Technetium Sorption Media Review

Author Name: J.B. Duncan, S.E. Kelly, R.A. Robbins, R.D. Adams, M.A. Thorson / C.C. Haass Washington River Protection Solutions, LLC / AEM Consulting, LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800

EDT/ECN:UC:Cost Center:2GH00Charge Code:200993B&R Code:Total Pages:92

A Found

Key Words: ABEC, ABEC 2000, Dowex, Dowex 1X8, Immobilization, Ion Exchange, Kurion, LAW, Low Activity Waste, Purolite, Purolite A520E, Purolite A530E, Reillex, Reillex HPQ, Sn(II) Apatite, SuperLig 639, Supplemental Immobilization, Ion Exchange, TAM, Tc, Tc-99, Tc(VII), Technetium, Tin Apatite, Pertechnetate

Abstract: This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Approved For Public Release

25/2011

RPP-RPT-50122 Revision 0

Technetium Sorption Media Review

Prepared for the U.S. Department of Energy

Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy Office of River Protection under Contract DE-AC27-08RV14800

P.O. Box 850 Richland, Washington 99352

.

TABLE OF CONTENTS

1		INTRODUCTION AND BACKGROUND			
2 C	OLL	BASIC JMNS	S OF SORPTION MEDIA, TECHNETIUM, LOW-ACTIVITY WASTE	2, AND 4	
	2.1	ION EZ	XCHANGE / RESIN / SORBENT MEDIA / SORPTION MEDIA	4	
	2	.1.1 Sor	ption Media Size	4	
	2.2	ELUTA	ABLE AND NON-ELUTABLE SORPTION MEDIA	4	
	2.3	BATCI	H DISTRIBUTION COEFFICIENT AND COLUMN DISTRIBUTION I	RATIO. 5	
	2.4	LOW-A	ACTIVITY WASTE FEED ENVELOPES	6	
	2.5	POTEN	NTIAL AND PH EFFECT ON TECHNETIUM SPECIES	6	
3		IMMO	BILIZATION SORPTION MEDIA EVALUATION CRITERA	8	
	3.1	ION EZ	XHANGE / SORBENT MEDIA	13	
	3.2	SORPT	TION MEDIA INFORMATION	15	
	3	.2.1 AB	ЕС™ 2000 (Eichrom)		
		3.2.1.1	Overview of Literature Reports for ABEC 2000	20	
	3	.2.2 Do	wex™ 1-X8 (Dow Chemical)		
		3.2.2.1	Overview of Literature Reports for Dowex [™] 1-X8	22	
	3	.2.3 Pur	olite™ A520E		
		3.2.3.1	Overview of Literature Reports for Purolite TM A520E	24	
	3	.2.4 Pur	olite™ A530E		
		3.2.4.1	Overview of Literature Reports for Purolite TM A530E	30	
	3	.2.5 Rei	llex™ HPQ (Vertellus®)		
		3.2.5.1	Overview of Literature Reports for Reillex [™] HPQ	31	
	3	.2.6 TA	M [™] or Sn(II) Apatite Microspheres (Kurion, Inc)		
		3.2.6.1	Overview of Literature Reports for TAM		
	3	.2.7 Sup	perLig® 639 (IBC Advanced Technologies, Inc.)		
		3.2.7.1	Overview of Literature Reports for SuperLig [®] 639		
4		CONC	LUSION	49	
5		REFERENCES			
6		GLOSSARY OF TERMS			

APPENDICES

APPENDIX A	SORPTION MEDIA REFERENCE MATRIX	A-1
APPENDIX B	VENDOR INFORMATION	B-1

LIST OF FIGURES

Figure 1-1. Simplified Supplemental Treatment Flow Diagram	2
Figure 2-1. Technetium Species (Guillaumont, et al., 2003)	7
Figure 3-1. ABEC 2000 Resin	. 20
Figure 3-2. Dowex [™] 1-X8 Resin	. 22
Figure 3-3. Newly-Generated Liquid Low-Level Waste Simulate Composition (K/TCD-1141)) 23
Figure 3-4. Purolite [™] A520E	. 23
Figure 3-5. Tank SY-102 Alkaline Supernate Simulant (Table 2, LA-12654, Rev.)	. 25
Figure 3-6. Results by Adsorber for Technetium (LA-12654 Rev.)	. 26
Figure 3-7. Purolite [™] A520E Distribution Coefficients by Analyte (LA-12654 Rev.)	. 26
Figure 3-8. DSSF Simulant Composition (LA-12863)	. 27
Figure 3-9. Results by Adsorber for Technetium (LA-12863)	. 28
Figure 3-10. Purolite [™] A520E Distribution coefficients by Analyte (LA-12863)	. 28
Figure 3-11. NCAW Simulant Composition (LA-12889)	. 29
Figure 3-12. Results by Adsorber for Technetium (LA-12889)	. 29
Figure 3-13. Purolite [™] A520E Distribution coefficients by Analyte (LA-12889)	. 29
Figure 3-14. Reillex [™] HPQ Resin	. 31
Figure 3-15. ⁹⁹ Tc Batch Adsorption Data for MVST W-29 Supernate (CONF-9505101-1)	. 32
Figure 3-16. Reillex™ HPQ Distribution Coefficients by Analyte (LA-12654 Rev.)	. 34
Figure 3-17. Reillex [™] HPQ Distribution Coefficients by Analyte (LA-12863)	. 35
Figure 3-18. Reillex [™] HPQ Distribution Coefficients by Analyte (LA-12889)	. 36
Figure 3-19. SuperLig® 639 Resin	. 38
Figure 3-20. Batch Contact Data (BNF-003-98-230)	. 40
Figure 3-21. ⁹⁹ Tc K _d s for SuperLig [®] 639 for Tank AW-101 Waste (BNFL-RPT-009)	. 41
Figure 3-22. Equilibrium Distribution Coefficient Table for Tc Removal (WSRC-TR-2003-	
00098, Rev 1)	. 46
Figure 3-23. Breakthrough Curves for SuperLig 639 on AW-101 Waste (WSRC-TR-2003-	
00098, Rev 1)	. 47
Figure B-1. ABEC [™] 2000 Page 1	B-1
Figure B-2. ABEC [™] 2000 Page 2	B-2
Figure B-3. DOWEX® 1-X8, Aldrich® Page 1 of 3	B-3
Figure B-4. DOWEX® 1-X8, Aldrich® Page 2 of 3	B-4
Figure B-5. DOWEX® 1-X8, Aldrich® Page 3 of 3	B-5
Figure B-6. DOWEX [™] 1-X8 Cost from GFS Chemicals (supplier/non-bulk)	B-6
Figure B-7. DOWEX [™] 1-X8 Supplier Information	B-7
Figure B-8. Purolite [™] A-520E	B-8
Figure B-9. Purolite [™] A-530E	B-9
Figure B-10. Reillex [™] HPQ (from Vertellus®) B	-10
Figure B-11. SuperLig® Vendor Information (page 1 of 3) B	i- 11
Figure B-12. SuperLig® Vendor Information (page 2 of 3) B	-12

Figure B-13.	. SuperLig® Vendor Information (page 3 of 3)	B-13
Figure B-14.	. TAM (Kurion, Inc)	B - 14

LIST OF TABLES

Table 2-1. Reference Table for Conversion of Mesh Size to Inches or Micrometers	4
Table 3-1. Feed Composition Properties	8
Table 3-2. Criteria for Evaluation of Sorbent Media	9
Table 3-3. Ion Exchange Feed Solution Applicability Criteria ^a	11
Table 3-4. Sorption Media Characteristics Required for a more In-Depth Evaluation	12
Table 3-5. Ion Exchange / Sorbent Media Initial Screening Results	13
Table 3-6. Sorption Media Properties	16
Table 3-7. Solution Properties (CONF-9505101-1)	32
Table 3-8. Concentrations of Selected Analytes in the Hanford Tank Waste Supernates (WSR	.C-
MS-2001-00573)	43
Table 3-9. Hanford AN-103 vs. Savannah River 44F (extracted from WSRC-MS-2001-00760)) 44
Table 4-1. Elutable Sorption Media	50
Table 4-2. Non-Elutable Sorption Media	50
Table A-6-1. Sorption Media References by Feed Solution	A-1

LIST OF TERMS

⁹⁹ Tc	Technetium-99 (99-Tc, Tc-99)
Al^{+3}	Aluminum
BNFL	British Nuclear Fuels, Ltd
BNI	Bechtel National, Inc.
BV	Bed volume
CC	Complex Concentrate
Ci	Curie
C1	Chlorine
сP	Centipoise
Cr	Chromium
CV	Column volume
DF	Decontamination factor
DNFSB	Defense Nuclear Facilities Safety Board
DOE	U.S. Department of Energy
DSSF	Double-shell Slurry Feed
DST	Double-shell tank
Ecology	Washington State Department of Ecology
EMS	Environmental Management System
EPA	U.S. Environmental Protection Agency
Eq	Equivalents
ES	EnergySolutions
ETF	Effluent Treatment Facility
F	Fluorine
FY	Fiscal year
g	Gram
gmol	Gram-mole
HFFACO	Hanford Federal Facility Agreement and Consent Order
HLW	High-level waste
hr	Hour
IDF	Integrated Disposal Facility
ILAW	Immobilized low-activity waste
IX	Ion exchange
K^+	Potassium
K _d	Distribution coefficient
λ	Column distribution ratio
LAW	Low-activity waste
LLW	Low level waste
М	Molar (gram-moles/liter)
ml	Milliliter
МТ	Metric-tons
MVST	Melton Valley Storage Tanks
Na^+	Sodium
NEPA	National Environmental Protection Act
NO_2^-	Nitrite
NO ₃	Nitrate

NPH	Normal paraffin hydrocarbon
OH-	Hydroxide
ORNL	Oak Ridge National Laboratory
ORP	U.S. Department of Energy, Office of River Protection
PFD	Process Flow Diagram
PNNL	Pacific Northwest National Laboratory
PO_4^{-3}	Phosphate
PEG	Polyethylene glycol
РТ	Pretreatment
ρ_b	Bulk density
R	Radiation absorbed dose (Rad)
Re	Rhenium
RPP	River Protection Project
SME	Subject Matter Expert
SO_4^{-2}	Sulfate
SRNL	Savannah River National Laboratory
SRS	Savannah River Site
SST	Single-shell tank
TBP	Tri-butyl phosphate
TcO ₄	Pertechnetate
TPA	Tri-Party Agreement
TRL	Technology Readiness Level
TWRS	Tank Waste Remediation System
WRPS	Washington River Protection Solutions, LLC
WTP	Waste Treatment and Immobilization Plant

1 INTRODUCTION AND BACKGROUND

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

The Hanford Federal Facility Agreement and Consent Order (HFFACO or Tri-Party Agreement [TPA]) requires DOE to complete the RPP tank waste treatment mission by September 30, 2047. A key aspect of implementing that mission is to construct and operate the WTP (ORP-11242, Rev. 5, *River Protection Project System Plan*). The WTP is a multi-facility plant that will separate and immobilize the tank waste for final disposition. The WTP Low-Activity Waste (LAW) Vitrification Facility is sized to treat about 40 to 50% of the approximately 60,000 to 80,000 metric tons (MT) of tank farm sodium waste requiring treatment by 2047.

The RPP work scope is currently performed by two primary contractors: Washington River Protection Solutions (WRPS), the Tank Operations Contractor (TOC); and Bechtel National, Inc. (BNI), the WTP Construction and Commissioning Contractor. Washington River Protection Solutions is responsible for the construction, operation and maintenance activities necessary to store, retrieve and transfer tank wastes; provide supplemental pretreatment for tank waste; and provide second LAW treatment, storage and/or disposal of immobilized product and secondary waste streams. Bechtel National, Inc. is responsible for the design, construction, and commissioning of a WTP Pretreatment Facility, two vitrification facilities (one for high-level waste [HLW] and one for LAW), a dedicated analytical and radiochemical laboratory and supporting facilities to convert radioactive tank wastes into glass for long-term storage or final disposal.

The TOC will be responsible for WTP operations and decommissioning. The ORP defined the interface between the two major contractors in a series of interface documents. The primary waste interface document is 24590-WTP-ICD-MG-01-019, Rev. 4, *ICD-19 – Interface Control Document (ICD) for Waste Feed*. Iterative updates to 24590-WTP-ICD-MG-01-019 are anticipated as new information is generated.

The current RPP baseline plan (ORP-11242, Rev 5) assumes deployment of a supplemental treatment capability, with net capacity calculated such that LAW treatment does not drive the mission duration (approximately 60% of the LAW tank waste). The addition of a supplemental treatment capability, including pretreatment (if needed) and immobilization, results in a system where HLW treatment capacity is the exclusive driver for completion of the RPP mission. Without additional LAW treatment capacity, the mission would extend an additional 40 years beyond fiscal year (FY) 2047.

Figure 1-1 depicts the Supplemental Treatment Project configured to be deployed in the tank farms.

Figure 1-1. Simplified Supplemental Treatment Flow Diagram

Supplemental treatment refers to the pretreatment of supernatant (liquid) wastes from the doubleshell tanks (DSTs), including dissolved saltcake retrieved from SSTs to the DSTs. Supplemental treatment includes two basic unit operations. The first operation removes insoluble constituents including actinides and strontium 90 (⁹⁰Sr). The separated solids will then follow the HLW treatment pathway. The second operation removes soluble cesium (focused on ¹³⁷Cs) from the liquid wastes. Provided the degree of removal of the actinides, ⁹⁰Sr, and ¹³⁷Cs is sufficient, the wastes can be solidified as immobilized LAW (ILAW). A Waste Incidental to Reprocessing (WIR) determination per DOE Manual 435.1-1, *Radioactive Waste Management Manual*, will be required to classify the wastes as LAW.

The unit operations for tank farm LAW pretreatment are similar to those for LAW pretreatment in the WTP. In the WTP, however, wastes are fed back into the system rather than returned to the DSTs as they would be in the tank farm case. Supplemental treatment technologies currently under consideration include crossflow filtration, rotary microfiltration, elutable spherical resorcinol formaldehyde ion exchange, and non-elutable crystalline silicotitanate ion exchange.

The WRPS Immobilization Project (Project No. T4S05) is responsible for identifying and implementing a process flowsheet that immobilizes the LAW fraction of Hanford's SST and DST waste. The product of the flowsheet, ILAW, will be one of three waste forms:

- Borosilicate glass;
- Mineral and binder;
- Grout.

The DOE plans to dispose of Hanford's ILAW as a mixed low-level waste (MLLW) by land disposal. It is the DOE's responsibility to ensure a cost effective approach is implemented.

Following pretreatment, where the SST and DST wastes are split into LAW and HLW fractions, technetium 99 (⁹⁹Tc) will be the limiting component for long-term disposal performance for immobilized LAW. Reducing the ⁹⁹Tc loading of the LAW stream has a direct impact on the leachability index of the immobilization product and the potential to use technologies that have difficulty incorporating and/or retaining ⁹⁹Tc.

The goal of this ⁹⁹Tc sorption media review is to present information and references to aid in the selection of a sorption media for feasibility studies for a ⁹⁹Tc removal system. The review does not select a specific sorption media with the expectation that it will be implemented into a ⁹⁹Tc removal system. All work performed to date regarding the capture of ⁹⁹Tc has shown that only ⁹⁹Tc in the pertechnetate form, TcO_4^- (where ⁹⁹Tc is in the +7 (VII) valence state), can be captured via sorption.

Feed to the Immobilization Project facility(s) is planned to be split roughly equally between the WTP and an additional treatment facility, to be provided by the Treatment Project (WRPS Project No. T4S01). Immobilized LAW will be disposed at a near-surface disposal site, such as the Integrated Disposal Facility (IDF) at Hanford. Due to past waste handling practices, leaking SSTs and the mobility of ⁹⁹Tc, ⁹⁹Tc retention is a major factor in the selection of an ILAW form. All of the waste forms under investigation as ILAW forms benefit from ⁹⁹Tc removal.

Employment of a sorption media has been selected as the best technology for removal of ⁹⁹Te from the LAW immobilization feed stream. The goal of this review is to:

- Define ⁹⁹Tc ion exchange sorption media selection criteria required for implementation, including;
 - Characteristics;
 - Weighting for each characteristic;
- Identify potential ion exchange media, separated into two categories;
 - Elutable;
 - Non-elutable;
- Evaluate and rank sorption media using the defined characteristics and corresponding weighting.

