D0, E740 LAr Dewar

Technical Appendix to Cryogenic Pressure Vessels (5032TA, July 27,1984)

D0 ENGINEERING NOTE 3740.512-EN-244

G. T. Mulholland February 22, 1990 R. A. Rucinski Revision A, Feb. 15, 1990

February 22, 1990 Rev. Feb. 19, 1990

Technical Appendix to Cryogenic Pressure Vessels; E740 LAr Dewar

1.0 Documentation

1.1.1 System Equipment and Operation

The 20,000 gls. Liquid Argon dewar stores up to 15,000 gls. of high purity (<1.0 ppm $O_{2,}$ 0.999995) LAr for use in the Liquid Argon calorimeters of E740, the D0 collider detector, at elevation 707'. The dewar provides for the total detector volume of 11,000 gls and a 4,000 gls. storage inventory. The large gas volume (\geq 5,000 gls.) serves operational needs and guards against overfill concerns.

The LAr dewar functions in two modes; 1) low pressure (16 psi relief) storage, and liquid and gas transfer operations to and from the low pressure (13 psi relief) detector cryostats, and 2) high pressure (65 psi relief) liquid transfer operations to and from a delivery trailer at elevation 743'.

The storage function is intended to be long term and nonventing. The dewar is equipped with a 40 kW LN_2 condenser that operates to maintain the pressure constant in the storage mode. This service exactly parallels the NeH₂ and D₂ storage dewar services provided at the 15' bubble chamber for its operation.

1.1.2 Flow Sheets

The flow sheets (current revision) are included in the appendix. 3740 ME 222394 S, sht 1,2

LAr Dewar, Technical Appendix

February 22, 1990 Rev. Feb. 19, 1990

1.1.3 Preliminary Operating Procedures

The previously submitted preliminary procedures, section 5.0 Argon Dewar, indicated the expected use of the dewar. Please note that these were representative, in a current state of development, and were not offered as final.

1.1.4 Qualification and Training

The initial operators (D0 cryo experts) of this system have the following areas of experience and years of experience;

<u>Operators</u>	<u>Experience</u>	Years
G. T Mulholland	H ₂ ,Ne,D ₂ Bubble Chambers	
	Large, small He Systems	
	100 T/d Nitrogen Reliquifier	
	Accelerator Cryogenics	
	LAr Calorimeters	30
Kelly Dixon	H ₂ ,Ne,D ₂ Bubble Chambers	
	Large He Systems	
	Large LAr Calorimeter	10
John Urbin	H ₂ ,Ne,D ₂ Bubble Chambers	
	Large He Systems	
	Large LAr Calorimeter	10
Ernie Ramirez	Large He Systems	
	Accelerator Cryogenics	10
Dan Markley	H ₂ ,Ne,D ₂ Bubble Chambers	
	Large He Systems	10

The above people are posted through out DAB as the D0 cryoexperts by means of the list included in the appendix.

February 22, 1990 Rev. Feb. 19, 1990

1.1.5 Chapter 5032 Documentation

Provided under separate cover as the "14.1 document"._ It may also be found as EN 219 in the D0 note file._

1.1.6 Active Component List

The active components are listed in the D0 EN 193, Piping Components List in the D0 files.

2.0 Analysis Requirements

2.1 Failure Mode and Effects Analysis (FMEA)

Reference the formatted FMEA which appears in the appendix. Included at the end of the appendix is a flow sheet 3740 ME 222394 S, sht 1 which shows the boundary of the components included in the FMEA

2.2 What-if Analysis

Reference the formatted "What if" analysis which appears in the appendix.

3.0 Engineering Calculations

Important engineering calculations for the D-Zero project are given Engineering note numbers. An index to these notes which are relevant to the cryosystem is in the appendix.

3.1 Relief System Adequacy

The adequacy of the relief system is addressed in EN 232. The treatment is general, well referenced, and has application well beyond this work.

February 22, 1990 Rev. Feb. 19, 1990

3.2 Stress Calculations

The stress calculations for component parts will be found in the EN describing each part design or analysis. See the D0 EN index.

