「うかつ

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product S disclosed, represents the "- u d not infringe veivate wned r fere to s amercia ser ne, tra .', not r or in nt, re ,ncates G ing . ncy there ws and expresse do not r et those + **Inited S** ny agency

Lawrence Berkeley Laboratory is an equal opportunity employer.

AN INVENTORY OF PHOTOGRAPHS OF ZINC ELECTRODEPOSITED FROM ACID ELECTROLYTES

James L. Faltemier, Milan M. Jaksic, Tetsuaki Tsuda, and Charles W. Tobias

Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemical Engineering University of California, Berkeley, CA 94720 USA

This work was supported by the Assistant Secretary of Conservation and Renewable Energy, Office of Energy Systems Research, Energy Storage Division of the U. S. Department of Energy under contract No. DE-AC03-76SF00098

AN INVENTORY OF PHOTOGRAPHS OF ZINC ELECTRODEPOSITED FROM ACID ELECTROLYTES

James L. Faltemier, ** Milan M. Jaksic, ** Tetsuaki Tsuda, ** and Charles W. Tobias

Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemical Engineering University of California, Berkeley, CA 94720 USA

Electrodeposition of zinc from acid electrolytes has been studied by several investigators in this laboratory.* A large number of zinc deposits have been observed and photographs (SEM, micrographs, experimental equipment, and line drawings) have been prepared over the years 1976-1983. These photos are compiled in this LBL report to facilitate their future use by others. The tables in this report list the experimental conditions and corresponding identification numbers of photographs that are on file in the Photography Services Laboratory at the Lawrence Berkeley Laboratory. Several samples of these zinc deposits are shown in Figures 1-6.

*Material prepared in collaboration with Vladimir Kommenic and Darko Rajhenbah is also included.

**Present addresses:

James L. Faltemier, Gould, Inc.--Foil Division, 35129 Curtis Blvd., Eastlake, OH 44094

Professor Milan M. Jaksic, Faculty of Agriculture, University of Belgrade, Yu 11081 Belgrade YUGOSLAVIA

Tetsuaki Tsuda, Metal Finishing Lab., Central Research Labs., Sumitomo Metal Ind., Ltd., 1-3 Hondori, Nishinagasu, Amagasaki City 660, JAPAN

Photograph numbers are arranged into the following 11 tables:

Table	1	Rotating disk electrode	Jaksic or Jaksic & Faltemier
Table	2	Small flowcell	Jaksic or Jaksic & Faltemier
Table	3	Miscellaneous	
Table	4		Tsuda (LBL Report #13057)
Table	5	Rotating disk electrode	Faltemier, or Faltemier & Kommenic
Table	6	Small Flowcell	Faltemier, or Faltemier & Kommenic
Table	7	Large Flowcell	Faltemier
Table	8	In situ Flowcell	Faltemier
Table	9		Faltemier & Rajhenbah (LBL Report #15338)
Table	10		Faltemier (LBL Report #16485)
Table	11	Explanation of Legends and Abbreviations	

A compilation of experiments/photographs by M. Jaksic, and M. Jaksic and J. Faltemier on the rotating disk electrode (RDE) is listed in Table 1, and Table 2 lists their work in the Small Flowcell (SmC). SEM photographs prepared by M. Jaksic are not listed and are not available in LBL files. Table 3 lists miscellaneous photographs (composites, experimental apparatus, etc.) prepared by various investigators. Table 4 lists the photograph numbers (cross-referenced with Figure numbers) that are contained in T. Tsuda's Master's thesis (LBL Report # 13057). Table's 5 -8 are taken from Appendix H of J. Faltemier's Ph. D. thesis (LBL Report # 16485). Table 9 is a list of the photographs and Figures from an LBL report authored by D. Rajhenbah, J. Faltemier, and C. W. Tobias (LBL Report No. 15338). Table 10 contains a listing of photographs (crossreferenced with Figure numbers) from J. Faltemier's Ph. D. thesis (LBL Report #16485). Table 11 identifies the abbreviation codes that are used in Tables 1 - 10. A complete explanation of experimental apparatus and conditions is presented in the published LBL reports.

The photographs are cross-indexed in the LBL Photo Labs' files under the following names and keywords:

> Dr. Milan M. Jaksic James L. Faltemier Tetsuaki Tsuda Vladimir Kommenic Darko Rajhenbah Prof. Charles W. Tobias Dr. Rolf H. Muller

Zinc Morphology Zinc Deposition Hydrodynamic Flow SEM Photography Rotating Disk Electrode Small Channel Flowcell Large Channel Flowcell In situ Flowcell

Lab Ø	Code	Photo 🕯	Soln	рH	T	rpm	C.D.	Time	Substr	Special
1-2	J	XBB-784-11001	0.1C1	3.44	24.3	2160	1	120	С	99999999999999999999999999999999999999
3	J	XBB-784-11002	0.1C1	4.4	24	720	1	120	Pt	
lų.	J	XBB-784-11003	0.101	3.9	25.4	720	1	120	Pt	
5	J	XBB-784-11004	0.101	4.5	25.3	720	1	310	Pt	
6	J	XBB-784-11005	0.101	3.7	25.2	720	1	240	С	
7	J	XBB-784-11006	0.101	4.2	25	2160	1	240	Pt	
8	J	XBB-784-11007	0.101	3.5	24.7	720	5	48	Pt	
9	J	XBB-784-11008	0.101	3.6	24.9	2160	6	48	Pt	
10	J	XBB-784-11009	0.1C1	4.4	25.0	720	0.2	2640	Pt	
11	J	XBB-784-11010	0.101	3.8	25	720	1	120	Ni	
12	J	XBB-784-11011	0.1C1	4.4	25	?	. 1	480	Pt	
13	J	XBB-784-11012	0.1C1	4.4	25	?	1	1200	Pt	
14	J	XBB-784-11012A	0.101	4.4	24.5	720	10	120	Pt	
15	J	XBB-784-11013	0.1C1	3.7	24.7	720	10	360	Pt	
16	J	XBB-784-11014	0.101	4.5	24.2	720	10	720	С	
17	J	XBB-784-11015	0.1C1	4.4	24.5	720	10	720	Pt	
18	J	XBB-784-11016	0.101	4.9	25	2160	10	120	С	
19	J	XBB-784-11017	0.101	5.1	25.5	240	10	120	Pt	
20	J	XBB-784-11017A	0.1C1	3.8	25.2	240	10	120	Pt	,
21	J	XBB-760-11366	0.101	3.9	25.2	180	10	120	Ní	
22	J	XBB-784-11018	0.1C1	4.2	25.2	720	10	120	Ni	
23	J	XBB-784-11019	0.1C1	4.7	25	2870	10	120	Ni	
24	J	XBB-784-11020	0.1C1	5.4	25.2	2870	11.5	120	Pt	
25	J	XBB-784-11021	0.1C1	5.5	27.8	180	11.5	120	Pt	
26	J	XBB-784-11022	0.1C1	3.7	25.2	180	11.5	120	Pt	
27	J	XBB-784-11023	0.101	3.8	25.7	360	11.5	120	Pt	
28	J	XBB-784-11024	0.101	3.9	25.3	240	10	30	Pt	
29	J	XBB-784-11025	0.101	3.7	25.3	240	10	60	Pt	
30	J	XBB-784-11025A	0.1Cl	3.8	25.2	720	10	60	Pt	
31	J	XBB-784-11025B	0.101	3.7	25	1440	10	60	Pt	
32	J	XBB-784-11026	0.101	3.65	24.9	2160	10	180	Pt	
33	J	XBB-784-11027	0.101	3.8	25	2870	11.5	60	Pt	
34	Ĵ	XBB-784-11028	0.101	3.7	24.9	2870	11.5	60	Pt	
35	J	XBB-784-11029	0.1C1	3.6	25	240	30	60	Pt	
36	J	XBB-784-11030	0.101	3.6	25.1	720	30	60	Pt	
37	J	XBB-784-11031	0.101	3.7	24.7	2160	30	60	С	
38	J	XBB-784-11032	0.101	3.7	24.6	240	30	60	С	
39	J	XBB-784-11033	0.1C1	3.5	25	240	30	60	Ni	
40	J	XBB-784-11034	0.1C1	3.3	27.2	720	30	60	Ni	
41	J	XBB-784-11035	0.101	3,5	24.5	2160	30	60	Ni	
42	J	XBB-784-11036	0.101	3.7	24.0	2160	60	60	Ni	
43a	J	XBB-784-11037	0.101	3.4	24.4	240	60	60	Pt	
436	J	X88-784-11038	0,101	3.4	24.4	240	60	60	Pt	
44a	J	XBB-784-11039	0.101	3.4	24.3	720	60	60	Pt	
44b	J	XBB-784-11040	0.1C1	3.4	24.3	720	60	60	Pt	
45	J	XBB-784-11041	0.101	3.4	25.7	240	100	60	Pt	
46a	J	XBB-784-11042	0.1C1	3.7	25.6	2160	100	60	Pt	

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier

Lad Ø	Code	Photo 👂	Soln	нą	T	rpm	C.D.	Time	Substr	Special
46b	J	XBB-784-11043	0.101	3.7	25.6	2160	100	60	Pt	
47	J	XBB-784-11044	0.101	3.7	25.2	2870	60	30	Pt	
48	J	XBB-784-11045	0.1C1	3.7	25	720	226	60	Pt	
49a	đ	XBB-784-11046	0.101	4.6	25.2	720	60	240	Pt	
495	J	XBB-784-11047	0.101	4.6	25.2	720	60	240	Pt	
50	J	XBB-784-11048	101	5.2	24.6	240	10	120	Pt	
51	J	XBB-784-11049	101	5.1	24.1	240	50	120	Pt	
52	J	XBB-784-11050	101	5.0	24.2	720	50	120	Pt	
53	J	XBB-784-11051	101	5.2	24.2	240	100	120	Pt	
54a	J	XBB-784-11051A	101	4.9	24.5	240	300	60	Pt	
54b	J	XBB-784-11052	101	4.9	24.5	240	300	60	Pt	
55	J	XBB-784-11053	101	4.9	24.4	720	113	120	Pt	
56	J	XBB-784-11054	101	3.0	25	720	113	120	Pt	
57	J	XBB-784-11055	101	3.1	24.4	240	300	60	Pt	
58	J	XBB-784-11056	1C1	3.2	24.3	100	300	60	Pt	
59a	J	XBB-784-11057	101	3.3	25	240	600	30	Pt	
596	J	XBB-784-11058	101	3.3	25	240	600	30	Pt	
60	J	XBB-784-11059	1C1	2.9	25.2	2160	680	30	Pt	
61	J	XBB-784-11060	1C1	2.9	25.2	720	680	30	Pt	
62a	J	XBB-784-11061	101	2.7	24.8	240	1000	35	Pt	
62b	J	XBB-784-11062	101	2.7	24.8	240	1000	35	Pt	
63a	J	XBB-784-11063	101	2.7	24.9	1440	?	30	Pt	
64	J	XBB-784-11064	101	2.8	24.9	240	300	60	Pt	
65a	J	XBB-784-11065	101	2.9	25.4	1440	3000	10	Pt	
65b	J	XBB-784-11066	101	2.9	25.4	1440	3000	10	Pt	
65e	J	XBB-784-11067	101	2.9	25.4	1440	3000	10	Pt	
66	J	XBB-784-11068	101	4.1	24.6	0	50	120	Pt	
67	J	XBB-784-11069	101	2.3	24.8	0	10	120	Pt	
68	đ	XBB-784-11070	101	2.2	25	0	100	60	Pt	
69	J	MISSING								
70	J	XBB-784-11073	101	2.2	25.1	720	1000	30	N i.	
71	J	XBB-784-11074	101	2.2	25.2	720	3000	15	Ni	
72	J	XBB-784-11075	1C1	2.4	24.7	720	300	60	С	
73	J	XBB-784-11076	101	2.4	26.0	720	1000	15	C	
74	J	XBB-784-11077	101	2.5	25	0	300	60	Pt	
75	J	XBB-784-11078	15	2.9	24.4	720	100	120	Pt	
76a	J	XBB-784-11079	15	2.9	25.5	720	300	60	Pt	
76b	J	XBB-784-11080	1S	2.9	25.5	720	300	60	Pt	
77	J	XBB-784-11081	15	2.9	25.4	720	680	, <u>30</u>	Pt	
78	J	XBB-784-11082	15	3.0	25.5	720	300	30	Ni	
79	J	XBB-784-11083	15	3.0	25.2	720	100	120	Ni	
80	J	XBB-704-11084	15	3.1	24.3	0	50	120	Pt.	
01a 0.15	J	X88-784-11085	15	3.1	26.0	240	10	240	Ni	
OID	J	X88-704-11086	15	ا ډ ک	20.0	240	1120	240	N1	
02 90	J	MISSING	15	3.4	25.0	720	1130	30	FC D6	
ບງ ດະ	J ,	ADD-/04-1100/	0. ICI+A	ງ.ບ ວ່ມ	27.0 2h 7	210	.5	290 60	гС Р*	
04 9 -	J	ADD-/04-11000	101	5.4 ວ li	24.7	240	10		5 L D+	
05	ال	ADD-104-11009	101	3.7	£ ** • 1	270	10	00	5 L	

TABLE 1
 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab 🖸	Code	Photo #	Soln	pН	T	rpm	C.D.	Time	Substr	Special
86	J	XBB-784-11090	101	3.5	25	240	10	60	Pt	
87	J	XBB-784-11091	1C1	3.6	25.1	240	10	60	Pt	
88	J	XBB-784-11092	101	3.6	25	240	10	60	Pt	
89	J	XBB-784-11093	1C1	3.7	25	240	34	60	Pt	
90	J	XBB-784-11094	1C1	3.0	25.1	240	34	60	Pt	•
91	J	XBB-784-11095	1C1	3.0	24.7	240	34	60	Pt	
92	J	XBB-784-11096	101	3.1	25.2	240	34	60	Pt	
93	J	XBB-784-11097	1C1	2.4	24.7	100	10	60	Pt	
94	J	XBB-784-11098	101	2.4	24.5	100	10	60	Pt	
95	J	XBB-784-11099	101	2.4	24.8	100	10	60	Pt	
96	J	XBB-784-11100	1C1	2.4	24.9	100	30	60	Pt	
97	J	XBB-784-11101	101	2.4	25	100	30	60	Pt	
98	J	XBB-784-11102	101	2.4	24.9	100	30	60	Pt	
99	J	XBB-784-11103	1C1	2.4	26.1	100	30	60	Pt	
100	J	XBB-784-11104	1C1	2.4	26.1	100	30	30	Pt	
101	J	XBB-784-11105	1C1	2.4	26.1	100	68	30	Pt	
102	J	XBB-784-11106	1C1	2.4	24.9	100	34	60	Pt	
103	J	XBB-784-11107	1C1	2.4	24.9	100	34	60	Pt	
104	3	XBB-784-11108	1C1	2.4	24.8	100	10	60	Pt	
105	J	XBB-784-11109	101	2.4	25.2	240	. 10	15	Pt	
106	J	XBB-784-11110	101	2.4	25	240	10	15	Pt	
107	J	XBB-784-11111	101	2.4	25	240	10	15	Pt	
108	J	XBB-784-11112	101	2.4	25	240	10	15	Pt	
109	J	XBB-784-11113	101	2.4	25	240	10	15	Pt	
110	JF	XBB-784-11114	1C1	2.4	25.2	240	10	30	Pt	
111	JF	XBB-784-11115	101	2.4	25	240	10	30	Pt	
112	JF	XBB-784-11116	101	2.4	25	240	10	30	Pt	
113	JF	XBB-784-11117	1C1	2.4	25.1	240	10	30	Pt	
114	JF	XBB-784-11118	1C1	2.4	25.1	240	10	30	Pt	
115	JF	XBB-784-11119	1C1	2.4	25.2	240	10	45	Pt	
116	JF	XBB-784-11120	101	2.5	24.9	240	10	45	Pt	
117	JF	XBB-784-11121	101	2.5	24.9	240	10	45	Pt	
118	JF	XBB-784-11122	101	2.5	25	240	10	45	Pt	
119	JF	XBB-784-11123	1C1	2.5	25.1	240	10	45	Pt	
120	JF	XBB-784-11124	101	2.7	25.1	240	10	90	Pt	
121	JF	XBB-784-11125	1C1	2.8	24.9	240	10	90	Pt	
122	JF	XBB-784-11126	1C1	2.9	25	240	10	90	Pt	
123	JF	XBB-784-11127	101	2.8	22.5	240	10	120	Pt	
124	JF	XBB-784-11128	1C1	3.0	25.2	240	10	120	Pt	
125	JF	XBB-784-11129	101	2.9	25.2	240	10	240	Pt	
126	JF	XBB-784-11130	101	3.0	25	240	10	240	Pt	
127	JF	XBB-784-11131	101	3.2	25	240	10	5	Pt	
128	JF	XBB-784-11132	101	3.2	25	240	10	7.5	Pt	
129	JF	XBB-784-11133	1C1	3.4	25	240	10	14	Pt	
130	JF	XBB-784-11134	1C1	3.6	25	240	10	480	Pt	
131	JF	XBB-784-11135	1C1	2.9	25.4	720	10	7.5	Pt	
132	JF	XBB-784-11136	101		25	720	10	7.5	Pt	
133	JF	XBB-784-11137	1C1	-	24.8	720	10	7.5	Pt	

