE sample used in this

comparison was reconstructed using the S-Fitter, and is identical to that used in the main

analysis. As with the StancuFull check described above, we made the comparison between

the P-Fitter and S-Fitter using the FSI-corrected ratio.

In figure 5.46 the reconstructed neutrino energy distributions for both CCπ+ and

CCQE data samples are shown. The most significant difference between reconstructed

neutrino energy distributions for the CCπ+ sample in figure 5.46 is that between the

S-Fitter and the original (uncalibrated) P-Fitter.

Figure 5.47 shows the Monte Carlo prediction for the reconstructed neutrino energy

distribution of CCπ+ events before and after the cuts for this sample were applied. In
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Figure 5.43: Comparison of muon visible energy for StancuFull and One-track (top) and
StancuFlux vs One-track corrected (bottom). On the left are the data distributions with
One-track as points with error bars and StancuFull as blue curve normalized to the same
number of events. On the right are the resolution plots for each.
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Figure 5.44: Comparison of reconstructed Eν for StancuFull and One-track (top) and
StancuFlux and One-track corrected (bottom). On the left are the data distributions with
One-track as points with error bars and StancuFull as blue curve normalized to the same
number of events. On the right are the resolution plots for each.
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Figure 5.45: Comparison of reconstructed neutrino Q2 for StancuFull and One-track (top)
and StancuFlux and One-track corrected (bottom). On the left are the data distributions
with One-track as points with error bars and StancuFull as blue curve normalized to the
same number of events. On the right are the resolution plots for each.
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Figure 5.46: Reconstructed neutrino energy for neutrino mode data for CCπ+ (left) and
CCQE (right). For CCπ+ the Stancu fitter (black) is compared with two versions of
one-track fitter, original (old - green) and with muon energy adjustment (new - red).

figure 5.48 the distributions of generated neutrino energy for the CCπ+ sample and for all

generated events are shown. From the comparison of the generated and reconstructed neu-

trino energy distributions in figures 5.47 and 5.48 the one-track reconstructed distribution

is the most similar to the generated one.

The signal fraction and cut efficiency for CCπ+ events reconstructed with the three

different fitters (S-Fitter, P-Fitter, and calibrated P-Fitter) are compared in figure 5.49. It

is worth notice that the signal fraction for the P-Fitter is higher than that for the S-Fatter.

The purity of the CCπ+ sample is higher when cuts are applied on P-Fitter variables. The

difference in the cut efficiency between the S-Fitter and the P-Fitters comes from the fact

that more events are reconstructed with the former.

The unfolding matrices for the three reconstructions of the CCπ+ sample are presented

in figure 5.50. From this figure we can see that indeed the reconstructed neutrino energy

distribution for one-track has a shape close to the generated energy distribution, and the

unfolding matrix is mostly diagonal, while for the other two cases the highest elements are

112



shiften one or two bins to the right of the diagonal.

In figure 5.51 the reconstructed neutrino energy distributions corrected for the back-

ground and the unfolded neutrino energy distributions are shown. The distributions in

unfolded energy for all fitters look the same, confirming that the unfolding procedure

works well.

Finally, in figure 5.52 the CCπ+ to CCQE ratios for all fitters are compared. The

differences among the results obtained are negligible and we can draw the conclusion that

the analysis in general and the unfolding procedure in particular are not sensitive to the

reconstruction scheme used.
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Figure 5.47: The reconstructed energy distributions for selected CCπ+ events before (right)
and after (left) cuts.

