FLEXIBLE FOOT TEST ASSEMBLY

C. H. Kurita

D-Zero Engineering Note: 3740.210-EN-87

April 27, 1987

Rev A

Approved:

INTRODUCTION

A test model of the flexible foot support was constructed early in the design stages to check its reactions to applied loads. The prototype was made of SS 304 and contained four vertical plates as opposed to the fourteen Inconel 718 plates which comprise the actual structure. Due to the fact that the prototype was built before the design of the support was finalized, the plate dimensions are different from those of the actual proposed design (i.e. model plate thickness is approximately one-half that of the actual plates). See DWG. 3740.210-MC-222376 for assembly details of the test model and DWG. 3740.210-MB-222377 for plate dimensions.

This stanchion will be required to not only support the load of the inner vessel of the cryostat and its contents, but it must also allow for the movement of the vessel due to thermal contraction. Assuming that each vertical plate acts as a column, then the following formula from the Manual of Steel Construction (American Institute of Steel Construction, Inc., Eight edition, 1980) can be applied to determine whether or not such columns undergoing simultaneous axial compression and transverse loading are considered safe for the given loading. The first term is representative of the axially compressive stress, and the second term, the bending stress. If the actual compressive stress is greater than 15% of the allowable compressive stress, then there are additional considerations which must be accounted for in the bending stress term.

(1)
$$(f_a/F_a)+(C_mf_b/((1-f_a/F_e)F_b)\le 1.0$$
 (when $f_a/F_a>0.15$)

(2)
$$(f_a/F_a)+(f_b/F_b)\le 1.0$$
 (when $f_a/F_a<0.15$)

 f_a =P/A=average compressive stress

P=load per support per number of plates in support A=area of plate F_a =(12 π ²E)/(23(K1/r)²)=allowable axial compressive stress

E=modulus of elasticity

K=effective length factor
l=length of plate
r=radius of gyration C_m =constraint coefficient

 $f_b = P/A + Mc/I = maximum bending stress$ M = maximum moment I/c = section modulus $F_e = (12\pi^2 E)/(23(KI/r)^2) = Euler stress divided by a factor of safety$ $F_b = 0.75F_y = allowable bending stress$ $F_v = yield strength$

A FORTRAN program written by K Krempetz was used to determine that the load which could be applied to the above mentioned plates and still be considered safe would be a load of 900 lbs. Figuring in a safety factor of about 4, the plates would then be expected to fail in the vicinity of 3600 lbs.

TEST PROCEDURE

The test procedure for the flexible foot prototype can be found in Appendix 1. The procedure was followed at Fermilab by J. Hoffman, and the results for steps 2–10 were recorded (see Appendix 2). No permanent deformations were observed. However, in step 11, elastic buckling and/or failure could not be achieved at 3600 lbs or at any point thereafter given the available loading capacity of 22,000 lbs.

The flexible foot test assembly was then taken to an outside vendor (Midwest Manufacturing and Engineering Consultants, Inc., Bartlett, II.) who proceeded to repeat the procedure and document the results (see Appendix 3). Again steps 2-10 were completed with no permanent deformations observed. The assembly was then loaded as requested in step 11, and the load was increased up to the capacity of the press, which was 66,000 lbs, without any apparent signs of failure. However, after being released from this load, there was a permanent deflection noted between the plate ends of 0.034". The assembly was then transferred to a press of larger capacity and re-loaded. Buckling of the plates on one side was observed to have occurred at a load of 107,900 lbs (26,975 lbs/plate).

ANALYSIS OF RESULTS

Upon utilizing the formulas previously mentioned, it was necessary to choose the proper value of K, the effective length factor, which depends

upon the end constraints of the column under consideration. It was originally assumed that the column behaves as one which is fixed at one end and guided at the other (case 1). The theoretical K value for this case is 1.0, and the design value is 1.2. If the column behaved as though it were fixed at both ends (case 2), then the theoretical K would be 0.5 and the design K, 0.65. Since the former case (case 1) generates more conservative figures (i.e. lower $P_{\rm Cr}$), its value was used in the design of the flexible foot support.