 TABLE 1

 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab 🖋	Code	Photo Ø	Soln	рН	Т	rpm	C.D.	Time	Substr	Special
134	JP	XBB-784-11138	101		24.8	720	10	7.5	Pt	
135	JF	XBB-784-11139	1C1	3.1	24.8	720	10	7.5	Pt	
136	JF	XBB-784-11139A	101	3.1	24.7	720	10	15	Pt	
137	JF	XBB-784-11140	1C1	-	24.8	720	10	15	Pt	
138	JF	XBB-784-11142	101		25	720	10	15	Pt	
139	JF	XBB-784-11144	101	3.2	25	720	10	15	Pt	
140	JF	XBB-784-11141	101		26.0	720	10	15	Pt	
141	JF	XBB-784-11141A	101	-	25.6	720	10	30	Pt	
142	JF	XBB-784-11143	101	3.4	25.1	720	10	60	Pt	
143	JF	XBB-784-11145	101	3.5	24.8	720	10	120	Pt	
144	JF	XBB-784-11146	101	3.5	25.1	720	10	15	Pt	
145	JF	XBB-784-11147	101	3.5	25.1	720	10	15	Pt	
146	JF	XBB-784-11148	101	3.6	25	720	10	15	Pt	
147	JF	XBB-784-11149	101	3.6	25	720	10	15	Pt	
148	JF	XBB-784-11150	101	3.2	25	720	10	15	Pt	
149	JF	XBB-784-11151	101	3.4	24.9	720	10	30	Pt	
150	JF	XBB-784-11152	1C1	3.4	24.8	720	10	30	Pt	
151	JF	XBB-784-11153	101	3.4	24.9	720	10	30	Pt	
152	JF	XBB-784-11154	101	3.4	25	720	10	60	Pt	
153	JF	XBB-784-11155	101	3.5	25	720	10	60	Pt	
154	JF	XBB-784-11156	101	3.1	25.2	720	10	240	Pt	
155	JF	XBB-784-11157	101	2.9	25	720	10	720	Pt	
156	JF	XBB-784-11158	101	3.1	25	720	10	480	Pt	
157	JF	XBB-784-11159	1C1	3.4	25.1	240	10	7.5	Pt	
158	JF	XBB-784-11160	101	3.4	25.1	240	10	7.5	Pt	
159	JF	XBB-784-11161	101	3.4	25.3	240	10	15	Pt	cont. from #157
160	J	XBB-784-11162	101	3.1	24.7	2160	10	15	Pt	
161	J	XBB-784-11163	101	3.4	25.1	2160	10	15	Pt	
162	J	XBB-784-11164	101	3.3	25.3	2160	10	15	Pt	
163	J	XBB-784-11165	101	-	25.5	2160	10	15	Pt	
164	J	XBB-784-11166	101	3.5	25.5	2160	10	15	Pt	
165	J	XBB-784-11167	101	3.3	25	2160	10	30	Pt	
166	J	XBB-784-11168	101	3.2	24.9	2160	10	30	Pt	
167	J	XBB-784-11169	101	3.4	25.2	2160	10	30	Pt.	
168	ل ا	XB8-784-11170	101	3.5	25.3	2160	10	30	Pt	
169	J	XBB-784-11171	101	3.0	25.4	2160	10	30	Pt.	
170	J	XBB-784-11171A	101	3.7	25.1	2160	10	60	Pt D.	
171	J	XBB-784-11172	101	3.8	25	2160	11.3	120	Pt	
172	J	XBB-784-11173	101	3.8	25	2160	11.3	< 120 120	Pt Di	
173	J	XBB-784-11174	101	3.9	24.9	2160	11.3	120	Pt	
174	J	XBB-704-11175	101	4.1	24.7	2160	10	7.5	FC D	
175	J	XBB-784-11176	101		24.8	2160	10	7.5	PE	
176	J	XBB-784-11177	101	4.1	24.9	2160	10	15	Pt.	
177	J	XBB-784-11178	101	4.1	25.2	2160	10	15	Pt	
178	J	XBB-704-11179	101	4.1	25.3	2160	10	3.15	rt D4	#170
179	J	XBB-784-11180	101	4.1	20.0	2160	10	1.5	PT De	cont. from #1/0
180	J	XBB-704-11101	101	4.1	23.3	2100	10	20	rt D4	cont, $trom #176$
181	J	XBB-704-11182	ICI	4.1	25+5	2100	10	30	rt.	COUP. TLOW &ILO

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab #	Code	Photo #	Soln	рH	Т	rpm	C.D.	Time	Substr	Special
182	J	XBB-784-11183	1C1	4.1	25.2	2160	10	15	Pt	cont. from #179
183	J	XBB-784-11187	1C1	4.1	25	2160	10	30	Pt	cont. from #180
184	J	XBB-784-11186	101	4.1	24.9	2160	10	60	Pt	cont. from #181
185	J	XBB-784-11185	1C1	4.2	25	2160	10	30		
186	J	XBB-784-11184	101	4.1	25.1	2160	10	30	Pt	cont. from #182
187	J	XBB-784-11188	101	4.1	25	2160	10	60	Pt	cont. from #183
188	J	XBB-784-11189	1C1	4.1	25	2160	10	120	Pt	cont. from #184
189	J	XBB-784-11190	101	4.1	25	2160	10	60	Pt	cont. from #186
190	J	XBB-784-11191	101	4.1	25	2160	10	120	Pt	cont. from #187
191	J	XBB-784-11192	101	4.2	25	2160	10	120	Pt	cont. from #189
192	J	XBB-784-11193	1C1	4.2	24.7	2160	10	30	Pt	······
193	J	XBB-784-11194	101	2.4	25	2160	10	30	Pt	
194	J	XBB-784-11195	101	2.4	25.1	2160	10	30	Pt	
195	J	XBB-784-11196	101	2.4	25	2160	10	30	Pt	
195A	J	XBB-784-11197	1C1	2.4	25	2160	10	30	Pt	
196	J	XBB-784-11198	101	2.4	25	720	30	20	Pt	
197	J	XBB-784-11199	101	2.4	25.1	720	30	10	Pt	
198	J	XBB-784-11200	101	2.4	25.1	720	30	5	Pt	
199	.1	XBB-784-11201	101	2.5	25.2	720	30	2.5	Pt.	
200	.1	XBB_784_11202	101	5.2	25.4	720	30	5	Pt.	
201	.1	XBB_784_11203	101	5.2	25.4	720	30	2.5	Pt	
202	J	XBB-784-11204	101	5.2	25.3	720	30	10	₽÷	
203	.1	XBB_784_11205	101	5.0	25	720	30	20	P+	
201	.16	XBB_784_11206	101	2.4	25 1	720	30	5	. U ₽+	
205	.18	YBB_784_11207	101	2.4	25.2	2160	30	25	Pe	
206	.15	XBB_784_11208	101	24	25 1	720	30	10	P⊁	
207	.16	YBB_784_11200	101	2 1	25 1	720	30	20	Pr	
208	.15	XBB_784_11210	101	2.4	25	720	30	2.5	P+	
200	.16	XBB_784_11211	101	2 1	25.3	720	30	5	D.€	
210	16	VBB_784_11212	101	24	25.3	720	30	20	1 U 10+	
211	12	VDD 781 11212	101	2.1	25 1	720	30	10	56	
212	10	YDD 78h 1121h	101	2.7	2006	720	30	1 26	5 C De	
212	Jr	XDD-104-11214	101	2.0	28 8	720	30	1 25	г. D+	
218	15	XDD-704-11215	101		25 1	720	30	2 5	1 L D+	cont from #212
216	15	VPD 781 11217	101	-	25.2	720	30	2.5	2 ¢ D+	cont from #213
210	10	ADD-/09-1121/ VD0 781 11218	101	10°	20.2	720	20	2.0	5 U D+	conc. Irom \$21)
217	105	XDD=104=11210	101	2 6	22.2	720	20	2.7	16- 16-	
218	35 15	XDD-104-11213	101	2.0	25.2	720	20	2.0	1 L De	cont from #214
210	15	ADD-/07-11220	101	2.0	22.2	720	20	5	ГU D4	cont from #215
230	10	ADD-109-11221	101	-	20.0	720	20	5	ГL De	cont. from #215
220	10	ADD- (09-11222 VDD 784 11222	101	2 6	22.3	720	20	5	ΓL De	cont. from #217
222	10	ADD-104-11223	101	2.0	20.3	720	20	10	5 L De	cont from \$218
222	15 15	ADD-104-11224 VDD 781 11225	101	2.0	27.2	120	20	10	5 L D.4	conte from #210
221	10	ADD-104-11220 VDD 788 11226	101	-	22.2	120	30	10	5 L D4	conte from $#220$
225	3C 7D	ADD-/04-11220	101		27.2	120	30	10	5°C D4	CONC. IFOR #221
220	J.C 10	ADD-/04-1122/	ICI	-	27.2	120	30	10	rt De	CONC. IFOR #221
220	Jr	XBB-/04-11228	ICI	-	25.1	120	30	20	PT.	cont. from $\frac{1}{2}$
221	JF	XBB-784-11229	101	-	25.1	720	30	20	rt Di	cont. from #223
228	JF	XBB-784-11230	101	-	25.2	720	30	20	Pt	cont. from #224

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

•

Lab 🖗	Code	Photo #	Soln	pН	Т	rpm	C.D.	Time	Substr	Special
229	JF	XBB-784-11231	101	2.7	25.1	720	30	20	Pt	cont. from #225
230	JF	XBB-784-11232	101	2.7	25.1	720	30	40	Pt	cont. from #226
231	JF	XBB-784-11233	101	-	25.1	720	30	40	Pt	cont. from #227
232	JP	XBB-784-11234	101	-	25.1	720	30	40	Pt	cont. from #228
233	JF	XBB-784-11235	101	2.7	25.1	720	30	40	Pt	cont. from #229
234	JF	XBB-784-11236	1C1	2.7	25.2	720	30	80	Pt	cont. from #230
235	JF	XBB-784-11237	101	-	25.1	720	30	80	Pt	cont. from #231
236	JF	XBB-784-11238	101	-	25	400	30	80	Pt	cont. from #232
237	JF	XBB-784-11239	101	2.9	25	400	30	40	Pt	
238	JF	XBB-784-11239A	1C1	3.1	25.3	1600	30	40	Pt	
239	JF	XBB-784-11240	101	3.1	25.4	1600	30	60	Pt	
240	JF	XBB-784-11241	1C1	3.1	25.5	1600	60	5	Pt	
241	JF	XBB-784-11242	101	3.1	25.5	1600	60	5	Pt	
242	JF	XBB-784-11243	101	3.1	25.5	1600	60	5	Pt	
243	JF	XBB-784-11244-5	1C1	3.7	25	2160	100	6	Pt	
244	JF	XBB-784-11246	1C1	2.4	24.8	2160	100	3	Pt	
245	JF	XBB-784-11247	101	2.4	24.8	2160	100	1.5	Pt	
246	JF	XBB-784-11249	101	2.4	24.8	2160	100	0.75	Pt	
247	JF	XBB-784-11248	1C1	2.5	25	2160	100	6	Pt	
248	JF	XBB-784-11250	101	2.5	24.9	2160	100	3	Pt	
249	JF	XBB-784-11251	1C1	2.5	24.9	2160	100	1.5	Pt	
250	JF	XBB-784-11252	101	2.5	25	2160	100	0.75	Pt	
251	JF	XBB-784-11255	101	3.6	25.3	2160	100	12	Pt	
252	JF	XBB-784-11253	1C1	3.7	25.2	2160	100	24	Pt	
253	JF	XBB-784-11254	101	3.8	25	2160	100	0.75	Pt	
254	JF	XBB-784-11256	101	3.8	25	720	30	20	Pt	
255	JF	XBB-784-11257	101	2.6	25.3	720	33.9	30	Pt	
256	JF	XBB-784-11258	101	2.6	25.2	720	113	24	Pt	
257	J	XBB-784-11259	101	2.6	25.5	720	113	24	Pt	+10 ppm FeCl
258	J	XBB-784-11260	101	2.6	25.5	720	33.9	30	Pt	+10 ppm FeCl
259	J	XBB-784-11261	101	2.8	25.1	720	33.9	30	Pt	+20 ppm FeCl
260	J	XBB-784-11262	101	2.8	25.4	720	33.9	30	Pt	+50 ppm FeCl ³
261	J	XBB-784-11263	0.101	3.2	25.5	2160	10	30	Pt	
262	J	XBB-784-11264	0.1C1	3.3	25.2	2160	10	30	Pt	
263	J	XBB-784-11265	0.101	3.2	25.2	2160	10	45	Pt	
264	J	XBB-784-11266	0.101	3.7	25.2	2160	10	60	Pt	
265	J	XBB-784-11267	0.101	3.0	25.1	2160	10	60	Pt	
266	J	XBB-784-11268	0.101	3.3	25.7	2160	10	120	Pt	
266B	J	XBB-784-11269	0.101	3.3	25.7	2160	10	120	Pt	
267	J	XBB-784-11270	1C1	3.8	25.3	720	30	60	Pt	
268	J	XBB-784-11271	101	3.9	25.6	720	30	60	Pt	+10 ppm FeCl
269	J	XBB-784-11272	101	3.4	26.0	720	30	60	Pt	+20 ppm FeCl ³
270	J	XBB-784-11273	1C1	2.9	26.0	720	30	60	Pt	+50 ppm FeCl ⁵
271	J	XBB-784-11276	101	2.6	25.5	720	30	60	Pt	+100 ppm FeCI
272	J	XBB-784-11274	1S	2.9	25.5	720	10	60	Pt	3
273	J	XBB-784-11275	15	2.9	25.5	720	10	60	Pt	
274	J	XBB-784-11277	1S	2.9	24.6	2160	10	60	Pt	
275	J	XBB-784-11278	15	3.0	25	2160	10	120	Pt	