5.7.3 Q2 Reweighting

The CCπ+ sample exhibits significant disagreement between data and Monte Carlo in

reconstructed Q2 (see figure 5.53). This discrepancy may be symptomatic of problems

with the Rein-Sehgal model for pion production used in the MC. A simple reweighting

check was done to test whether the Q2 disagreement has an effect on the CCπ+ to CCQE
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Figure 5.48: The generated neutrino energy distribution for the reconstructed CCπ+ events
after cuts (left) and neutrino energy distribution for all events in the Monte Carlo sample
(right).
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Figure 5.49: The signal fraction (left) and cut efficiency (right) for the CCπ+ sample for
three fitters.
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Figure 5.50: The unsmearing matrices for the three fitters.
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Figure 5.51: The background corrected reconstructed neutrino energy distribution (left)
and umsmeared energy distribution (right) for the CCπ+ data sample.
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ratio. A Monte Carlo sample was reweighted to agree with the data in Q2, and the

analysis was repeated using this sample. The results are shown in figures 5.54 and 5.55.

The reweighting has only a small effect on the ratio, and that only above about 1.1 GeV.

We can conclude that the Q2 disagreement is not indicative of some underlying problem

in CCπ+ reconstruction. The reweighted Q2 variation was included in our uncertainties.

5.7.4 Pion Momentum

A simple check was performed to test how sensitive the ratio we calculate is to possible

errors in the predicted momentum distribution of the pions produced in CCπ+ interactions.

To constrain the π0 background in the MiniBooNE oscillation analysis, the measured π0

production was used to obtain correction factors, as a function of pion momentum, to

be applied to the Monte Carlo. Although this reweighting applies to π0 and not π+

production, it can be taken as a very rough estimate of the size of a one-sigma variation

in the predicted π+ momentum distribution. To perform the pion momentum check, we

reweighted all CCπ+ events by pion momentum, using the event weights obtained from

the π0 measurement. Moreover, the check was performed using both StancuFlux and

StancuFull reconstructions (cf. section 6); this was done in order to check whether one or

the other reconstruction was preferrable in that it was less sensitive to this variation.

Figure 5.56 compares the result for the ratio using this π+ variation with that for

the central value Monte Carlo, for both StancuFlux and StancuFull reconstructions. The

reweighted and unreweighted distributions agree rather closely up to about 1 GeV; above

1 GeV the reweighted distribution is about 5-15% lower. This discrepancy is roughly the

same size for both reconstructions. This π+ variation (with StancuFlux reconstruction)

was included in our systematic uncertainties.

5.7.5 Nucleon Momentum

Throughout the main analysis, we have treated the target nucleus using the relativistic

Fermi Gas model. Uncertainties on the Fermi momentum (pF ) and binding energy (EB)
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Figure 5.52: The CCπ+ to CCQE ratio for stancu fitter and one track fitter without
energy adjustment.

Figure 5.53: Data - Monte Carlo comparison of Q2 in CCπ+. Black: Monte Carlo; blue:
data.

117



Figure 5.54: Left: corrected CCπ+ data; right: CCπ+ to CCQE ratio. Black: central
value; red: reweighted

Figure 5.55: Ratio of corrected CCπ+ data with q2 reweighting to corrected data without
reweighting.

parameters in the Fermi Gas model are included in the error calculation for the ratio

analysis. However, the question might be posed whether these uncertainties are sufficient

to cover the dependence of the ratio result on the nucleon momentum distribution. In

particular, it might be asked how sensitive the ratio analysis is not only to the values of

the parameters of the nuclear model but also to the choice of nuclear model itself.

Note that such an effect would not be corrected by our energy unfolding procedure. A

basic assumption of any energy unfolding scheme is that the mapping from true energy to

reconstructed energy is the same in the simulation as it is in the data. If the nuclear model

used in our Monte Carlo were incorrect, then the Monte Carlo would not correctly predict

the reconstructed energy distributions that would arise from interactions at a given true
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Figure 5.56: CCπ+ to CCQE ratio with CV Monte Carlo (black) and with the reweighted
π+ variation (red). Left: StancuFlux reconstruction; right: StancuFull reconstruction.

Figure 5.57: Ratio of ratio result with π+ unisim to result with CV MC. Left: StancuFlux
reconstruction; right: StancuFull reconstruction.