After measuring the load that caused the plates in the test assembly to buckle, the $P_{\rm Cr}$ was calculated using each of the above mentioned values of K. The $P_{\rm Cr}$ for case 1 was either 6,066 lbs/plate of 8,735 lbs/ plate, and that for case 2 was either 20,674 lbs/plate or 34,939 lbs/plate. Since the observed value of buckling (26,975 lbs/plate) was between the $P_{\rm Cr}$ values of case 2, it is believed that case 2 proves to be a more accurate situation than case 1. Use of the case 1 values brought about a more conservative design, serving to increase the safety factor.

The values of the maximum stress in the plates in the scope of the critical loads were from 24,500 psi to 27,800 psi, lower than the yield strength of SS 304 (35,000 psi). It is therefore believed that the plates will fail due to buckling before they will fail due to the strength of the material.

The AISC code requires that the slenderness ratio, K1/r, be less than 200. Test model case 2 values satisfy this requirement, but case 1 values do not. The design of the actual support, in both cases, has a slenderness ratio which is less than 200.

The measured values of load for given deflections taken from steps 2-4 were compared to the calculated load values for the same deflections for two beam cases: case I being a beam fixed at one end and free at the end being loaded and case 2 being a beam fixed at one end and guided at the loaded end. The plots of the deflection vs. measured load values fell between the two plots of the deflection vs. calculated load values.

In order to understand why the load measured at the point of buckling was so much higher than expected, the FORTRAN program was run taking out all conservatism where possible. The ultimate strength of SS 304 was used, the less conservative design value of K (0.65) was used, and a calculated $C_{\rm m}$ value of 0.2 was used in place of the standard 0.85 value. Upon revising these constants, the combined stress factor (from formula 1) was found to be greater than or equal to 1.0 at a load of 104,000 lbs, which is in close proximity to the observed value of 107,900 lbs.

CONCLUSION

The results of the buckling test of the flexible foot assembly have helped to provide a more thorough and complete understanding of the behavior of the support when it is loaded. If the actual support made of Inconel 718 (see DWG. 3740.210-MC-222269) behaves in a similar manner to the test model, then there is a considerably large factor of safety present. If the load of the inner vessel of CC and its contents were to be evenly distributed across the fourteen plates of the support, a plate of average width (7.725") would experience a load of 12,185 lbs. Considering the predicted range of 230,564 lbs/plate to 389,653 lbs/plate for $\rm P_{CC}$, a minimum safety factor of 19 would be present, which demonstrates the conservativeness of the actual design.

Flexible Foot Test Procedure

- 1) Assemble Flexible Foot and Flexible Foot test base as shown on Drawing 3740.210-MC-222376.
- 2) Load the Enerpacs and measure the force (pressure on the cylinder) that is needed to move the plate ends apart from one another. Record at total distances of .125, .25, .375. and .5 inches.
- 3) Unload the Enerpacs and measure the plate ends to see if the plate ends returned to their original position.
- 4) Repeat steps (2) and (3) 3 times.
- 5) With the plates vertical (Enerpacs unloaded), apply a vertical force of 900 lbs with the large press.
- 6) Release the vertical load and examine the fixture for permanent deformations.
- 7) Repeat steps (5) and (6) 3 times.
- 8) Load the support with a vertical force of 900 lbs and then slowly load the Enerpacs to move the plate ends apart until .5 inches is between the plate ends.
- 10) Repeat steps (8) and (9) 3 times.
- 11) Load the Enerpacs to achieve a deflection between the plate ends of .5 inches and load the vertical load until elastic buckling and/or failure of the support occurs. Record the results.

Note: The model has previously been loaded to 22,000 lbs with no visible damage noted. It is constructed of SS 304.

	Su	bject FLEXIB	LE FOOT	Instructor's Name
	STEPS			
	2 4 3 + 4			
		RE QESTE O	ACT	ON CYLINAER
	(A)	.125"	.124"	150 lbs
-		-1145		750,105
		.250"	.25/"	275/bs
		_ '		
-		.375"	,377"	375/65
= =				
- (.500 "	498	475 Bs
-				
-				
	B	.125"	-,128	150Ks
		,250	.256"	275165
		.375"	.372"	350/bs
		.500 "	.498*	500 lbc
	0	.125"	.126	150 Ks
2		,250"	.257	275/bs
		,375"	. 3 76	400 lbs
_		.500 ~	.50/	475/65
	*	,300		7-13-183
	i			i