The results from this review will aid in the development of a preliminary ⁹⁹Tc removal flowsheet to support the four immobilization technologies and a preferred waste disposal option.

2 BASICS OF SORPTION MEDIA, TECHNETIUM, LOW-ACTIVITY WASTE, AND COLUMNS

This section contains basic information regarding the properties of sorption media and technetium.

2.1 ION EXCHANGE / RESIN / SORBENT MEDIA / SORPTION MEDIA

For the purpose of this report, all media will be referred to as sorption media, except in sections on specific sorption media. Terms such as "resin" and "ion exchange" have specific meaning to the chemical processing industry. Resin implies organic media; ion exchange implies the release of one ion from the surface of the media in coordination with the capture of another. In many cases, the media incorporates ions by adsorption, where no exchange of ions takes place. Therefore to facilitate a level discussion, a universal term will be used to describe the materials tested throughout the text -- "sorption media."

2.1.1 Sorption Media Size

Most sorption media are available in different size ranges, typically determined by the screening of the material through an upper bound mesh and a lower bound mesh. Table 2-1 aids in understanding media diameter verses mesh range.

	Diameter of Particles		
Mesh Range	Inches	Micrometers	
20 - 50	0.0331-0.0117	840-297	
50 - 100	0.0117-0.0059	297-149	
100 - 200	0.0059-0.0029	149-74	
200 - 400	0.0029-0.0015	74-38	
minus 400	< 0.0015	< 38	

Table 2-1. Reference Table for Conversion of Mesh Size to Inches or Micrometers

The size of the media used is important for two reasons: 1) the smaller the material, the greater the surface area available per unit volume; and 2) the smaller the media the higher the pressure drop through the column. Therefore size and pressure drop must be balanced. Uniformity of the size also plays a role in pressure drop, with columns containing beads with less variation in diameter and shape having less pressure drop across the column.

2.2 ELUTABLE AND NON-ELUTABLE SORPTION MEDIA

The disposal path for the ⁹⁹Tc will have a large influence in the sorption media chosen for use. The WTP planned to process ⁹⁹Tc through its HLW melter, requiring an elutable sorption media. SuperLig® 639 was chosen. If the selected disposal path is a separate waste stream that will leave the ⁹⁹Tc on the sorption media, a non-elutable resin will be required. There are many different scenarios for ⁹⁹Tc disposal. The final review of sorption media will be divided between elutable and non-elutable material.

2.3 BATCH DISTRIBUTION COEFFICIENT AND COLUMN DISTRIBUTION RATIO

The batch distribution coefficient (K_d) is an equilibrium measure of the distribution of a chemical species between a solution and a solid sorbent material. The concentration of a sorbed species is difficult to define and determine. Therefore the coefficient is based on the solution being processed. The equation for K_d can be found in Table 3-2.

The column-distribution value, λ , represents the capacity of the sorption media in volumes of feed per volume of media. It is the ratio of the equilibrium concentration of targeted analyte TcO_4^- per unit volume on the sorption media to that in the equilibrated solution. For column load operations where kinetics are not limiting, λ is approximately the number of bed volumes (BVs) processed when the concentration of TcO_4^- in the effluent of a sorption column reaches 50% of the feed concentration (C/C₀ = 0.5); designated λ_{50} . The equation for λ_{50} can be found in Table 3-2.

When comparing K_d and λ_{50} values between research experiments, differences in experimental conditions are critical to note. Some of the factors that influence results are:

- Concentration of the target species (analyte);
- Resin to liquid ratio;
- Valence state of target species;
- Solution temperature;
- Resin particle size (if it affects equivalents/liter);
- Contact time (if not confirmed to be at equilibrium);
- Speciation;
- Concentration of competing ions;
- Concentration of ligands and complexants;
- Analytical techniques;
- Batch variability of the sorption media;
- pH.

In addition to these causes, the λ_{50} value may not coincide with 50% breakthrough during a column performance test for several reasons:

- Column design;
- Elution method;
- Flow rate;
- Sampling method;

- Solution density;
- Sorption media particle size.

Unfortunately the result of the variation in K_d and λ_{50} values with process parameters is such that comparison of sorbent media between differing experiments is difficult. Column design and operation will need to be robust enough to handle the broad spectrum of Hanford's LAW feed batches.

2.4 LOW-ACTIVITY WASTE FEED ENVELOPES

The WTP contract divides LAW into three types of feed, or envelopes. Much of the testing performed on sorbent media refers to the material tested in terms of its feed envelope classification. A very brief description of each feed type follows. (A more in-depth description can be found in 24590-WTP-RPT-PT-02-005, Rev 5, *Flowsheet Bases, Assumptions, and Requirements.*)

- <u>LAW Envelope A</u>: Tank waste supernatant requiring solids/liquid separation and Cs removal to meet the LAW glass specification.
- <u>LAW Envelope B:</u> Higher concentrations of Cs than envelope A or C. Also may contain higher levels of chlorine (Cl), chromium (Cr), iron (F), sulfate (SO₄), and phosphate (PO₄).
- <u>LAW Envelope C:</u> Contains organically complexed ⁹⁰Sr and transuranic (TRU) waste requiring removal to meet the LAW glass specification. (These have been found to coincidentally contain substantial amounts of soluble ⁹⁹Tc that is not in the pertechnetate form.)

A supplemental immobilization facility will not likely divide LAW feeds in these same categories. Wastes high in organics will likely have a more selective processing path, e.g., all of them may be processed through the WTP LAW Vitrification facility or blended to meet feed requirements as a means of mitigating the presence of organics and ⁹⁹Tc IV.

2.5 POTENTIAL AND PH EFFECT ON TECHNETIUM SPECIES

The Eh-pH diagam presented in Figure 2-1 indicates the species of Tc encountered over a pH range of 0 to 13^+ , and over the electropotential range of -0.8 V to 1.2 V, versus standard hydrogen electrode. Those Tc species that are solid are in bold and noted with (cr = crystalline).

From previous electrochemical corrosion studies, the open circuit potential of the Hanford SSTs and DSTs are in the cathodic range (from -229 to 400 mV vs. SCE)¹ and they have a pH range between13 and 14⁺. According to Figure 2-1, the Tc species that the supernate accommodate are soluble (red shaded area) and predominately TcO_4 , with some Tc(V)oxy-hydroxide ($TcO(OH)_3$). Other oxidation states of ⁹⁹Tc have been reported in the complexant concentrate tanks, 241-AN-102 and 241-AN-106, designated Envelope C for WTP feed. It is beyond the scope of this study to elucidate the oxidative approach to destroy the complexant concentrate organics to drive non-pertechnetate species to the pertechnetate state.

¹ RPP-RP I-38319, Rev 0, Electrochemical Corrosion Tests for Tank 241-AP-105 Supernate Using Grab Samples 5AP-07-01, %AP-07-02A, 5AP-07-03A, and 5AP-07-04A, October 2008, and RPP-RP I-34697, Rev. 0, electrochemical Corrosion Report for Tanks 241-AW-103, 241-AZ-102, 241-AN-106, 241-AN-107, 241-AY-101, and 241-AY-102I, August 2007, CH2M HILL Hanford Group, Inc., Richland, Washington.

² Presented in Atlas of Eh-pH Diagrams, Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, Naoto TAKENO, May, 2005.

3 IMMOBILIZATION SORPTION MEDIA EVALUATION CRITERA

Technetium removal from treated LAW is expected to be a one-step ion exchange process. Treated LAW will be stored as it exits WTP Pretreatment and the Supplemental Treatment Project facilities, then fed through ion exchange columns and into an immobilization feed tank(s).

Immobilization has assumed feed vector batches are based on the HTWOS run documented in SFV-2000, *FeedVectorWTP Realignment AOff BEL Gen-6.1-8.40-2010-O-07-at-15-14-111.x1sx*. The feed composition review, Table 3-1, was performed using SVF-2023, *Immobilization System Hazard Category Source Term for Pre-Conceptual Candidate Technologies*. The concentrations listed in Table 3-1are by batch. For example, feed batch 103 has the highest concentration of ⁹⁹Tc at 1.2x10⁻⁴ moles/liter. Table 3-1 also contains feed parameters as outlined in RPP-SPEC-48094, Rev 0, *Immobilization Project Facility System Specification*. Only cations and anions of most concern are listed in Table 3-1.

COMPOSITION (SVF-2023, by feed batch)						
ANALYTES	UNITS	MAXIMUM	MINIMUM	MEDIAN	AVERAGE	
⁹⁹ Tc	g-moles/liter	1.20E-04	4.36E-06	2.33E-05	3.85E-05	
Al^{+3}	g-moles/liter	1.47E+00	3.98E-02	2.51E-01	3.71E-01	
K^{+}	g-moles/liter	7.75E-01	3.60E-03	2.22E-02	5.95E-02	
Na^+	g-moles/liter	9.40E+00	9.58E-01	3.98E+00	5.53E+00	
NO ₂ -	g-moles/liter	1.88E+00	1.42E-01	5.85E-01	8.66E-01	
NO3	g-moles/liter	4.03E+00	4.90E-01	1.67E+00	2.32E+00	
OH⁻	g-moles/liter	9.02E+00	1.77E-01	9. 77 E-01	1.43E+00	
PO4 ⁻³	g-moles/liter	3.62E-01	1.40E-02	6.76E-02	1.04E-01	
SO4 ⁻²	g-moles/liter	3.68E-01	1.39E-02	6.46E-02	9.90E-02	
	GENERAL PROPERTIES (RPP-SPEC-48094)					
Instantanec	ous Throughput *			422 Kg Na/hr		
Nominal T	hroughput *			2600 MT Na/yr		
pH				>12		
Solids (wt	%)			0 – 0.5		
Specific G	ravity			1 – 1.46		
Viscosity (cP)			1 – 20		

Table 3-1. Feed Composition Properties

* Throughput is on a sodium (Na) basis.

Criteria for sorption media selection for use in the immobilization facility will need to account for four major categories: 1) technical performance, 2) cost, 3) schedule, and 4) safety and environmental impact. The criteria outlined in this section capture what is known about the sorption media selected for further review. Most of the information concerns technical development of each media, and can be used to evaluate the feasibility of implementing sorption media for ⁹⁹Tc removal.

Criteria impacting cost and schedule that DOE must consider, such as the ability to source the material and establish an intellectual property agreement to ensure that manufacture of the sorption media is possible at more than one facility, are not covered in this review since adequate information is not available and vendor reviews are not applicable to technical feasibility. Table 3-2 and Table 3-3 show parameters important to selection of sorption media and Hanford LAW feed characteristics critical for ensuring testing performed by a reference is applicable to the Immobilization Project. Criteria listed in Table 3-3 can be used to quickly evaluate the applicability of solutions used to test sorption media against Hanford's LAW.

CHARACTERISTIC	DESCRIPTION
Ability to supply amounts of \geq 2000 lbs	The DOE must have the ability to procure sorption media for a long period of time. To ensure this the ability to have an intellectual property (IP) agreement with the vendor will be required or the equivalent material must be commercially available via multiple suppliers.
BV per Hour Operation	Implementation requirement that will be needed to size the ion exchange column(s).
Sorption media Cost per Pound (or ft ³)	The cost of sorption media consumed is an important factor for sorption media selection. Elutable sorption media will be able to factor in the number of cycles the sorption media may be regenerated to offset procurement costs.
Cost per Ci ⁹⁹ Tc Removed	The total system cost; implementation costs for all aspects of ⁹⁹ Tc removal need to be considers.
Elutable (loading cycles)	 Depending on the ⁹⁹Tc disposal route chosen, whether the sorption media is elutable or non-elutable may be the most critical property of the sorption media. Non-elutable sorption media need to tightly bind ⁹⁹Tc and not release it except under extreme conditions or long contact times. Elutable sorption media need to employ an eluent that is safe to implement and produce a ⁹⁹Tc solution that is easily processed further into an immobilized waste form. The number of loading cycles (times the sorption media can be recharged) will also be a critical implementation factor.
Equivalents/L	The number of active reactant sites available for TcO_4 capture will influence the size of the column required.
Storage, Shelf Life, & Handling Specifications	Typically sorption media have a long storage and shelf life. Some sorption media require storage at low temperature and corrosive solutions. The physical stability of sorption media is affected by the method of product handling. Deep sorption media beds, small diameter beds, high flow rates and agitation/frequent pumping contribute to sorption media degradation and breakage.
K _d [Tc]	$K_{d} = ((T_{i} - T_{f}) / T_{f}) \times (V / (M \times F))$

Table 3-2. Criteria for Evaluation of Sorbent Media

CHARACTERISTIC	DESCRIPTION		
	Where:		
	K_d = Equilibrium distribution coefficient, ml solution/g sorption media		
	$I_{i,f} = Measured initial and final [1 c] in the solution (gmol/l) V = Volume of solution in test (ml)$		
	M = Mass of sorption media tested (wet basis) (g)		
	F = Correction factor to convert sorption media mass to dry basis		
	The equilibrium distribution coefficient (K_d) is a measure of the concentration of the ⁹⁹ Tc in the sorption media that is in equilibrium with a particular concentration of ⁹⁹ Tc in solution after exposure for an extended period of time (equilibrium is reached). The K_d can be used to indicate the expected volume of feed that can be treated by a column during a loading cycle.		
	K_d is determined by experimentation and depends on many factors: solution temperature, pH, ionic strength of the solution, etc. Therefore, the K_d for LAW feed batches will vary. A sorption media with a high K_d is desired. Many of the sorption media reviewed do not have K_d 's determined for them or testing parameters are not the same.		
	The column distribution ratio is the batch distribution coefficient converted from mass to volume. The value obtained is roughly the number of BV that can be passed through the column prior to 50% breakthrough of the targeted analyte. $\lambda_{50(Te)} = (K_d)(\rho_b)$		
λ ₅₀	$\lambda_{50(Te)}$ = the column distribution ratio for ⁹⁹ Tc, volume feed per volume sorption media (ml solution / ml sorption media)		
	K_d = Equilibrium distribution coefficient, ml/g sorption media		
	ρ_b = the bulk density of the sorption media (g/ml) in the solution (or ~the bulk dry density adjusted for swelling)		
Organic	Sorption media parameter that is not important for implementation in the ion exchange column, but could be critical depending on the disposal path chosen for the 99 Tc.		
Particle Size	Sorption media performance parameter. Solute adsorption kinetics or speed generally increase as particle size decreases, however pressure drop through the ion exchange column increase as particle size decreases.		
pH operating range	LAW will be fed at high pH (\geq 12).		
Poisons	Anions, cations, molecules, and elements that occupy or prevent the occupation of sorption media active sites from being occupied by TcO_4 .		
Preparation Procedure	Method used process the sorption media from a stored stated to active state.		
Radiological Stability and/or Gas Generation	Effects of radiation on the sorption media; often results in the evolution of gas, typically H_2 , which poses a safety hazard. Since ⁹⁹ Tc removal will be performed following filtering (removal of most ⁹⁰ Sr) and Cs ion exchange, this characteristic should not be a determining factor for sorption media selection.		
Sorption media Density (weight per unit volume)	Ion exchange column configuration and design will be influenced on the buoyancy of the sorption media in the feed solution.		
Sorption media Disposal Route	Will be dependent on the ⁹⁹ Tc disposal route chosen. If an elutable sorption media is selected then most likely the sorption media will be disposed of as a Class A type waste. If a non-elutable sorption media is chosen then the method of immobilization will dictate the sorption media disposal path.		

CHARACTERISTIC	DESCRIPTION
Selectivity to ⁹⁹ Tc	Affinity of the sorption media to pull ⁹⁹ Tc out of the feed solution. It will vary based on feed ionic strength, poisons, feed temperature, and flow rate of the feed through the sorption media.
Stability of Spent Sorption media	The ability of the sorption media to not break down and strongly bind the Tc to its matrix is most important for a non-elutable.
Tc Disposal Route	 The selected sorption media will need to support the selected ⁹⁹Tc disposal path, examples are: Incorporation into HLW glass via vitrification → elutable or non-elutable sorption media could be chosen. Disposed of in a grout matrix → non-elutable sorption media required.
Temperature operating range	The LAW feed may need to be feed to the ion exchange media at elevated temperatures to minimize precipitation. Implementation of sorption media that enables a robust operating range is desirable.
Technology Readiness Level (TRL)	Many sorption media will remove TcO_4^- from solution. For this review, those having proved their ability to perform well for Hanford SST and DST wastes will be assumed to require less process development.