4.0 Maintaining Safe Operation

4.1 Updating Documents

D0 has a mature file of component, system and schematic drawings, a checked and approved mode of operation, a large and current engineering note file, and a substantial and developing operating procedures manual. All these documents are improved and kept current by periodic review, upgrading and updating.

Operations logbooks and historical trend analysis provide the basis for system improvement and upgrade.

4.2 Operating Procedures

Operating procedures have been written for; Instrument Air Vacuum Nitrogen Storage Dewar Argon Storage Dewar Test Cell Operation CC Cryostat EC Cryostat Emergency Procedures Special Procedures 4.3 Operator Training and Qualification Records

A set of cryogenic operators will be trained and identified (see Qualification and Training). That list will be keep current, by addition and retraining, and augmented with the RD/CRYO personnel as systems are commissioned and the operating procedures are tested and become well established.

5.0 Inspections

5.1 Review inspections

Inspections have been performed when and as deemed necessary.

5.2 Operations Inspections

Inspections of the operating system are encouraged.

. 11

February 22, 1990 Rev. Feb. 19, 1990

APPENDIX TO

D0 ENGINEERING NOTE

3740.512-EN-244

	\mathbb{D}	CRY	OEX	PIERT
	\mathbb{C}_{2}	AILIL	LIST	\Box
	LAB <u>EXT.</u>	PAGE <u>NUM.</u>	HOME <u>PHONE</u>	
DIXC	N, Kelly 2634	334	(708)	741-8747
MAR	KLEY, D 2849	an 992	(815)	741-1521
MUL	HOLLAN	ID, Geor	ge T.	
	3287	850	(708)	653-2443
RAM	IREZ, Er 2670	nie 491	(708)	377-5187
URB	IN, John 2638	357	(708)	859-8829

)

		Τ	Failure or		Hazard	
Com	pone	nt	Error Mode	Hazard/Effect	Class	Remarks/Recommendations
CV	455	N	Open	Normal	Safe	
CV	455	N	Closed	Stops N2 venting	Safe	RD458E Relieves outside of building
MV	456	A	Open	Normal	Safe	
MV	456	A	Closed	Stops Argon purge	Safe	
MV	457	A	Open	Normal	Safe	
MV	457	Α	Closed	Stops Argon Sampling	Safe	
MV	462	A	Open	Normal	Safe	
MV	462	A	Closed	Stops Argon fill	Safe	Supervised Ar fill procedure
MV	469	A	Open	Bypasses DPI470A	Safe	Lose indication of pressure drop across F467A
MV	469	A	Closed	Normal	Safe	
MV	603	A	Open	Normal	Safe	
MV	603	A	Closed	DPI606A & DPT637A Blocked	Safe	Lose Ar dewar level indication
MV	604	A	Open	Normal	Safe	
MV	604	Α	Closed	DPI606A & DPT637A Blocked	Safe	Lose Ar dewar level indication
MV	605	A	Open	Lose level indication	Safe	Bypasses DPI606A & DPT637A
MV	605	A	Closed	Normal	Safe	
MV	607	'A	Open	Normal	Safe	
MV	607	Α	Closed	PI608A & PT653A Blocked	Safe	Lose electronic Argon dewar pressure indication
MV	610	A	Open	Permits flow	Safe	With MV664A open
MV	610	A	Closed	Normal	Safe	
MV	616	S A	Open	Permits flow	Safe	
M	616	S A	Closed	Normal	Safe	
MV	617	A N	Open	Normal	Safe	Permits flow to Argon dewar reliefs
MV	617	' A	Open	Normal	Safe	Permits flow to Argon dewar reliefs
MV	624	A	Open	Permits pressure behind a cap	Safe	
M	624	I A	Closed	Normal	Safe	
MV	627	V V	Open	Permits vacuum behind a cap	Safe	
MV	627	7 V	Closed	Normal	Safe	
M	628	3 V	Open	Normal	Safe	
M	628	3 V	Closed	TG629V Blocked	Safe	Lose indication of Argon vacuum jacket pressure
M	632	2 A	Open	Permits flow	Safe	Vents Ar dewar outside of building
M	632	2 A	Closed	Normal	Safe	
MV	633	3 A	Open	Normal	Safe	Ar dewar test port
M	633	3 A	Closed	Stops Ar sampling	Safe	
M	635	5 A	Open	Normal	Safe	Ar dewar test port
M	635	5 A	Closed	Stops Ar sampling	Safe	