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab Ø	Code	Photo 🖡	Soln	pH	T	rpa	C.D.	Time	Substr	Special
276	J	XBB-784-11279	1S	3.0	25.5	720	10	120	Pt	
277	J	XBB-784-11280	1S	3.0	25.5	720	11.3	120	Pt	
278	J	XBB-784-11281	1S	3.1	24.7	2160	33.9	40	Pt	
279	J	XBB-784-11282	1S	3.1	24.9	2160	33.9	80	Pt	
280	J	XBB-784-11283	1S	3.2	25	2160	33.9	120	Pt	
281	J	XBB-784-11284	1S	3.3	24.9	2160	33.9	80	Pt	cont. from #278
282	J	XBB-784-11285	1S	3.4	24.9	2160	33.9	180	Pt	cont. from #279
283	J	XBB-784-11286	1S	2.9	25.1	2160	30	80	Pt	
284	J	XBB-784-11287	1S	3.0	25.1	2160	30	80	Pt	+10 ppm FeCl ₂
285	J	XBB-784-11288	1S	3.0	25	2160	30	• 80	Pt	+20 ppm FeCl ₂
286	J	XBB-784-11289	1S	3.1	25	2160	30	80	Pt	+50 ppm FeCl ₂
287	JF	XBB-784-11290	4C1	3.0	24.8	2160	30	1.25	Pt	e c
288	JF	XBB-784-11291	4C1	3.1	24.8	2160	30	2.5	Pt	
289	JF	XBB-784-11292	4C1	3.1	24.8	2160	30	5	Pt	
290	JF	XBB-784-11293	4C1	3.1	24.6	2160	30	10	Pt	
291	JF	XBB-784-11294	4C1	3.1	25.6	2160	30	15	Pt	
292	JF	XBB-784-11295	4C1	3.1	25.4	2160	30	20	Pt	
293	JF	XBB-784-11296	4C1	3.1	25.2	2160	30	30	Pt	
204	JF	X88-784-11297	401	3.1	25.1	2160	30	40	Pt	
295	JF	XBB-784-11298	401	3.1	25.3	2160	30	80	Pt	
206	.15	YBB_784_11299	LC1	3.1	25	2160	30	60	Pt	
2072	JE	XBB-784-11300	ACI	3.1	25.2	2160	30	60	Pt	
207h	15	V88-784-11301	AC1	21	25.2	2160	30	60	Pt.	
208	IF.	YBB-784-11302	401	3.1	25.2	2160	30	15	Pt	
200	JF JF	XBB-784-11302 XBB-784-11303	AC1	3 1	25.1	2160	30	10	Pt.	
200	15	VBB 780 11300	her	21	25	2160	30	10	Pt	
301	JF	XBB-784-11305	AC1	3.1	25	2160	30	5	Pt	
3052	JE	YBB_784_11306	101	3.1	25	2160	30	2.5	Pt	
202P	10	VBB_788_11307	401 801	31	25	2160	30	2.5	Pt.	
2020	1	VPR 788 11308 10	hC1	3.0	24 0	720	10	60	Pt.	
202	ں 1	VDD 788 11211	401 801	3.0	25 1	720	10	60	Pt	
209	J 1	XDD-104-11311	lici	3.0	25.2	720	30	60	Pt	
206	1	VDD 780 11312	lici	3.0	25	720	10	60	Pt.	ere was trade week.
207	U T	VDD 781 11211	HC1	3.0	24 0	2160	30	60	Pt.	
201	J 7	VDD 781 11215	lici	2.0	25	2160	30	180	Pt	
300a	J 7	ADD-104-11315	HC1	2.0	25	2160	30	180	Pt	
3000	ປ ,	ADD-/04-11310	401 101	2.0	25	720	30	180	P+	
309A	4	ADD-/04-11310A	401	2.3	20	720	30	180	D+	
3098	ل ،	ADD-/04-1131/	401	2.9	20	240	30	180	D6- 10	
STUA	Ĵ	XBB-/04-11310	401	2.9	20	240	30	180	D+	
3108	J	XBB-/04-11319	401	2.9	20	240	30	240	2 U D4	
ALLE	J	ABB-704-11320	401	2.9	20 25	2160	20	240	г с р е	
3118	J ,	ABB-704-11321	401	2.9	20	2100	20	290	гь D+	
312A	ل ل	ABB-704-11322	4C1		40 25	100	30	180	г. D+	
312B	J	XBB-704-11323	401	-	20 26	100	30	180	r L D+	
313A	ل -	XBB-704-11324	401	<u> </u>	40 25	240	10	180	5 L D 6	
313B	J	XBB-784-11320	4C1	3.0	20	240	10	180	rt Dt	
314A	J	XBB-784-11325	4C1	5.0	25 25	120	10	190	55 D5	
314B	J	XBB-784-11327	4C1	3.0	25	120	10	100	ΥĽ	

 TABLE 1

 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

 TABLE 1

 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab Ø	Code	Photo #	Soln	рH	T	rpa	C.D.	Time	Substr	Special
315	J	XBB-784-11327A	4C1	3.0	25	2160	10	180	Pt	
316	J	MISSING	4C1	3.0	25	720	60	90	Pt	
317	. J	MISSING	4C1	3.0	25.0	2160	50	90	Pt	
318	J	MISSING	4C1	3.0	25.0	240	60	90	Pt	
319	J	XBB-784-11328	0.1C1+A	2.1	24.5	720	30	60	Pt	
320	J	XBB-784-11329	0.1C1+A	2.1	24.8	720	30	120	Pt	
321	J	XBB-784-11330	0.1C1+A	2.1	25.3	720	30	240	Pt	
322	J	XBB-784-11331	0.1C1+A	2.4	24.5	720	10	120	Pt	
323	J	XBB-784-11332	0.1Cl+A	2.6	25.1	720	10	240	Pt	
324	J	XBB-784-11333	0.1C1+A	2.9	25.5	720	10	180	Pt	
325	J	XBB-784-11334	0.1C1+A	3.8	24.5	720	30	60	Pt	
326	J	XBB-784-11335	0.1C1+A	3.0	24.7	720	30	120	Pt	
327	J	XBB-784-11336	0.1C1+A	3.9	25	720	10	120	Pt	
328	J	XBB-784-11337	0.1C1+A	2.3	25	720	10	120	Pt	
329	J	XBB-784-11337A	0.1C1+A	2.5	24.3	720	30	120	Pt	
330	J	XBB-784-11338 M	ISSING DAT	A.						
331	J	XBB-784-11338A	0.1C1+A	2.6	25	720	30	60	Pt	
332	J	XBB-784-11339	0.1C1+A	2.7	25.1	720	30	30	Pt	
333	J	XBB-784-11340	0.1C1+A	2.7	25.1	720	30	15	Pt	
334	J	XBB-784-11341	0.1C1+A	2.9	24.8	720	30	90	Pt	
335	J	XBB-784-11341A	0.1C1+A	2.5	24.5	720	30	90	Pt	
336	.1	XBB-784-11341B	0.1C1+A	2.5	25	720	30	240	Pt	
337	.1	XBB-784-11342	0.1C1+A	2.5	25.2	720	30	120	Pt	
338	J	XBB-784-11343	0.1C1+A	2.3	24.5	720	30	15	Pt	
339	J	XBB-784-11344	0.1C1+A	2.3	24.8	720	30	45	Pt	
340	J	XBB-784-11345	0.1C1+A		25	720	30	60	Pt	+10 ml liq. soap
341	J	XB8-784-11346	0.1C1+A	-	25	720	30	60	Pt	+10 ml lig. soap
342	.1	YBB_784_11347	0.101+4	2.2	24.5	720	30	15	Pt	
343	J	XBB_784_11348	0.1C1+A	2.2	24.5	720	30	30	Pt	
344	J	XBB-784-11349	0.1C1+A	2.2	24.8	720	30	45	Pt	
345	J	XBB-784-11350	0.1C1+A	2.2	25	720	30	15	Pt	
346	.1	XBB-784-11351	0.1C1+A	2.3	25.1	720	30	60	Pt	
347	.1	XBB-784-11351A	0.1C)+A	2.4	25.2	720	30	120	Pt	
348	J	XBB-784-11352	0.1C1+A	2.5	25	720	30	120	Pt	
349	J	XBB-784-11353	0.1C1+A	2.1	25.4	720	10	60	Pt	
350	J	XBB-784-11354	0.1C1+A	2.1	25.3	720	10	45	Pt	
351	J	XBB_784_11355	0.1C1+A	2.1	25.3	720	10	90	Pt	
352	J	XBB-784-11356	0.1C1+A	2.2	25.3	720	10	60	Pt	
353	J	XBB-784-113564	0.1C1+A	2.2	25.1	720	10	120	Pt	
354	.1	XBB-784-11356B	0.101+4	2.4	25	720	10	240	Pt	
355	J	XBB-784-11357	0.101+4	2.1	25	720	10	60	Pt	
356	Ĵ	xBB-784-11358	0.101+4	2.1	25	720	10	30	Pt	
357	Ĵ	XBB-784-11359	0.1C1+A	2.1	25	720	10	45	Pt	
358	.1	XBB-784-11360	0.1C1+A	2.1	25	720	10	90	Pt	
350	.1	XBB-784-11361	0.101+A	2.3	25	720	10	120	Pt	
260	ĩ	YBB_784_11362	0.1C1+A	2.2	25	720	10	90	Pt	

e

Lab 🖋	Code	Photo #	Soln	рН	T	rpa	C.D.	Time	Substr	Special
361	J	XBB-784-11363	0.1C1+A	2.3	25	720	10	120	Pt	
362	J	XBB-784-11363A	0.1C1+A	2.3	25	720	10	240	Pt	
363	J	XBB-784-11364	0.1C1+A	2.4	25.2	2160	30	120	Pt	
364	J	XBB-784-11365-6	0.1C1+A	2.3	25	2160	30	240	Pt	
365	J	XBB-784-11367	0.1C1+A	2.1	25.2	720	60	120	Pt.	
366	J	XBB-784-11369	0.1C1+A	2.3	25.1	2160	30	120	Pt.	
367	J	XBB-784-11368	0.1C1 + A	2.4	25.2	720	30	120	P+	
368	.1	XBB-784-11370	0.101+0	2.6	25.1	2160	30	240	P+	
369	.1	XBB_784_11371	0.101+4	2.4	25.1	720	10	240	Pt	
370	.1	XBB_784_11371A	0.101.48	2.6	25.2	720	10	60	20+ 2. C	
371	1	VBB 784 11272	0 101.8	27	25.5	720	10	120	1.6	
272	1	VDD 78h 1127h	0.101.8	2 7	້ວເເ	720	10	120	Гь П.	
372	J	ADD-104-11)14 VDD 700 11272	0.101+0	2.1	22.2	2260	10	240	PC DA	
373 271	ປ ເ	ADD-104-11313	0.101+8	2.1	20	2100	10	240	PC D.	
319	۲	ADD-104-113/7	0.101+8	2.0	23.2	120	10	240	PC D.	
212	J	ADD-/04-113/0	0.101+B	2.0	22.2	120	30	00	PC	
3002	J	ADD-/04-113//	U. ICIAB	2.0	-	120	30	240	Pt	
3072	J	X88-784-11378	1C1+C	2.0	26.0	720	30	120	Pt	
3002	J	XBB-784-11379	1C1+C	2.1	26.0	720	30	60	Pt	
30.95	J	X88-784-11380	1C1+C	2.2	26.0	720	30	30	Pt	
370P	J	XBB-784-11381	1C1+C	2.3	26.0	720	30	15	Pt	
37 1 P	J	XBB-784-11382	1C1+C	2.3	26.0	720	30	45	Pt	
372P	J	XBB-784-11383-5	1C1+C	2.4	26.0	720	30	240	Pt	
373P	JF	XBB-784-11386	4C1	2.7	26.0	720	10	60	Pt	
374P	JF	XBB-784-11390	4C1	2.7	26.0	720	10	60	Pt	
375P	JF	XBB-784-11387	4C1	2.7	26.0	720	10	30	Pt	
376P	JF	XBB-784-11388	4C1	2.7	26.0	720	10	45	Pt	
377P	JF	XBB-784-11389	4C1	2.7	26.0	720	10	· 15	Pt	
378P	JF	XBB-784-11391	4C1	2.8	25.4	720	10	7.5	Pt	
379P	JF	XBB-784-11392	4C1	2.8	25	720	10	7.5	Pt	
380P	JF	XBB-784-11393	401	2.8	25	720	10	60	Pt	
381P	JF	XBB-784-11394	401	2.8	25.1	720	10	120	Pt	
3822	JF	X88-784-11395	401	2.8	25.2	720	10	240	Pt	
383P	JF	X88-784-11396	401	2.7	25	720	10	240	Pt	
384P	JF.	XBB-784-11397	401	2.7	25	720	10	120	Pt	
385	.1	XBB_784_11398	0.0101+4	3.0	25.2	720	10	120	Pt.	
386	.1	X88_784_11300	0.0101.4	3.0	25.2	720	10	60	Pt	
287	7	VDD 78h 11h01	0.0101-4	20	25.2	720	10	200	D+	
280	1	XDD-104-11401	lon long	2.2	22.5	720	10	20		
203	ں 1	ADD-104-11402	her	2.0	22.2	720	10	50	1 C D+	
390	ل ب	ADD-/04-11403	NC1 NC1	2.3	20	720	10	280	5 U	
391	J	ABB-/04-11404	401 803	2.0	25	720	10	240	FL D4	
392A	ປ	ABB-704-11405	4C1	2.0	25.1	120	10	15	rt Di	
3928	J	ABB-784-11400	4C1	2.0	25.1	120	10	15	rt Di	
393	J	XBB-784-11407	4C1	2.7	25	720	10	45	rt.	
394	Ĵ	XBB-784-11408	4C1	2.1	25	720	10	30	rt	
395	J	XBB-784-11409-10	4C1	2.7	25	720	10	120	rt	
396A	J	XBB-784-11411	4C1+2C	2.8	25	720	10	180	۲t	
396B	J	XBB-784-11412	4C1+ZC	2.8	25	720	10	180	Pt	
397A	J	XBB-784-11413	4C1+ZC	2.7	25	2160	10	180	Pt	

 TABLE 1

 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab 🖸	Code	Photo 🖋	Soln	pH	T	rpm	C.D.	Time	Substr	Special
397B	J	XBB-784-11414	4C1+ZC	2.7	25	2160	10	180	Pt	
397C	J	XBB-784-11415	4C1+ZC	2.7	25	2160	10	180	Pt	
397D	J	XBB-784-11416	4C1+ZC	2.7	25	2160	10	180	Pt	
398a	J	XBB-784-11419	4C1+ZC	2.7	26.0	240	10	180	Pt	
398B	J	XBB-784-11417	4C1+ZC	2.7	26.0	240	10	180	Pt	
399A	J	XBB-784-11418	4C1+ZC	2.7	25	720	10	180	Pt	
399B	J	XBB-784-11420	4C1+ZC	2.7	25	720	10	180	Pt	
399C	J	XBB-784-11421	4C1+ZC	2.7	25	720	10	180	Pt	
400a	J	XBB-784-11422	4C1+ZC	2.7	25	1440	10	180	Pt	
400B	J	XBB-784-11423	4C1+ZC	2.7	25	1440	10	180	Pt	
401A	J	XBB-784-11424	4C1+ZC	2.7	25.2	1440	30	180	Pt	
401B	J	XBB-784-11425	4C1+ZC	2.7	25.2	1440	30	180	Pt	
402A	J	XBB-784-11426	4C1+2C	2.6	25	240	30	180	Pt	
402B	J	XBB-784-11427	4C1+ZC	2.6	25	240	30	180	Pt	
403A	J	XBB-784-11428	4C1+ZC	2.6	25	720	30	180	Pt	
403B	J	XBB-784-11429	4C1+ZC	2.6	25	720	30	180	Pt	
404A	J	XBB-784-11430	4Cl+ZC	2.7	25	240	60	180	Pt	
404B	J	XBB-784-11431	4C1+ZC	2.7	25	240	60	180	Pt	
405A	J	XBB-784-11432	4C1+ZC	2.7	25.2	720	60	180	Pt	
405B	J	XBB-784-11433	4C1+ZC	2.7	25.2	720	60	180 .	Pt	
406A	J	XBB-784-11434	4C1+ZC	2.7	25.5	1440	60	180	Pt	
406B	J	XBB-784-11435	4C1+2C	2.7	25.5	1440	60	180	Pt	
407A	J	XBB-784-11436	4C1+ZC	2.7	25.5	720	100	60	Pt	
407B	J	XBB-784-11437	4C1+ZC	2.7	25.5	720	100	60	Pt	
408	J	XBB-784-11438	4C1+ZC	2.7	25.3	720	90	20	Pt	
409A	Ĵ	XBB-784-11439	4C1+ZC	2.7	25.3	720	30	60	Pt	
409B	J	XBB-784-11440	4C1+ZC	2.7	25.3	720	30	60	Pt	
410A	J	XBB-784-11441	4C1+ZC	2.7	-	720	60	30	Pt	
410B	J	XBB-784-11442	4C1+ZC	2.7	-	720	60	30	Pt	
411A	J	XBB-784-11443	4C1+ZC	2.7	25	2160	30	180	Pt	
411B	J	XBB-784-11444	4C1+ZC	2.7	25	2160	30	180	Pt	
412A	J	XBB-784-11445	4C1+ZC	2.7	25	720	30	60	Pt	
4128	J	XBB-784-11446	4C1+ZC	2.7	25	720	30	60	Pt	
413A	J	XBB-784-11447	4C1+ZC	2.7	25	1440	30	60	Pt	
413B	J	XBB-784-11448	4C1+ZC	2.7	25	1440	30	60	Pt	
414	J	XBB-784-11449	4C1+ZB	2.6	25.2	720	30	180	Pt	
415	J	XBB-784-11450	4C1+ZB	2.7	25	240	30	180	Pt	
416	J	XBB-784-11452	4C1+ZB	2.7	25	1440	30	180	Pt	
417	J	XBB-784-11453	4C1+ZB	2.7	25	2160	30	180	Pt	
418	J	XBB-784-11454	4C1+ZB	2.7	25	240	30	180	Pt	
419A	J	XBB-784-11455	4C1+ZB	2.7	25	240	30	180	Pt	
419B	J	XBB-784-11456	4C1+ZB	2.7	25	240	30	180	Pt	
420	J	XBB-784-11457	4C1+ZB	2.7	25	720	30	180	Pt D.	
421	J	XBB-784-11458	4C1+ZB	2.1	25	720	60	180	rt	
422	J	XBB-784-11459	4C1+ZB	2.7	25	240	60	180	Pt	
423	J	XBB-784-11460	4C1+ZB	2.7	25	1440	60	180	Pt	
424A	.7	XBB-784-11461	4C1+ZB	2.7	25	240	60	180	Pt	