Subject 47		EXIBLE	INMAL	0 5794	5.223		5.7
-PS			INMAL	D 5.794 5.773	5.774 5.774		5.7
			INMA. AFTER LOADED INMAL	D 5.794 5.773	5.774 5.774		5.7
			INMA. AFTER LOADED INMAL	D 5.794 5.773	5.774 5.774		5.7
			AFTER LOADED INMAL	5.773	5.774		5.7
			AFTER LOADED INMAL	5.773	5.774		5.7
			AFTER LOADED INMAL	5.773	5.774		5.7
			AFTER LOADED INMAL	5.773	5.7%		5.
			AFTER LOADED INMAL	5.773	5.7%		5.
		X	LORDED	5.773	5.76/		5.
		X	INMAL	5.759	5.76/		5
		X					
		X					
		X					
		X					
			APTER LORDED	5,76/	5,757		5
		!				: :	
					!		
; '	1		i		and the second s		1
	. 1	1 3					
					r.		
		X	INITIAL	E. 736	5.735		- 7
i	<u>†</u> † !						
			LOCOGO	5.735	5.737	5,	2.
ii	1 1					<u> </u>	
		1 1	<u> </u>		· · .		
1 (· .					1	
	d			:		,	
<u> </u>	Y					1 	
		. , 1			1		
1	1 .	lii				i	
	. :			i			
		1 1					
	1 1	1					<u>:</u>
		1 1					
· ·	1			1 1			1
	10 100 g						!
				AFTER	AFTER	AFIER	AFTER

4-2	Student's N	ame		<u> </u>		Date	6-10-87
	Subject	FLEXIB	LE	F005		instructor's Nam	
	1					Hist (1257
steps	i					X	509
8+	7+10	900 K	٢ ١	5 p		1 4-1	0-86 N.A
.							100
	8 g 3s	A_	- X	INMAL	5.772	5.773 *	5.773"
			1-1-	ASTER	_ //	1	
			- -	AFIER	5,773	5.773	5,775
	<u> </u>			1 1 1			
					rara"	5.763"	5.76/"
		8	X	INFIL	3 ,/3_7	3./6.	5,/6/
				AFTER	5.76311	C761	5.766
		. 1			_3,//		
		6	į				
i l				14.04	5.731		
			X	1 1			
		MUL		AFTER	5.729	5,737	
			!		5.7.29	5.736"	5.734"
				+		: -	
				1 1 1			
	a						
			- I	1 1 1			
Alex	//			4 4 4	,		
stop 1	<u>/</u>					· ! , !	
stop 1	; [.		1				
	; [.	5.774					
	; [.	5.724					
	; [.	5.724					
	; [.	5.724					
	4 3						
	4 3	769"					
	4 3						
	4 3						
	9 5.						

Opsi webs

- APPENDIX 3

MIDWEST MATERIALS & ENGINEERING CONSULTANTS, INC.

Box 5 Wayne, IL 60184 312/741-1983

864 W. Stearns Bartlett, IL 312/830-4979

BUCKLING TEST

CALORIMETER FLEXIBLE FOOT PROTOTYPE

Ralph d. Daehn, P.E.

President

Beran Tari Black

Metallurgical Engineer

Associate

Date: April 2, 1987

Buckling Test Report on Calorimeter Flexible Foot Prototype

Ref: Purchase Order # 928640

INTRODUCTION:

Midwest Materials Engineering & Consultants, INC., was requested by Mr. Kurt Krempetz and Ms. Caroline Kurita to perform a buckling test on a calorimeter flexible foot prototype. The subject flexible foot per drawing # 3740.210-MC-222376, was to be tested in accordance to the procedure provided by Fermi-Lab (See Appendix A).

OBJECTIVE:

To determine the structural strength of the prototype assembly.

PROCEDURE:

The test was conducted in accordance with the procedure outlined in Appendix A. This procedure involves four different testing sequences as follows:

Sequence 1 (steps 2-4) - loading of Enerpac and measuring force required to spread feet .125, .25, .375, and .5 inches apart.

Sequence 2 (steps 5-7) - applying vertical force of 900 lbs., using 60kip max. press, to assembly without Enerpac load.

Sequence 3 (steps 8-10) - applying vertical force of 900 lbs., using 60kip max. press, to assembly and then slowly applying load to Enerpac to spread feet .5 inches.