57° ÷

)

)

_

	Failure or		Hazard	
Component	Error Mode	Hazard/Effect	Class	Remarks/Recommendations
MV 639 A	Open	Normal	Safe	
MV 639 A	Closed	PT653A Blocked	Safe	Lose electronic Ar dewar pressure indication.
MV 640 E	Open		Safe	Locked cap after valve
MV 640 E	Closed	Normal	Safe	
MV 643 A	Open		Safe	Cap after valve
MV 643 A	Closed	Normal	Safe	
MV 646 A	Open	•.	Safe	Cap after valve
MV 646 A	Closed	Normal	Safe	
MV 648 A	Open	Normal	Safe	
MV 648 A	Closed	Stops Ar flow	Safe	
MV 656 N	Open	Normal	Safe	
MV 656 N	Closed	Blocks PT655N	Safe	
MV 658 A	Open		Safe	Cap after valve
MV 658 A	Closed	Normal	Safe	
MV 660 A	Open	Normal	Safe	
MV 660 A	Closed	Stops Lar flow to calorimeters	Safe	
MV 661 A	Open		Safe	Cap after valve
MV 661 A	Closed	Normal	Safe	
MV 664 A	Open	Permits flow	Safe	
MV 664 A	Closed	Normal	Safe	
MV 667 A	Open	Bypasses DPI669A	Safe	Lose indication of pressure drop across F672A
MV 667 A	Closed	Normal	Safe	
MV 668 A	Open	Bypasses DPS666A & DPT665A	Safe	Lose indication of pressure drop across FM671A
MV 668 A	Closed	Normal	Safe	
MV 674 A	Open		Safe	Cap after valve
MV 674 A	Closed	Normal	Safe	
MV 677 A	Open	Bypasses DPI676A	Safe	Lose indication of pressure drop across F670A
MV 677 A	Closed	Normal	Safe	
PV 601 A	Open	Permits flow	Safe	
PV 601 A	Closed	Normal	Safe	
PV 611 A	Open	Permits flow	Safe	With several other valves open.
PV 611 A	Closed	Normal	Safe	
PV 612 N	Open	Normal	Safe	
PV 612 N	Closed	Stops LN2 flow to Ar dewar	Safe	
PV 615 N	Open	Normal	Safe	
PV 615 N	Closed	Stops LN2 flow to Ar dewar	Safe	

