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Abstract 
We have used a heated 2 cm x 1 mm SiC microtubular (µtubular) reactor 
to decompose acetaldehyde: CH3CHO + ∆ → products. Thermal 
decomposition is followed at pressures of 75 — 150 Torr and at 
temperatures up to 1700 K, conditions that correspond to residence times 
of roughly 50 — 100 µsec in the µtubular reactor. The acetaldehyde 
decomposition products are identified by two independent techniques: 
VUV photoionization mass spectroscopy (PIMS) and infrared (IR) 
absorption spectroscopy after isolation in a cryogenic matrix.  Besides 
CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and 
CD3CDO. We have identified the thermal decomposition products CH3 
(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), 
CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC≡CH (IR, PIMS). 
Plausible evidence has been found to support the idea that there are at 
least three different thermal decomposition pathways for CH3CHO: 
Radical decomposition: CH3CHO + ∆ → CH3 + [HCO] → CH3 + H + CO 
Elimination: CH3CHO + ∆ → H2 + CH2=C=O 
Isomerization/elimination: CH3CHO + ∆ → [CH2=CH-OH] → HC≡CH + 
H2O 
Both PIMS and IR spectroscopy show compelling evidence for the 
participation of vinylidene, CH2=C:, as an intermediate in the 
decomposition of vinyl alchohol: CH2=CH-OH + ∆ → [CH2=C:] + H2O → 
HC≡CH + H2O 
 

  



  -3- 

 The thermal decomposition of acetaldehyde has been extensively studied in 

shock tubes, flow reactors, and flames over the last 75 years.1-12 The weakest bond in 

acetaldehyde13 is the CH3-CHO linkage. It is commonly accepted that the major thermal 

decomposition channel is formation of radicals via cleavage of the C-C bond: 

 CH3CHO + ∆ → CH3 + HCO (1) 

The formyl radical (HCO) is only weakly bound13 and will not survive for long at 

temperatures over 1300 K. The dynamics of the thermal cracking of CH3CHO are 

generally modeled as a sequence of radical reactions.14,15 Recently, it has been reported 

that acetaldehyde could thermally decompose by a roaming process.12 Roaming 

mechanisms16-18 are characterized by formation of a dynamically-bound complex of 

radicals that subsequently disproportionates. The products are not radicals but closed 

shell species; in this case, methane and carbon monoxide: CH3CHO + ∆ → [CH3•, 

•HCO] → CH3-H + CO. 

 We have studied the thermal cracking of CH3CHO in a heated microtubular 

(µtubular) reactor,19,20 a 1 mm i.d. x 2 cm long SiC tube that can be heated to 

temperatures up to 1700 K. A dilute sample of acetaldehyde is mixed with an inert 

carrier gas and passed through the heated SiC tube. Gases exiting the µtubular reactor 

emerge in an under-expanded jet at roughly 10-5 Torr. The translational, vibrational, and 

rotational temperatures drop rapidly within a few diameters and all chemistry ceases. 

The products are identified by their photoionization (PIMS) mass spectra as well as 

their matrix infrared absorption spectra. The PIMS experiment uses a reflectron time-of-

flight mass spectrometer to analyze the ions resulting from photoionization by 118.2 nm 

(10.487 eV) photons.19 In separate experiments, we send a gas mixture of CH3CHO in Ar 
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carrier gas through the µtubular reactor and the resultant molecular beam impinges on 

a CsI window cooled to 20 K. The matrix frozen onto the CsI window is subsequently 

analyzed by IR absorption spectroscopy.21 Additional experiments were carried out at 

the chemical dynamics beamline (9.0.2) at the LBNL Advanced Light Source (ALS),22,23 

where PIMS spectra can be obtained as a function of photon energy, which also allows 

for the recording of photoionization efficiency (PIE) profiles. 

 The dynamics of pyrolysis and transport through the SiC µtubular reactor is 

poorly characterized. Preliminary computational fluid dynamics24 simulations estimate 

that the gas pressure in the µtubular reactor is about 10% of the stagnation pressure. 

Within the reactor, there is a range of temperatures within the gas as it is heated by the 

walls.  As a result, not all molecules see the same temperature time history. In reactor 

language there is a residence time distribution. However, as the gas approaches the 

tube exit, it is fairly uniformly heated such that the centerline temperature is within 100 

– 200 K of the wall temperature. From simulations24 of the gas velocity, we estimate the 

residence time within the heated SiC tube to be roughly 50 — 100 µsec. 