Sequence 4 (step 11) - loading the Enerpac to spread feet .5 inches and then increase vertical load until elastic buckling and/or failure of support occurs.

Each sequence was repeated four times, except for the fourth sequence requiring permanent, destructive results. In sequences 1 - 3, measurements were obtained before and after to determine if permanent deformation occurred. The return distance value is defined as the difference in feet spread before load and after release of load.

A 60kip hydraulic tension/compression tester was used in all four sequences of the test procedure. The final sequence was repeated with a 400kip machine in order to obtain desired results. The Enerpac and hydraulic pump were provided by Fermi-Lab. Linear measurements were made with a Mitutoyo Digimatic Caliper.

RESULTS:

Sequence 1 - The pressure, spread and return distances are listed in Table 1. Before and after measurements indicate that no permanent deformation occurred. The gage (6000psi scale) provided by Fermi-Lab was not sensitive enough to record the pressures required to spread the feet of the assembly. All readings did not even register above 0. Therefore, the measurements had to be taken using a more sensitive gage (2000psi scale).

Sequence 2 - No permanent deformation occurred shown by the identical before and after measurements (3.397 inch and 3.397 inch, respectively). Also, no visible deformation of the fixture was observed.

Sequence 3 - No permanent deformation occurred as the before and after measurements were the same. Again, no visible deformation of the fixture was observed.

Sequence 4 - Elastic buckling and/or failure could not be initially obtained using the 60kip press. However, a .034 inch permanent deformation of the feet spread was measured upon removal of the maximum 60kip load. Using the 400kip press, elastic buckling of the left side of the support occurred at 107,900 lbs, as shown by Photograph 1.

CONCLUSIONS:

It appears that under the first three testing sequences, no permanent deformation will occur.

Permanent deformation was not observed until a force of 60kip was applied to the assembly. This deformation was minimal, only .034 inches.

The assembly did not buckle until a force of 107,900 lbs (108 kips) was applied. Only one side of the fixture buckled. Both parallel plates of that side buckled inward, approximately .6 inches.

TABLE 1
Sequence 1 Test Results

	Spread (in.)	Return (in.)	<u>Pressure</u> (psi)*	(LBS)
SET 1	.128	.003	80	80.48
	.256	.0005	160	160,97
	.375	.0045	270	271.63
	.500	.004	370	372.63
SET 2	.130	0005	80	80.48
	.255	.0035	160	160.97
	.375	0005	260	261.57
	.501	.004	360	362.17
SET 3	.129	.0045	80	80.48
	.255	.0045	180	181.09
	.375	0055	270	271.63
	.500	.0045	360	362.17
SET 4	.126	.006	80	80.48
	.252	.004	180 =	LBI.09
	.375	.0045	270	271.63
	.501	.0045	370	372.23

Initial Reading: front - 3.397"

back - 3.417"

Final Reading: front - 3.397"

back - 3.417"

NOTE: The slight differences in return distances in SETS 1-4 are due to the friction experienced between the feet and the plate on which the assembly was resting. When the feet are nudged slightly there appears to be no deformation as indicated by the initial and final readings.

^{*} HYDRAULIC JACK USED HAD A: STON CAPACITY
5/8" STROKE
.994 IN PEFFECTIVE AREA

PHOTOGRAPH 1

PHOTOGRAPH 1

Flexible foot assembly after 108kip vertical load and a feet spread of .5 inches. Only the left side of the support has buckled. Both plates of that side buckled inward, approximately .6 inches.

APPENDIX A

Flexible Foot Test Procedure

- 1) Assemble Flexible Foot and Flexible test base as shown on Drawing 3740.210-MC-222376.
- 2) Load the Enerpacs and measure the force (pressure on the cylinder) that is needed to move the plate ends apart from one another. Record at total distances of .125, .25, .375, and .5 inches.
- Unload the Enerpacs and measure the plate ends returned to their original position.
- 4) Repeat steps (2) and (3) 3 times.
- 5) With the plates vertical (Enerpacs unloaded), apply a vertical force of 900 lbs with the large press.
- 6) Release the vertical load and examine the fixture for permanent deformations.
- 7) Repeat steps (5) and (6) 3 times.
- 8) Load the support with a vertical force of 900 lbs and then slowly load the Enerpacs to move the plate ends apart until .5 inches is between the plate ends.
- 9) Release the loads and examine the fixture for permanent deformations.
- 10) Repeat steps (8) and (9) 3 times.
- 11) Load the Enerpacs to achieve a deflection between the plate ends of .5 inches and load the vertical load until elastic buckling and/or failure of the support occurs. Record the results.