	Failure or		Hazard	
Component	Error Mode	Hazard/Effect	Class	Remarks/Recommendations
PV 625 A	Open	Normal	Safe	Supervised filling operation
PV 625 A	Closed	Stops LAr fill	Safe	
PV 638 A	Open	Normal	Safe	
PV 638 A	Closed	Stops LAr flow from dewar to Calorimeters	Safe	
PSV 609 A	Open	Vents Argon	Safe	Vents inside building
PSV 609 A	Closed	Overpressurize piping	Mech. damage	Mean time between failures=274 years
PSV 614 N	Open	Vents Nitrogen	Safe	Vents inside building
PSV 614 N	Closed	Overpressurize piping	Mech, damage	Mean time between failures=274 years
PSV 619 A	Open	Vents Argon	Safe	Vents outside of building
PSV 619 A	Closed	Dewar pressure increases to 95 psi max.	Safe	RD618A relieves Ar dewar at 95 psi
PSV 620 A	Open	Vents Argon	Safe	Vents outside of building
PSV 620 A	Closed	Dewar pressure increases to 25 psi max.	Safe	RD621A relieves Ar dewar at 25 psi
PSV 623 A	Open	Vents Argon	Safe	Vents inside building
PSV 623 A	Closed	Overpressure piping	Mech. damage	Mean time between failures=274 years
PSV 626 V	Open	Vent insulating vacuum space	Safe	See LAr dewar relief valve sizing
PSV 626 V	Closed	Normal	Safe	
PSV 630 A	Open	Vents Argon	Safe	Vents inside building
PSV 630 A	Closed	Overpressure piping	Mech. damage	Mean time between failures=274 years
PSV 633 A	Open	Vents Argon	Safe	Vents inside builing
PSV 633 A	Closed	Overpressure piping	Mech. damage	Mean time between failures=274 years
PSV 642 A	Open	Vents Argon	Safe	Vents inside builing
PSV 642 A	Closed	Overpressure piping	Mech, damage	Mean time between failures=274 years
PSV 647 A	Open	Vents Ar	Safe	
PSV 647 A	Closed	Overpressure piping	Mech, damage	Mean time between failures=274 years
PSV 657 A	Open	Vents Argon	Safe	
PSV 657 A	Closed	Overpressure piping	Mech. damage	Mean time between failures=274 years
SV 673 A	Open	Vents Argon	Safe	
SV 673 A	Closed	Overpressurize piping	Mech. damage	Mean time between failures=274 years
FD 458 E	Open	Vents Nitrogen	Safe	Vents outside of building
FD 458 E	Closed	Normal	Safe	
FD 618 A	Open	Vents Argon	Safe	Vents outside of building
FD 618 A	Closed	Normal	Safe	
FD 621 A	Open	Vents Argon	Safe	Vents outside of building
FD 621 A	Closed	Normal	Safe	

DØ Liquid Argon Dewar "What-If"

.

"WHAT - IF"	CONSEQUENCE / HAZARD	CONCLUSION / RECOMMENDATIONS
Leaks occur?	Oxygen Deficiency Hazard may occur due to	Leaks of reasonable size have been anticipated by the ODH analysis and
	cryogens leaking into the building.	appropriate provisions made so they present no personnel or
		equipment danger (i.e. the ODH class is 0).
	E.	
The Ar dewar is overfilled?	Dewar will completely be filled.	The dewar volume has been sized with a 5,000 gallon ullage to preclude
		this from occurring. If an overfill occurs however due to
		human error, the dewar may fill only to its maximum
		and the source pressure head (=46 psig). The relief is set at 65 psig.
The Ar dewar is filled with	The Dewar relief valve will relieve at	The operating procedures prevent this event from occuring,
a delivery pump?	it's 65 psig setting.	Personnel involved with the filling operation know that the pump is not
		to be operated. The filling of the Ar dewar will be a highly supervised
		event. In the event this does occur, however, the 65 psig relief value is of
		adequate size to vent vapor displaced from a pump liquid fill at 200 gpm
The Ar dewar is overfilled with	Dewar will be filled with liquid and will blow	This is an unlikely two failure mode case. Operating procedures will prevent
a delivery pump?	it's reliefs.	either failure mode from occurring. See the above two "What if" cases
		for the singly occurring failure mode. Should this occur, the rupture disc
		blows and the dewar vents to the vent line. The dewar pressure would be
		the vent line head plus the pressure drop due to the flow,
	5	
The vacuum of the LAr dewar	Loss of vacuum.	Safe. This case was covered in D0 Engineering Note 219. Vacuum
fails?	ł	failure of the dewar or any associated lines will impede or seriously
		hamper operations, but not provide a personnel or equipment danger
There is a fire?	Dewars will relieve and possible loss of	Fire exposure of the dewar is covered in D0 Engineering Note 232
	signal or valve operators.	The implication of the loss or signals of valve operators is that
		trapped liquid volumes could occur and cause trapped volume reliefs
		to relieve.