Table 3-3. Ion Exchange Feed Solution Applicability Criteria^a

PARAMETER	VALUE
Test Material	DOE tank waste or simulant (not necessarily Hanford tank waste)
Salt Content	\geq 3molar Na
pH	≥ 12
Target Analyte	⁹⁹ Tc(VII) or Re(VII) (Rhenium) used
Target Analyte Concentration	4.36E-07 < [⁹⁹ Tc] or [Re] <1.20E-03

Note: ^aTesting on simulants or wastes outside the criteria listed here is too far from the waste feed matrix from Hanford SST and DST waste to be considered as relevant.

Many of these criteria are not part of typical vendor specification sheets. Deploying ion exchange media for industrial applications requires testing to understand interactions between feed and sorption media, acquire meaningful decontamination factor (DF) values and understand poisons, gas generation, selectivity, eluent efficiency and loading. A much more inclusive set of information is required for final sorption media selection; see Table 3-4. However a total system review is not part of this report.

Factors most influential for economics for the system are cost of the sorption media, volume of treated waste before media disposal, cost for disposal of the sorption media and the ⁹⁹Tc, costs for disposition of storage/preparation/eluent chemicals and research required to achieve the required TRL level for conceptual design.

The implemented system also must provide a safe work environment that minimizes safety risks due to mechanical, chemical and radiological exposure, and minimize impacts to the environment. Important sorption media parameters affecting safety and environment are storage, handling, preparation and regeneration (eluent) chemicals. Gas generation from radiolysis should be minimal due to the removal of ⁹⁰Sr and ¹³⁷Cs from the feed stream. Co-absorption of other analytes (e.g. Chromium or actinides) could also impact the selection of a disposal path.

Key technical parameters examined for this report are those critical for ensuring a ⁹⁹Tc removal system using ion exchange is technically feasible. Most critical features for the sorption media will ensure ⁹⁹Tc removal targets can be met on Hanford SST and DST wastes. Vendor experience with feeds similar to tank waste is minimal, and testing sorption media with simulants can result in under- or over-estimating a sorption media's ability to perform in a complex, concentrated high pH feed. Therefore results from tests performed with tank waste weigh heavily on estimating the technical maturity of a given sorption media.

CRITERIA F	OR A CRITICAL REVIEW OF SOF	PTION MEDIA
ECONOMICS	SAFET Y\ENVIRONMENTAL	TECHNICAL
 Cost per Ci ⁹⁹Tc Removed (for the system) Sorption media Cost Ability to Source Sorption media Sorption media Disposal Route Stability of Spent Sorption media Storage, Shelf Life Structure and Composition not a Trade Secret Tc Disposal Route 	 Eluant Gas Generation Handling Specifications Preparation Procedure Radiolysis Co-adsorbed analytes 	 BV per Hour K_d [⁹⁹Tc] (Tc⁹⁹ removal efficiency) Type of sorption media (organic vs. inorganic) Loading Cycles Temperature Operating Range Poisons Preparation Procedure Radiolysis Sorption media Disposal Route Selectivity to ⁹⁹Tc ⁹⁹Tc Disposal Route pH Range ⁹⁹Tc Loading (moles ⁹⁹Tc per unit volume of sorption media) Technical Maturity

Table 3-4. Sorption Media Characteristics Required for a more In-Depth Evaluation

3.1 ION EXHANGE / SORBENT MEDIA

Table 3-5 lists media that have been identified as possible ⁹⁹Tc removal candidates from past reports or a current literature search. The list does not include all potential sorption media, but lists those having potential to meet the Immobilization Project's requirements. An initial screening of media was performed to narrow the list of sorption media to those having the highest likelihood of success. Sorption media were screened on their ability to perform in a solution as characterized in Table 3-1. Those that have been successfully tested for removal of ⁹⁹Tc from Hanford's waste were carried forward as recommended by subject matter experts (SMEs). Review results from a 2002 WTP review were also considered³. The WTP review based sorption media recommendations on the ability of the media to meeting four criteria:

- 1. The resin(s) must be chemically and structurally stable over their expected operational lifetime when in contact with the waste feed envelope definitions.
- 2. The defined structure and composition of the selected resin(s) shall not be a trade secret.
- 3. The selected resin(s) shall have been manufactured by a supplier of demonstrated ability (greater than 1 percent of expected annual need but not less than 75 gal).
- 4. The selected resin(s) shall have been demonstrated on simulated or actual alkaline (greater than 1.0M hydroxide), high ionic strength wastes.

The WTP review led to the down-select of three resins – ABEC, Dowex 1x8, and Reillex HPQ – in addition to the baseline WTP resin for TcO_4 removal – SuperLig®639. All of these resins have been tested with Hanford tank waste.

ION EXCHANGE / SORBENT MEDIA	DISPOSITION	ION EXCHANGE / SORBENT MEDIA	DISPOSITION
ABEC 2000	Selected for Review	IONSIV IE-910	Not Selected for Review (SME)
ABEC 5000	Not Selected for Review (vendor recommendation)	Iron Sulfide	Not Selected for Review (WTP screening)
Activated Carbon	Not Selected for Review (WTP screening)	Kurion TAM (Sn ⁺⁺ Apatite Sorption media)	Selected for Review
Aliquat (tricaprylmethylammonium chloride)	Not Selected for Review (WTP screening)	LANL – TiO2/carbon beads	Not Selected for Review (WTP screening)
Amberlite IRA-400	Not Selected for Review (SEM)	Prolite A-520E	Selected for Review

Table 2 5	Lon	Frahango	/ Souhont	Madia	Initial	Samooning	Dogulta
I able 3-5.	TOIL	LACHAII2C.	/ SOLDent	Neura	IIIIIIai	Screening	Nesults

³ 24590-PTF-RPT-RT-02-001, Rev 0, *WTP PTF Alternative Resin Selection*, Bechtel National, Inc., Richland, Washington, 2002.

ION EXCHANGE / SORBENT MEDIA	DISPOSITION	ION EXCHANGE / SORBENT MEDIA	DISPOSITION	
Amberlite IRA-904	Not Selected for Review (SME)	Prolite A-530E	Selected for Review	
Amberlite XE-238	Not Selected for Review (WTP screening)	Prolite A-532E	Not Selected for Review (SME)	
Azaphosphane-based media	Not Selected for Review (WTP screening)	Reillex 402	Not Selected for Review (WTP screening)	
Bio-Rad AG 1-x8	Not Selected for Review (SME)	Reillex HP	Not Selected for Review (WTP screening)	
Bio-Rad MSZ-1	Not Selected for Review (WTP screening)Reillex - HPQSelected for		Selected for Review	
BiQuat RO-02-119	Not Selected for Review (WTP screening)Sr-SPECNot Selected (WTP screening)		Not Selected for Review (WTP screening)	
BiQuat VP-02-217	Not Selected for Review (WTP screening)	SuperLig 639	Selected for Review	
Boehmite, synthetic aluminum oxyhydroxide gel	Not Selected for Review (WTP screening)	Sybron Ionac Sr-3	Not Selected for Review (WTP screening)	
Cross-linked Polyvinyl Pyridine	Not Selected for Review (WTP screening)	Sybron Ionac SR-6	Not Selected for Review (WTP screening)	
Crypt-DER	Not Selected for Review (WTP screening)	Sybron Ionic SR-7	Not Selected for Review (SME)	
Dowex 1X8	Selected for Review	TEVA	Not Selected for Review (WTP screening)	
Dowex 2X8	Not Selected for Review (WTP screening)	Not Selected for Review (WTP screening) TRU-SPEC Not Selected for Revie (WTP screening)		
Duolite CS-100	Not Selected for Review (SME)	Zero-valence Iron filings/beads	Not Selected for Review (WTP screening)	
Forager Sponge	Not Selected for Review (WTP screening)	-	-	

3.2 SORPTION MEDIA INFORMATION

The following tables contain information on sorption media selected as candidates for the feasibility study. Several of the characteristics listed in Table 3-6 are unknown and therefore not listed in the sorption media property tables. For example, ⁹⁹Tc disposal routes can have many different paths and costs. Characteristics not carried forward to the sorption media properties review are:

- Cost of the system per Ci ⁹⁹Tc removed;
- Trade status of structure and composition.

Many of the characteristics were binned in more than one of the three categories (economic, safety and technical). For the properties table, these characteristics have been placed in the bin most impacted.

SORPTION			PUR	OLITE	TAM - SnII Apatite	
MEDIA PROPERTY	ABEC-2000®	DOWEX® 1-X8	A520E	A530E	Microspheres (Kurion, Inc.)	REILLEX
Economics						
Ability to supply amounts of ≥ 2000 lbs	Will require scale up development but is a technological possibility. (G)		Yes (T)	Yes (T)	Yes (I)	Yes (U)
BV per Hour Operation	Estimate 45 – 60 BV/hr (G)		Depends on concentration of competing anions (T)	Depends on concentration of competing anions (T)	Depends on application (I)	
Cost per Pound (or ft ³)	~30 – 60 \$/lbm @ 0.8 g/ml (~200 – 400 \$/gallon) (G)	Between 160 to 186 \$/lbm (Q) and WRPS estimator		~\$5.70/ lbm @ 0.67 g/ml (~\$238/ft ³)	To be specified. (I)	~\$68/lb @ .88 g/ml (150\$/Kg) (U)
Loading Cycles	Estimate 20 loading cycles for the resin but actual results will depending on the effects of radiolytic damage to the resin. (G)		Single use disposable resin (T)	Single use disposable resin (T)	Single use disposable resin (I)	
Storage, Shelf Life	Anticipate greater than 2 years of shelf life under environmentally controlled conditions. (G)		5 years (T)	5 years (T)	Indefinite (I)	
Safety						
Eluant	Water, dilute saline or dilute acid (G)	 4 M HNO₃: 15 BV; ~ 0% resiual TC on resin (A) 1 M NaOH, 1 M ethylene diamine, 0.005 M Sn(II): ~15 BV; ~0% residual ⁹⁹Tc on resin (A) 1M NaOH, 0.1M ethylene diamine, 0.01M Sn(II): ~15BV; 25% residual ⁹⁹Tc on resin (A) 	Non-elutable (T)	Non-elutable (T)	Non-elutable (I)	8 M HNO3 (A) 6 BV of 1 M NaOH, 1 N diamine, 0.005 M SnCl ₂
Handling Specifications	Resin will shrink and swell up to 30% depending on ionic strength of solutions passed through the resin bed. (G)				No special specs (I)	
Preparation	ABEC® resin should be preconditioned with a basic		Backwash to classify bed and then rinse (T)	Backwash to classify bed and then rinse (T)	Sn II substitution for Ca in Hydroxy Apatite (CaPO4)	

Table 3-6. Sorption Media Properties

HPQ	SUPERLIG 639
	Yes (B)
	99% ⁹⁹ Tc removal for 20% of λ_{50} at 3 BV/hr in AP-101 (W) 99% ⁹⁹ Tc removal for 43% of λ_{50} at 3 BV/hr in AZ-101 (Y) 99% ⁹⁹ Tc removal for 40% of λ_{50} at 3 BV/hr in AW-101 (D) Vendor states that cost per lb is dependent on volume and commercial terms (V)
	Up to 200, depending on radiation exposure, but \geq 50 loading cycles expected for LAW feed (V)
	5-10 years, ambient air, dry or wet (V)
И ethylene (A) (N)	Water, optimal at 70°C (B)
	No special requirements – resin is handled similarly to standard IX resin (B)
	Hydrate in water for 30 minutes

Table 3-6.	Sorption	Media	Properties
------------	----------	-------	-------------------

SORPTION			PUROLITE		TAM - SnII Apatite		
MEDIA PROPERTY	ABEC-2000®	DOWEX® 1-X8	A520E	A530E	Microspheres (Kurion, Inc.)	REILLEX HPQ	SUPERLIG 639
Procedure	solution of similar molarity prior to loading waste solutions (G)				Microsphere production. Glass substrate initiator. (I)		
Radiological Stability and/or Gas Generation	There is potential for CO_2 evolution from radiolysis of the resin (G) Small K _d reduction at 130M Rads Irradiation (A)	16% K _d reduction at 100M Rads Irradiation (A)			Extreme rad stability. No know gas generation. (I)	Good Radiolytic Stability observed at 1,000M Rads (A)	Organic resin so does have potential for gas generation, but providing Cs is removed prior to ⁹⁹ Tc removal, it will not suffer any significant radiolytic degradation resulting in gas generation $(1x10^8 \text{ Rad}) (\text{R})$
Process Technical Pa	rameters						
Equivalents/L	0.8 eq / L (G)	1.2 eq/L (Cl ⁻ , by wetted volume) (F)	0.9 eq/L min.(T)	0.6 eq/L min. (T)	~ 2.25-2.50 eq/L (I)	4 eq/kg dry (U)	
K _d [⁹⁹ Tc]	Depends on concentrations of other analytes, but improves with higher concentration of anions (G) 141-160 ml/g and λ ₅₀ breakthrough as 40-60BV at 10BV/hr (A) 410 ml/g SY-101 waste (P)	~12.3 mg ⁹⁹ Tc per cm ³ 1850 ml solution/g resin (H)	From simulated SY-102 waste spiked with ⁹⁹ Tc (J): 30 min = 371 ml/g 2 hour = 585 ml/g 6 hour = 620 ml/g From simulated DSSF waste spiked with ⁹⁹ Tc (K): 30 min = 189 ml/g 2 hour = 392 ml/g 6 hour = 527 ml/g From simulated NCAW waste spiked with ⁹⁹ Tc (L): 30 min = 329 ml/g 2 hour = 660 ml/g 6 hour = 782 ml/g	49,879 ml/g for ETF waste matrix (O)	pH 8.6 WTP Recycle Surrogate: 6.19E+01 (I) pH 13.2 At tank AN-104 Surrogate: 6.94E+02 (I)	Removal = 93%, Removal from a composite of double shell slurry feed (M) DF = 1100 ⁹⁹ Tc-m tracer in AW-101 waste (N) DF = 6 AW-101 waste (N) 917 ml solution/g resin, Simulated ORNL newly generated liquid low-level waste solution 1A, (H) Simulated SY-102 waste spiked with ⁹⁹ Tc (J): • 30 min = 314 ml/g • 2 hour = 372 ml/g • 6 hour = 370 ml/g From simulated DSSF waste spiked with ⁹⁹ Tc (K): • 30 min = 254 ml/g • 2 hour = 293 ml/g • 6 hour = 332 ml/g From simulated NCAW waste spiked with ⁹⁹ Tc (L): • 30 min = 382 ml/g • 2 hour = 459 ml/g • 6 hour = 445 ml/g	 99-99,9% removal of ⁹⁹TcVII for Hanford SST and DST waste envelope A, B, and C (note that ⁹⁹Tc in envelope A waste is ~97% ⁹⁹TcIIV and ~30% in envelope C waste) (B) DF factor is ~400 for ⁹⁹TcVII F factor = 0.9931 (X) Note: Many more K_d values are listed for SuperLig 639 in section 3.2.7.
Organic	Yes (G)	Yes: Styrene-DB, Gel (F)	Yes (T)	Yes (T)	No (I)		Yes
Particle Size	30-60 mesh (~250-600 micron) (G)	20-50 mesh (~300-850 micron) (Q)	16-50 mesh (~300 – 1200 micron) (T)	16-50 mesh (~300 – 1200 micron diameter) (T)	20-50 mesh. (~300-850 micron) (I)	81% of beads were 260 – 450 μm (N)	25- 35 mesh (~500 – 700 micron) 26% 600 to 1000 μm; 60% 425 to 600 μm, 11% 300 to 425 μm (X)
pH operating range	6 to 14+ (G)	0 to 14 (Q)	0 to 14 (T)	Stable: 0 to 14 (C)	6.5 to14 (not for acidic	The vendor reports that there is a week	No limit in acidic, neutral or basic range.