Note: The model has previously been loaded to 22,000 lbs with no visible damage noted. It is constructed of SS 304.

(UARVING LOADS)

6 VO11 100					
XGAL =LGO					
LOAD	FORCE	MOME	ENT COMI	PR TOTAL	
1	215.887	27636.185	.667	27636.852	
1001	190.852	27098.375	667.333	27765.708	
2001	165.745	26551.390	1334.000	27885.390	
3001	140.564	25994.860	2000.667	27995.526	
4001	115.305	25428.392	2667.333	28095.725	
5001	89.965	24851.571	3334.000	28185.571	
6001	64.541	24263.955	4000.667	28264.621	
7001	39.029	23665.074	4667.333	28332.407	
8001	13.425	23054.430	5334.000	28388.430	
9001	-12.275	22431.492	6000.667	28432.159	
10001	-38.07 5	21795.696	6667.333	28463.029	
11001	-63.981	21146.437	7334.000	28480.437	
12001	-89.997	20483.071	8000.667	28483.738	
13001	-116.128	19804.911	8667.333	28472-245	
14001	-142.381	19111.220	9334.000	28445.220	
15001	-168.761	18401.206	10000.667	28401.873	
16001	-195.276	17674.024	10667.333	28341.358	
17001	-221.932	16928.763	11334.000	28262.763	
18001	-248.736	16164.442	12000.667	28165.109	
19001 19001	-275.698	15380.006	12667.333	28047.339	
Pcr = 20,67420001	-302.826	14574.314	13334.000	27908.314	
21001	-330.129	13746.136	14000.667	27746.802	
21001	-330.129	13/40:130	14000.007	27740.002	
22001	-357.619	12894.136	14667.333	27561.470	
23001	-385.306	12016.870	15334.000	27350.870	
24001	-413.202	11112.766	16000.667	27113.432	
25001	-441.322	10180.113	16667.333	-26847.446	-
26001 -	-469.679	9217.046	17334.000	26551.046	
27001	-498.290	8221.527	18000.667	26222.194	
28001	-527.172	7191.326	18667.333	25858.659	
29001	-556.344	6123.994	19334.000	25457.994	
30001	-585.827	5016.837	20000.667	25017.504	
31001	-615.644	3866.888	20667.333	24534.222	
32001	-645.821	2670.866	21334.000	24004.866	
K=0.5 33001	-676.387	1425.134	22000.667	23425.801	
Pc *34.93934001	-707 . 373	125.653	22667.333	22792,986	
35001	-738 . 813	1232.081	23334.000	24566.081	
36001	-770 . 748	2653.100	24000.667	26653.767	
37001	-803.222	4143.050	24667.333	28810.383	
38001	-836 . 283	5708.284	25334.000	31042.284	
39001	-869.989	7355.980	26000.667	33356.647	
40001	-904.403	9094.275	26667.333	35761.608	
41001	-939.597	10932.436	27334.000	38266.436	
42001	-975.654	12881.062	28000.667	40881.729	
43001	-1012,669	14952.332	28667.333	43619.665	
44001	-1050.752	17160.312	29334.000	46494.312	
45001	-1090.031	19521.339	30000.667	49522.005	
46001	-1130.655	22054.492	30667.333	52721.825	
47001	-1172.798	24782,204	31334.000	56116.204	
48001	-1216.669	27731.024	32000.667	59731.690	
49001	-1262.515	30932.614	32667.333	63599.947	
50001	-1310.633	34425.041	33334.000	67759.041	
51001	-1361.384	38254.487	34000.667	72255.154	
52001	-1415.210	42477.531	34667.333	77144.865	
53001	-1472.6 58	47164.257	35334.000	82498.257	
****	3534 436	E0400 E3E	25000 557	99403 203	

```
72718.746
                                             38000.667
57001
            -1755.636
                                                             110719.413
                            81675.150
58001
            -1846.441
                                             38667.333
                                                             120342.484
59001
            -1949.738
                             92230.504
                                             39334.000
                                                             131564.504
60001
            -2069.364
                           104875.972
                                             40000.667
                                                            144876.639
61001
            -2210.911
                           120327.241
                                             40667.333
                                                             160994.575
            -2382.854
                           139669.371
                                             41334.000
62001
                                                             181003.371
63001
            -2598.696
                           164630.418
                                             42000.667
                                                             206631.085
64001
            -2881.328
                           198140.597
                                             42667.333
                                                             240807.931
            -3272.920
                           245597.785
65001
                                             43334.000
                                                             288931.785
66001
            -3860.630
                           318158.017
                                             44000.667
                                                             362158.684
67001
            -4858.401
                           443206.057
                                             44667.333
                                                             487873.390
68001
            -6969.277
                           710731.512
                                             45334.000
                                                             756065.512
69001
           -14647.438
                          1690869.366
                                             46000.667
                                                           1736870.033
70001
             38830.350
                          5156954.091
                                             46667.333
                                                           5203621.424
71001
              6726.626
                          1050344.181
                                             47334.000