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

,

Lab 👂	Code	Photo 👂	Soln	pH	Т	rpa	C.D.	Time	Substr	Special
424B	J	XBB-784-11462	4C1+ZB	2.7	25	240	60	180	Pt	
425	J	XBB-784-11463	4C1+ZB	2.7	25	720	10	180	Pt	
426	J	XBB-784-11464	4C1+ZB	2.7	25	1440	10	180	Pt	
427	J	XBB-784-11465	4C1+ZB	2.7	25	240	10	180	Pt	
428A	J	XBB-784-11466	4Cl+ZB	2.7	25	1440	10	180	Pt	
428B	J	XBB-784-11467	4C1+ZB	2.7	25	1440	10	180	Pt	
429A	J	XBB-784-11468	4C1+ZB	2.7	25	240	60	180	Pt	
429B	J	XBB-784-11469	4C1+ZB	2.7	25	240	60	180	Pt	
430	J	MISSING	4C1+ZB	2.7	25	720	100	60	Pt	
431A	J	XBB-784-11470	4C1+ZB	2.7	25	240	100	60	Pt	
431B	J	XBB-784-11471	4C1+ZB	2.7	25	240	100	60	Pt	
432	J	XBB-784-11473	4C1+ZB	2.7	25	1440	100	60	Pt	
433	J	XBB-784-11472	4C1+ZB	2.7	25	720	30	60	Pt	
434	J	XBB-784-11474	4C1+ZB	2.7	25	720	30	30	Pt	·
435	J	XBB-784-11475	4Cl+ZB	2.7	25	720	30	15	Pt	
436	J	XBB-784-11476	4C1+ZB	2.7	25	720	30	7.5	Pt	
437	J	XBB-784-11479	4C1+ZB	2.7	25	720	30	3.75	Pt	
438A	J	XBB-784-11477	4C1+ZB	2.7	25	720	30	2	Pt	
4388	J	XBB-784-11478	4C1+ZB	2.7	25	720	30	2	Pt	
439A	J	XBB-784-11480	4C1+ZB	2.7	25	720	30	1	Pt	
439B	J	XBB-784-11481	4C1+ZB	2.7	25	720	30	1	Pt	
440	J	XBB-784-11482	4C1+2B	2.7	25	720	30	7.5	Pt	
441	J	XBB-784-11483	4C1+ZB	2.7	25	720	30	45	Pt	
442	J	XBB-784-11483A	4C1+ZB	2.7	25	720	30	120	Pt	
443	J	MISSING	4C1+ZB	2.7	25	720	30	180	Pt	
444	J	XBB-784-11484	4C1+ZB	2.7	25	720	60	30	Pt	
445	J	XBB-784-11485	4C1+ZB	2.7	25	720	100	18	Pt	
446	J	XBB-784-11486	4C1+ZB	2.7	25	100	30	180	Pt	
447	500	XBB-784-11486A	4C1+ZB	2.7	25	1440	30	180	Pt	
448A	J	XBB-784-11487	4C1+ZB	2.7	25	720	10	60	Pt	
448B	J	XBB-784-11488	4C1+2B	2.7	25	720	10	60	Pt	
449	J	XBB-784-11489	4C1+ZB	2.7	25	720	10	45	Pt	
450	J	XBB-784-11490	4C1+ZB	2.7	25	720	10	30	Pt	
451	J	XBB-784-11491	4C1+ZB	2.7	25	720	10	20	Pt	
452A	J	XBB-784-11492	4C1+ZB	2.7	25	720	10	15	Pt	
452B	J	XBB-784-11493	4C1+ZB	2.7	25	720	10	15	Pt	
453	J	XBB-784-11494	4C1+ZB	2.7	- 25	720	10	10	Pt	
454	J	XBB-784-11495	4C1+ZB	2.7	25	720	60	180	Pt	
455	J	XBB-784-11496	4C1+ZB	2.7	25	1440	60	180	Pt	
456A	J	XBB-784-11497	4C1+ZB	2.7	25	720	10	- 5	Pt	
4568	J	XBB-784-11498	4C1+ZB	2.7	25	720	10	5	Pt	
456C	J	XBB-784-11499	4C1+ZB	2.7	25	720	10	5	Pt	
457A	J	XBB-784-11500	4C1+ZB	2.7	25	720	10	2.5	Pt	
457B	J	XBB-784-11500A	4C1+ZB	2.7	25	720	10	2.5	Pt	
458	J	XBB-784-11501	4C1+ZB	2.7	25	720	10	° 120	Pt	
459A	J	XBB-784-11502	4C1+ZB	2.7	25	720	10	1	Pt	
459B	J	XBB-784-11502A	4C1+ZB	2.7	25	720	10	1	Pt	
460	J	XBB-784-11503	101	2.9	25	720	30	60	Zn-SC	$Area = 0.713 \text{ cm}^2$

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab Ø	Code	Photo #	Soln	рH	T	rpa	C.D.	Time	Substr	Special
461	J	XBB-784-11504	1C1	2.9	25	720	30	45	Zn-SC	$Area = 0.713 \text{ cm}^2$
462	J	XBB-784-11505	1C1	2.9	25	720	30	30	Zn-SC	$Area = 0.713 \text{ cm}^2$
463	J	XBB-784-11506	1C1	2.9	25	720	30	15	Zn-SC	Area = 0.713 cm^2
464	J	XBB-784-11507	101	2.9	25	720	30	10	Zn-SC	$Area = 0.713 cm^{2}$
465A	J	XBB-784-11508	101	2.9	25	720	30	5	Zn-SC	$Area = 0.713 \text{ cm}^2$
465B	J	XBB-784-11509	101	2.9	25	720	30	5	Zn-SC	$Area = 0.713 \text{ cm}^2$
466A	J	XBB-784-11510	101	2.9	25	720	30	3	Zn-SC	$Area = 0.713 \text{ cm}^2$
466B	J	XBB-784-11511	101	2.9	25	720	30	3	Zn-SC	$Area = 0.713 \text{ cm}^2$
467A	J	XBB-784-11512	101	2.9	25	720	30	2	Zn-SC	$Area = 0.713 \text{ cm}^2$
467B	J	XBB-784-11513	1C1	2.9	25	720	30	2	Zn-SC	$Area = 0.713 \text{ cm}^2$
468A	Ĵ	XBB-784-11514	1C1	2.8	25	720	30	1	Zn-SC	$Area = 0.713 \text{ cm}^2$
468B	J	XBB-784-11515	1C1	2.8	25	720	30	1	Zn-SC	Area = 0.713 cm^2
469	J	XBB-784-11515A	1C1	2.8	25	720	30	180	Pt	
470A	J	XBB-784-11515B	101	2.5	25	1440	30	60	Pt	<i>.</i>
471	J	XBB-784-11516	101	2.6	25	1440	30	60	Pt	+2X10 ⁻⁵ M CuCl
472	J	XBB-784-11517	1C1	2.8	25	1440	30	60	Pt	+4X10 ⁻² M CuCl ²
473	J	XBB-784-11518	1C1	3.3	25	1440	30	60	Pt	+6X10 ⁻⁵ M CuCl ²
474	Ĵ	XBB-784-11519	101	3.4	25	1440	30	60	Pt	$+1X10^{-4}$ M CuCl ²
475	J	XBB-784-11520	101	2.3	25	720	30	60	Pt	2
476	J	XBB-784-11521	1C1	2.3	25	720	30	60	Pt	+2X10-2 M Na_MoOn
477	J	XBB-784-11522	1C1	2.3	25	720	30	60	Pt	+4X10"2 M Na 5M00"
478	Ĵ	XBB-784-11523	1C1	2.5	25	720	30	60	Pt	+6X10 " M Na MOO"
479	J	MISSING	101	2.6	25	720	30	60	Pt	+1X10 M Na MOO
480A	J	MISSING	101	2.9	25	720	30	60	Pt	+10" M Na ₂ MõO ₁₁ , 10 ppm FeCl ₂
480B	J	XBB-784-11524	101	2.9	25	720	30	60	Pt	2
481	J	XBB-784-11524A	1C1	3.4	25	720	30	60	Pt	
482	J	XBB-784-11525	101	2.5	25	720	30	60	Pt	r -
483	J	XBB-784-11526	101	2.7	25	720	30	60	Pt	$+1X10^{-2}$ M NiSO _h
484	J	XBB-784-11527	101	2.7	25	720	30 ·	60	Pt	+2X10" M NISO
485	J	XBB-784-11528	1C1	2.8	25	720	30	60	Pt	+5X10 ^{°°} , M NiS0 [°]
486	J	XBB-784-11529	1C1	2.8	25	720	30	60	Pt	+1X10 ⁻⁴ M N1SO ¹
487	J	XBB-784-11530	1C1	3.1	25	720	30	60	Pt	+10" M NiSO ₁₀ 10 ppm FeCl ₃
488	J	XBB-784-11531	1C1	3.2	25	720	30	60	Pt	+10" M NiSO, 10" M CoCl, 10 ppm FeCl
489	J	XBB-784-11532	1C1	2.1	25	720	30	60	Pt	·
490	J	XBB-784-11533	101	2.1	25	720	30	60	Pt	+1X10 ⁻² M RuCl ₂
491	Ĵ	XBB-784-11534	101	2.1	25	720	30	60	Pt	+2X10 ⁻² M RuCl ²
492	J	XBB-784-11535	101	2.2	25	720	30	60	Pt	$+5X10^{-2}$ M RuCl ²
493	J	XBB-784-11536	101	2.3	25	720	30	60	Pt	$+10^{-4}$ M RuCl ₂ ³
494	J	XBB-784-11537	101	1.7	25	720	30	60	Pt	+10"" M RuCl 3, 10 ppm FeCl 3
495	J	XBB-784-11538	101	1.8	25	720	30	60	Pt	+10" M RuCl ₂ , 10 ppm FeCl ₂ , 10 ppm AgNO ₂
496a	J	XBB-784-11539	1C1+D	1.4	25	720	30	60	Pt	ر د ر
496b	J	XBB-784-11540	1C1+D	1.4	25	720	30	60	Pt	
497	J	XBB-784-11541	1C1+D	1.4	25	720	30	30	Pt	
498	J	XBB-784-11542	1C1+D	3.4	25	720	30	120	Pt	
499	J	XBB-784-11543	1C1+D	1.5	25	720	30	45	Pt	
500	J	XBB-784-11544	1C1+D	1.6	25	720	30	240	Pt	
501a	J	XBB-784-11545	1C1+D	1.6	25	720	30	180	Pt	
501b	J	XBB-784-11546	1C1+D	1.6	25	720	30	180	Pt	

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con⁺t)

Lab 🖉	Code	Photo #	Soln	pН	T	rpm	C.D.	Time	Substr	Special
501b	J	XBB-784-11546	1C1+D	1.6	25	720	30	180	Pt	
502	J	XBB-784-11547	1C1+D	1.7	-	720	10	60	Pt	
03	J	XBB-784-11548	1C1+D	1.7	-	720	10	30	Pt	
04	J	XBB-784-11549	1C1+D	1.7		720	10	120	Pt	
05	J	XBB-784-11550	1C1+D	1.8		720	10	240	Pt	
06	J	XBB-784-11551	1C1+D	1.9		720	30	60	Pt	
07	J	XBB-784-11552	1C1+D	2.0		720	30	120	Pt	
08	J	XBB-784-11553	1C1+D	2.0		720	30	240	Pt	
29	J	XBB-784-11554	1C1+D	2.0	-	720	30	30	Pt	
10	J	XBB-784-11555	1C1+D	2.0	25	720	60	60	Pt	
11	J	XBB-784-11556	1C1+D	2.0	25	720	60	30	Pt	
12	J	XBB-784-11600	1C1+D	2.0	-	720	60	120	Pt	
13	J	XBB-784-11557	0.1C1+E	1.6	25	720	10	60	Pt	
14	J	XBB-784-11559	0.1C1+E	1.6		720	10	120	Pt	
15A	J	XBB-784-11558	1C1+E	2.9	-	720	10	60	Pt	
16	J	XBB-784-11560	1C1+E	2.9	-	720	10	120	Pt	
17	Ĵ	XBB-784-11561	1C1+E	2.6	-	720	10	240	Pt	
18	J	XBB-784-11562	1C1+E	2.3	25	720	10	60	Pt	
19	J	XBB-784-11563	1C1+E	2.3	-	720	10	30	Pt	
20	J	XBB-784-11564	1C1+E	2.3	-	720	10	45	Pt	
21	J	XBB-784-11565	1C1+E		-	720	30	30	Pt	
22	J	XBB-784-11566	1C1+E	-	-	720	30	60	Pt	
23	J	XBB-784-11567	1C1+E	-		720	30	120	Pt	
24	J	XBB-784-11568	1C1+E	3.0	-	720	30	90	Pt	
25	J	XBB-784-11569	1C1+E	3.0	-	720	30	60	Pt	
26	J	XBB-784-11570	1C1+F	1.5		720	30	240	Pt	
26a	J	XBB-784-11571	1C1+F	1.5	-	720	30	240	Pt	
27	J	XBB-784-11572	1C1+F	1.7	-	720	30	120	Pt	
28	Ĵ	XBB-784-11573	1C1+F	1.8	-	720	30	60	Pt	
29	J	XBB-784-11574	1C1+F	1.9	-	720	30	45	Pt	
30	J	XBB-784-11575	1C1+F	1.9	-	720	30	30	Pt	
31	J	XBB-784-11576	1C1+F	3.5	-	720	10	60	Pt	
32	J	XBB-784-11577	1C1+F	3.7	-	720	10	120	Pt	
33	J	XBB-784-11578	1C1+F	3.8	-	720	10	45	Pt	
34	J	XBB-784-11579	1C1+F	3.9	-	720	10	30	Pt	
35	J	XBB-784-11580	1C1+F	4.0	-	720	10	240	Pt	
36	J	XBB-784-11581	1C1+F	2.0	-	720	10	30	Pt	
37	J	XBB-784-11582	1C1+F	2.5	-	720	10	120	Pt	
38	J	XBB-784-11583	1C1+F	3.4	-	720	10	30	Pt	
39	J	XBB-784-11584	1C1+F	3.6	-	720	10	60	Pt	
10	J	XBB-784-11585	1C1+F	3.8	-	720	10	60	Pt	
11	J	XBB-784-11586	1C1+F	2.1		720	10	120	Pt	
42	J	XBB-784-11587	1C1+F	2.5	-	240	10	120	Pt	
43a	J	XBB-784-11588	1C1+F	3.2	-	1440	10	120	Pt	
436	J	XBB-784-11589	1C1+F	3.2	-	1440	10	120	Pt	
44	J	XBB-784-11590	1C1+F	0.7	-	2160	10	120	Pt	
45	J	XBB-784-11591	1C1+F	1.6	-	240	10	120	Pt	
46	.1	YBB-784-11592	1C1+F	1.8		720	10	120	Ni	