SORPTION			PUR	OLITE	TAM - SnII Apatite		
MEDIA PROPERTY	ABEC-2000®	DOWEX® 1-X8	A520E	A530E	Microspheres (Kurion, Inc.)	REILLEX HPQ	SUPERLIG 639
	Good chemical resistance to alkaline solutions (A)	Good chemical resistance to alkaline solutions (A)		Operating: 4.5 to 8.5 (C)	conditions) (I)	hydrogen bond that would be lost in basic solutions. They recommend pH < 7. They do not know of negative effects from the weak bond reacting in high pH solutions. (U) Good chemical resistance to alkaline solutions (A)	Optimal removal in high pH, high salt concentration solutions (V)
Poisons	Reducing agents capable of reducing ⁹⁹ Tc(VII) will reduce the ⁹⁹ Tc(IV) which will not be retained by the resin (G)		Competing anions are SO ₄ , Cl, HCO ₃ , NO ₃ , and U (T)	Competing anions SO ₄ , Cl, HCO ₃ , NO ₃ , and U (T)	Neither salts nor chelants seem to have an affect (I)		None known or found in testing with Hanford tank waste. Feed must be clarified prior to delivery IX column, otherwise as solids block access of TcO_4^- to resin ligand sites (V)
Resin Density (weight per unit volume)	0.8 g/mL in H2O and 1.1 g/mL in 6M KOH (G)	0.705g/ml (44 lbm/ft^3) at ~39-45% water $\rho = 0.41$ g/ml dry density (F) Packed bed yield volume 7.5ml, dry resin used 2.84g $\rho_b = 0.38$ g resin/ml resin in solution (H) Floats in 5.6M NaOH (1.27 g/L) (A)	0.675-0.705 g/ml $\rho_b = 0.351 \text{ g/ml} (\text{J})$	0.670 g/ml (0.335 g/ml dry)	~ 1.37 g/ml (dry) (I)	0.88 g/ml at ~50% water (25.2 Kg/ft^3) $\rho = 0.585$ g/ml dry (N) $\rho = 0.538$ g/ml wet (N) $\rho_b = 0.352$ g/ml (J) Likely floats in Feed Solution (A)	1.147 g/ml wet (B) 0.478 g/ml bulk dry (B) 1.07 grams of dry solids divided by the volume of wet resin particles (X)
Selectivity to ⁹⁹ Tc	The resin has good selectivity for ⁹⁹ Tc(VII) but will co-extract I [°] and Re(VII) (G)				Extremely specific at high salt molarity and high pH (I)		Virtually infinite selectivity over OH ⁺ , Cl ⁺ , F ⁺ , & Br ⁺ . NO_3^- is the primary competitor (V)
Temperature operating range	10°C – 50°C (G)	66°C Maximum (Q)	5 – 60°C (T)	5 – 60°C (T)	Made from glass microspheres at high temperatures. So none known. (I)		$5 - 40^{\circ}$ C LAW feed not to exceed 77°F (25°C) (B)
λ ₅₀	λ ₅₀ breakthrough as 40-60 BV at 10BV/hr for Hanford waste	703 ml solution/ml resin in column (H)	$\lambda_{50} = 130 \text{ ml}$ solution/ml sorbent media for SY-102 simulant, 30min contact time (J) $\lambda_{50} = 205 \text{ ml}$ solution/ml sorbent media for SY-102 simulant, 2hr contact time (J)	1.6E04 ml solution/ml resin (for ETF waste matrix; dilute compared to expected LAW feed) (O)	9.5E02 ml solution/ml dry resin for AN-104 surrogate	$\lambda_{50} = 111 \text{ BV} {}^{99}\text{Tc-m tracer in AW-101}$ waste (J) $\lambda_{50} = 131 \text{ BV AW-101 waste (N)}$ $\lambda_{50} = 88 \text{ m1 solution/m1 sorbent media}$ for SY-102 simulant, 30min contact time (J)	Tank 44 F sample (reported as similar to Hanford envelop A) resulted in approximately 89.4% Tc removal (⁹⁹ Tc $K_d = 950.1 \text{ mL/g}$), $\lambda_{50} \sim 500 \text{ BV}$ in AP-101 (W) $\lambda_{50} \sim 360 \text{ BV}$ in AZ-101 (Y) $\lambda_{50} = 213 \text{ BV}$ in AW-101 (D)

Table 3-6. Sorption Media Properties

Table 3-6. Sorption Media Properties

SORPTION			PUR	OLITE	TAM - SnII Apatite	
MEDIA	ABEC-2000 ®	DOWEX® 1-X8			Microspheres	REILLEX
PROPERTY			A520E	A530E	(Kurion, Inc.)	

REFERENCES (questionnaires are located in Appendix B)

- A. 24590-PTF-RPT-RT-02-001, Rev 0, WTP PTF Alternative Resin Selection, Bechtel National, Inc, Richland, WA
- B. 24590-WTP-RPT-PT-02-005, Rev 1, Flowsheet Bases, Assumptions, and Requirements, Bechtel National, Inc., Richland, Washington, 2002.
- C. Baker Corp[™] product brochure (http://www.bakercorp.com/pdfs/A-530E.pdf).
- D. BNFL-RPT-016 Rev 0., Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc From Hanford Tank Waste Envelope A (Tank 241-AW-101), Battelle, Pacific Northwest Division, Richland, Washington, 2000.
- E. DE-AC21-97MC33137--43, Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste, Eichrom Industries, Inc, Darien, Illinois, 1998.
- F. DOW® Vendor Information (http://www.dowwaterandprocess.com/products/ix/dx 1x8.htm)
- G. Eichrom Technologies LLC questionnaire.
- H. K/TCD-1141, Simulated ORNL newly generated liquid low-level waste solution 1A, pH 13,
- I. Kurion, Inc. questionnaire (Kurion homepage: http://www.kurion.com)
- J. LA-12654 Rev., Distributions of 14 Elements on 63 Selected Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Suprnate, and Alkaline Supernate) for Hanford HLW Tank 102-SY, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994
- K. LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.
- L. LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.
- M. PNNL-11386, Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal, D. L. Blanchard, Jr, et. Al., Pacific Northwest National Laboratory, Richland, Washington, January 1997.
- N. PNNL-11398, Technetium Removal Column Flow Testing with Alkaline, High Salt, Radioactive Tank Waste, D. L. Blanchard, Jr, et. Al., Pacific Northwest National Laboratory, Richland, Washington, November 1997.
- O. RPP-RPT-23199, Rev 0, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins, J. B. Duncan, 2004.
- P. RR196, New Technologies for Metal Ion Separations: Aqueous Biphasic Extraction Chromatography (ABEC). Part I. Uptake of Pertechnetate, Department of Chemistry, Northern Illinois University, DeKalb, Illinois, Argon National Laboratory, Argon, Illinois, 1996.
- Q. Sigma-Aldrich (Fluka) (http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=en&N4=44324|FLUKA&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC)
- R. SRTC-BNFL-013 Rev 0, Evaluation of the Radiation Stability of SuperLig® 639, Westinghouse Savannah River Company, Aiken, South Carolina, 1997.
- S. TAM Sn(II) Apatite Microspheres
- The Purolite Company questionnaire (Purolite® homepage: http://www.purolite.com). Τ.
- U. Vertellus® questionnaire (Vertellus® homepage: http://www.vertellus.com)
- V. IBC® Advanced Technologies questionnaire.
- W. WTP-RPT-030, Rev 0, Small Column Testing of SuperLig® 639 for Removing 99 Tc from Hanford Tank Waste Envelope A (Tank 241-AP-101), Battelle, Pacific Northwest Division, Richland, Washington, 2002.
- X. WTP-RPT-031, Rev 1, Small Column Testing of SuperLig 639 for Removing 99 Tc from Hanford Tank Waste 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions, Battelle, Pacific Northwest Division, Richland, Washington, 2004.
- Y. WTP-RPT-058, Rev 1, Small Column Testing of SuperLig® 639 for Removing 99Tc from Hanford Tank Waste Envelope B (Tank 241-AZ-101), Battelle Pacific Northwest Division, Richland, Washington, 2004.

SUPERLIG 639

3.2.1 ABECTM 2000 (Eichrom)

Aqueous Biphasic Extraction Chromatography (ABEC)^{™4} resins have been demonstrated to selectively extract pertechnetate anions from alkaline radioactive waste. ABEC resins consist of monomethylated polyethylene glycol (PEG) bonded onto cross-linked chloromethylated polystyrene-1%-divinyl-benzene backbone. The 2000 designation refers to the molecular weight of the PEG attached to the polystyrene support.

The resin behaves like an aqueous biphasic system (ABS), retaining chaotropic ions (such as TcO4⁻, which interfere with stabilizing intramolecular interactions mediated by non-covalent forces such as hydrogen bonds, van der Waals forces, and hydrophobic effects) in the presence of high ionic strength solutions of water-structuring anions (such as SO_4^{2-} , CO_3^{2-} , OH⁻). Resin uptake of TcO4⁻ increases as the concentration of water structuring salt increases. The highest K_d value for ABEC-2000 with Hanford waste was 410 ml/g, obtained for testing with Tank SY-101 waste. After loading, the resins are regenerated by elution with water.

Figure 3-1. ABEC 2000 Resin

3.2.1.1 Overview of Literature Reports for ABEC 2000

a) Industrial & Engineering Chemistry Research, 38, 1683-1689, *Flowsheet Feasibility Studies Using ABEC Resins for Removal of Pertechnetate from Nuclear Wastes*, Eichrom Industries, Inc., Darien, Illinois, University of Alabama, Tuscaloosa, Alabama, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1999.

This report presents information regarding ABEC G2 sorption media. It is not known whether this media is a forerunner to ABEC 2000. The article contains a basic flowsheet for another ⁹⁹Tc disposal system path -- removal of ⁹⁹Tc from LAW using ABEC G2, elution with water, then capture and disposal on a Purolite^{TM5} sorption media.

⁴ ABEC resins are trademarked products of Eichrom Technologies, Inc., of Lisle, Illinois.

⁵ Purolite resins are trademarked products of The Purolite Company of Bala Cynwyd, Pennsylvania.

 b) RR196, New Technologies for Metal Ion Separations: Aqueous Biphasic Extraction Chromatography (ABEC). Part I. Uptake of Pertechnetate, Department of Chemistry, Northern Illinois University, DeKalb, Illinois, Argonne National Laboratory, Argonne, Illinois, 1996.

This report is an overview of synthesis and uptake properties of several ABEC Resins (350, 750, 2000, and 5000) and a summary of experiments performed to show that 1) resin uptake of TcO4⁻ increases as the concentration of the water-structuring salt increases, 2) resin uptake increases as ΔG_{hyd} of the water-structuring anions becomes more negative, 3) resin uptake increases as the molecular weight of the polymer increases, and 4) no uptake occurs from salt solutions that do not contain a sufficient concentration of bi-phase forming salt. Data for three different waste simulants (Tank SY-101, neutralized current acid waste, and SST waste) is presented as well as other studies of various salt solutions and pH solutions.

c) DE-AC21-97MC33137--43, Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste, Eichrom Industries, Inc, Darien, Illinois, 1998.

This report describes work to synthesize an improved version of the ⁹⁹Tc selective resin to resolve performance issues of the original ABEC-5000 resin, including research to investigate the influence of certain copolymer substrate properties on the physical properties and uptake performance of ABEC resins. Properties included degree of cross-linking, copolymer bead porosity and number of potential sites for attachment of PEG. The report also includes a flowsheet for stabilization and disposal of ⁹⁹Tc by loading the ⁹⁹Tc which has been stripped from the ABEC resin with water onto a commercial silica-based anion exchange resin, NUCLEOSIL^{TM6} and then encapsulating it within a hydrous titanium oxide matrix. Waste streams include actual Hanford tank waste from Tank AW-101, (a Cs-decontaminated, double-shell slurry feed (DSSF) composite), three different Hanford tank waste simulants, actual waste samples from Melton Valley Storage Tanks (MVSTs) W-29 and W-3 at the DOE's Oak Ridge National Laboratory (ORNL), and waste simulant solutions from two British Nuclear Fuels, Ltd. (BNFL) locations—Capenhurst and Sellafield—in the United Kingdom.

3.2.2 DowexTM 1-X8 (Dow Chemical)

Dowex^{TM7} 1-X8 is a Type 1 strongly basic anion exchange resin. Structurally it is a quaternary amine based resin on a cross-linked (8%) styrene divinyl-benzene backbone. The resin is spherical and floats in 5.6 molar (M) NaOH (1.27 g/L). It has good chemical resistance to alkaline solutions. Its typical eluent is 4M nitric acid (HNO₃)

⁶ Nucleosil resins are trademarked products of W.R. Grace and Company of Columbia, Maryland.

⁷ Dowex is a trademarked product of the Dow Chemical Company of Midland, Michigan.

Figure 3-2. DowexTM 1-X8 Resin

3.2.2.1 Overview of Literature Reports for DowexTM 1-X8

Dowex 1-X8 has been reviewed by the WTP for Tc removal from LAW feedafter Cs removal. However, that report (24590-PTF-RPT-RT-02-001, Rev 0, *WTP PTF Alternative Resin Selection*) is business sensitive and has not been made available for WRPS review.

 a) K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste, ORNL Chemical Technology Division, W. D. Bostick, et. Al, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995).

This reference is not directly applicable to immobilization of Hanford's LAW. The nitrate (NO_3) and salt concentrations for the simulant used are too low.

Oak Ridge National Laboratory also reviewed Dowex 1-X8 for ⁹⁹Tc removal from its Newly-Generated Liquid Low-Level Waste. The resin was tested on two waste simulants. The simulant with the highest pH and salt concentrations is listed in Figure 3-3. Although the simulant has high pH, the concentrations of the salts are too low for accurate comparison with Hanford wastes. Regarding use of this resin on Hanford waste, the report comments:

"It should be noted that loading of ⁹⁹Tc on Type 1 strongly basic anion exchange resin (such as $Dowex^{TM} 1 - X8$) is adversely affected by high concentrations of competing nitrate ion; this situation could occur if NGLLLW is blended with a relatively large proportion of high-nitrate legacy waste from the Melton Valley Storage Tanks"

Another comment of interest is the finding regarding completely loading the sorption media with ⁹⁹Tc. Based on the ORNL simulant and testing, Dowex 1-X8 laden with ⁹⁹Tc would hold 170 Ci ⁹⁹Tc/m³.

Figure 3-3. Newly-Generated Liquid Low-Level Waste Simulate Composition (K/TCD-1141)

Component or Property	Value
NaOH	0.125 mol/L (5.0 g/L)
Na ₂ CO ₃	0.10 mol/L (10.6 g/L)
NaNO ₃	0.06 mol/L (5.1 g/L)
NaCl	0.034 mol/L (2.0 g/L)
LiCl	0.025 mol/L (1.06 g/L)
NaAlO ₂	0.012 mol/L (0.98 g/L)
Solution pH	~13 standard units
Solution density	~1.07 g/L

^a Based upon Table 4.1 in Arnold, et al. (1994), as amended (D. T. Bostick, personal communication, November 14, 1994).

3.2.3 **PuroliteTM A520E**

Figure 3-4. PuroliteTM A520E

SEM(ORNL/TM-13593

20KU X1200

8814

10.00

FSI

Purolite A520E is a strong base anion resin designed for the removal of nitrates from water for potable processes. It is a macroporous polystyrene crosslinked with divinylbenzene, and the functional group is a Type 1 quaternary ammonium pendant group. Macroporous resins are highly cross-linked polymers penetrated by open spaces through which solutions are able to flow. It has an exchange capacity of 0.9 eq/L in the chloride form, specific gravity of 1.07, and particle size range of 300 to 1200 microns. (Purolite Literature http://www.purolite.com/default.aspx?ReIID=606288&ProductID=223)

3.2.3.1 Overview of Literature Reports for PuroliteTM A520E

a) LA-12654 Rev., Distributions of 14 Elements on 63 Selected Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

The alkaline simulant used for this work is slightly low in ionic strength to be directly applicable to the processing of LAW waste and removal of ⁹⁹Tc. The simulant was based from on Tank SY-102, so it is applicable to some portion of Hanford's LAW feed. Three simulants where tested with only the alkaline solution of interest, its matrix is shown in Figure 3-5. The results of the study with respect to ⁹⁹Tc and Purolite 520E are best presented by review of Figure 3-6 and Figure 3-7. Elution of sorption media was not investigated.