119



energy. Thus, error in the nuclear model translates into error in our unfolded distributions,

without being removed by unfolding.

In [99], Benhar et al. compare the neutrino energy reconstruction obtained using the

Fermi Gas model with that using a Spectral Function for CCQE . Figure 5.58 reproduces

a plot from their paper showing the neutrino energy distributions corresponding to two

choices of Eµ and θµ under the Fermi Gas (FG) model and under the Spectral Function

(SF) model. The arrows indicate the reconstructed neutrino energy for those parameters,

assuming constant binding energy and a target neutron at rest (see eq. 4.19). One may

note that the SF distribution looks something like the FG distribution shifted upward

one bin in energy. This effect is shown in figure 5.59, which reproduces the top panel of

figure 5.58 and overlays the FG distribution from that figure shifted upward by 30 MeV.

The shifted FG distribution agrees well with the SF everywhere except at the peak of the

distribution. With this in mind, we repeated the ratio analysis using three MC variations

in which all generated neutrino energies are shifted upward by 10, 20, and 30 MeV. These

variations are intended to approximate the effect of using an alternative nuclear model,

such as the SF, which would require a completely new neutrino interaction simulation.

Figure 5.60 shows the distributions in generated energy for the FSI-corrected signal

events before and after cuts and the corresponding cut efficiencies for each of the three

energy shifts. These can be compared with figure 5.61, which shows the cross-section

multisim excursions for the FSI-corrected analysis, as described in section 5.6.1. The same

sets of figures for the observed (CCπ+-like and CCQE-like) samples are presented in figures

5.64 and 5.65. In figures 5 (FSI-corrected) and 9 (observed), the background-corrected data

is shown in reconstructed energy (upper panel) together with the unfolded and efficiency-

corrected distributions, again using the CV and generated energy shifted MC variations.

Plots of the cross-section multisim excursions for the same quantities are shown in figures

5.63 and 5.67. The CCπ+ to CCQE ratios (both observed and FSI-corrected) obtained

using the modified generated energies are shown in figure 5.68 and are compared with the

ratios obtained in the cross-section multisim excursions for the main analysis.
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Figure 5.58: For two choices of Eµ and θµ, the neutrino energy distributions that con-
tribute to CCQE interactions with the given kinematics under the Fermi Gas model and
under the Spectral Function model. The arrows indicate the neutrino energy that will be
reconstructed for the given kinematics, assuming a two-body collision.
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Figure 5.59: For Eµ = 600 MeV and θµ = 60◦, the neutrino energy distributions that
contribute to CCQE interactions with the given kinematics under the Fermi Gas model
(red), the Spectral Function model (blue), and the Fermi Gas model shifted upward by 30
MeV.

Comparing the results with the modified generated energy (figures 5.60, 5.64, 5.62,

5.66, 5.68) with the cross-section multisim excursions (figures 5.61, 5.65, 5.63, 5.67, and

5.68), one can see that the spread of the modified energy variations lies within the spread

of the multisim excursions. In other words, the effects of varying the cross-section param-

eters (including pF and EB) are larger than the effects of altering the nuclear model in

a reasonable way. We can conclude that the cross-section uncertainties calculated for the

ratio already cover the possible effects of an incorrect nuclear model, and we do not need

to introduce any additional systematic uncertainty to account for this.

5.8 Results

We present here the results of the cross-section ratio measurement calculated using the

method outlined in sections 5.2 - 5.5. Figure 5.69 shows the effective CCπ+ to CCQE