)

DØ Liquid Argon Dewar "What-If"

)

"WHAT - IF"	CONSEQUENCE / HAZARD	CONCLUSION / RECOMMENDATIONS
There is an earthquake?	Damage to the piping system could occur.	The ANSI B31.1-1986 piping code under par, 101.5.3 states that
		"The effect of earthquakes, where applicable, shall be considered in the
		design of piping, piping supports " The effect of earthquakes are not
		applicable to the region of Illinois where Fermilab is located. The
		Uniform Building Code shows that Fermilab is in a Class 0
		seismic zone which means no design provisions for earthquakes are
	· · · · · · · · · · · · · · · · · · ·	required.
	· ·	
There is a loss of electrical	Backup power will be required to maintain	Sustained loss of electrical power will result in critical equipment
power?	operation of the system.	running on the Emergency Power Generator. The instrument air,
		vacuum pumps and controls are (will) all be EPG powered. Should
		the EPG fail before the return of commercial power the equipment
		is lost, see below.
There is a loss of instrument	Valves will close.	Safe. The primary system is backed up for several hours with a tube trailer.
		All valves are failsafe, i.e. they close on the loss of instrument
air?		air. Reference the failure mode and effects analysis.
There is a loss of cooling	The main cooling water supply might be	The vacuum and Instrument air equipment have a primary, emergency
water?	in jeopardy if a system was not designed	powered, immediate start, closed loop, fan blown radiator, redundant
	properly.	pump, glycol stream to put the heat load on the building system and
		provide lower summertime coolant temperatures. Loss of the secondary
		system, or commercial power if the emergency generator functions,
		does not effect the cooling provided to the rotary equipment.
There is a loss of Liquid	Cooling will be lost and will cause the	The loss of liquid nitrogen denies the detector its necessary coooling
nitrogen?	Argon vessels to warm, boil off, and vent.	and it will pressurize and vent. The rate of loss is calculated to be
		only 0.45 gpm of liquid argon on average, which is very slow.
	······	The loss of liquid nitrogen does not provide a personnel or equipment
		danger.
Some kind of contamination	The contamination could restrict flows.	Continued or serious one-time contamination of the coolant stream
occurs?		with frozen solids will result in a loss of liquid nitrogen, see above.

1.1

.

DØ Liquid Argon Dewar "What-If"

"WHAT - IF"	CONSEQUENCE / HAZARD	CONCLUSION / BECOMMENDATIONS
There is some kind of	A piece of equipment will stop working	100% redundancy in mechanical forenums provide for vacuum
equipment failure?	r piece et equipment win step working.	loculoment failure in the operating mode. The loculating vacuum
		function with either the ervectet diffusion pure on the blows
		lastrument ein in besked un bu 0 er mens hump or the blower.
		Instrument air is backed up by 8 or more nours of high pressure
		gaseous nitrogen. All valves close on air failure. Expected equipment
		modes do not provide a personnel or equipment danger.
An operator makes a	Upset of the system may occur.	Any one operator procedural or console error can cause any one
procedural error?		component to act improperly which is comparable to a component
		failure. Failure of equipment is covered above and failure of valves
		was covered in the FMEA. A single operator error cannot cause a safety
		problem.
A U-tube falls during removal		NOTE: A survey of the area around the U-tubes was made to
or insertion and strikes the		determine which components were vulnerable.
following vulnerable		
components?		
A. 3/8"pilot line to 16 psig	Line could bend with possibility of small	No safety hazard exists due to low flow rates which could exist
relief valve.	argon leakage from dewar.	
B Instr air supply solenoids	Erroneous signals/pressure from instr	Supply air to pneumatic valves will be shutoff procedurally by
air sets (regulators/filters)	air manifold could open large pneumatic	manual or solenoid valves. Both solenoid and proceedinary by
I/P transmittere and positioners	valves causing ODH and other grup dangers	CLOSED
P transmitters and positioners.	values causing ODT and other offe dangers,	
C Pressure level gages and/or	Tubing within or leading to gages could	Close protected shutoff values at device
C. Flessure, level gages and/or	Thomas addies to any accounter ODU shustles	Close protected shuton valves at dewar.
	Billed and the stry concurrent OUT situation.	
	Tubing and above for diag to ODU at the	
D. 1/2" copper tubing	Tubing could shear leading to ODH situation.	Line has been reinforced by well supported aluminum channel.
vaporizer liquid shutoff valve.		