	(Acid-Dissolved Sludge and Acidified Supernate compositions removed to minimize confusion)	Alkaline Supernate
Cationsa		
Na		2.2 M
Mg		none
Al		0.16 M
Si		0.0024 M
Ca		0.0069 M
Cr(III)		none
Cr(VI)		0.0051 M
Mn		none
Fe		0.0061 M
Ni		BDL
Cu		BDL
Se		BDL
Sr		BDL
Pb		BDL
Th		BDL
U		BDL
239Pu		BDL
²³⁸ Pu		none
Anionsb		
F		0.21 M
Cl		0.102 M
NO ₂		1.31 M
PO		0.061 M
SO4		0.022 M
pH		13.85
calculated H+		
calculated OH	-	07M

Figure 3-5. Tank SY-102 Alkaline Supernate Simulant (Table 2, LA-12654, Rev.)

^aDetermined by inductively coupled plasma/mass spectrometry (ICP/MS). ^bDetermined by ion chromatography (IC). ^cBelow detection limit.

25

*		Kd Value	for Specif	ied Time
Solution	Absorber	30 min	2 h	6 h
Alkaline	Aliquat [™] 336	417	614	651
Supernate	Purolite [™] A-520-E	371	585	620
G	Reillex [™] HPQ	314	372	370
17	Sybron [™] (Et) ₃ N resin	279	446	521
	Sybron [™] (Pr) ₃ N resin	262	277	554
	Ionac [™] SR-3	222	272	258
	Ionac [™] SR-6	191	385	520
	Sr-Spec TM	82	81	76
	Cyanex [™] 923	80	116	110
	Crypt-DER	31	38	38
	DHDECMP	21	23	21
	LIX™-26	21	23	22
	DHDECMP-DIPB	14	14	13
	TRU-Spec TM	7.6	7.5	7.2
	CMPO-DIPB	4.5	6.8	7.6
	Tannin	4.3	5.4	4.0
	Bone char	2.9	5.1	4.9

Figure 3-6. Results by Adsorber for Technetium (LA-12654 Rev.)

Figure 3-7. Purolite[™] A520E Distribution Coefficients by Analyte (LA-12654 Rev.)

		Kd Value	Kd Value for Specified Tim		
Solution	Element	30 min	2 h	6 h	
Alkaline	Ce	<0.1	0.2	<0.1	
Supernate	Cs	0.8	0.2	0.3	
10	Sr	0.5	1.2	1.5	
	Tc	371	585	620	
	Y	0.5	1.2	2.0	
	Cr	0.8	0.3	0.6	
	Co	1.0	0.3	0.4	
	Fe	0.4	0.4	1.0	
	Mn	< 0.1	0.2	1.1	
	Zn	0.3	<0.1	< 0.1	
	Zr	0.8	0.3	0.6	
	U	0.8	0.7	0.8	
	Am	< 0.1	< 0.1	< 0.1	

 b) LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

This report is directly applicable to ⁹⁹Tc removal from Hanford's LAW waste stream. The study builds off of previous work performed by LANL. The simulant used is based off double shell slurry feed (DSSF), Figure 3-8. Results for Purolite A520E are best represented by Figure 3-9 and Figure 3-10.

	Concentration (M)
Cations	
Na	7.0
K	0.945
Cs	7.0 × 10 ⁻⁵
Al	0.721
Anions	
Cl	0.102
NO,	3.52
NO,	1.51
PO,	0.014
so	0.008
CO,	0.147
OH- (total)	4.63
OH- (free)	1.75

Figure 3-8. DSSF Simulant Composition (LA-12863)

	Kd Value for Specified Time			
Absorber	30 min	2 h	6 h	
Reillex [™] HPQ	254	293	332	
Purolite™ A-520-E	189	392	527	
Aliquat [™] 336	177	464	524	
Sybron (Et), N	167	401	471	
Cyanex [™] 923	121	244	230	
Ionac [™] SR-3	115	279	312	
Sybron (Pr), N	96	257	390	
Ionac [™] SR-6	45	105	188	
Nusorb [™] LP-70-S	15	24	26	

Figure 3-9. Results by Adsorber for Technetium (LA-12863)

Figure 3-10. Purolite[™] A520E Distribution coefficients by Analyte (LA-12863)

	Kd Value	for Specifi	ed Time	
Element	30 min	2 h	6 h	
Ce	5.4	6.0	19	
Cs	0.2	< 0.1	<0.1	
Sr	0.4	0.4	0.4	
Tc	189	392	527	
Y	2.8	3.4	4.3	
Cr	<0.1	< 0.1	0.1	
Co	0.3	0.4	0.7	
Fe	0.2	1.0	1.4	
Mn	0.5	1.0	1.5	
Ni	0.6	0.9	1.5	
v	<0.1	< 0.1	< 0.1	
Zn	<0.1	0.2	0.6	
Zr	0.6	1.4	1.5	
U	<0.1	0.4	0.7	
Am	4.9	5.4	8.8	

c) LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

This report is directly applicable to ⁹⁹Tc removal from Hanford's LAW waste stream. The study builds off of previous work performed by LANL. The simulant used is based off neutralized current acid waste (NCAW), Figure 3-11. Results for Purolite A520E are best represented by Figure 3-12 and Figure 3-13.

	Concentration (M)
Cations		2
Na	4.987	
К	0.120	
Rb	5.0×10^{-5}	
Cs	5.0×10^{-4}	
Al	0.430	
Anions		
F	0.089	
NO.	1.669	
NO	0.43	
PO,	0.025	
so.	0.15	
CO,	0.23	
OH-(total)	3.4	
OH-(free)	1.68	
Theoretical pl	H = 14.52	
Measured pl	H = 14.2	

Figure 3-11. NCAW Simulant Composition (LA-12889)

NCAW Solution Used in This Study

Table 2. Composition of Simulated Hanford

Figure 3-12.	Results by	Adsorber	for	Technetium
	(LA-	-12889)		

Figure 3-13. Purolite [™] A520E
Distribution coefficients by Analyte
(LA-12889)

Table 7. Technetium I	Va Value	for Create	d Time		
	Ka value for Specified Time				
Absorber	30 min	2 h	6 h		
TEVA-Spec™	1101	1259	1209		
Aliquat [™] 336	455	679	775		
Reillex [™] HPQ	382	459	445		
Purolite [™] A-520-E	329	660	782		
Sybron (Et),N	303	571	739		
Ionac™ SR-3	227	385	407		
Sybron (Pr),N	218	488	705		
Cyanex [™] 923	185	212	188		
Ionac [™] SR-6	127	308	544		
Nusorb™LP-70-S	31	46	47		
SRS RF BSC-187	5.0	33	232		
Tannin	4.7	15	62		

Table 37. Pu	rolite [™] A-520-E Anion Exchange
Resin: Distr	ibution of 12 Elements from
Simulated H	lanford NCAW Solution

	Kd Value for Specified Time			
Element	30 min	2 h	6 h	
Cs	0.1	0.2	0.1	
Sr	<0.1	< 0.1	<0.1	
Tc	329	660	782	
Y	1.4	1.5	1.6	
Cr	0.1	0.2	0.2	
Co	0.6	0.7	0.6	
Fe	0.7	1.2	1.2	
Mn	0.9	1.3	1.3	
Ni	0.6	0.7	0.4	
v	0.6	0.7	0.6	
Zn	0.5	0.6	0.5	
Zr	0.8	0.9	0.8	
d) ORNL/TM-13593, A Field Trial of Novel Bifunctional Resins for Removing Pertechetate (TcO4-) from Contaminated Groundwater, Oak Ridge National Laboratory, Lockheed Martin Energy Research Corporation, Oak Ridge, Tennessee, 1998.

Testing was performed on groundwater and is not directly applicable to Hanford's LAW feed. Of possible note is that SO4⁻² was retained in the sorption media.

3.2.4 Ригоlitе^{тм} А530Е

Purolite A530E has been investigated by DOE contractors in several different programs for remediation of ⁹⁹Tc. The sorption media is strong base anion, crosslinked with divinylbenzene. The formulation is selective for hydrophobic anions. The result is a sorption media that has high selectivity to perchlorate and pertechnetate ions. The bonding strength of media to pertechnetate makes elution difficult, and the vendor recommends a single pass system. The Purolite A530E is based on the biquat resin invented at ORNL by Gu, et al.⁸ Like the Purolite A520E, it is a macroporous resin with a polystyrene crosslinked with divinylbenzene. The functional group is a quaternary ammonium pendant group. The resin is for perchlorate and pertechnetate removal. It has a capacity of 0.6 eq/L, a particle size of 300 to 1200 microns, and specific gravity of 1.7. (http://www.purolite.com/default.aspx?ReIID=606288&ProductID=333)

3.2.4.1 Overview of Literature Reports for PuroliteTM A530E

a) PNNL-19681, *Tc-99 Ion Exchange Resin Testing, Pacific Northwest Laboratory*, Pacific Northwest National Laboratory, Richland, Washington, 2010.

Testing was performed for CH2M Hill Central Plateau Remediation Company for removal of ⁹⁹Tc from groundwater. Although the solution processed was not applicable to Hanford LAW, the results of the work performed may be applicable depending on the method of disposal chosen for ⁹⁹Tc.

Goals for the work were to evaluate release of ⁹⁹Tc from the spent ion exchange resin after several years of storage, whether hot water stripping could be used to remove carbon tetrachloride from the spent resin without release of ⁹⁹Tc, and whether the sorption media could be encapsulated into a cementitious waste form. If it could be incorporated, what would the release rate of the monolith be due to weathering? The leachability study showed less than 0.02% of the ⁹⁹Tc released. The Purolite A530E also held onto the ⁹⁹Tc through the hot water wash. Encapsulation of spent resin in a cementitious material was not conclusive, and further testing is required to determine physical degradation caused by moisture loss and the effect of this degradation process on the release of ⁹⁹Tc.

b) RPP-RPT-23199, Rev 0, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins, CH2MHill Hanford Co. Richland, Washington, 2004.

⁸ Gu, B.; G.M. Brown, P.V. Bonnesen, L. Liang, B. A. Moyer, R. Ober, and S. D. Alexandrotos, 2000,

[&]quot;Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater," Environmental Science and Technology, (Washington, DC) 34B, 1075-1080.

The goal of work documented here was to evaluate and compare candidate anion exchange resins for their capacity to remove ⁹⁹Tc from Basin 44 Reverse Osmosis (RO) reject stream. Due to the makeup of the solution processed, this work is not applicable to Hanford's LAW.

c) RPP-RPT-39195, Rev 1, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine, Washington River Protection Solutions, Richland, Washington, 2009.

The solution tested was ~ 2.1 M sodium (Na), formulated to match the anticipated Basin 43 waste from the Effluent Treatment Facility (ETF), and is not directly applicable to Hanford's LAW. The report does show Purolite A530E as having a good leach index for ⁹⁹Tc.

3.2.5 ReillexTM HPQ (Vertellus®)

Reillex^{TM⁹} HPQ is a quaternary amine based resin on a cross-linked styrene divinyl-benzene backbone. The resin is in the form of spherical beads. The resin sinks in deionized water but will likely float in LAW feed. The resin is elutable with either 8 M HNO₃ or a 1M sodium hydroxide (NaOH), 1M ethylene diamine, 0.005M tin (Sn)(II) solution. The harsh eluants required for stripping may allow this media to perform as a non-elutable.

Figure 3-14. Reillex[™] HPQ Resin

There is some concern with the vendor regarding degradation the sorption media at the pH range required for processing LAW feed. The concern has not been observed by the vendor or in testing performed on LAW feed.

3.2.5.1 Overview of Literature Reports for ReillexTM HPQ

a) CONF-9505101--1, Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995.

Based on information provided in the report on the solutions tests, this report is applicable to the capture of ⁹⁹Tc by sorbent media from Hanford's LAW. The solution used for this work was supernatant samples from MVSTs W-29, see Table 3-7.

⁹ Reillex products are trademarked by Vertellus Specialties, Inc., of Indianapolis, Indiana.

Parameter	Units	W-29
NO3	gmol/L	4.5
Na	gmol/L	4.4
⁹⁹ Tc	Ci	5.41E-07
Density	g/ml	1.226
pH	pH	13.2

Table 3-7. Solution Properties (CONF-9505101-1)

Note: Units for NO_3^- , Na and ⁹⁹Te have been converted to match those in Table 3-1.

The ⁹⁹Tc concentration was adjusted to a concentration near the average of 17 Hanford underground storage tanks. The report looked at four sorbent media for ⁹⁹Tc removal, as shown in Figure 3-15.

Figure 3-15. ⁹⁹Tc Batch Adsorption Data for MVST W-29 Supernate (CONF-9505101-1)

	Mixing time (h)						
		(2	2)	×	(24	0	
	Exchanger ^b	D (mL/g)	% R	• •	D (mL/g)	% R	_
-	Reillex™ HPQ ^e	282	60		624	76	_
	Reillex™ HPQ ^d	149	44		511	72	
	Reillex [™] 402 ^c	430	69		786	80	
	Reillex [™] 402 ^d	349	64		356	66	
	Amberlite [™] IRA-904 ^c	186	48		628	76	
	Amberlite™ IRA-904 ^d	286	59		535	74	
	Amberlite™ IRA-400°	88	31		412	68	

"Descriptions of the W-29 supernatant stock solution preparation and the batch-test procedure are given in the section entitled "TEST PROCEDURES."

^bTthe ion exchangers are discussed in the section entitled "Exchangers Tested for Technetium." 'Hydroxide form of exchanger.

- ^dNitrate form of exchanger.
- b) CONF-970148—3, Comprehensive Supernate Treatment, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1996.

Waste tested were from Oak Ridge National Laboratory MVST farm tanks W-25, W-27, and W-29. Waste was processed to remove ¹³⁷Cs first, ⁹⁰Sr second, and then ⁹⁹Tc using Reillex HPQ. Lambda-50 (λ_{50}) was stated as 45 BV. Elution was performed in 7 BV using a solution of stannous chloride, ethylenediamine, and sodium hydroxide.

c) Environmental Science & Technology, 34, 3761-3766, *Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate: Batch-Equilibrium Experiments*, Oak Ridge National Laboratory, Oak Ridge, Tennessee, and University of Tennessee, Knoxville, Tennessee, 2000.

Work was performed on groundwater, not directly applicable to Hanford LAW. Good technical information regarding sorption media.

 d) K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste, Oak Ridge National Laboratory Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995.

The results of the work performed are not representative to LAW feed mainly due to the differences in pH between the Newly Generated Liquid Low-Level Waste solution, \sim 7.4, and LAW feed \geq 12. Results did show good K_d for Purolite A-530E, IONAC SR-7, and Reillex HPQ.

Oak Ridge National Laboratory reviewed Reillex HPQ for ⁹⁹Tc removal from its Newly-Generated Liquid Low-Level Waste. The resin was tested on two waste simulants. The simulant with the highest pH and salt concentrations is listed in Figure 3-3. Although the simulant has high pH, the concentrations of the salts are too low for accurate comparison with Hanford wastes. The report states the assumption that Reillex HPQ would perform well for a high salt concentration feed matrix.

e) RPP-RPT-23199, Rev 0, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins, CH2MHill Hanford Co., Richland, Washington, 2004.

The goal of work documented here was to evaluate and compare candidate anion exchange resins for their capacity to remove ⁹⁹Tc from Basin 44 Reverse Osmosis (RO) reject stream. Due to the makeup of the solution processed this work is not applicable to Hanford's LAW.

f) PNNL-11386, Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal, Pacific Northwest National Laboratory, Richland, Washington, November 1997.

Work performed for this report directly supports the removal of ⁹⁹Tc from Hanford's LAW Immobilization feed.

The report is initial work performed by Pacific Northwest National Laboratory (PNNL) to study ⁹⁹Tc removal from Hanford tank waste supernate and ⁹⁹Tc oxidation state in the supernate. Actual SST and DST tank wastes were used.

- A composite DSSF:
 - 70% from Tank AW-101;
 - 20% from Tank AP-106;
 - 10% from Tank AP-102.
- Waste from Tanks AN-107, SY-101, ANS SY-103 that are distinguished by having a high concentration of organic complexants (complexant concentrate or CC waste type, often referred to as LAW waste feed envelop C).

Reillex HPQ was effective for ⁹⁹Tc removal from the composite DSSF waste, removing 93% on the first contact. The resin was ineffective for ⁹⁹Tc removal from the three CC wastes studied. Technetium removal from the CC wastes was in all cases less than 50%. The conclusion was that to remove ⁹⁹Tc from these wastes, the oxidation state of the ⁹⁹Tc species must be adjusted to create $TcO4^{-}$.

g) PNNL-11398, Technetium Removal Column Flow Testing with Alkaline, High Salt, Radioactive Tank Waste, Pacific Northwest National Laboratory, Richland, Washington, November 1997.