TABLE 1 Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

Lab 🖋	Code	Photo #	Soln	pН	Т	rpm	C.D.	Time	Substr	Special
547	J	XBB-784-11593	4C1	2.3		720	5	240	Pt	
548	J	XBB-784-11594	4C1	2.1	-	720	10	120	Pt-QE	$Area = 0.713 \text{ cm}^2$
549B	J	XBB-784-11595	4C1	2.5	-	720	10	120	Pt-HE	$Area = 0.713 \text{ cm}^2$
549	J	XBB-784-11596	4C1	2.5	**	720	10	120	Pt-HE	$Area = 0.713 \text{ cm}^2$
550	J	XBB-784-11597	4C1		-	720	10	60	Pt-QE	$Area = 0.713 \text{ cm}^2$
551	J	XBB-784-11598	4C1	-	-	720	10	60	Pt-HE	$Area = 0.713 \text{ cm}^2$
552	J	XBB-784-11599	4C1+ZB	-	-	720	10	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
553	J	XBB-784-11600	4C1+ZB			240	10	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
553a	J	XBB-784-11600A	4C1+2B	-		240	10	180	Pt	
554	J	XBB-784-11601	4C1+ZB		-	240	10	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
555	J	XBB-784-11602	4C1+ZB	-	-	720	10	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
555a	J	XBB-784-11602A	4C1+ZB			720	10	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
556	J	MISSING								
557	J	XBB-784-11935	4C1+ZB	-	-	720	10	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
558	J	XBB-784-11603	4C1+ZB	-	-	720	30	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
559	J	MISSING	C1+ZB							
560	Ĵ	XBB-784-11604	4C1+ZB	-		720	10	180.	Pt-FE	$Area = 0.713 \text{ cm}^2$
560a	J	XBB-784-11604A	4C1+ZB	-	-	720	10	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
561	J	XBB-784-11925	4C1+ZB	-		1440	30	180	Pt	
562	J	XBB-784-11926	4C1+ZB	-		1440	10	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
563	J	XBB-784-11927	4C1+ZB			1440	10	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
564	J	XBB-784-11928	4C1+ZB	-		1440	10	180	Pt	
565	J	XBB-784-11929	4C1+ZB	-		1440	30	180	Pt	
566	J	XBB-784-11930	4C1+ZB		-	240	30	180	Pt-HE	$Area = 0.713 \text{ cm}^2$
567	J	XBB-784-11931	4C1+2B	-	-	240	30	180	Pt-FE	$Area = 0.713 \text{ cm}^2$
568	J	XBB-784-11932	4C1+ZB	-	-	240	10	180	Pt-HE	$Area = 0.713 \text{ cm}^2$

TABLE 1Rotating Disk Electrode Experiments by Jaksic or Jaksic/Faltemier (con't)

			•	TA	BLE	2				
	Small	Flowcell	Experi	ments.	by	Jaksi	o or	Jaksic/	'Faltemie)r
•	∦⊧ C	ode	Photo	#	S	oln	pН	Flow	C.D.	T
	J	XBB	-784-1	1606	1	C1	2.5	20	10	
2	J	XBB	-784-1	1607	1	C1	2.5	20	10	

Lab #

Contraction and the second	-			**			
P-1	J	XBB-784-11606	1C1	2.5	20	10	120
P-2	J	XBB-784-11607	1C1	2.5	20	10	120
P-3	J	XBB-784-11608	1C1	2.5	20	10	120
P-4	J	XBB-784-11609	1C1	2.5	20	10	240
P-5	J	XBB-784-11610	1C1	2.5	20	10	30
Р-б	J	XBB-784-11611	1C1	2.5	20	10	45
P-7	J	XBB-784-11612	1C1	2.3	20	10	15
P-8	J	XBB-784-11613	101	2.2	20	10	15
P-9	J	XBB-784-11614	101	2.2	20	10	15
P-10	J	XBB-784-11615	101	2.1	20	10	10
P-11	Ĵ	XBB-784-11616	101	2.1	20	10	10
P-12	.1	XBB-784-11617	101	2.1	20	10	10
P-13	J	XBB_78111618	101	2 1	20	10	5
P_1μ	J	XBB-78/-11610	101	2 1	20	10	20
P_15	.1	XDD-704-11019 XDD-781-11620	101	2°I 2 1	20	10	50 E
D-16	U T	XDD=704=11020 YDD 701 11601	101	2.1	20	10) E
D 17	U T	ADD= (04-11021 YDD 2011 11600	101	2.1	20	10	5
r=1/ n 10	ل ت	ABB- /04-11022	ICL	2.1	20	10	45
r-10 P-10	U T	ABB- (04-11023 VDD 794 11604	ICL	2.1	20	10	00
5 - 19 D - 20	U T	ADD 794 11024	101	2.1	20	10	240
5-2U D 21	U T	ADD-704-11025	101	2.1	20	10	120
r=21	U T	ADD- (04-11020 VDD 2011 11602	101	2.0	20	10	100
r-22	J	ABB-704-11027	ICL	2.0	90	10	120
r-23	J T	ABB-/04-11020	101	2.1	90	10	00
r-24	J	ABB- (04-11029	ICL	2.1	90	10	45
r-25	ل ب	XBB- (84-11630	ICI	2.1	90	10	240
P-20	J	XBB-784-11630A	101	2.1	90	10	60
P-27	J	XBB-784-11631	TCL	2.1	90	10	30
P-28	J	XBB-784-11632	101	2.1	90	10	15
P-29	J	XBB-784-11633	101	2.1	90	10	30
P-30	J	XBB-784-11633A	101	2.1	90	10	15
P-31	J	XBB-784-11634	101	2.1	90	10	45
P-32	J	XBB-784-11635	1C1	2.1	90	10	120
P-33	J	XBB-784-11636	101	2.1	90	10	10
P-34	J	XBB-784-11637	1C1	2.1	90	10	10
P-35	J	XBB-784-11638	1C1	2.1	90	10	5
P-36	J	XBB-784-11639	1C1	2.1	90	10	10
P-37	J	XBB-784-11640	1C1	2.1	90	10	5
P-38	J	XBB-784-11641	1C1	2.1	90	10	5
P-39	J	XBB-784-11642	1C1	2.1	90	10	10
P-40	J	XBB-784-11643	1C1	2.1	90	10	240
P-41	J	XBB-784-11644	1C1	2.1	55	10	15
P-42	J	XBB-784-11645	1C1	2.0	55	10	10
P-43	J	XBB-784-11646	1C1	1.9	55	10	5
P-44	J	XBB-784-11647	1C1	1.7	55	10	10
P-45	J	XBB-784-11648	1C1	1.6	55	10	5
P-46	J	XBB-784-11649	1C1	1.6	55	10	30
P-47	J	XBB-784-11650	1C1	1.6	55	10	15
P-48	J	XBB-784-11650A	101		55	10	60

Time

Lab #	Code	Photo #	Soln	pН	Flow	C.D.	Time
P-49	J	XBB-784-11651	1C1	2000 CED	55	10	45
P-50	J	XBB-784-11653	1C1	-	55	10	60
P-51	J	XBB-784-11652	1C1	489	55	10	120
P-52	J	XBB-784-11654	1C1	-	55	10	45
P-53	J	XBB-784-11655	1C1	63	55	10	15
P-54	J	XBB-784-11656	1C1	2.0	55	10	120
P-55	J	XBB-784-11657	1C1	2.0	55	10	45
P-56	J	XBB-784-11658	1C1	-620	10	10	60
P-57	J	XBB-784-11659	1C1	2.0	10	10	120
P-58	J	XBB-784-11660	1C1	2.0	10	10	60
P-59	J	XBB-784-11661	1C1	2.0	10	10	45
P-60	J	XBB-784-11662	1C1	2.0	10	10	45
P-61	J	XBB-784-11663	101	2.0	10	10	30
P-62a	J	XBB-784-11664	101	2.0	10	10	30
P-62b	J	XBB-784-11665	101	2.0	10	10	120
P-63	J	XBB-784-11671	1C1	2.0	10	10	15
P-64	J	XBB-784-11674	1C1	2.0	10	10	15
P-65	J	XBB-784-11673	101	2.0	10	10	5
P-66	J	XBB-784-11676	1C1	2.0	10	10	10
P-67	J	XBB-784-11675	101	2.0	10	10	10
P-68	ป้	XBB-784-11679	1C1	2.0	10	10	5
P-69	J	XBB-784-11681	101	2.1	5	10	120
P-70	٦.	XBB-784-11666	101		5	10	60
P-71	J	XBB-784-11667	101	-	5	10	45
P-72	J	XBB-784-11668	101		5	10	45
P-73	.1	XBB-784-11669	101		5	10	45
P-74	J	XBB-784-11670	101	ano	5	10	30
P-75	.I	XBB-784-11672	101	-	Ś	10	30
P-76	Ĵ	XBB_784_11677	101	-	5	10	15
P_77	J	XBB_784_11678	101	~	5	10	15
P_78	J	XBB-784-11680	101		5 E	10	10
P_70	J	XBB_781_11682	101		5	10	10
P_80	J.	XBB_78/L_11682	101		5	10	10 5
P_81	J	XBB_78/J_1168/J	101		5	10	5
P-82	.ï	XBB_781_11685	101		5	10	60
p_82	r	XDD-791-11696	101		5	10	120
r=0)	U T	ADD-704-11000 VDD 701 11607	101	89	20	10	120
r-04 D 05-	U 173	ADD- (04-1100) VDD 701 44600	101	~ ~	20	20	60
r-07a	10	ABB-/04-11000	101	2.2	90	30	60
r-050 p 96	10 70	ABB-/04-11009	101	2.2	90	30	100
r = 00	Jr	ABB-/04-11090	101	2.4	90	30	120
r-0/	Jr	XBB-/04-11091		2.4	90	30	<u>3</u> 0
r-00	7U 77	ABD-704-11092 VDD 794 11602	101	2.4	90	30	40
r-09	JE	ABD-704-11093	101	2.4	90	30	10
P-90	JF	ABB-/04-11094		2.4	90	30	15
r-91	J <u>F</u> 117	ABB- /04-11095		2.4	90	30	10
r-92	3U 710	ABB- (04-11090	ICL	2.4	90	30	10
r-93	<u>ال</u> 10	ABB- /04-11097	ICL	2.4	90	30	5
5-94	Jr	ABB-/04-11090	ICL	2.4	90	30	240

.

TA	BL	E	2	C	on	t	i	n	u	e	d

Lab #	Code	Photo #	Soln	рH	Flow	C.D.	Time
P-95	JF	XBB-784-11699	1Cl	2.4	10	30	60
P-96	JF	XBB-784-11700	1C1	2.4	10	30	45
P-97	JF	XBB-784-11701	1C1	2.4	10	30	15
P-98	JF	XBB-784-11702	1Cl	2.4	10	30	30
P-99	JF	XBB-784-11703	1C1	2.4	10	30	30
P-100	JF	XBB-784-11704	1C1	2.4	10	30	10
P-101	JF	XBB-784-11705	1C1	2.4	10	30	10
P-102	JF	XBB-784-11706	1C1	2.4	10	30	5
P-103	JF	XBB-784-11707	1C1	2.4	10	30	15
P-104	JF	XBB-784-11708	1C1		10	30	120
P-105	JF	XBB-784-11709	1C1	60	55	30	60
P-106	JF	XBB-784-11710	1Cl	43	55	30	45
P-107	JF	XBB-784-11711	1C1	<u>شه</u>	55	30	30
P-108	JF	XBB-784-11712	1C1	629	55	30	15
P-109	JF	XBB-784-11713	1C1	-	55	30	120
P-110	JF	XBB-784-11714	101	dite	55	30	10
P-111	JF	XBB-784-11715	1C1	-	55	30	30
P-112	JF	XBB-784-11716	101	60	55	30	5
P-113	JF	XBB-784-11717	1C1	80	55	30	10
P-114	JF	XBB-784-11718	1C1	800	20	30	60
P-115	JF	XBB-784-11719	1C1	-	20	30	30
P-116	JF	XBB-784-11720	1C1	-	90	100	30
P-117	JF	XBB-784-11721	1C1	683	90	100	60
P-118	JF	XBB-784-11722	1C1	ex0	90	100	45
P-119	JF	XBB-784-11723	1C1	4 20	90	100	15
P-120	JF	XBB-784-11724	1C1	8	90	100	30
P-121	JF	XBB-784-11725	1C1	660	90	100	10
P-122	JF	XBB-784-11726	1C1		90	100	5
P-123	JF	XBB-784-11727	1C1	48	90	100	1
P-124	JF	XBB-784-11728	1C1	620	20	100	1
P-125	JF	XBB-784-11729	1Cl	-	20	100	45
P-126	JF	XBB-784-11730	1C1	653	20	100	30
P-127	JF	XBB-784-11731	1C1	89	20	100	15
P-128	JF	XBB-784-11732	1C1	630	20	100	30
P-129	JF	XBB-784-11733	1C1	෩	20	100	10
P-130	JF	XBB-784-11734	1C1	200	20	100	5
P-131	JF	XBB-784-11735	1C1	689	20	100	1
P-132	J	XBB-784-11736	0.1C1+A	1.9	85	10	60
P-133	J	XBB-784-11737	0.1C1+A	1.9	85	10	45
P-134	J	XBB-784-11738	0.1Cl+A	889	85	10	30
P-135	J	XBB-784-11739	0.1C1+A	-	85	10	45
P-136	J	XBB-784-11740	0.1C1+A		85	10	15
P-137	J	XBB-784-11741	0.1C1+A	සා	85	10	10
P-138	J	XBB-784-11742	0.1C1+A	6805	85	10	5
P-139	J	XBB-784-11743	0.1C1+A	1.9	85	10	120
P-140	J	XBB-784-11744	0.1C1+A	1.9	20	10	60
P-141	J	XBB-784-11745	0.1C1+A	1.7	20	10	45
P-142	J	XBB-784-11746	0.1Cl+A	1.7	20	10	30

TABLE	2	Continued	

Lab #	Code	Photo #	Soln	pН	Flow	C.D.	Time
P-143	J	XBB-784-11747	0.1C1+A	1.8	20	10	15
P-144	J	XBB-784-11748	0.1C1+A	1.8	20	10	15
P-145	J	XBB-784-11749	0.1Cl+A	680	20	10	5
P-146	J	XBB-784-11750	0.1Cl+A	1.7	20	10	15
P-147	J	XBB-784-11751	0.1C1+A	1.6	20	10	120
P-148	J	XBB-784-11752	0.1Cl+A	1.9	85	30	30
P-149	J	XBB-784-11753	0.1Cl+A	1.8	85	30	15
P-150	J	XBB-784-11754	0.1Cl+A	-	85	30	45
P-151	J	XBB-784-11755	0.1Cl+A	1.6	85	30	10
P-152	J	XBB-784-11756	0.1C1+A	1.6	85	30	5
P-153	J	XBB-784-11757	0.1Cl+A	1.7	85	30	60
P-154	J	XBB-784-11758	0.1Cl+A	1.7	85	30	120
P-155	J	XBB-784-11759	0.1C1+A	1.9	20	30	60
P-156	J	XBB-784-11760	0.1Cl+A	1.8	20	30	45
P-157	J	XBB-784-11761	0.1Cl+A	1.6	20	30	30
P-158	J	XBB-784-11762	0.1C1+A	1.6	20	30	15
P-159	J	XBB-784-11763	0.1Cl+A	1.6	20	30	10
P-160	J	XBB-784-11764	0.1Cl+A	1.6	20	30	10
P-161	J	XBB-784-11765	0.1Cl+A	1.6	20	30	5
P-162	J	XBB-784-11766	0.1Cl+A	1.5	20	30	120
P-163	J	XBB-784-11767	0.1Cl+A	1.9	85	30	120
P-164	J	XBB-784-11768	0.1C1+A	1.7	20	30	120
P-165	J	XBB-784-11769	0.1C1+A	1.8	85	10	120
P-166	J	XBB-784-11770	0.1Cl+A	1.9	20	10	120
P-167	J	XBB-784-11771	0.1Cl+A	1.8	85	10	120
P-168	J	XBB-784-11772	1C1	1.6	90	10	60
P-169	J	XBB-784-11773	1C1	1.7	90	10	60
P-170	J	XBB-784-11774	1C1	1.6	90	10	45
P-171	J	XBB-784-11775	1C1	1.4	90	10	30
P-172	J	XBB-784-11776	1C1	1.3	90	10	15
P-173	J	XBB-784-11777	1C1	-	90	10	10
P-174	J	XBB-784-11778	1C1	660	90	10	5
P-175	J	XBB-784-11779	1C1	-	90	10	120
P-176	J	XBB-784-11780	1C1	1.5	20	10	60
P-177	J	XBB-784-11781	1C1	1.8	20	10	45
P-178	J	XBB-784-11782	1C1	1.4	20	10	30
P-179	J	XBB-784-11783	1C1	-	20	10	15
P-180	J	XBB-784-11784	1C1	1.3	20	10	10
P-181	J	XBB-784-11785	1C1	1.3	20	10	5
P-182	J	XBB-784-11786	1C1	1.7	20	10	120
P-183	J	XBB-784-11787	1C1	2.4	90	30	45
P-184	J	XBB-784-11788	1C1	2.2	90	30	30
P-185	J	XBB-784-11789	1C1	2.2	90	30	60
P-186	J	XBB-784-11790	101	655	90	30	15
P-187	J	XBB-784-11791	1Cl	2.0	90	30	10
P-188	J	XBB-784-11792	1C1		90	30	5
P-189	J	XBB-784-11793	1C1	1.7	90	30	120
P-190	J	XBB-784-11794	1C1	1.9	20	30	45