•, •

\$

"WHAT - IF"	CONSEQUENCE / HAZARD	CONCLUSION / RECOMMENDATIONS
E. 1/4" cast bronze test valves	Tubing/valves could shear adding to any	Relief selecting valve, MV617A, should be switched temporarily to
at relief inlets.	concurrent ODH situation.	other position until any necessary repairs are complete.
The deired rate of rise	This ROR criterion is set very conserv-	Valve leakage criteria should include operational as well as ODH
(1 psi/15 min) can not be	atively for an ODH guideline. However it	considerations. Nonetheless, instructions to operators shall specifically
achieved?	still should be followed, otherwise the	state that ALL procedures should be followed exactly as written unless
	purity of the argon within the dewar could	approval has been granted by the cryo supervisor for deviation. If the
	be jeopardized.	usual seating methods (valve stroking, packing tightening) have failed.
		it is likely that the only option available is to drain the dewar, vent it
		to atomosphere, and make repairs to the valve.
The U-tube gets stuck during	Piping could be bent if excessive force is	All u-tubes have been field fitted to their counterparts. Piping damaged
removal?	used. Trolley, hoist, and rail have large	due to the lack of good common sense will have to be repaired as needed.
	factors of safety and can not be subjected	
	to unsafe loads.	

.

INDEX TO D-ZERO ENGINEERING NOTES

RELEVANT TO THE CRYOSYSTEM

(February 20, 1990)

I. OXYGEN DEFICIENCY HAZARD

- EN-50 Spill provisions of DO LAR Calorimeter
- EN-129 D-Zero Vent stacks
- EN-229 ODH Analysis method and conclusions
- EN-231 Leak analysis- Bayonnet + Flange
- EN-233 U-tube/Filter change ODH considerations
- EN-235 DAB, South side, ODH analysis
- EN-242 D-Zero Cryo Ventillation Fan Controls and Monitoring

II. VESSELS

EN-111	Argon dewar required relief flow
EN-115	High pressure source, Cryostat relief solution
EN-121	ASME Code design calculations for CC Cryostat
EN-204	Cooling system expansion tank safety note
EN-219	D-Zero LAr Dewar pressure and vacuum vessel safety notes
EN-221	D-Zero LN2 Dewar pressure and vacuum vessel safety notes
EN-234	LAr Dewar condensor coil considerations
EN-244	LAr Dewar Technical Appendix to Cryogenic Pressure vessels

III. PIPING

EN-25	Central Calorimeter piping flexibility
EN-59	Specification for fabrication, installation and testing of pipe
EN-162	Pipe stress analysis
EN-172	Analysis of rotary bayonnets/piping
EN-193	D-Zero Piping components
EN-220	Storage dewar U-tube design

IV. MISCELLANEOUS

EN-4	Stress	analysis	End	Calorimeter	cryo
		Carlandad			

- EN-9 End Cap Cryostat
- EN-22 Central Calorimeter nozzles
- EN-23 Central Calorimeter/ cryo support
- EN-24 Cryostat stiffening rings (cent)
- EN-26 Central Calorimeter Vessel Calculations
- EN-36 End Cap Calorimeter Vessel Calculations
- EN-42 Summary stress analysis of CC Cryostat
- EN-54 Design review of DO Cryostats
- EN-63 D-Zero vent piping
- EN-65 Battelle design review CC vac.
- EN-68 Design summary of CC cryo vessels
- EN-232 Fire Relief value determination

FMEA ANALYSIS

Definition of Hazard Classes

T

Safe	=	No mechanical damage or personnel injury.
ODH	=	Releases argon or nitrogen to atmosphere, possibly threatening personnel. This possibility is taken into account in ODH Analysis, area classification, and procedures. See ODH Analysis and Safety Manual, Chapter 15.1 for further details.
Mechanical Damage	=	Possible damage to equipment, most likely due to over pressurization. Personnel injury is considered sufficiently unlikely and as such, constitutes an acceptable risk. ODH is possible if piping, pressure vessels or components rupture.
Unsafe	=	More than negligible possibility of personnel injury even if standard ODH procedures are followed.

Note: Mean time between failures taken from Fermilab Standard 5064TA, Table III.