Hanford DST Waste from Tank AW-101 diluted to 5M Na with water. Waste was spiked with ^{99m}Tc in TcO4⁻ form. The DF for recovery of ^{99m}Tc was 1,100; DF of ⁹⁹Tc from waste was six. Waste had more non-pertechnetate fraction than estimated based on organic concentration of waste (~2.5 g total organic compounds/L)

 h) LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

The alkaline simulant used for this work is slightly low in ionic strength to be directly applicable to the processing of LAW waste and removal of ⁹⁹Tc. The simulant was based from on Tank SY-102, so it is applicable to some portion of Hanford's LAW feed. Three simulants where tested with only the alkaline solution of interest here, its matrix is shown in Figure 3-5. The results of the study with respect to ⁹⁹Tc and Reillex HPQ are best presented in Figure 3-6 and Figure 3-16. Elution of sorption media was not investigated.

		Kd Value	e for Specified Time	
Solution	Element	30 min	2 h	6 h
Alkaline	Ce	<0.1	0.7	1.0
Supernate	Cs	<0.1	< 0.1	<0.1
	Sr	0.4	0.6	0.6
	Tc	314	372	370
	Y	2.3	3.4	4.1
	Cr	0.1	0.2	0.2
	Co	2.2	2.7	2.7
	Fe	3.4	3.7	4.4
	Mn	14	18	26
	Zn	<0.1	< 0.1	<0.1
	Zr	1.3	1.5	1.8
	U	0.2	0.4	0.7
	Am	4.5	7.5	21

Figure 3-16. Reillex™ HPQ Distribution Coefficients by Analyte (LA-12654 Rev.)

 LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Shurry Feed (DSSF), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

This report is directly applicable to ⁹⁹Tc removal from Hanford's LAW waste stream. The study builds off of previous work performed by LANL. The simulant used is based off neutralized current acid waste (NCAW), Figure 3-8. Results for Reillex HPQ are best represented by Figure 3-9 and Figure 3-17.

Table 39. Reillex [™] HPQ Anion Exchange Resin: Distribution of 15 Elements from Simulated Hanford DSSF Solution					
	Kd Value f	or Specifie	d Time		
Element	30 min	2 h	6 h		
Ce	<0.1	1.2	7.4		
Cs	2.4	0.5	0.5		
Sr	2.8	0.7	0.8		
Tc	254	293	332		
Y	5.3	11	25		
Cr	2.5	0.7	0.8		
Co	1.9	1.1	1.6		
Fe	2.5	1.8	2.3		
Mn	4.1	8.5	12		
Ni	< 0.1	2.5	10		
v	1.4	0.3	0.3		
Zn	1.6	0.6	0.9		
Zr	1.7	1.4	2.3		
U	1.5	0.4	0.9		
Am	3.9	5.7	10		

Figure 3-17. Reillex [™] HPO	Distribution	Coefficients by	Analyte	(LA-12863)

 j) LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.

This report is directly applicable to 99Tc removal from Hanford's LAW waste stream. The study builds off of previous work performed by LANL. The simulant used is based off neutralized current acid waste (NCAW), Figure 3-11. Results for Reillex HPQ are best represented by Figure 3-12 and Figure 3-18.

	Kd Value	e for Specif	ied Time
Element	30 min	2 h	6 h
Cs	0.1	< 0.1	<0.1
Sr	0.2	0.3	0.3
Tc	382	459	445
Y	2.3	3.4	4.0
Cr	< 0.1	< 0.1	<0.1
Co	0.2	0.2	0.3
Fe	1.1	1.0	1.0
Mn	1.5	1.9	2.3
Ni	2.2	2.5	5.1
v	< 0.1	< 0.1	< 0.1
Zn	< 0.1	0.1	0.1
Zr	0.4	0.8	0.8

Figure 3-18. Reillex[™] HPQ Distribution Coefficients by Analyte (LA-12889)

 k) WHC-SD-WM-TI-699, Rev. 1, Technical Basis for Classification of Low-Activity Waste Fraction from Hanford Site Tanks, Westinghouse Hanford Company, Richland, Washington, 1996.

The report has a section on "Technology Options" for "Technetium-99 Removal". The implementation of sorption media looked at Reillex-HPQ, eluted with 6 M HNO3. The conclusion was that the method was only applicable for removal of Tc(VII), and therefore not technically feasible for their goals.

1) WHC-SD-WM-TI-718, *Technetium Removal: Preliminary Flowsheet Options*, Westinghouse Hanford Company, Richland, Washington, 1995.

Work document contains a preliminary investigation for flowsheets targeting the removal of ⁹⁹Tc from Hanford's tank wastes. Several different ⁹⁹Tc removal technologies were reviewed: sorption, precipitation, volatilization, and alkaline sulfide precipitation. ReillexTM HPQ sorption media was selected for their flowsheet work with two eluants reviewed – 1) nitric acid and 2) a solution of stannous chloride, ethylenediamine, and sodium hydroxide.

m) WSRC-MS-98-00601, Pretreatment/Radionuclide Separations of Cs/Tc from Supernates, Westinghouse Savannah River Company, Aiken, South Carolina, 1998.

The document is a brief status on separations work for Cs and 99 Tc. The report states that an algorithm was developed to predict K_d values for Reillex HPQ regarding Hanford's supernates with values ranging from 500 – 600 for most; lower for supernates containing CC. Elution was stated as requiring a strong HNO₃ solution, with 8 M HNO₃ not having complete removal. Complete elution was achieved with a Sn(II) and ethylenediamine solution.

n) WSRC-TR-99-00317, *Qualification of Reillex™ HPQ Anion Exchange Resin for Use in SRS Processes*, William J, Crooks III, et. Al., Westinghouse Savannah River Company, Aiken, SC, 2000.

The report documents testing required for using Reillex in HNO₃ solution at the DOE's Savannah River Site (SRS) for the loading of plutonium (Pu). Therefore the data presented is not readily applicable to Hanford's LAW feed. Testing was performed to understand low temperature exotherms from the diethylbenzene - 8 M HNO₃ reaction. A low-temperature exotherm was observed, generating nitric oxide (NO), carbon dioxide (CO2), and a mixture of mono- and dicarboxylic acids as reaction products. One conclusion is that Reillex HPQ contains a small amount of easily-oxidized material. A pretreatment process was developed to remove oxidizable constituents of the media, which showed comparable particle size distribution and Pu loading performance. Since TcO_4^- is elutable from Reillex HPQ with 8M HNO3, it may be applicable for understanding the safety of the system during elution and the number of time the sorption media could be regenerated.

3.2.6 TAMTM or Sn(II) Apatite Microspheres (Kurion, Inc)

TAM^{TM¹⁰} was developed to take advantage of the properties of Sn(II)apatite on a sorption media base. This product is fairly new and not much literature is available for it. Both articles below concern the media (Sn(II)apatite), but not in a sorption media form as presented by Kurion. Kurion replied fully to a questionnaire regarding its product. The questionnaire coupled with results from testing on more dilute solutions showing that Sn(II)apatite binds ⁹⁹Tc well to its matrix, resulted in its inclusion in this study.

3.2.6.1 Overview of Literature Reports for TAM

a) PNNL-14208, Selection and Testing of "Getters" for Adsorption of Iodine-129 and *Technetium-99: A Review*, Pacific Northwest National Laboratory, Richland, Washington, 2003.

The goal of this study was to identify suitable "getter" materials that can immobilize or delay the transport of anionic radionuclides (such as ¹²⁹I and ⁹⁹TcO4) that would be released from physically and chemically degrading waste packages. The solutions tested are not applicable to Hanford's LAW.

b) RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine, Washington River Protection Solutions, Richland, Washington, 2009.

The solution tested was ~2.1 M Na, was formulated to match the anticipated Basin 43 waste from the ETF, and is not directly applicable to Hanford's LAW. The report does show Sn(II) apatite as having a good leach index for ⁹⁹Tc.

¹⁰ TAM products are manufactured by Kurion, Inc. of Irvine, California.

3.2.7 SuperLig® 639 (IBC Advanced Technologies, Inc.) Figure 3-19. SuperLig® 639 Resin

SuperLig^{®11} 639 was selected by BNFL as the ⁹⁹Tc ion exchange media for the ⁹⁹Tc removal column as part of the Tank Waste Remediation System (TWRS now known as WTP) project. The ⁹⁹ removal process step was later removed with the implementation of an alternative ⁹⁹Tc immobilization strategy. Up to that, point SuperLig 639 was extensively tested at laboratory scale on simulants and actual waste representative of three envelopes of waste feed (A, B and C). The composition of these envelopes is found in 24590-WTP-RPT-PT-02-005, Rev 1. The key parameter of the three envelopes regarding ⁹⁹Tc removal is organic content. Tanks with relatively high organic content were designated as containing envelop C waste. Roughly 70% of the ⁹⁹Tc found in envelope C is not in the VII oxidation state, and not amenable to capture via sorption media. The SuperLig 639 resin was extensively tested at pilot scale, and its radiation resistance has also been evaluated.

The active component in the resin is a complexant specifically designed to remove ⁹⁹Tc in its +7 (VII) oxidation state, TcO_4^- . The beads are of sufficiently high density such that they do not float in media 1.25 to 1.27 g/cc.

The resin has been tested at lab scale and pilot scale. Key findings are:

- The resin shows a high removal efficiency, with K_ds in the order of 400 being routinely achieved for TcO₄;
- Sorption is best accomplished in the temperature range of 5°C to 40°C as the binding constant decreases with increased temperature;
- Processing rate is at 0.05 BV per min for >99% ⁹⁹Tc removal (as is washing and elution). Increasing this rate leads to early break through;
- The resin met the average >80% removal criteria for WTP LAW Vitrification feed;
- Elution requires approximately 10-15 BV at a flow rate of 0.1 BV per minute;

¹¹ SuperLig products are manufactured by IBC Advanced Technologies, Inc., of American Fork, Utah.

- There must be sufficient counter ions to the TcO₄⁻ anion (Na^{+,} K⁺ or H⁺) present in the solution;
- Early trials suggested that the initial performance degradation of the resin begin with exposure levels of 1×10^7 Rads; Further trials indicated that the resin was resistant to significant damage at 1×10^8 Rads, which is consistent with SuperLig 644 and polystyrene resins in general;
- Selectivity over hydroxide, chloride, fluoride, and bromide is nearly infinite. Selectivity over 2-3 M nitrate (NO₃⁻) and (NO₂⁻) nitrite is of multiple orders of magnitude, such that there is minimal effect on TcO₄⁻ binding up for Hanford's LAW;

3.2.7.1 Overview of Literature Reports for SuperLig[®] 639

a) BNF-003-98-0140, *Evaluation of SuperLig® 639 Ion Exchange Resin for the Removal of Rhenium from Hanford Envelope A Simulant*, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

This report showed 90 to 150 BV to 50% breakthrough when the flow rate was in the correct range, demonstrating again the need for the correct flow rate. The elution is accomplished to 0.1 C/Co at 16 BV. The column bed design in this test had too much head space. The report included important statements such as "Tests highly successful in demonstrating effectiveness of this method for removing TcO4- from Hanford Tank Waste"; "No significant problems encountered which would prevent use of this resin as planned"; "No observations of cracking or swelling of the resin bed" are made.

b) BNF-003-98-0146, Rev. 1, *Small-Scale Ion Exchange Removal of Cesium and Technetium From Hanford Tank 241-AN-103*, Westinghouse Savannah River Company, Aiken, South Carolina, 2000

Waste from tank AN-103 is designated as WTP envelop A feed. The Tc K_d reported was 471+/-35 ml/g, λ_{50} was estimated at 221+/-16 BV, and >97% removal of Tc was achieved. When the lead column breakthrough was 47% (270 BV) the corresponding lag column had 8% breakthrough – assumed to be due to resin floating in lag column.

c) BNF-003-98-0219, Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

This report concerns Envelope C feeds with very high organics and very low TcO_4^- percentages of the ⁹⁹Tc present. This report confirms that only the TcO_4^- will be removed as per the design of the ligand of the SuperLig 639 resin.

d) BNF-003-98-0230, *Intermediate-Scale Ion Exchange removal of Technetium from Savannah River Site Tank 44 F Supernate Solution*, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

The solution tested was chosen to due to its similarity to Hanford LAW envelope A feed. This report is applicable to ⁹⁹Tc removal from Hanford's LAW. The results of this work are best summarized by Figure 3-20. Testing was performed using one column with the goal of determining 45% breakthrough, which required ~500 BV.

SuperLig [®] 639 K _d Measuremen	its	
ICP-MS Analysis	34	
Resin Batch #981015DHC7200	11	
Sample #	SRS-1	SRS-1-D
ADS #	300132736	300132737
Solution Mass (g)	15.94	16.22
Resin Mass (g)	0.1217	0.1201
Solution Volume (mL)	13.28	13.52
Initial Tc Conc. (mg/L)	3.09	3.09
Final Tc Conc. (mg/L)	0.3274	0.32567
Kd (mL/g)	932.8	967.5
solution volume/exchanger mass	109.15	112.55
Shake Time (hrs)	24.0	
Temperature (C)	27-28	- 59
Average Kd (mL/g)	950.1	
% Tc removal	89.4	89.5
average % Tc removal	89.4	
Feed	1	10. T.
Sample	SRS-1-FD	
ADS #	300132738	
Tc-99 mg/L	3.09	

Figure 3-20. Batch Contact Data (BNF-003-98-230)

e) BNFL-RPT-009, Rev 0, Ion Exchange Distribution Coefficients for 137Cs and 99Tc removal from Hanford Tank Supernatants AW-101 (Envelope A) and AN-107 (Envelope C), Pacific Northwest Laboratory, Richland, Washington, 1999.

Results from a Tank AN-107 sample show that SuperLig 639 is not effective at capturing ⁹⁹Tc present in forms other than the TcO_4^- form (as stated by the supplier). The analysis stated that 75-78% of the Tc in the Tank AN-107 solution was not in the TcO_4^- form. The analysis also determined that approximately 2.9% of the ⁹⁹Tc in the Tank AW-101 sample was not in the TcO_4^- form. The reported K_d values from the Tank AW-101 sample were 450 – 500 ml/g.