TABLE	2	Continued
C C C C 2007 CON 400	P 6545	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Lab #	Code	Photo #	Soln	pН	Flow	C.D.	Time
P-191	J	XBB-784-11795	1Cl	1.6	20	30	30
P-192	J	XBB-784-11796	1C1	1.4	20	30	60
P-193	J	XBB-784-11797	1C1	1.3	20	30	15
P-194	J	XBB-784-11798	1C1	-	20	30	10
P-195	J	XBB-784-11799	1C1	1583	20	30	5
P-196	J	XBB-784-11800	1C1	em	20	30	120
P-197	JF	XBB-784-11801	4C1	2.4	100	10	45
P-198	JF	XBB-784-11802	4C1	2.2	100	10	30
P-199	JF	XBB-784-11803	4C1	2.0	100	10	60
P-200	JF	XBB-784-11804	4C1	2.0	100	10	15
P-201	JF	XBB-784-11805	4C1	2.0	100	10	10
P-202	JF	XBB-784-11806	4C1	2.4	100	10	5
P-203	JF	XBB-784-11807	4C1	2.4	100	10	120
P-204	JF	XBB-784-11808	4C1	2.4	20	10	45
P-205	JF	XBB-784-11809	4C1	2.4	20	10	30
P-206	JF	XBB-784-11810	4C1	2.4	20	10	60
P-207	JF	XBB-784-11811	4C1		20	10	15
P-208	JF	XBB-784-11812	401	cato	20	10	10
P-209	JF	XBB-784-11813	401		20	10	5
P-210	JF	XBB-784-11814	401		20	10	10
P-211	JF	XBB-784-11815	4C1	2.4	20	10	120
P-212	JF	XBB-784-11816	4C1	2.4	100	30	60
P-213	JF	XBB-784-11817	4C1		100	30	45
P-214	JF	XBB-784-11818	4C1	69	100	30	15
P-215	JF	XBB-784-11819	4C1	-	100	30	120
P-216	JF	XBB-784-11820	4C1		100	30	30
P-217	JF	XBB-784-11821	4C1	69	100	30	10
P-218	JF	XBB-784-11822	401		100	30	5
P-219	JF	XBB-784-11823	401		20	30	30
P-220	JF	XBB-784-11824	401		20	30	15
P-221	JF	XBB-784-11825	4C1		20	30	60
P-222	JF	XBB_784_11826	ис <u>1</u>	600	20	30	10
P-223	.IF	XRB_784_11827	401		20	30	5
P-224	JF	XBB_784_11828	LCI		20	30	ጋ 15
P-225	1	XBB_784_11820	UC1_78		100	30	μ <u>ς</u>
P-226	J	XBB_784_11830	401+20	27	100	30	
P=227	J	XBB_784_11821	401+20	26	100	30	30
P-228	J	XDD-78/1-11822	HC1.70	2.0	100	20	50
P-220	U T	ADD= (04=110)2 Vp 781 11800	401+2B	2.4	100	20	10
P-220	U T	ADD-704-11033 VD-701 11031	401+60	<u> </u>	100	20	120
5-23U D-221	J T	ADD-/04-11034 VDD 701 11035	401+20	<•1	100	30	120
r=231	U r	ADD-(04-11035 VDD 701 11036	461+68	823	100	30	2
r= <j<< td=""><td>ป ร</td><td>ADD- (04-11030 VDD 204 11030</td><td>401+28</td><td>65</td><td>100</td><td>30</td><td>2</td></j<<>	ป ร	ADD- (04-11030 VDD 204 11030	401+28	65	100	30	2
r-233	J	XBB-704-11037	4C1+ZB	689	100	30	2
5-634 0 005	ل ۲	ABB-704-11030	4C1+ZB	655	100	30	30
5-2JD	ປ 7	ABB-704-11039	4CI+ZB	-	100	30	1
r-2j0	J	ABB-704-11040	4CI+ZB	63	100	30	15
r-237	٦	XBB-784-11841	4C1+ZB	6888	100	30	g
r-238	J	XBB-784-11842	4C1+ZB	C 100	100	30	1

.

TABLE	2	Continued

Lab #	Code	Photo #	Soln	pН	Flow	C.D.	Time
P-239a	J	XBB-784-11843	4C1+ZB	2.7	20	30	60
P-239b	J	XBB-784-11844	4C1+ZB	2.7	20	30	60
P-240	J	XBB-784-11845	4C1+ZB	-	20	30	30
P-241	J	XBB-784-11846	4C1+ZB	65	20	30	45
P-242	J	XBB-784-11847	4C1+ZB	630	20	30	15
P-243	J	XBB-784-11848	4C1+ZB	-	20	30	10
P-244	J	XBB-784-11850	4C1+ZB	2.7	20	30	5
P-245	J	XBB-784-11849	4C1+ZB	633	20	30	5
P-246	J	XBB-784-11851	4C1+ZB	2.9	20	30	5
P-247	J	XBB-784-11852	4C1+ZB	2.8	20	30	2
P-248	J	XBB-784-11853	4C1+ZB	en	20	30	2
P-249	J	XBB-784-11854	4C1+ZB	6883	20	30	2
P-250	J	XBB-784-11855	4C1+ZB	69	20	30	1
P-251	Ĵ	XBB-784-11856	4C1 + ZB	-	20	30	1
P-252	J	XBB-784-11857	4C1+7B	89	20	30	1
P-253	J	XBB-784-11858	4C1+7B		20	30	1
P-254	.ī	XBB-784-11850	4C1 + 7B	-	20	30	120
P-255	,ī	XBB-784-11860	4C1_7B	1 7	100	10	30
P-256	J	XBB-784-11861	4C1 + 7B		100	10	15
P-257	J	XBB-784-11862	401+2D	50D -	100	10	10
P-258	.]	XBR_784_11862	401+2D	200	100	10	5
P-250	.ī	XBB_784_11864	UC1_7B	2.7	100	10	60
P-260	.1	XBB_784_11865	UC1_7B	60 I	100	10	2
P=261	.1	XBB-784-11866	UC1_7B	C	100	10	ے ۱
P-262	.ĭ	XBB_784_11867	UC1 + 7B	62	100	10	1
P-263	.1	XBB_781_11868	101+2D	-	100	10	, 1
P-264	.1	XBB-781-11860	101+2D		100	10	2
P_265	U T	XDD-781-11870	40142D	20	100	10	2
P-266	Ū.	XDD-781-11871		6.9	100	10	120
P-267	J	XBB_781_11872	401+2D	27	20	10	60
P-268	.ĭ	XBB_781_11872		6.1	20	10	20
P-260	.1	XBB_78/1_1187/1	401+20	-	20	10	30 15
P-270	.ï	XPP_781_11875	401+2D	8	20	10	10
D 271	U T	ADD-104-110/3 VDD 701 44076	401+2D	619	20	10	10
r=2/1 D 272	J	ADD=/04=110/0 VDD 701 44077	401+20		20	10	2
5=212 D 272	J T	ADD = (04 - 110)		623	20	10	2
r-213	J	ABB = (04 = 110) (A YDD = 701 + 14070	401+2B	-	20	10	4
r=2/4	J	ABB- (04-11070	4C1+ZB	849	20	10	2
r=215	J	XBB-784-11879	4C1+ZB	63	20	10	1
P-270	J	XBB-784-11880	4C1+ZB	-	20	10	1
P-277	J	XBB-784-11881	4C1+ZB	625	20	10	1
P-278	J	XBB-784-11889	4C1+ZB	-	20	10	45
P-279	J	XBB-784-11882	1Br	1.4	90	10	45
P-280	Ĵ	XBB-784-11883	1Br	1.3	90	10	60
P-281	J	XBB-784-11884	1Br	68	90	10	15
P-282	J	XBB-784-11885	1Br	1.4	90	10	30
P-283	J	XBB-784-11886	1Br	-	90	10	10
P-284	J	XBB-784-11887	1Br	89	90	10	10
P-285	J	XBB-784-11888	1Br	9629	90	10	15

Lab #	Code	Photo #	Soln	pH	Flow	C.D.	Time
P-286	J	XBB-784-11890	1Br		90	10	5
P-287	J	XBB-784-11891	1Br	6355	90	10	120
P-288	J	XBB-784-11892	1Br		20	10	45
P-289	J	XBB-784-11893	1Br	-	20	10	30
P-290	J	XBB-784-11894	1Br		20	10	15
P-291	J	XBB-784-11895	1Br	683	20	10	60
P-292	J	XBB-784-11896	1Br	615	20	10	10
P-293	J	XBB-784-11897	1Br		20	10	5
P-294	J	XBB-784-11898	1Br	499	20	10	120
P-295	J	XBB-784-11899	1Br	-	90	30	60
P-296	J	XBB-784-11900	1Br	1.3	90	30	30
P-297	J	XBB-784-11901	1Br		90	30	15
P-298	J	XBB-784-11902	1Br	-	90	30	10
P-299	J	XBB-784-11903	1Br	(12)	90	30	5
P-300	J	XBB-784-11904	1Br	-	90	30	120
P-301	J	XBB-784-11905	1Cl+G	2.0	90	30	45
P-302	J	XBB-784-11906	1C1+G	-	90	30	60
P-303	J	XBB-784-11907	1Cl+G	~	90	30	30
P-304	J	XBB-784-11908	1Cl≁G	1.9	90	30	15
P-305	J	XBB-784-11909	1Cl+G	(22)	90	30	10
P-306	J	XBB-784-11910	1Cl+G	689	90	30	5
P-307	J	XBB-784-11911	1C1+G	1.9	90	30	120
P-308	J	XBB-784-11912	1C1+G	60	90	30	15
P-309	J	XBB-784-11913	1C1+G	80	90	10	45
P-310	J	XBB-784-11914	1Cl+G	680	90	10	60
P-311	J	XBB-784-11915	1Cl+G	-	90	10	30
P-312	J	XBB-784-11916	1C1+G	600	90	10	15
P-313	J	XBB-784-11917	1C1+G	Cappo -	90	10	10
P-314	J	XBB-784-11918	1Cl+G	600	90	10	5
P-315	J	XBB-784-11919	1C1+G	-	90	10	120
	J	XBB-784-11920	Anode,	after	Expt.	#3	
	J	XBB-784-11921	Anode,	after	Expt.	#2	
	J	XBB-784-11922	Anode,	after	Expt.	#115	
	J	XBB-784-11923	Anode,	after	Expt.	#120	
	J	XBB-784-11924	Anode,	after	Expt.	#125	

TABLE 3 Miscellaneous Photographs

XBB-7612-11366 thru 11367 RDE, SEM, Zinc deposits (Rolf Muller) XBB-7701-350 MMRD Annual Report 1976 XBB-7801-793 thru 794 MMRD Annual Report 1977 XBB-780-15269 MMRD Annual Report 1978 XBB-7802-1141 thru 1149 RDE, Zinc deposits XBB-7805-6146 thru 6148 SmC, Zinc deposits XBB-7812-15269 thru 15269C SmC, Zinc deposits CBB-7812-15938 and 15940 SmC, Equip, B & W BBC-7812-15939 and 15941 SmC, Equip, Color XBB-8008-9252 RDE, Zinc deposits XBB-8008-9258 thru 9260 RDE, Zinc deposits CBB-8203-2848 thru 2856 (even) InC, Equip, B & W BBC 8203-2849 thru 2857 (odd) InC, Equip, Color CBB 833-2344 thru 2350 (even) LC, Equip, B & W BBC 833-2343 thru 2349 (odd) LC, Equip., Color CBB 820-10750 thru 10762 (even) InC, Equip., B & W BBC 820-10749 thru 10761 (odd) InC, Equip., Color

TABLE 4

Figure	Photograph #	Explanation
3.1	XBB-816-5236B	RDE Cathodes
3.2	XBB-816-5238B	RDE Cell
3.3	XBB-816-5237B	RDE Apparatus
3.4	XBB-813-2169C	RDE Apparatus
4.1	XBB-817-5960A	Effect of Lead
4.2	XBB-817-6760A	Effect of purity on spiral formation
4.3	XBB-817-6476A	Effect of c.d. on number density of spirals
4.43	XBB-817-6215A	Logarithmic spiral outlining
4.4	XBB-817-6769A	Effect of rpm on spiral formation
4.5	XBB-817-6788A	Effect of rpm on spiral morphology, 10 mA/cm ²
4.6	XBB-817-6787A	Effect of rpm on spiral morphology, 30 mA/cm ²
4.7	XBB-817-6789A	Effect of artificial depressions
4.8	XBB-817-6765A	Effect of lead concentration on spiral formation
4.9	XBB-817-6790A	Effect of lead on spiral morphology
4.10	XBB-817-5959A	Effect of pulse deposition in AR grade ZnCl
4.11	XBB-817-6479A	Effect of pulse deposition. 5 x 10^{-6} M Pb 2
4.12	XBB-817-6478A	Effect of pulse deposition. 5 x 10^{-5} M Pb
4.13	XBB-817-6761A	Effect of crystal orientation of Pt substrate
4.14	XBB-817-6791A	Effect of c.d. on initial protrusions
4.15	XBB-817-6792A	Effect of orm on initial protrusions
4.16	XBB-817-6781A	Effect of lead on initial protrusions
4,17	XBB-817-6768A	Effect of c.d. on initial protrusions
4,18	XBB-817-6750A	Effect of pulse deposition on initial protrusions
4.19	XBB-817-6758A	Effect of pulse deposition on initial protrusions
4.20	XBB-817-6783A	Sequence of protrusion growth
4.21	XBB-817-67824	Spiral development, initial protrusions
4.22	XBB-817-6770A	Sequence of protrusion growth and coalescence
4.23	XBB-817-6780A	Sequence of protrusion growth and coalescence
4.24	XBB-817-6766A	Sequence of crystal growth at 120 mA/cm ²
4,25	XBB-817-6778A	Magnification of Figure 4.24
4.26	XBB-817-67624	Influence of substrate
4.27	XBB-817-6784A	Joining of protrusions into spirals
4,28	XBB-817-6786A	Spiral development at 30 mA/cm ² , 5 x 10^{-5} M Pb
4.20	XBB-817-6775A	Spiral development at 60 mA/cm^2 , 5 x 10^{-5} MPb
4.30	XBB-817-6776A	Spiral development at 10 mA/cm ² , 5 x 10^{-6} M Pb
4,31	XBB-817-6777A	Spiral development at 30 mA/cm ² , 5 x 10^{-6} M Pb
4,32	XBB-817-6785A	Spiral development from protrusions to ridges
4,33	XBB_817_67724	SFM, snirals lead X-ray man
4.34	XBB-817-6477A	Elemental Auger spiral mapping
4,35	XBB-817-6767A	Spirals obtained from ultrapure solution
4.36	XBB-817-67634	Crystal structure of initial protrusions
4.37	XBB-817-67734	Crystal structure from ultrapure solution
4.38	XBB-817-6764A	Effect of c.d., ultrapure solution
4.20	XBB-817-6774A	Sequence of protrusion growth, ultrapure solution
4.40	XBB-817-6770A	Effect of substrate, ultrapure solution