When acetaldehyde and its isotopologues are thermally decomposed in the 

µtubular reactor, the products monitored by 118.2 nm (10.487 eV) PIMS are shown in 

Fig. 1. The bottom trace in Fig. 1 shows the products resulting from heating CH3CHO to 

1500 K. We observe the CH3CHO+ cation at m/z 44 as well as a feature at m/z 43.  The 

latter is tentatively25 attributed to the acetyl cation, CH3CO+, via dissociative ionization 

of vibrationally excited acetaldehyde, a process for which the room temperature 

threshold has been established to be approximately 10.8 eV. We also observe the ketene 

cation, CH2CO+, at m/z 42, and CH3
+ at m/z 15. The second trace in Fig. 1 is that of 

CH3CDO. The species at m/z 45 is the parent peak of CH3CDO+ and a dissociative 
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ionization product, analogous to the m/z 43 peak found for CH3CHO, is observed. The 

cation of ketene is found at m/z 42. As expected, we observe the CH3
+ ion at m/z 15. 

Surprisingly we also detect the CDH2
+ and CD2H+ ions at m/z 16 and 17. The third trace 

in Fig. 1 is that of CD3CHO heated to 1500 K. The bands at m/z 47 and 46 are the parent 

and the product of the aforementioned dissociative ionization process. The feature at 

m/z 44 is that of CD2=C=O+. The perdeuterated methyl cation is observed at m/z 18 

and we also observe signals from CD2H+(17), CDH2
+(16), and CH3

+ (15). Examination of 

the PIE curves26 demonstrates that the signals in Fig. 1 at m/z 15, 16, 17, and 18 all result 

from ionization of methyl radicals.27  The final spectrum in Fig. 1 is that of CD3CDO 

heated to 1500 K. Peaks for the parent cation, m/z 48, and that for dissociative 

ionization, m/z 46, are detected. The weak band at m/z 47 is assigned as CHD2CDO+ 

and arises from a known contamination (roughly 2%) of the CD3CDO sample.28  The 

band at m/z 44 is that of CD2=C=O+ while that at m/z 18 is CD3
+. 

 A portion of the matrix IR absorption spectra resulting from the thermal cracking 

of acetaldehyde29 is shown in Fig. 2. The bottom trace (green) is a control scan of the Ar 

carrier gas after passing through the µtubular reactor heated to 1700 K. The black scan is 

that of CH3CHO/Ar exposed to the same conditions. The peak at 3619 cm-1 is 

assigned30-32 to the O-H stretch of vinyl alcohol, ν1(CH2CHO-H), while the bands at 3302 

cm-1 and 3288 cm-1 belong to acetylene, ν3(HCCH), and are the absorptions associated 

with the well-known Darling-Dennison mixing of ν3 and ν2 + ν4 + ν5.  The red trace in 

Fig. 2 is that for CH3CDO at the same conditions. The peak at 3621 cm-1 is that31 of 

ν1(CH2CDO-H) and the features of HCCH at 3302 cm-1 and 3288 cm-1 are present.  In 

addition to these features, the red trace in Fig. 2 clearly shows the C-H and C-D bands 

belonging to acetylene-d1, HCCD, at 3323 cm-1 (ν1) and 2587 cm-1 (ν3), which has 
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significant mechanistic implications, as discussed below. 

Matrix IR spectroscopy26 from the products of heated CH3CHO or CH3CDO also 

shows bands33 belonging to CO and CH2=C=O. When CD3CHO or CD3CDO are 

thermally cracked at 1700 K, the characteristic O-D stretches of the corresponding vinyl 

alcohols, ν1(CD2CHO-D) at 2674 cm-1 and ν1(CD2CDO-D) = 2675 cm-1, are detected. 

When either CD3CHO or CD3CDO is pyrolyzed, IR signals from CD2=C=O, D2O, and 

HOD are observed. Equations (2) — (5) summarize the results of the matrix IR spectra: 

CH3CHO + 1400º → CO ⊕ CH2CO ⊕ CH2=CHOH ⊕ H2O ⊕ HC≡CH (2) 

CH3CDO + 1400º → CO ⊕ CH2CO ⊕ CH2=CDOH ⊕ [H2O ⊕ HC≡CD] and [HOD ⊕ HC≡CH](3) 

CD3CHO + 1400º → CO ⊕ CD2CO + CD2=CHOD ⊕ [D2O ⊕ DC≡CH] and [HOD ⊕ DC≡CD] (4) 

CD3CDO + 1400º → CO ⊕ CD2CO ⊕ CD2=CDOD ⊕ D2O ⊕ DC≡CD (5) 