14					SL-639 8	c AW-101				
Sample ID	W39	W39-R	W39-D	W39-D-R	W39-S1	W39-S1-R	W39-S1D	W39-S2	W39-S2-R	W39-S2D
Average Temperature [°C]	21	21	21	21	21	21	21	21	21	21
Mass of Exchanger [g]	0.0499	0.0499	0.0509	0.0509	0.0510	0.0510	0.0491	0.0502	0.0502	0.0504
Mass of AW-101 [g]	6.6903	6.6903	6.7034	6.7034	6.5986	6.5986	6.5231	6.5587	6.5587	6.6921
Avg. Density of AW-101 [g/mL]	1.3176	1.3176	1.3176	1.3176	1.3176	1.3176	1.3176	1.3176	1.3176	1.3176
Volume of AW-101 Taken [mL]	5.0776	5.0776	5.0876	5.0876	5.0080	5.0080	4.9507	4.9778	4.9778	5.0790
F-Factor	0.9855	0.9855	0.9855	0.9855	0.9855	0.9855	0.9855	0.9855	0.9855	0.9855
Init. ICP "Tc Conc. [ng/mL]	268.7	266.0	268.7	266.0	2070.0	2070.0	2070.0	7820.0	7820.0	7820.0
Initial Dilution Factor	20.0 ·	20.5	20.0	20.5	20.0	20.0	20.0	20.0	20.0	20.0
Initial "Tc Conc. [ng/mL]	5373.3	5460.2	5373.3	5460.2	41400.0	41400.0	41400.0	156400.0	156400.0	156400.0
Initial "Ic Conc. [M]	5.43E-05	5.52E-05	5.43E-05	5.52E-05	4.18E-04	4.18E-04	4.18E-04	1.58E-03	1.58E-03	1.58E-03
Initial ⁹⁹ Ic Conc. Ci/m ³ (uCi/mL)	9.13E-02	9.28E-C2	9.13E-02	9.28E-02	7.04E-01	7.04E-01	7.04E-01	2.66	2.66	2.66
NO, concentration, M	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Initial NO1:"Tc	3.67E+04	3.61E+04	3.67E+C4	3.61E+04	4.76E+03	4.76E+03	4.76E+03	1.26E+03	1.26E+03	1.26E+03
Initial NO, TcO,	3.78E+04			0					100 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fin. ICP "I'c Conc. [ng/mL]	56.4	43.7	55.8	40.8	343.5	395.0	337.8	2039.5	1940.0	1669.0
Final Dilution Factor	20.0	20.6	20.0	20.7	20.0	20.3	20.0	20.0	20.8	20.0
Final "Tc Conc. [ng/mL]	1128	898	1116	846	6870	7999	6756	40790	10283	33380
Final "Tc Conc [M]	1.14E-05	9.07E-06	1.13E-05	8.55E-06	6.94E-05	8.08E-05	6.82E-05	4.12E-04	4.07E-04	3.37E-04
Final NO ₃ : ⁹⁹ Tc	1.75E+05	2.19E+05	1.77E+05	2.33E+05	2.87E+04	2.46E+04	2.92E+04	4.83E+03	4.89E+03	5.90E+03
Final "Tc Conc. Ci/m' (uCi/mL)	1.92E-02	1.53E-02	1.90E-02	1.44E-02	1.17E-01	1.36E-01	1.15E-01	6.93E-01	6.85E-01	5.67E-01
fraction Tc removed	0.79	0.84	0.79	0.85	0.83	0.81	0.84	0.74	0.74	0.79
9°Tc Kd [mL/g]	388.6	524.5	386.9	553.1	500.6	415.8	524.7	284.9	289.7	377.0
assumed nonpertechnetate fraction	0.029	0.029	0.029	0.029	3.74E-03	3.74E-03	3.74E-03	1.01E-03	1.01E-03	1.01E-03
Final TcO, concentration, M	9.83E-06	7.48E-06	9.71E-06	6.96E-06	6.78E-05	7.92E-05	6.67E-05	4.10E-04	4.05E-04	3.36E-04
Final NO, TcO,	2.02E+05	2.66E+05	2.05E+05	2.86E+05	2.93E+04	2.51E+04	2.98E+04	4.85E+03	4.91E+03	5.93E+03
TcO4 Kd [mL/g]	450.4	635.8	449.2	679.3	512.1	424.0	537.0	286.0	290.9	378.8

Figure 3-21. ⁹⁹Tc K_ds for SuperLig[®] 639 for Tank AW-101 Waste (BNFL-RPT-009)

f) BNFL-RPT-016 Rev 0., Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc From Hanford Tank Waste Envelope A (Tank 241-AW-101), Battelle, Pacific Northwest Division, Richland, Washington, 2000.

Testing reported 97% of the ⁹⁹Tc is removed, with the other 3% of ⁹⁹Tc being at lower oxidation states (note that this is in contradiction with the 15-20% non-pertechnetate form observed in AW-101 samples used for work in PNNL-11398). The 50% breakthrough point was reached at 213 BV on the lead column, and 260 BV for 60% breakthrough. The lag column performed well as a polishing column. The ⁹⁹Tc concentration in the product was 5.1 μ Ci/liter, less than 20% of the 26.8 μ Ci/liter allowable (this included the 3% non- TcO₄⁻ form). The maximum DF for TcO₄⁻ only is reported as 433. The eluent used for this work was not the WTP planned eluent -- this work used 0.5 M HNO₃ and led to a long, drawn out elution. The column design was also poor with undesired head space leading to large volumes of working solutions to clean the column of Al, Na, K, etc. from the feed. Despite the less than optimum configuration and procedure, data ⁹⁹Tc is effectively removed from the Envelope A tank waste.

g) BNFL-RPT-022, Rev. 0, Small Column Testing of SuperLig 639 for Removing 99Tc from Hanford Tank Waste Envelop C (Tank 241-AN-107), Battelle, Pacific Northwest Division, Richland, Washington, 2000. The report states that 65% to 87% of TcO_4^- is removed by tracking the ^{95m} TcO_4^- tracer, however review of total ⁹⁹Tc removed showed only 11% to 22% removal; indicating that envelope C wastes (containing CC) exhibit poor ⁹⁹Tc removal using sorption media.

h) BNFL-RPT-0028 Rev 0, Analysis of Spent Ion Exchange Media: SuperLig[®] 639 and SuperLig[®] 644, Battelle, Pacific Northwest Division, Richland, Washington, 2000

The report identifies residual amounts of components on resins after loading and elution tests to support disposition of the spent resin. The SuperLig 639 had two elements above the minimum reportable quantities, ⁹⁹Tc and K, despite the fact that the elution was only run at 50 °C with a feed that had significant K present. These conditions led to the elution being reported as less than optimal.

i) SRTC-BNFL-013 Rev 0, *Evaluation of the Radiation Stability of SuperLig*® 639, Westinghouse Savannah River Company, Aiken, South Carolina, 1997.

Testing performed exposed SuperLig 639 to a cobalt 60 (60 Co) gamma source for evaluation of loss in effectiveness. The data reported in this report are more than an order of magnitude better than previously reported. According to this report, no degradation occurs until the SuperLig[®] 639 sees 1 x 10⁸ Rads; 50% degradation occurs at 1 x 10⁸ Rads; and 90% at 1 x 10⁹ Rads. Based on this data alone, these results would give a significantly longer life than even that BNFL which was proposing. If ¹³⁷Cs where not to be removed prior to ⁹⁹Tc removal SuperLig 639 degradation would be similar to that of SuperLig[®] 644; since ⁹⁹Tc removal will be post ¹³⁷Cs removal, degradation of the resin due to radiation is improbable.

j) WSRC-MS-2000-00499, Comprehensive Scale Testing of the Ion Exchange Removal of Cesium and Technetium from Hanford Tank Wastes, CH2MHill Hanford Group, Richland, Washington, 2000.

Lab and pilot scale removal of ⁹⁹Tc or rhenium (Re) (as ⁹⁹Tc simulant) from Tank AN-103 waste and a Tank AN-105 simulant was performed. Flow rate is shown to be important to proper removal. When the flow rates exceed 7 column volumes (CV) per hour (exceeding the optimal 0.1 CV/minute), breakthrough occurs early. However, when the flow rates are in the correct range, loading volumes to 50% breakthrough are in the 100s of BV. The report also states that the results (under the proper flow rates) met all conditions required at Hanford. In addition, the report states that the NO₃⁻ to TcO₄⁻ ratio is higher than that expected at Hanford, and that these results may not apply to even higher NO₃⁻ to TcO₄⁻ ratios. The one negative is that this test was done prior to increasing the density of the SuperLig 639 so that it would not float. Therefore, it is mentioned that floating of the resin may affected the sharpness of the curve. Also, the early ⁹⁹Tc polishing was not quite as high as in the batch equilibrium tests.

k) WSRC-MS-2001-00573, SuperLig® 639 Equilibrium Sorption data for Technetium from Hanford Tank Waste Supernates, Westinghouse Savannah River Company, Aiken, South Carolina, 2001.

Pertechnetate % removals calculated for the initial contacts were approximately 87, 91, and 89 % for the AN-103, AZ-102, and AN-102 samples, respectively. For the AN-102 sample, the % removal for total technetium for the initial contact was <30%, due to the fact that ~60% of the 99Tc was not TcO4-. The lower loadings observed for the AZ-102 sample indicates that resin performance varies directly with the ionic strength of the solution (AZ-102 had a roughly half the amount of Na in solution; resin performance increases with increasing ionic strength of the solution). The Kd values for Hanford tank wastes AN-103, AZ-102, and AN-102 were 530, 886, and 287 mL/g, respectively

Table 3-8. Concentrations of Selected Analytes in the Hanford Tank Waste Supernates (WSRC-MS-2001-00573)

Sample	Equilibrium TcO₄ ⁻ (M)	TcO4 ⁺ K _d (mL/g)	TcO₄ ⁻ loading (mmol/g)	
Tank AN-103				
Spike	4.24 E-05	452	1.92 E-02	
Initial contact	3.93 E-06	530	2.06 E-03	
1 st Recontact	4.86 E-07	714	3.46 E-04	
2 nd Recontact	8.95 E-08	459	4.08 E-05	
Tank AZ-102				
Initial contact	1.43 E-05	886	1.27 E-02	
1 st Recontact	1.21 E-06	982	1.17 E-03	
2 nd Recontact	1.62 E-07	548	7.98 E-05	
3 rd Recontact	1.72 E-08	1109	1.11 E-05	
Tank AN-102				
Spike	6.39 E-05	288	1.83 E-02	
Initial contact	5.14 E-06	281	1.43 E-03	
1 st Recontact	1.21 E-06	332*	4.03 E-04	
2 nd Recontact	2.00 E-06	NA	NA	

* Value calculated from a single batch contact experiment rather than the average of duplicate experimental results. NA = not applicable; K_d and loading values were not calculated for this experiment because the data indicated that no technetium was adsorbed to the resin.

1) WSRC-MS-2001-00760, Technetium Removal from Hanford and Savannah River Site Actual Tank Waste Supernates with SuperLig 639 Resin, Westinghouse Savannah River Co., Aiken, South Carolina, 2001.

⁹⁹Tc was removed prior to removal of ¹³⁷Cs with SuperLig 644. The AN-103 sample, lead/lag column configuration, had ⁹⁹Tc removal of 92.6% (DF of 13.5). Analysis showed that SuperLig 639 extracts ⁹⁹Tc as an ion pair (KTcO4 or NaTcO4). Several issues where observed that resulted in data scatter, beads floating and column diameter less than optimal (due to amount of solution available for elution).

Comparison of the breakthrough data for a Savannah River sample from tank 44F verses the AN-103 sample (containing comparable sodium and pertechnetate concentrations) showed that SuperLig 639 had twice the capacity for Tank 44F solution, see table XXX. Either tank 44F's elevated OH- level and/or low nitrate concentration in this sample resulted in significantly enhanced pertechnetate removal.

Table 3-9. Hanford AN-103 vs. Savannah River 44F (extracted from WSRC-MS-2001-00760)

Analyte	Tank 44F	Tank AN-103
Na ⁺	5.4 M	4.99 M
NO ₃ -	0.495 M	0.998 M
OH (free)	4.5 M	1.87
⁹⁹ Tc	3.13 E-5	3.07 E-5
~ 45% Breakthrough	580 BV	270 BV

m) WSRC-MS-2003-00789, Multiple Ion Exchange Column Tests for Technetium Removal from Hanford Tank Waste Supernate (U), Westinghouse Savannah River Company, Aiken South Carolina, 2003.

This report presents the results of ⁹⁹Tc removal from Tank AW-101 waste through five cycles of loading. The average ⁹⁹Tc loading for the cycles was 250 BV at 10% breakthrough. Removal of ⁹⁹Tc was greater than 99.4%, and 99% of the ⁹⁹Tc loaded on the resin was elutable with less than 15 BV of de-ionized water at 65 °C.

n) WSRC-MS-2003-00792, Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2003.

Envelope A and B simulants show Re loaded well with over 200 BV to 50% breakthrough. The envelope C (containing organics) simulant resulted in lower ⁹⁹Tc oxidation states and subsequently poorer resin loading. Elution with hot water worked well with removal of potassium nitrate (KNO₃) harder than sodium nitrate (NaNO₃); also potassium perrhenate (KReO₄) eluted later than sodium perrhenate (NaReO₄). The manufacturer, IBC Advances Technologies, Inc., has stated that potassium (K) salts bind more strongly and require elution

with higher temperature water. The presence of K led to more Re (99 Tc) binding and not less. The data on the elution in this paper shows why elution with hot water is necessary. It is not a selectivity problem, rather a stronger equilibrium constant involved -- when K is present the KTcO₄ simply becomes the strongest binder. Roughly the same selectivity for KTcO₄ over KNO₃ exists as for NaTcO₄ over NaNO₃, etc.

o) WSRC-TR-2000-00302, Summary of Testing of SuperLig® 639 at the TFL Ion Exchange Facility, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

This was pilot scale testing, designed to reach λ_{50} at 100 BV. The lead column removed 72% of the perrhenate, 24% was removed from the lag column. The simulant was at 18°C, modeling AN-105 waste. Data was obtained was used to assess the VERSEion exchange computer model which was to be used for design and optimization of WTP Tc removal facility. All runs exceeded 100 BV to 50% breakthrough, and DF was as high as 300.

p) WSRC-TR-2000-00303, Rev 0, Demonstration of an Ion Exchange Resin Addition/Removal System with SuperLig® 659, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

This report focuses on testing the design of the ⁹⁹Tc removal media slurry system for the WTP. It utilizes SuperLig 659 in lieu of SuperLig 639 due to resin availability. The report is not directly applicable to efficiency of SuperLig 639 for ⁹⁹Tc removal, but would aid in the development of a removal system.

q) WSRC-TR-2000-00305, Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig® 639 Resin, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

Very comprehensive report for ion exchange as it would be implemented by WTP. The report is a represents a status on regarding the modeling of technetium removal using SuperLig 639. Twenty bench-scale column tests and approximately 88 batch equilibrium experiments are addressed. Data was also used to quantify the offset between Re and Tc.

r) WSRC-TR-2000-00419, Rev 0, *Small-Scale Ion Exchange Removal of Cesium and Technetium form Envelope B Hanford Tank 241-AZ-102*, Westinghouse Savannah River Company, Aiken, South Carolina, 2001.

Testing resulted in 170 BV on the lead column with a breakthrough of 9.8%. Breakthrough of 50% was projected to occur at 450 BV. Removal rate was 99.97% with a polishing column at over 127 BV. Elution was performed with water at room temperature elution, leading to higher than normal elution volumes.

s) WSRC-TR-2000-00420, Intermediate-Scale Ion Exchange Removal of Cesium and *Technetium from Hanford Tank 241-AN-102*, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.

This report is about Envelope C feeds containing high organics and very low TcO_4^- percentages of the ⁹⁹Tc present. It confirms that only the TcO_4^- will be removed as per the design of the ligand of the SuperLig 639 resin.

t) WSRC-TR-2000-00424, Rev 0, Tank 241-AZ-102 SuperLig® 639 Technetium Ion Exchange Eluate Evaporation Study, Westinghouse Savannah River Company Aiken, South Carolina, 2000.

This report deals with the eluent from the SuperLig 639 after the separation. It shows that with eluent containing only water plus dilute NaOH (from the wash) and a little NaNO₃, the ⁹⁹Tc volatilizing in an evaporator is not an issue. This problem is mentioned specifically with other competing technologies that have to use at least some NO₃⁻ in the elution. This result is a specific example of an advantage to the SuperLig 639 beyond its performance in ⁹⁹Tc removal itself.

u) WSRC-2002-TR-00495, Rev 0, Evaluating the Effects of Tri-Butyl Phosphate (TBP) and Normal Paraffin Hydrocarbon (NPH) in Simulated Low-Activity Waste Solution on Ion Exchange, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2002.

The solution was a WTP Envelope B AZ-101 filtrate simulant which had been used in ultrafiltration work using Re as a surrogate for ⁹⁹Tc. Two variations on the simulant were used: Simulant 0 - was the baseline filtrate, and Simulant H - was spiked with organics resulting in 2500µg/ml tri-butyl phosphate (TBP) and 2500µg/mL of normal paraffin hydrocarbon (NPH). No statistical difference in the performance of SuperLig 639 to remove ⁹⁹Tc was observed between the simulants - either batch contact λ values or column loading λ values. This work shows that the presents of organics by itself is not an indicator of ⁹⁹Tc (pertechnetate) removal effectiveness.

WSRC-TR-2003-00098, Rev 1, Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW-101 Waste Sample (U), Savannah River National Laboratory, Westinghouse Savannah River Company, Aiken, South Carolina, 2004. Approximately 250 BV of AW-101 of solution was processed at < 10 % breakthrough of ⁹⁹Tc. The percent of ⁹⁹Tc (pertechnetate) removal was > 99.94% (DF of about 1700) for each of the five cycles. Approximately 99% of the ⁹⁹Tc was eluted from resin in < 15 BV using de-ionized water at 65 °C.