                                                           1097678.181
72001
              3134.103
                            593167.901
                                              48000.667
                                                             641168.567
73001
              1737.267
                            417039.459
                                              48667.333
                                                             465706.792
74001
               986.313
                            323584.094
                                              49334.000
                                                             372918.094
75001
               512.171
                            265560.615
                                              50000.667
                                                             315561.281
               181.963
76001
                            225960.620
                                              50667.333
                                                             276627.954
77001
               -63.881
                            197159.202
                                              51334.000
                                                             248493.202
78001
              -256.051
                           175228.194
                                             52000.667
                                                             227228.861
79001
              -411.964
                           157937.999
                                             52667.333
                                                             210605.332
              -542.242
80001
                           143929.042
                                             53334.000
                                                             197263.042
              -653.731
81001
                           132325.106
                                             54000.667
                                                             186325.772
                           122536.043
82001
              -751.041
                                             54667.333
                                                             177203.376
              -837.392
83001
                           114149.829
                                             55334.000
                                                             169483.829
84001
              -915.098
                           <del>106870.06</del>0
                                             56000.667
                                                             162870.726
              -985.869
                                                             157145.380
85001
                           100478.047
                                             56667.333
            -1050.993
86001
                             94808.901
                                             57334.000
                                                             152142.901
87001
            -1111.459
                             89735.940
                                             58000.667
                                                             147736.607
88001
            -1168.040
                             85160,217
                                             58667.333
                                                             143827.551
            -1221.349
89001
                             81003.320
                                             59334.000
                                                             140337.320
            -1271.878
                             77202.294
90001
                                             60000.667
                                                             137202<del>.9</del>61
91001
            -1320.026
                             73706.011
                                             60667.333
                                                             134373.344
92001
            -1366.121
                             70472.503
                                             61334.000
                                                             131806.503
93001
            -1410.435
                             67466.997
                                             62000.667
                                                             129467.664
            -1453.195
94001
                             64660.429
                                             62667.333
                                                             127327.762
95001
            -1494.591
                             62028.309
                                             63334.000
                                                             125362.309
                             59549.854
96001
            -1534.788
                                             64000.667
                                                             123550.521
97001
            -1573.922
                             57207.303
                                             64667.333
                                                             121874.636
98001
            -1612,114
                             54985.381
                                             65334.000
                                                             120319.381
99001
            -1649.467
                             52870.874
                                             66000.667
                                                             118871.540
  STOP
```