cross-section ratio. Figure 5.70 shows the FSI-corrected ratio. Table 5.7 provides our
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Figure 5.60: CCπ+ and CCQE distributions in generated neutrino energy before (top)
and after (middle) cuts and CCπ+ and CCQE cut efficiencies (bottom) with standard
Fermi gas model (red) and with Fermi Gas model shifted upward by 10 (green), 20 (blue),
and 30 (black) MeV.
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Figure 5.61: CCπ+ and CCQE distributions in generated neutrino energy before (top)
and after (middle) cuts and CCπ+ and CCQE cut efficiencies (bottom), with cross-section
multisim excursions.
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Figure 5.62: Background-corrected (top), unfolded (middle), and fully corrected (bottom)
CCπ+ and CCQE distributions in reconstructed neutrino energy with standard Fermi gas
model (red) and with Fermi Gas model shifted upward by 10 (green), 20 (blue), and 30
(black) MeV.
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Figure 5.63: Background-corrected (top), unfolded (middle), and fully corrected (bottom)
CCπ+ and CCQE distributions in reconstructed neutrino energy, with cross-section mul-
tisim excursions.
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Figure 5.64: CCπ+-like and CCQE-like distributions in generated neutrino energy before
(top) and after (middle) cuts and CCπ+-like and CCQE-like cut efficiencies (bottom) with
standard Fermi gas model (red) and with Fermi Gas model shifted upward by 10 (green),
20 (blue), and 30 (black) MeV.
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Figure 5.65: CCπ+-like and CCQE-like distributions in generated neutrino energy before
(top) and after (middle) cuts and CCπ+-like and CCQE-like cut efficiencies (bottom), with
cross-section multisim excursions.
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Figure 5.66: Background-corrected (top), unfolded (middle), and fully corrected (bottom)
CCπ+-like and CCQE-like distributions in reconstructed neutrino energy with standard
Fermi gas model (red) and with Fermi Gas model shifted upward by 10 (green), 20 (blue),
and 30 (black) MeV.
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Figure 5.67: Background-corrected (top), unfolded (middle), and fully corrected (bot-
tom) CCπ+-like and CCQE-like distributions in reconstructed neutrino energy, with cross-
section multisim excursions.
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Figure 5.68: FSI-corrected (top) and observed (bottom) CCπ+ to CCQE ratios with three
versions of Fermi Gas model (left) and with cross-section multisim excursions (right).
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measurement of both the effective and FSI-corrected ratios in each bin and with full error

bars.

Figure 5.69: The effective CCπ+ to CCQE ratio (black) compared with the NUANCE
prediction (blue).

As figure 5.70 indicates, our result agrees to within errors with the both the ANL [55]

and K2K [59] measurements. A rescaling of the K2K and MiniBooNE results was needed

to make this comparison. The ANL measurement was on deuterium whereas K2K’s was

on C8H8 and ours was on CH2; thus we have a proton to neutron ratio of 4:3 while ANL

had 1:1 and K2K 7:6. Because CCQE interactions can only occur on neutrons, while the

dominant CCπ+ channel is on protons, we expect the CCπ+ to CCQE ratio to depend on

the proton to neutron ratio. Thus, to compare the three experiments, we have corrected

the K2K and MB results to what they would be on a target with equal numbers of protons

and neutrons. The scaling factor for K2K was taken from [59], where a similar comparison

of the K2K and ANL results was made; their factor is 0.89. To obtain the scaling factor

for MiniBooNE, we assume that the Monte Carlo accurately predicts the relative numbers

of channel 3 (on a proton), channel 5 (on a neutron), and channel 97 (coherent) events.

The scaling factor is then 3
4sp + sn + scoh where s is the fraction of signal events in each
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Figure 5.70: Left: Our CCπ+ to CCQE ratio compared with the NUANCE prediction.
Right: Our ratio compared with those measured by ANL and K2K. The MiniBooNE and
K2K measurements have been rescaled for an isoscalar target to compare with ANL.

channel; the factor works out to 0.8. Note also that in the ANL measurement, an explicit

cut on invariant mass W < 1.4 GeV was made. No cut on invariant mass was made in this

analysis; however the MiniBooNE flux is such that CCπ+ events occur only in the region

W < 1.6 GeV. Similarly, the the K2K measurement includes events in the region W < 2

GeV.
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Eν CC1π+/CCQE CC1π+-like/CCQE-like
(GeV) (FSI corrected) (observed)