Fig. 3 shows the PIMS resulting from cracking CD3CHO at 1200º when the ALS 

synchrotron is used to photoionize the pyrolysis products. In Fig. 3, ωVUV is set to 12.9 

eV, which is sufficient to ionize acetylene, methane, and water.27 The features at m/z 19 

and 20 are identified34 by the associated PIE curves as HOD+ and D2O+ as are the peaks 

at m/z 26, 27, and 28 to HCCH+, DCCH+, and DCCD+. The tiny HCCH+ signal is an 

artifact arising from the aforementioned impurity in the CD3CHO sample.28   

One might be concerned that some of the acetaldehyde chemistry could be 

resulting from wall reactions. The PIMS spectra in Fig. 1 demonstrate that methyl 

radicals are exchanging H atoms. Thermal decomposition of CH3CDO in Fig. 1 will 

generate both CH3 and D atoms. If there are rapid homogeneous, radical/radical 
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reactions in the µtubular reactor, chemically activated methane will be produced. The 

product methane will be activated by the CH3-D bond energy13 and CH3D* would not 

be expected to survive in the hot SiC tube: CH3 + D  CH3D*   CH2D + H. This 

interpretation is one explanation for the H atom exchanges of both CH3CDO and 

CD3CHO in Fig. 1. If methyl radicals are abstracting H atoms from the walls of the SiC 

tube, we would expect to find that the CD3 radicals from CD3CDO decomposition 

would be scrambled by 1H-dominated wall chemistry: CD3 → [CHD2, CDH2, CH3]. 

However the CD3 radicals produced by cracking CD3CDO do not undergo H/D 

exchange; only signals at m/z 18 are observed, implying that hydrogen exchange 

chemistry on the reactor walls is negligible.  

Besides H atom abstractions from the wall, one might also be concerned about 

proton-catalyzed reactions at the wall. The IR spectra clearly detect the presence of 

vinyl alcohol when CH3CHO is cracked. The classical mechanism35 for keto-enol 

tautomerization is by proton catalysis. Consequently H+ catalysis by the SiC walls 

would predict that CD3CHO would isomerize to CD2=CH-OH. This is not observed; the 

matrix IR following 1500 K decomposition of CD3CHO clearly detects the O-D stretch of 

the product vinyl alcohol, ν1(CD2CHO-D); the corresponding spectral feature from 

CD2CHO-H is not observed. The ALS PIMS results confirm this conclusion. 

It is natural to wonder how the present results might relate to the proposed 

roaming pathway12 for acetaldehyde decomposition. Any methane formed by roaming 

would be chemically activated by roughly 4 eV and is unlikely to survive in the hot 

µtubular reactor. Hence, the fact that we do not observe prominent spectral signatures 

of methane in this work – indeed, no trace of methane is seen in the IR studies36 – is not 

particularly illuminating; it does not suggest that methane is not formed via roaming 
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under the reaction conditions. What does seem clear is that the additional pathways for 

acetaldehyde decomposition observed here should be included in models of this 

important reaction. 

Table 1 is a summary of our experimental findings. It is certain that the 

decomposition of CH3CHO in the µtubular reactor is a significantly more complicated 

process than that implied by the simple picture provided by (1). Our results are 

consistent with three different decomposition channels. 

CH3CHO + ∆ → CH3 + [HCO] → CH3 + H + CO radical decomposition (6) 

CH3CHO + ∆ → H2 + CH2=C=O elimination (7) 

CH3CHO + ∆ → [CH2=CH-OH] → HC≡CH + H2O isomerization/elimination (8) 

The detection of HOD and D2O from the cracking of CD3CHO in Fig. 3 demonstrates 

that vinyl alcohol can decompose by a (1,2) elimination, eq. (9), as well as by a (1,1) 

elimination, eq. (10).  The latter pathway generates the well-known but fleeting reactive 

intermediate, vinylidene, which rapidly rearranges to acetylene with a negligible 

energy barrier: 

CD2=CH-OD → DC≡CH + D2O (9) 

CD2=CH-OD → [CD2=C:] + HOD → DC≡CD + HOD (10) 

In Fig. 3 the peak intensities of HOD+ and DCCD+ are about twice that of D2O+ and 

DCCH+. This ratio suggests that (1,1) elimination via the CD2=C: carbene is favored over 

direct-(1,2) elimination, although more careful quantitative work is needed to draw any 

definitive conclusion. The present work, however, provides evidence that the 
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vinylidene channel is at least competitive with the (1,2) elimination.  In a related system, 

it is known that (1,1) elimination is 3 times more likely than (1,2) elimination in vinyl 

chloride photodissociation, CH2=CHC + ω → HC≡CH + HC,  where HC loss occurs 

on the ground electronic state.37 

Vinylidene is one of the most fundamental carbenes and its properties and the 

[CH2=C: → HC≡CH] isomerization dynamics have been the subject of many 

investigations.38-45 Several previous workers46-48 had suspected the importance of vinyl 

alcohol in acetaldehyde decomposition. There are few predictions of the role of HC≡CH 

and, especially, CH2=C: in the decomposition of acetaldehyde. Besides vinylidene, we 

also considered the possibility that the methylhydroxycarbene,49 CH3-C-OH, might be a 

participant in the thermal decomposition of CH3CHO; however we believe that this is 

unlikely.50 
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Table 1 

A summary of thermal cracking products from acetaldehyde as identified by PIMS and IR spectroscopy. 