TABLE 4

Figure	Photograph #	Explanation
4.41	XBB-817-6771A	Effect of pH, ultrapure solution
4.42	XBB-817-10779A	Auger spectra
A-1	XBB-817-10821	Lead removal rates with zinc dust purification
A-2	XBB-817-10820	Lead cementation rates with zinc dust purification
B	XBB-817-6475A	Pt ring electrodes, effect of rpm
C-1	XBB-817-5955A	Effect of codeposition of cobalt
C-2	XBB-817-5956A	Effect of codeposition of thallium
C-3	XBB-817-5957A	Effect of codeposition of cadmium
C-4	XBB-817-5858A	Effect of codeposition of tin or mercury

Photo 👂	Code	Soln	рН	rpm	C.D.	Time	Subst	Spec	
XBB-838-7360	J	101	2.0	400	30	10	Pt		
XBB-838-7361	J	101	2.0	800	30	30	Pt		
XBB-838-7362	J	101	2.0	800	30	5	Pt		
XBB-838-7363	J	1C1	2.0	800	30	10	Pt		
XBB-838-7364	J	1C1	2.0	1600	30	15	Pt		
XBB-838-7365	J	1C1	2.0	400	30	0.5	Zn		
XBB-838-7366	J	1C1	2.0	400	30	1.5 🛎	Zn		
XBB-838-7367	J	1C1	2.0	400	30	2.5 🖗	Zn		
XBB-838-7368	J	101	2.0	400	30	3.5 @	Zn		
XBB-838-7369	J	101	2.0	400	30	0.5	Zn		
XBB-838-7370	J	1C1	2.0	400	30	1.5 🏾	Zn		
XBB-838-7371	J	101	2.0	400	30	7 🗖	Zn		
XBB-838-7372	J	1C1	2.4	800	30	5	Pt		(also, see XBB 831-377)
XBB-838-7373	J	101	2.4	800	30	10 *	Pt		(also, see XBB 831-377)
XBB-838-7374	J	101	2.4	800	30	15 🖷	Pt		(also, see XBB 831-377)
XBB-838-7375	J	101	2.4	400	30	10	Pt		
XBB-838-7376	J	101	2.4	400	30	20	Pt		
XBB-838-7377	រ	101	2.4	400	30	30	Pt		
XBB-838-7378	J	101	2.4	400	30	60	Pt		
XBB-838-7379	J	101	2.4	600	30	20	Pt		
XBB-838-7380	J	101	2.4	600	30	30	Pt		
XBB-838-7381	J	101	2.4	600	30	45	Pt		
XBB-838-7382	Ĵ	101	2.4	600	30	60	Pt		
XBB-838-7383	J	1S	4.6	400	5	10	Pt		
XBB-838-7384	J	1S	4.6	1600	5	8.5	Pt		
XBB-838-7385	J	1S	4.6	400	5	20	Pt		
XBB-838-7386	3	1S	4.6	400	5	41	Pt		
XBB-838-7387	J	1S	4.6	1600	5	20	Pt		
XBB-838-7388	3	1S	4.6	400	5	40	Pt		
XBB-838-7389	J	1S	4.6	1600	5	20	Pt		
XBB-838-7390	ل	1S	4.6	400	20	00	Pt		
XBB-030-7391	ل ب	15	4.0	120	20	20	PC DA		
XBB-030-/392	J	15	4.0	1000	20	20	PC De		
XBB-030-7393	J	15	4.0	400	50	20	Pt		
XBB-030-/394	ل ب	15	4.0	1000	50	20	PC		
XBB-030-/395	3	15	4.0	400	2	20	rt Dt		
XBB-030-/390	3	15	4.0	400	2	20	PL De		
ABB-030-1391	J	15	4.0	400	2	40	5 L De		
XBB-030-/390	1	15	4.0	1000	2	50	PC Da		(a) as VPP 821 276)
ABB-030-7399	ل .	15	4.0	400	4	5U 00 #	rt Da		(also, see ADD 031-3(0)
XBB-030-7400	J	15	4.0	400	4	90 ≖ 120 ®	r C D 4		(also, see ADD 031-3(0)
ABB-030-7401	J	15	4.0	400	2	120 "	Г С D+		(a130, See ADD 031-3/0)
ADD-010-1402	J	15	4.0 h 4	400	2 6	10	с L D+		
ADD-030-/403	J	15	4.0	400	5	10	ri De		
ADB-030-1404	J	12	4.0	1000	2	10	£ 6.		

TABLE 5 Rotating Disk Electrode Experiments by Faltemier or Faltemier/Kommenic

TABLE s by Fa	5 ltemier	or Faltemier/Kommenic	(con't)	
Time	Subst	Spec		

TAB Rotating Disk Electrode Experiments by

C.D.

Photo 🖉

Code Soln pH rpm

XBB-838-7405	J	15	4.6	400	5	20	Pt	n an	(a) so.	see	XBB	808-9258
XBB-838-7406	.1	18	4.6	400	5	8.5	Pt.		(also,	See	YBB	808-9260)
XBB-838-7407	J	15	4.6	1600	5	8.5	Pt.		(also,	388	X88	808-9260)
XBB-838-7408	.1	15	4.6	400	2	20	Pt.		(0200)	000	20.00.00	000-92009
XBB-838-7409	J	15	4.6	400	2	40	Pt					
XBB-838-7410	JK	15	4.6	1600	5	10	Pt	200X				
X88-838-7411	JK	15	4.6	400	5	10	Pt	200x				
XBB-838-7412	JK	1S	4.6	0	5	10	Pt	200x				
XBB-838-7413	JK	1S	4.6	400	5	25	Pt	400x	(also.	see	XBB	831-371)
XBB-838-7414	JK	1S	4.6	400	5	25	Pt	400X	(also,	see	χBB	831-371)
Pulsed Deposi	tion											
XBB 838-7415	JK	101	4.6	400	30 avg	10	Pt	$120 \text{ mA/cm}^2 - 1 \text{ sec},$ $20 \text{ mA/cm}^2 - 9 \text{ sec}$				
XBB-838-7416	JK	1C1	4.6	400	30 avg	30	Pt	120-1,20-9				
XBB 835-4531	JK	1C1	4.6	400	30 avg	60	Pt	120-1,20-9				
XBB 838-7417	JK	1S	4.6	1600	5 avg	20	Pt	25-1,3-10				
XBB-838-7418	JK	1S	4.6	400	5 avg	20	Pt	25-1, 3-10				
XBB-838-7419	JK	1S	4.6	1600	5 avg	30	Pt	25-1, 3-10				
VBB 828 7020	111	15	2 5		5	10	D+		~~~~			
YBB 828 7021	UK IK	19	2.5	1600	5	15	Dr					
YRR_838_7422	.ir	15	25	1600	ŝ	20	P+					
XBB_838_7423	JK	101	4.6	800	30	10	Pt.					
XBB-838-7424	JK	101	4.6	800	100	10	Pt.					
X88-838-7425	JK	101	4.6	800	100	90	Pt					
XBB-838-7426	JK	101	4.6	800	20	1	Pt.	250X				
XBB-838-7427	JK	101	4.6	800	20	1	Pt.	300x				
X88-838-7428	JK	101	4.6	800	10	Q.	Pt		(2150.	966	YBR	831-372)
XBB-838-7429	JK	101	4.6	800	10	9	Pt		(also,	see	XBB	831-372)
YBB 838 7855	ī	101		1600	18	28	D+					
YBB_828_7056	3	101	2.2	1600	18	5	г. Р+					
XBB-838-7057	J	101	2.2	1600	18	2	rt Dt					
ADD-030-1431	J T	101	2.2	1600	18	10	rt De					
XBB-838-7850	J	101	2.2	1600	18	75	Pt					
ADD-030-1439	J I	101	2.2	200	18	10	ГU Р+					
YBB_828_7561	1	101	2.2	200	18	2	rt Pt					
YBB_838_7062	J	101	2 2	200	18	30	Pr					
VBB 828 70402	1	101	2.2	200	18	10	1 L D+					
XBB_838_70403	1	101	2.2	200	18	30	г. Р+					
VDD-020-1404	J	101	c.2	200	10	20	ΓL					

Photo #	Code	Soln	рН	rpm	C.D.	Time	Subst	Spec	
XBB-838-7465	J	1S	4.6	1600	18	2	Pt		
XBB-838-7466	J	1S	4.6	200	18	21	Pt		
XBB-838-7467	J	1S	4.6	200	18	30	Pt		
XBB-838-7468	J	1S	5.0	200	30	72 sec	Pt		
XBB-838-7469	J	1S	5.0	200	30	6	Pt		
XBB-838-7470	J	1S	5.0	200	30	18	Pt	-	
XBB-838-7471	J	1S	5.0	1600	30	18	Pt		
XBB-838-7472	J	1S	5.0	1600	30	6	Pt		
XBB-838-7473	J	1S	5.0	1600	30	72 sec	Pt		
XBB-838-7474	J	1S	5.0	200	10	3.5	Pt		
XBB-838-7475	J	1S	5.0	200	10	18	Pt		
XBB-838-7476	J	1S	5.0	200	10	18	Pt		
XBB-838-7477	J	1S	5.0	200	10	54	Pt		
XBB-838-7478	J	1S	5.0	200	10	18	Pt		
XBB-838-7479	J	1S	5.0	1600	10	3.5	Pt		
XBB-838-7480	J	1S	5.0	1600	10	54	Pt		
XBB-838-7481	J	1S	5.0	200	5	7.25	Pt		
XBB-838-7482	J	1S	5.0	200	5	36	Pt		
XBB-838-7483	J	1S	5.0	200	5	108	Pt		
XBB-838-7484	J	1S	5.0	1600	5	36	Pt		
XBB-838-7485	J	1S	5.0	1600	5	7.25	Pt		
XBB-838-7486	J	1S	5.0	1600	5	108	Pt		

TABLE 5 Rotating Disk Electrode Experiments by Faltemier or Faltemier/Kommenic (con't)

Photo #	Soln	рH	Flow	C.D.	Time	Subs
XBB-838-7338	1C1	4.8	90	30	15	Pt
XBB-838-7339	1C1	4.8	90	30	15	Pt
XBB-838-7340	1C1	4.8	90	30	1	Pt
XBB-838-7341	1C1	4.8	90	30	2	Pt
XBB-838-7342	101	4.8	90	30	5 *	Pt
XBB-838-7343	1C1	1.9	90	30	10	Pt
XBB-838-7344	101	1.9	90	30	5	Pt
XBB-838-7345	101	1.9	50	30	10	Pt
XBB-838-7346	101	1.9	50	30	5	Pt
XBB-838-7347	101	1.9	20	30	10	Pt
XBB-838-7348	Zinc A	Node after	above	expt.		
XBB-838-7349	101	1.9	20	30	5	Pt
XBB-838-7350	1C1	2.2	70	20	18	Zn
XBB-838-7351	1C1	2.2	70	100	1	Zn
XBB-838-7352	1C1	2.2	70	2	50	Zn
3-Dimensional	(Stered	o Pair) Pho	tos			10000000000000000000000000000000000000
	1C1	2.1	85	30	120	Pt
XBB-837-6184 XBB-837-6187 XBB-837-6185 XBB-837-6188 XBB-837-6186 XBB-837-6189 XBB-837-6195 XBB-837-6190 XBB-837-6193 XBB-837-6191 XBB-837-6194 XBB-837-6192	100X - 100X - 500X - 2000X 2000X 1000X 1000X 2000X 2000X 5000X	 Left Right 	(also, (also, (also, (also,	see see see	XBB-837-6 XBB-837-6 XBB-837-6 XBB-837-6	188A) 188A) 190A) 190A)
XBB-838-7353 XBB-838-7160 XBB-838-7354 XBB-838-7355 XBB-838-7356 XBB-838-7356 XBB-838-7358 XBB-838-7358 XBB-838-7359	1C1 1C1 1C1 1C1 1C1 1C1 1C1 1C1	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	90 90 50 80 80 70	30 30 30 100 20 100 40	45 30 45 60 20 5 40	Zn-SC Zn-SC Zn-SC Zn-SC Zn-SC Zn-SC Zn-SC

TABLE 6 Small Flowcell Experiments by Faltemier

Expt #	Photo #	Flow	I	Time	Cath	Loc	
1	XBB-838-7260	1600	1.8	30	Zn	1.e.	
	XBB-838-7261					008	
	XBB-838-7262						
	XBB-030-7203					6 0 B	
	X85-030-7204					000	
	ADD-030-/203 VDD 838 7366					8 0 0	
	XBB-838-7267					n a adra	
	XBB_838_7268					1.e. = 10Y	
	XBB_838_7269					1.e 25x	
	122 0J0-120J					, 2000 - e97	
2	XBB-838-7270	1600	2.7	60	2n	1.8.	
_	XBB-838-7271			••	one e	000 2000	
	XBB-838-7272					6 6 8	
	XBB-838-7273					6 6 6	
	XBB_838_7274					nean 1.e 10V	
	XBB_838_7275					11001 7909 - 10W	
	1000.030-1013					6 8 0	
	XBB-838-7276					near l.e 25X	
	XBB-838-7277					near mid 25X	
3	XBB-838-7278	1600	2.7	30	Pt	1.8.	
-	XBB-838-7279			20		6 6 6	
	XBB-838-7280					1.e 10X	
	XBB-838-7281						
h	VDD 828 7383	2200	2 7	20	0.6	١	(a) and YDB 821 370)
~	XBB_838_7283	~JVV	601	20	r 6	7.66.9	(\$130° 366 YDD 031-313)
	XBB_838_7284					000	
	XBB_838_7285					000	
	XBB-838-7286						
	XBB-838-7287					r.e.	
	VDD 820 7400					1 . 409	(alaa
	ADD-030-1200 VBB-838-7280					Tº6º - 1AY	(atso, see YDD 031-3(0)
	VDD-070-1503						
	XBB-838-7290					near mid 10X	
s	400 828 77A4	2200	3 9	60	54	1	
2	YDD-030-15A1	2300	6.1	00	rt	1.0.	