0.45 ±0.05 0.045 ±0.008 0.036 ±0.005
0.55 ±0.05 0.130 ±0.018 0.100 ±0.011
0.65 ±0.05 0.258 ±0.033 0.191 ±0.019
0.75 ±0.05 0.381 ±0.047 0.278 ±0.028
0.85 ±0.05 0.520 ±0.064 0.371 ±0.040
0.95 ±0.05 0.656 ±0.082 0.465 ±0.053
1.05 ±0.05 0.784 ±0.100 0.551 ±0.066
1.15 ±0.05 0.855 ±0.114 0.607 ±0.077
1.25 ±0.05 0.957 ±0.132 0.677 ±0.091
1.35 ±0.05 0.985 ±0.141 0.700 ±0.097
1.5 ±0.1 1.073 ±0.157 0.777 ±0.109
1.7 ±0.1 1.233 ±0.207 0.904 ±0.137
2.1 ±0.3 1.318 ±0.247 1.022 ±0.161

Table 5.7: The MiniBooNE measured CCπ+ to CCQE (Figure 5.70) and CCπ+-like to
CCQE-like (Figure 5.69) cross section ratios on CH2 including all sources of statistical and
systematic uncertainty.
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Chapter 6

Conclusion

Charged current single pion production and charged current quasi-elastic scattering are the

two most abundant event channels for neutrinos on the order of 1 GeV. This dissertation

has presented a measurement of the ratio of the cross-sections for these two processes on

mineral oil, as a function of neutrino energy. This measurement, made by the MiniBooNE

experiment, represents an improvement of an order of magnitude in statistics over any

previous CCπ+ or CCQE measurement, and is the most precise determination of the

cross-section ratio to date. This is also the first analysis to report results for observed

(CCπ+-like and CCQE-like) events after final state interactions in addition to the FSI-

corrected result. The observed result does not attempt to use a nuclear model to account for

pion absorption and charge exchange within the target nucleus and thus it is more model-

independent than the FSI-corrected result. It is also more precise, because uncertainties

on intra-nuclear re-scattering do not enter into the systematic errors.

A comparison of this measurement with two previous measurements of the CCπ+ to

CCQE ratio was shown in figure 5.70. Several other experiments have measured CCπ+ and

CCQE cross-sections, but for simplicity we compare only with experiments that reported

both cross-sections using the same binning. As can be seen from the plot, with this

measurement we begin to clearly see the behavior of the cross-section ratio as a function

of neutrino energy.
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This measurement is an important step toward understanding neutrino cross-sections

for these events at low energies, but it is only a beginning. Subsequent MiniBooNE mea-

surements of absolute differential CCQE [61] and CCπ+ [62] cross-sections have been

published. The ratio of these results agrees with the cross-section ratio presented here,

which is in good agreement with the Smith-Moniz and Rein-Sehgal models; however, both

the CCQE and CCπ+ absolute measurements find cross-sections on the order of 30%

larger than the prediction from their respective model. This may suggest that there is

some underlying reason, common to CCπ+ and CCQE , that the cross-section predictions

are off. In any case, it is useful to have both the ratio measurement and the absolute

cross-section measurements. Future results from SciBooNE, MINOS, MINERνA, NOνA,

MicroBooNE, and other experiments promise to continue to improve our understanding of

these interactions and may solve remaining puzzles such as the 30% discrepancy in both

channels and the conflicting evidence for coherent pion production.

In the near-term, this result provides much-needed data for modelling resonant pion

production by neutrinos and, in particular, for testing proposed improvements to the Rein-

Sehgal model. Since its publication, several theorists and phenomenologists [100, 101, 102,

103, 104, 105, 106, 107] have used this measurement. Farther ahead, the result presented

here will help to constrain the CCπ+ background to CCQE in future νµ disappearance

searches; it is thus a small step on the road toward answering the great open questions of

neutrino physics.
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