1. CH3CHO + ∆ → CH3 (PIMS) ⊕ CO (IR, PIMS) ⊕ CH2CO (IR, PIMS) ⊕ CH2=CHOH (IR, PIMS) ⊕ HC≡CH (IR, PIMS) 

2. CH3CDO + ∆ → CH3, CH2D, CD2H, CD3 (PIMS) ⊕ CO (IR, PIMS) ⊕ CH2CO (IR, PIMS) ⊕ CH2=CDOH (IR, PIMS) ⊕ 

HC≡CH, HOD (IR, PIMS) ⊕ DC≡CH (IR, PIMS) 

3.  CD3CHO + ∆ → CD3, CD2H, CH2D, CH3 (PIMS) ⊕ CO (IR, PIMS) ⊕ CD2CO (IR, PIMS) ⊕ CD2=CHOD (IR, PIMS) ⊕ 

DC≡CH, D2O (IR, PIMS) ⊕ DC≡CD, HOD (IR, PIMS) 

4.  CD3CDO + ∆ → CD3 (PIMS) + CO (IR, PIMS) ⊕ CD2CO (IR, PIMS) ⊕ CD2=CDOD (IR, PIMS) ⊕ DC≡CD, D2O (IR, 

PIMS) 



  

Figure Captions 

Fig. 1  Photoionization mass spectra of the thermal cracking products of 

acetaldehyde are shown. The fixed-frequency PIMS uses the 9th harmonic of a YAG 

laser, 118.2 nm or 10.487 eV, for photoionization. Samples of acetaldehyde entrained in 

He buffer gas are subjected to pyrolysis by a 1 mm x 2 cm SiC tube heated to 1500 K. 

Typical samples have 0.3 % acetaldehyde mixed with 2 atm He and are delivered to the 

µtubular reaction via a General Valve pulsed at 10 Hz. The approximate pressure in the 

µtubular reactor is 150 Torr and the centerline temperature is within 100 – 200 K of the 

wall temperature. The transit time through the heated SiC tube is roughly 50 — 100 

µsec. There are 4 different spectra in this figure. Bottom Trace (black): CH3CHO; 2nd 

Trace (red): CH3CDO, 3rd Trace (black): CD3CHO, 4th Trace (red): CD3CDO.  

Fig. 2 Matrix infrared absorption spectra of the thermal cracking products of 

acetaldehyde are shown. Samples of acetaldehyde entrained in an Ar buffer gas are 

subjected to pyrolysis by a 1 mm x 2 cm SiC tube heated to 1700 K. Typical samples 

have 0.3 % acetaldehyde mixed with 1 atm Ar and are delivered to the µtubular reaction 

via a General Valve pulsed at 10 Hz. The approximate pressure in the µtubular reactor is 

75 Torr and the centerline temperature is within 100 – 200 K of the wall temperature. 

The transit time through the heated SiC tube is roughly 50 — 100 µsec. There are 3 

different spectra in this figure. Bottom Trace (green): Ar carrier gas heated to 1700 K, 2nd 

Trace (black): CH3CHO/Ar, 3rd Trace (red): CH3CDO/Ar. 

Fig. 3 The PIMS resulting from cracking CD3CHO at 1400 K when the 

synchrotron at the LBNL’s Advanced Light Source is used to photoionize the pyrolysis 

products. The tunable VUV light source is set to 12.9 eV in order to ionize methane, 
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acetylene and water. Samples of acetaldehyde-d3 entrained in Ar buffer gas are 

subjected to pyrolysis by a 1 mm x 2 cm SiC tube heated to 1400 K. Typical samples 

have 1 % acetaldehyde mixed with 1 atm Ar and are delivered to the µtubular reaction 

via a General Valve pulsed at 10 Hz. The approximate pressure in the µtubular reactor is 

75 Torr and the centerline temperature is within 100 – 200 K of the wall temperature. 

The transit time through the heated SiC tube is roughly 50 — 100 µsec.   



  

Fig. 1 
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Fig. 2 
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Fig. 3 
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While this document is believed to contain correct information, neither the United States 
Government nor any agency thereof, nor the Regents of the University of California, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by its trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof, or the 
Regents of the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency thereof or 
the Regents of the University of California. 
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