TABLE 7 Large Flowcell Experiments by Faltemier

Expt #	Photo #	Flow	I	Time	Cath	Loc	
n diankozi minin kinakozi	XBB-838-7292					0 9 6	
	XBB-838-7293 XBB-838-7294					l.e 10X 	
6	XBB-838-7295 XBB-838-7296 XBB-838-7297 XBB-838-7298 XBB-838-7298 XBB-838-7300 XBB-838-7301 XBB-838-7302 XBB-838-7303	2300	0.9	30	Pt	l.e. r.e. l.e 10X	
7	XBB-838-7304 XBB-838-7305 XBB-838-7306 XBB-838-7307 XBB-838-7308 XBB-838-7309 XBB-838-7310 XBB-838-7311 XBB-838-7312	2300	0.9	60	Pt	l.e. r.e. l.e 10X	
8	XBB-838-7313 XBB-838-7314 XBB-838-7315 XBB-838-7316 XBB-838-7316 XBB-838-7317 XBB-838-7318 XBB-838-7319 XBB-838-7320 XBB-838-7321	2300	9.0	30	Pt	l.e. r.e. l.e 10X	(also, see XBB 831-379) (also, see XBB 831-378)
9	XBB-838-7322 XBB-838-7323 XBB-838-7324	1600	9.0	6	Pt	l.e. l.e 10X	
10	XBB-838-7325 XBB-838-7326 XBB-838-7327	2300	9.0	3	Pt	l.e. l.e 10X	

TABLE 7 Large Flowcell Experiments by Faltemier (con't)

1 M Zn(Cl2, "AR" grade,	рН 4.6	, 25 °C	ļ			
Expt #	Photo #	Flow	I	Time	Cath	Loc	
11	XBB-838-7328 XBB-838-7329	1600	2.7	20	Pt	l.e. l.e 10X	
12	XBB-838-7330 XBB-838-7331 XBB-838-7332 XBB-838-7333 XBB-838-7334 XBB-838-7335 XBB-838-7336 XBB-838-7337	2300	0.9	90	Pt	l.e. r.e. l.e 10X	(also, see XBB 831-379) (also, see XBB 831-378)

TABLE 7Large Flowcell Experiments by Faltemier (con't)

e

1 M Zn	C12, "/	AR" grad	de, 25°	С					
Flm #	pН	Flow	C.D.	E.T.	Fstp	Fr/s	Fr.	Time	Subst.
1	4.6	65	30	sm	11.	1	200	3.3	Pt
		65	10	sm	11	1	349	5.8	Pt
		65	30	sm	11	1	1200	20	Pt
		65	30	med	5.6	1	814	13.6	Pt
2	4.6	65	30	sm	11	1+4	1350		Pt
		65	30	sm+med	8	1+4	1575		Pt
		65	30	lrg	4	1+4	1025		Pt
3	4.6	65	10	sm	11	1+4	1125	45	Pt
		65	10	med	8	1+4	1125	45	Pt
		65	10	lrg	4	1+4	1125	45	Pt
		65	10	med	5.6	1	555	22	Zn-SC
4	4.6	65	100	sm	8	1	360	6	Pt
		65	100	med	5.6	1+4	580	20	Pt
		65	100	lrg	2.8	1	360	6	Zn-SC
		testi	ng of F	-STOP					
5	5 4.6	65	30	sm	11	1	1200	20	С
		65	30	med	8	1	1200	20	Pt
		65	30	lrg	4	1	1200	20	Pt
		65	100	lrg	4	4	300	5	Pt
6	4.6	65	10	med	8	1+4	1350	60	Pt
		65	10	lrg	4	1+4	1350	60	Pt
		0	100	med	8	1	360	6	Pt
		65	100	med	8	1	615	10	Pt
7	4.6	65	10	med	16	1	1200	20	Pt
		65	30	med	11	1+4	1825	60	Pt
		65	10	med	11	1+4	905	30	Pt
8	4.6	65	30	lrg	5.6	1+4	1800	60	Pt
		65	30	lrg	8	1+12	1800	250	Pt
9	4.6	25	100	med	8	1	1080	18	Pt
		25	30	med	8	1+4	1600	45	Pt
		25	100	med	8	1	1200	20	Pt
10	4.6	25	30	med	8	1	600	10	Pt
-		5	30	med	8	1	600	10	Pt
		5	100	med	8	1	1200	20	Pt
		5	30	med	8	1+4	1355	60	Pt

TABLE 8 In situ Flowcell Experiments by Faltemier

Flm #	pН	Flow	C.D.	Е.Т.	Fstp	Fr/s	Fr.	Time	Subst.
11	4.6	65	20	med	8	1	900	15	Pt
		65	30	med	8	1+4	1125	45	Pt
		65	10	med	8	1+4	1500	70	Pt
12	4.6	65	10	med	8	1+4	1220	51	Pt
		65	30	lrg	4	1	1025	45	Pt
		65	100	lrg	4	1+4	800	20	Pt
		65	10	lrg	4	1+4	900	30	Pt
13	4.6	65	10	med	8	1+4	900	30	Pt
		65	30	lrg	4	1+4	900	30	Pt
		65	100	lrg	4	1	600	10	Pt
		65	30	med	8	1+4	725	25	Zn
		65	30	med	8	1	600	10	Cu
14	4.6	25	30	med	8	1+4	900	30	Pt
		25	30	med	8	1+4	900	30	Pt
		25	10	med	8	1+4	1125	45	Pt
		filmed	titles						
15	4.6	25	10	med	8	1+4	1125	45	Pt
		25	100	med	8	1	660	11	Pt
		25	100	sm	11	1	600	10	Pt
		5	100	SM	11	1	600	10	Pt
16	4.6	65	10	med	5.6	1+4	1800	90	Pt
		5	30	med	5.6	1+4	900	30	Pt
		5	100	sm	8	1	600	10	Pt
		5	100	med	4	1	600	10	Pt
17	1.9	65	100	sm	5.6	1	600	10	Pt
		25	100	sm	8	4	600	10	Pt
		5	100	sm	8	1	600	10	Pt
		.5	100	sm	8	1	600	10	Pt
		65	30	sm	8	1+4	900	30	Pt
		5	30	sm	8	1+4	900	30	Zn
18	1.9	25	30	sm	8	1+4	900	30	Pt
		25	30	Sm	11	1+4	900	30	Pt
		5	30	sm	8	1+4	900	30	Pt
		filmed	titles						
19.	1.9	5	30	sm	8	1+4	900	30	Pt
		25	100	sm	8	1	600	10	Pt
		65	30	sm	8	1+4	900	30	Pt
		65	100	sm	8	1	600	10	Pt
		65	100	S M	8	1	600	10	Pt

TABLE 8 Continued

Flm #	pН	Flow	C.D.	Е.Т.	Fstp	Fr/s	Fr.	Time	Subst.
20	1.9	5 25 65 25	100 30 10 30	SM SM SM SM	11 8 8 8	1 1+4 1+4 1+4	600 900 1125 900	10 30 45 30	Pt Pt Zn
21	filme	d title	S						

TABLE 8 Continued

IADLE S

Photographs from LBL Report #15338 by D. Rajhenbah, J. Faltemier, and C. W. Tobias

Figure	Photo No.	Explanation
1a	XBL-823-8428	Rotating disk electrode diagram
1b	CBB-823-2852	Rotating disk electrode photo
2a	XBL-823-8426	RDE Cell diagram
2b	CBB-823-2854	RDE Cell photo
3a	XBL-823-8427	Electrical circuit diagram
3ъ	CBB-823-2850	Experimental apparatus
-Ц	XBL-831-1052	Limiting current plateaus, 0.05 M ZnCl,, 10 mV/sec
5	XBL-831-1048	Levich plot (i vs. $\Omega^{1/2}$)
6	XBB-823-1924	SEM, Zinc deposits, 200 rpm
7	XBB-823-1925	SEM, Zinc deposits, 400 rpm
8	XBB-823-1926	SEM, Zinc deposits, 800 rpm
9	XBB-823-1927	SEM, Zinc deposits, 1200 rpm
10	XBB-823-1928	SEM, Zinc deposits, 1600 rpm
11	XBB-823-1929	SEM, Zinc deposits, 2000 rpm
12	XBL-831-15	Limiting current plategus, 0.05 M ZnCl ₂ , 200 mV/sec
13	XBL-831-1050	Levich plot (i vs. Ω''^2)
14	XBL-831-16	Limiting current plateaus, 0.10 ZnCl ₂ , 200 mV/sec
15	XBL-831-1051	Limiting current plateaus, 0.50 M ZnČl ₂ , 200 mV/sec
16	XBL-831-1041	Limiting current plațeaus, 0.05 M ZnSO ² , 200 mV/sec
17	XBL-831-1047	Levich plot (i vs. $\Omega^{1/2}$)
18	XBL-831-1039	Limiting current plateaus, 0.10 M ZnSO ₄ , 200 mV/sec

TABLE 10Photographs from LBL Report #16485 (J. Faltemier Ph. D. Thesis)

Figure	Photograph Number	Explanation
1.1	XBL-834-9320A	US and World Zinc Consumption and Production Rates
1.2	XBL-834-9319	Zn/Cl, Battery Flow Diagram
2.1	CHEM 3121	Striafed Copper Deposit
2.2	MU 31511	"Roll Cell" Cellular Flow Pattern
2.3	XBB-7410-6952	Copper Deposition in Wakes
2.4	XBB-7410-6951	Wake Formation Downstream of Obstructions
3.1	CBB-833-2341	RDE Electrolysis Cell and Zinc Anode
3.2	CBB-823-2854	RDE Electrolysis Cell
3.3	XBL-835-9572	Schematic Diagram of Flow Cell System
3.4	CBB-780-15940	Small Channel Flowcell
3.5	CBB-780-15938	Small Channel Flowcell System
3.6	CBB-833-2343	Large Flowcell Cathode Assembly
3.7	CBB-833-2351	Large Flowcell System
3.8	CBB-820-10761	In situ Flowcell System
3.9	CBB-833-2347	Top View-In situ Flowcell
3.10	CBB-820-10747	Close View-In situ Flowcell
3.11	CBB-820-10749	RDE Cathodes
3.12	CBB-820-10755	Small Flowcell and In situ Flowcell Electrodes
3.13	CBB-820-10751	Large Flowcell Electrodes
3.14	CBB-820-10753	Bolex 16 mm Camera
3.15	XBL-835-9573	Electrical Circuit Diagrams
4.1	XBB-835-4459	Striated Zinc Deposit (GOULD, Inc. Photograph)
4.2	XBB-784-11239A	Typical Striated Deposits
4.3	XBL-837-10748	Striation Length vs. Time/Flowrate
4.4	XBB-784-11693A	Effect of Flow at 30 mA/cm ² , Small Cell
4.5	XBB-784-11240A	Effect of Flow at 30 mA/cm ² , RDE
4.6	XBB-784-11723A	Effect of Flow at 100 mA/cm ² , Small Cell
4.7	XBL-837-10749	Approx. Number of Striations Across Small Cell
4.8	XBB-784-11726A	Effect of Current Density at Re 5300
4.9	XBB-784-11195A	Effect of Current Density at 1600 rpm
4.10	XBL-831-7674	Current vs. Time Profile in Pulsed Deposition
4.11	XBB-835-4531	Variable Current Deposition, Zinc Deposit
4.12	XBB-837-6196	Striated Zinc Deposit, Small Cell
4.13	XBB-835-4530	Laue X-ray Diffraction Pattern of Zinc
4.14	XBB-838-7160	Striated Zinc Deposit, Single Crystal Zinc Substrate
4.15	XBB-831-373	Effect of Fluorosubstituted Surfactant
4.16	XBB-831-379	Zinc Deposits, Large Cell
4.17	XBB-831-378	Enlarged View of Figure 4.16, Leading Edge
4.18	XBL-831-15	Limiting Current Plateaus
4.19	XBL-831-16	Limiting Current Plateaus
4.20	XBB-838-6779	Zinc Deposits from In situ Cell
4.21	XBL-838-11146	Distribution Diagram of ZnCl ₂ System
4.22	XBL-838-11145	Distribution Diagram of ZnBr2 System

TABLE 10 Continued

Figure	Photograph Number	Explanation
4.23	XBB-831-242	Effect of C.D. on Initial Protrusions
4.24	XBB-831-371	Zinc Deposit in Wake Formation around Protrusions
4.25	XBB-831-372	Spiral, Elongated Protrusions in Zinc RDE Deposit
4.26	XBB-831-376	Striated Zinc Deposit, RDE, 1 M ZnSO ₄
4.27	XBB-831-377	Striated Zinc Deposit, RDE, 1 M ZnCl ₂
4.28	XBB-837-6188A	Stereo Pair of Zinc Deposit
4.29	XBB-837-6190A	Stereo Pair of Zinc Deposit

.

. . . TABLE 11 Explanation of Abbreviations and Legends

Abbrev.	Explanation
Code	Author abbreviation J = Jaksic F = Faltemier K = Kommenic
Soln	Solution 0.1Cl = 0.1 M ZnCl ₂ 0.1Cl+A = 0.1 M ZnCl ₂ + 1 M LiCl 0.1Cl+B = 0.1 M ZnCl ₂ + 1 M Na ₂ SO ₄ 1Cl = 1 M ZnCl ₂ 1Cl+C = 1 M ZnCl ₂ + 2 M LiCl 1Cl+ZC = 1 M ZnCl ₂ + 0.10 wt. % Zonyl FSC 1Cl+ZB = 1 M ZnCl ₂ + 0.10 wt. % Zonyl FSB 1Cl+D = 1 M ZnCl ₂ + 1 M NaClO4 1Cl+E = 1 M ZnCl ₂ + 5 M NaClO4 1Cl+F = 1 M ZnCl ₂ + 5 M LiCl 1Cl+G = 1 M ZnCl ₂ + 4 M Glycerol 4Cl = 4 M ZnCl ₂ 1Br = 1 M ZnBr ₂ 1S = 1 M ZnSr ₂
RDE	Rotating Disk Electrode
LC	Large Channel Flowcell
SmC InC	Small Channel Flowcell In situ Flowcell
T	Temperature (°C)
C.D.	Current density (mA/cm ²)
I m.	Current (Amps)
Time	Total deposition time (minutes) Substrate
Cath	Cathode (substrate)
	Pt = platinum
	Pt-QE = off-centered disk - 1/4 diameter
	Pt-HE = Off-centered disk = 1/2 diameter Pt-FF = off-centered disk = 1 diameter
	Zn = polycrystalline zinc Zn-SC = single crystal zinc C = carbon Cu = copper
rpm Flow	Revolutions per minute Flowrate
	in Table 2 and Table 6
	<u>1 M ZnCl</u> Flow 90 = 1550 ml/min Flow 80 = 1400 ml/min Flow 75 = 1300 ml/min

Abbrev.	Explanation
99999,9999,9999,9999,9999,9999,9999,9999	Flow 50 = 800 ml/min Flow 20 = 250 ml/min Flow 10 = 100 ml/min
	$\frac{4}{10} \frac{M}{2nCl_2}$ Flow 100 = 1600 ml/min Flow 20 = 220 ml/min
	<u>in Table 7</u> Flow xx = xx ml/min
	in Table 8
	Flow 65 = 4100 ml/min Flow 25 = 1500 ml/min Flow 5 = 700 ml/min
Photo # * Loc l.e. mid. r.e. Flm #	LBL photograph number Continuation from experiment above Photo location on electrode Leading edge Middle of electrode Rear edge Film #
E.T. Fstp Fr/s	Extension tube size F-stop Frames per second fr/s 1 = 1 frame per second was used fr/s 1+4 = a combination of 1 fr/sec and 1 fr/4 sec was used fr/s 1+12 = a combination of 1 fr/sec and 1 fr/12 sec was used
Fr	Total number of frames

TABLE 11 Explanation of Abbreviations and Legends (con't)

FIGURE CAPTIONS

- Fig. 1. Zinc deposit in small flowcell, 1 M ZnCl₂, pH 2.4, 30 mA/cm², 45 minutes, Re 5300. [M. Jaksic with J. Faltemier, Expt. #P-88] XBB 784-11692
- Fig. 2. Zinc deposit in small flowcell, 1 M ZnCl₂, pH 2.4, 100 mA/cm², 15 minutes, Re 5300. [M. Jaksic with J. Faltemier, Expt. # P-119] XBB 784-11723
- Fig. 3. Spiral patterns obtained from (a) purified solution, 30 mA/cm² x 105 min., 800 rpm, Pt anode and (b) lead containing solution (4.8 x 10⁻⁵ M) 30 mA/cm² x 30 min., 800 rpm, Pt anode. [T. Tsuda, LBL Report # 13057] XBB 817-5960A
- Fig. 4. Influence of the purity of electrolytes on spiral formation. (A) After preliminary purification, (B) after standard purification ("purified A.R. grade"), (C) Ultrapure solution. 30 mA/cm² x 10 min., 800 rpm. [T. Tsuda, LBL Report # 13057] XBB 817-6760A
- Fig. 5. Zinc deposit in wake formation around protrusions. [J. Faltemier, LBL Report # 16485] XBB 831-371
- Fig. 6. [J. Faltemier, LBL Report # 16485]. XBB 831-377

XBB 784-11692

XBB 784-11723

(a)

(ъ) ХВВ 817-5960А

2 { ·

XBB 817-6760 A

¢

Fig. 4

XBB 831-371

25 MICRON

1 M ZNSO₄, PH 4.6, 400 RPM 5 MA/CM² X 25 MIN

Fig. 5

. .

·

.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

かないた

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

do the

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