0.074 CP SECONDS EXECUTION TIME.

```
/ICE,LEGO
ICE 2.6.3
?? PW
    1
               PROGRAM LEG(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
    2
               INTEGER S
    3
               REAL T,L,Y,E,K,K1,K2,S1,T1,S2,ST,W,M,S0
               T=.1875
    5
               L=12.
               Y=.25
    6
    7
               B=8
    8
               E=28300000.0
    9
               W RITE (6,9)
  10
               DO 1 S=1,100000,1000
               K = (12*S/(E*B*T**3))**.5
   11
               K1=.5*K*L
   12
   13
               K2=TAN(K1)
```

16	-	S0=6*M/(B*T**2)		*	=	, ·
17		S1=ABS(S0)				,
18		S2=S/(B*T)				
19		ST=S1+S2				
20	9	FORMAT(LOAD	FORCE	MOMENT	COMPR	TOTAL
21		W RITE (6,10) S, W, Sl, S2, ST				
22	10	FORMAT(17,4F14.3)				
23	1	CONTINUE				
24		STOP				
25		END				
?? ER						
FILE:						
REPLA						
/BYE	.025					
UN=93	679	LOG OFF 12.13.00.				
JSN=A		SRU-S= 3.006				
	ACTER					
IAF		NNECT TIME 00.25.59.				
	ED OU?					
שטעו	יטט עפ					
VCAT	_					

XGAL =

SS 304 prototype

(TO FIND FAILURE)

		* 60	CIO MAIS	PAILURE)	
	LENGHT=	LGO SLENDERNESS RA	TIGE COMPONE	STRESS FACTOR=	
	12	LOaD =		SIRESS FACTOR-	.068
	12	2000	1001.000		.076
٩,	12		2001.000		.084
	12		3001.000		.091
	12		4001.000		.099
	12		5001.000		.106
	12		6001.000		.114
	12		7001.000		.122
	12		8001.000		.129
	12		9001.000		.137
	12		10001.000		.145
	12		11001.000		.152
	12		12001.000		.160
	12		13001.000		.168
	12		14001.000		.175
	12		15001.000		.183
	12		16001.000		.191
	12		17001.000		.199
	12		18001.000		.206
	12		19001.000		.214
	12		20001.000		.222
	12		21001.000		.230
					120
	12		22001.000		.237
	12		23001.000		.245
	12		24001.000		.253
	12		25001.000		.261
	12		26001.000		.269
	12		27001.000		. 277
	12 =	<u>-</u>	28001.000	94g 85	284-
	- 12 12		29001.000	-	.292
	12	_	30001.000		.300
	12	2	31001.000		.308
	12		32001.000		.316
	12		33001.000		.324
	12		34001.000		.332
	12		35001.000		.340
	12		36001.000		.348
	12		37001.000		.356
	12		38001.000		.364
	12		39001.000		.372
	12		40001.000		.380
	12		41001.000		.388
	12		42001.000		.396
	12		43001.000		.404
	12		44001.000		.412
	12		45001.000		.420
	12		46001.000		.429
	12		47001.000		.437
	12		48001.000		.445
_	12		49001.000		.453
	12		50001.000		.461
	12		51001.000		.470
	12		52001.000		.478
	12		53001.000		.486
	12		54001.000		.495
	12		55001.000		.503
	12		56001.000		.512
	12		57001.000		-520
					

14	. *	_	\	- SANOTONO-		
12			1	60001.000		46
12				61001.000	.5	554
12				62001.000	_=	63
12				63001.000		572
12				64001.000		80
12				65001.000		589
12				66001.000	.5	598
12				67001.000	.6	507
12				68001.000		516
12				69001.000		525
12				70001.000		534
12				71001.000		543
12				72001.000	.6	552
12				73001.000	.6	61
12				74001.000		570
12				75001.000		680
12				76001.000	.6	589
12				77001.000		598
12				78001.000		708
12				79001.000		717
12				80001.000		727
12				81001.000	•7	737
12				82001 .00 0	•7	747
12				83001.000		757
				84001.000		767
12						
12				85001.000		777
12				86001.000		787
12				87001.000	•7	798
12				88001.000	.8	308
12				89001.000		319
12				90001.000		329
12				91001.000		340
12	-	-		92001.000		352
- 12	_			93001.000		363
12				94001.000		374
12				95001.000		386
12				96001.000		398
12				97001.000		910
12				98001.000	•9	322
12				99001.000	•9	934
12				100001.000	0	47
12				101001.000		60
12				102001.000		74
12				103001.000		87
12				104001.000	1.0	01
12				105001.000	1.0	16
12				106001.000	1.0	
12				107001.000	1.0	
12				108001.000	1.0	
12				109001.000	1.0	
12				110001.000	1.0	95
12				111001.000	1.1	
12				112001.000	1.1	
12				113001.000	1.1	
12				114001.000	1.1	
12				115001.000	1.1	
12				116001.000	1.2	
12						38
				TT \OOT OOL	1.2	
12				117001.000 118001.000		
12				118001.000	1.2	63
12 12						63