Figure 3-22. Equilibrium Distribution Coefficient Table for Tc Removal (WSRC-TR-2003-00098, Rev 1)

AW-101 Actual Waste Sample ID	phase ratio, mL/g	[⁹⁹ Tc] ₀ (μCi/mL)	[⁹⁹ Tc] ₀ (µCi/mL)	K _d (mL/g)	avg. Kd (mL/g)	% RSD
NH39-AW101-Kd-1	96	4725	492	839	па	па
NH39-AW101-Kd-1D	90	4725	508	766	802	6.4
NH39-AW101-Kd-2	9.5	4725	190	231	na	na
NH39-AW101-Kd-2D	9.5	4725	181	245	238	4.1

Table 4-2. Kds for Technetium in AW-101 Actual Waste Sample

na = not applicable

Figure 3-23. Breakthrough Curves for SuperLig 639 on AW-101 Waste (WSRC-TR-2003-00098, Rev 1)

v) WTP-RPT-024, Rev 0 (PNWD-3239), Radiation Stability Testing of SuperLig®639 and SuperLig®644 Resins, Battelle, Pacific Northwest Division, Richland, Washington, 2003.

No change in the SL-639 Tc batch-equilibrium coefficient was observed until it was exposed to doses of greater than 10⁷ R, and the changes were relatively minor even up to 10⁸ R. This result is similar to that reported in the previous radiolysis study by Oji (SRTC-BNFL-013). Concentrations of benzene, toluene and xylene VOCs positively identified in the gases generated from the SL-639 resin increased with increasing temperature but there was no trend with dose. On the basis of the results from this report, the resin would only begin to show signs of deterioration in performance after 10,700 or 8,770 cycles processing envelope A or B LAW, respectively.

w) WTP-RPT-030, Rev 0, Small Column Testing of SuperLig® 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envelope A (Tank 241-AP-101), Battelle, Pacific Northwest Division, Richland, Washington, 2002.

Tank 241-AP-101 dilute feed is treated to remove ⁹⁹Tc on lead/trail system. 220 BV are treated with 50.1 μ Ci/liter reduced to 0.477 μ Ci/liter, which is over 99% removal. At end of 220 BV 5.2% breakthrough of lead column and 0.5% breakthrough of lag column. An initial DF of 230 was reported. Analysis of the eluant shows that after 17 BV of flushing a C/C_o of 0.01 was achieved. Testing was considered a complete success.

 x) WTP-RPT-031, Rev 1, Small Column Testing of SuperLig 639 for Removing ⁹⁹Tc from Hanford Tank Waste 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions, Battelle, Pacific Northwest Division, Richland, Washington, 2004.

This report is about Envelope C feeds with very high organics and low TcO_4^- percentages of the ⁹⁹Tc present. It confirms that only the TcO_4^- will be removed as per the design of the ligand of the SuperLig 639 resin.

y) WTP-RPT-047, Rev 0, *Chemical Degradation of SuperLig*® 639 Ion Exchange Resin, Battelle, Pacific Northwest Division, Richland, Washington, 2003.

Work performed included 26 cycles of operation of a single SuperLig 639 column with a variety of ⁹⁹Tc, NO₃⁻ and NO₂⁻ concentrations. The bed performance was hampered due to channeling for some of cycles. For this reason, not all test objectives could be met. However, data and conclusions reported show that there is no degradation by radiation or chemical attack over the 26 cycles (a result also shown by microscopic review of the resin) and no change in breakthrough curves or elution curves over the 26 cycles (other than issues with channeling). Breakthrough of 20-30% was seen at >200 BV in all cases where channeling was not significant. In elutions where channeling was avoided, 0.01 C/Co was obtained in 10 to 18 BV elution. The spent resin after 26 cycles had 0.69 μ g/g ⁹⁹Tc or 5.86 mCi/m³, which was reported as well below Hanford Site Solid Waste Acceptance. No toxicity issues were found in the spent resin. Nitrate and nitrite were found to compete with ⁹⁹Tc for resin sites.

 wTP-RPT-058, Rev 1, Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envlope B (Tank 241-AZ-101), Battelle Pacific Northwest Division, Richland, Washington, 2004.

This report shows Envelope B ⁹⁹Tc removal from Tank AZ-101 waste. The results show the K_{ds} holding or increasing for increasing nitrate to TcO_4^- ratio, demonstrating the good selectivity of the resin. The 50% breakthrough point was 300+ BV, and the trail column maintained 0.1% or less C/Co for 300 BV. A 0.1 M NaOH solution was used to prepare the column for feed solution. It worked but was found to be low in total Na and hydroxide content for best performance. A 65 °C de-ionized water elution was used, and the ratio of TcO_4^- remaining on the resin was at 0.1 C/C₀ at 9 BV elution and 0.01 C/Co at 16 BV despite the influent having a low C₀ value. Performance of work was described as "progressed without difficulties".

4 CONCLUSION

A literature search has been performed for work regarding the removal of ⁹⁹Tc from Hanford's LAW using sorption media. Past work and SMEs were used to narrow the list to a manageable number for more thorough review. For final comparison the sorption media have been split into two logical classifications -- elutable and non-elutable. Sorption media have been evaluated based on technical development, with criteria for a 10 being 100% confidence of the media and system achieving all technical performance requirements upon implementation. Safety, environmental and economic aspects of the media have not been included. Work performed and documented in the references focus on technical feasibility. Both economics and safety will ultimately play a large role in the selection of the process and sorption media to be implemented.

The goal for the team was to rank the sorption media on the same scales, and then split them into two groups. The lower scores for non-elutable sorption media largely reflect the fact that the WTP path to ⁹⁹Tc removal required the use of elutable sorption media. Therefore, far more data exists for deployment of elutable sorption media than for non-elutable sorption media with Hanford LAW feed. Except for perhaps the case of SuperLig 639, the scores are best used as a rough guide to those sorption media that will likely perform well based on knowledge gathered to date, and not as a tool to select a final resin for implementation.

Rough rankings of elutable sorption media are outlined in 4-1. Due to previous work supporting the implementation of SuperLig 639 at WTP, it would be the clear sorption media of choice. Given that the system will not be implemented for some time, further investigation of ABEC 2000 may show it to be an equal competitor to SuperLig 639. Both SuperLig 639 and ABEC 2000 are elutable with water, making them more flexible for process flowsheet development and offering more favorable safety and environmental impacts.

Rough rankings of non-elutable sorption media are outlined in 4-2. The economic impacts of non-elutable resins may be the main driver in final selection of sorption media. However at this stage very little is known about disposal and process requirements and sorption media costs. Therefore, differentiating based on economics is omitted from this ranking. It is thought that TAM may be more environmentally safe due to its inorganic composition, resulting in less potential generation of off-gas and the likelihood of meeting long term disposal requirements. The latter result will be dependent on the disposal criteria of the repository. The real issue with all non-elutable sorption media is the lack of testing on Hanford's LAW feed. Until the ability of non-elutable resins to selectively remove and hold ⁹⁹Tc from a high ionic strength (>5 M Na), high pH (\geq 12) solution is verified, the technical scores for these media will remain below those of elutable resins, where more development has been performed.

RESIN	TECHNICAL RANK (1 – 10)	COMMENTS
ABEC®-2000	7	Expected to be less expensive than SuperLig® 639, but less capacity per load cycle, these two factors balance; Elutable with water, which is good for processing (allows evaporation to concentrate); ⁹⁹ Tc capacity less than SuperLig® 639), not much test data
DOWEX 1-X8 RESIN PROPERTIES	6	Elution with either $4M HNO_3$ or ethylene diamine solution impacts cost and safety; Good ⁹⁹ Tc removal, but nitrate addition to process via $4 M$ HNO_3 elution adds processing issues
Reillex HPQ	6	Elutable with 8M HNO ₃ or ethylene diamine solution impacts both economics and safety viability
SuperLig 639	9	Extensive testing with Hanford DST wastes; expensive resin but can be reused for many cycles with reasonably high capacity per cycle; water elution does not add chemicals to process; extensive testing performed on Hanford's LAW

Table 4-1. Elutable Sorption Media

Table 4-2. Non-Elutable Sorption Media

RESIN	TECHNICAL RANK (1 – 10)	COMMENTS
Purolite A520E	5	Some testing has been performed on high pH tank waste.
Purolite A530E	4	Data shows it is very good at tying up ⁹⁹ Tc. Recommended operating pH is below LAW pH
Reillex HPQ	6	Assumes that the harsh elution environments required allow the sorption media to perform as a non-elutable.
TAM – SnII Apatite Microspheres	5	Data shows it is very good at locking up 99 Tc. Nearly all data is from the vendor. Work has been performed regarding waste form performance. Tc(VII) reduced to Tc(IV)

5 **REFERENCES**

- 24590-PTF-RPT-RT-02-001, Rev 0, *WTP PTF Alternative Resin Selection*, Bechtel National, Inc., Richland, Washington, 2002.
- 24590-WTP-ICD-MG-01-019, Rev. 4, ICD 19 Interface Control Document for Waste Feed, Bechtel National, Inc., Richland, Washington, 2008.
- 24590-WTP-RPT-PT-02-005, Rev 1, *Flowsheet Bases, Assumptions, and Requirements*, Bechtel National, Inc., Richland, Washington, 2002.
- 24590-WTP-RPT-PT-02-005, Rev 5, *Flowsheet Bases, Assumptions, and Requirements*, Bechtel National, Inc., Richland, Washington, 2009.
- Atlas of Eh-pH Diagrams, Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, Naoto TAKENO, May, 2005.
- BNF-003-98-0140, Evaluation of SuperLig® 639 Ion Exchange Resin for the Removal of Rhenium from Hanford Envelope A Simulant, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- BNF-003-98-0146, Rev. 1, Small-Scale Ion Exchange Removal of Cesium and Technetium From Hanford Tank 241-AN-103, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- BNF-003-98-0219, Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- BNF-003-98-0230, Intermediate-Scale Ion Exchange removal of Technetium from Savannah River Site Tank 44 F Supernate Solution, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- BNFL-RPT-009, Rev 0, Ion Exchange Distribution Coefficients for 137Cs and 99Tc removal from Hanford Tank Supernatants AW-101 (Envelope A) and AN-107 (Envelope C), Pacific Northwest Laboratory, Richland, Washington, 1999.
- BNFL-RPT-016 Rev 0., Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc From Hanford Tank Waste Envelope A (Tank 241-AW-101), Battelle, Pacific Northwest Division, Richland, Washington, 2000.
- BNFL-RPT-022, Rev. 0, Small Column Testing of Superlig 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envelop C (Tank 241-AN-107), Battelle, Pacific Northwest Division, Richland, Washington, 2000.
- BNFL-RPT-028 Rev 0, Analysis of Spent Ion Exchange Media: SuperLig[®]639 and SuperLig[®] 644, Battelle, Pacific Northwest Division, Richland, Washington, 2000.
- CONF-9505101--1, Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers, Oak Ridge National Lab, Tennessee, 1995.

- CONF-970148--3, Comprehensive Supernate Treatment, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1996.
- DE-AC21-97MC33137--43, Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste, Eichrom Industries, Inc, Darien, Illinois, 1998.
- DOE Manual 435.1-1, *Radioactive Waste Management Manual*, United States Department of Energy, 1999.
- Environmental Science & Technology, 34, 1075-1080, Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate sorption from Contaminated Groundwater, Oak Ridge National Laboratory, Oak Ridge, Tennessee, and University of Tennessee, Knoxville, Tennessee, 2000.
- Environmental Science & Technology, 34, 3761-3766, Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate: Batch-Equilibrium Experiments, Oak Ridge National Laboratory, Oak Ridge, Tennessee, and University of Tennessee, Knoxville, Tennessee, 2000.
- Industrial & Engineering Chemistry Research, 38, 1683-1689, Flowsheet Feasibility Studies Using ABEC Resins for Removal of Pertechnetate from Nuclear Wastes, Eichrom Industries, Inc., Darien, Illinois, University of Alabama, Tuscaloosa, Alabama, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1999.
- K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste, ORNL Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995
- LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.
- LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.
- LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.
- MSE-174, Development and Testing of a Portable Treatment Unit for Technetium-99 (Tc-99) in Groundwater at 200ZP-1 Operable Unit, MSE Technology Applications, Inc., Butte, Montana, 2008.
- ORNL/TM-13593, A Field Trial of Novel Bifunctional Resins for Removing Pertechetate (TcO₄) from Contaminated Groundwater, Oak Ridge National Laboratory, Lockheed Martin Energy research Corporation, Oak Ridge, Tennessee, 1998.
- ORP-11242, Rev. 5, *River Protection Project System Plan*, Washington River Protection Solutions, Richland, Washington, 2010.
- PNL-10750, Efficient Separations and Processing Crosscutting Program: Develop and Test Sorbents, Pacific Northwest Laboratory, Richland, Washington, 1995.

- PNNL-11386, Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal, Pacific Northwest National Laboratory, Richland, Washington, November 1997.
- PNNL-11398, Technetium Removal Column Flow Testing with Alkaline, High Salt, Radioactive Tank Waste, Pacific Northwest National Laboratory, Richland, Washington, November 1997.
- PNNL-14208, Selection and Testing of "Getters" for Adsorption of Iodine-129 and Technetium-99: A Review, Pacific Northwest National Laboratory, Richland, WA, 2003.
- PNNL-19681, *Tc-99 Ion Exchange Resin Testing, Pacific Northwest Laboratory*, Pacific Northwest National Laboratory, Richland, Washington, 2010.
- RPP-RPT-23199, Rev 0, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins, CH2M Hill Hanford Company, Richland, Washington, 2004.
- RPP-RPT-34697, Rev 0, *Electrochemical Corrosion Report for Tanks 241-AW-103, 241-AZ-102, 241-AN-106, 241-AN-107, 241-AY-101, and 241-AY-102,* CH2M HILL Hanford Group, Inc., Richland, Washington, 2007.
- RPP-RPT-38319, Rev 0, Electrochemical Corrosion Tests for Tank 241-AP-105 Supernate Using Grab Samples 5AP-07-01, %AP-07-02A, 5AP-07-03A, and 5AP-07-04A, CH2MHILL Hanford Group, Inc., Richland, Washington, 2008.
- RPP-RPT-39195, Rev. 1, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine, Washington River Protection Solutions, Richland, Washington, 2009.
- RR196, New Technologies for Metal Ion Separations: Aqueous Biphasic Extraction Chromatography (ABEC). Part I. Uptake of Pertechnetate, Department of Chemistry, Northern Illinois University, DeKalb, Illinois, Argonne National Laboratory, Argonne, Illinois, 1996.
- SGW-46453, Rev 0, Testing Guidelines for Technetium99 Adsorption on Activated Carbon, CH2MHILL Plateau Remediation Company, Richland, Washington, 2010.
- SRTC-BNFL-013 Rev 0, *Evaluation of the Radiation Stability of SuperLig*® 639, Westinghouse Savannah River Company, Aiken, South Carolina, 1997.
- SFV-2000, *FeedVectorWTP Realignment AOff BEL Gen-6.1-8.40-2010-O-07-at-15-14-11l.xlsx.*, Washington River Protection Solutions, Richland, Washington, 2010.
- SVF-2023, Immobilization System Hazard Category Source Term for Pre-Conceptual Candidate Technologies, Washington River Protection Solutions, Richland, Washington, 2011.
- WHC-SD-WM-TI-699, Rev. 1, Technical Basis for Classification of Low-Activity Waste Fraction from Hanford Site Tanks, Westinghouse Hanford Company, Richland, Washington, 1996.
- WHC-SD-WM-TI-718, Technetium Removal: Preliminary Flowsheet Options, Westinghouse Hanford Company, Richland, Washington, 1995.

- WSRC-MS-2000-00499, Comprehensive Scale Testing of the Ion Exchange Removal of Cesium and Technetium from Hanford Tank Wastes, CH2MHill Hanford Group, Richland, Washington, 2000.
- WSRC-MS-2001-00573, SuperLig® 639 Equilibrium Sorption data for Technetium from Hanford Tank Waste Supernates, Westinghouse Savannah River Company, Aiken, South Carolina, 2001.
- WSRC-MS-2001-00760, Technetium Removal from Hanford and Savannah River Site Actual Tank Waste Supernates with SuperLig 639 Resin, Westinghouse Savannah River Co., Aiken, South Carolina, 2001.
- WSRC-MS-2003-00789, Multiple Ion Exchange Column Tests for Technetium Removal from Hanford Tank Waste Supernate (U), Westinghouse Savannah River Company, Aiken South Carolina, 2003.
- WSRC-MS-2003-00792, Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2003.
- WSRC-MS-98-00601, Pretreatment/Radionuclide Separations of Cs/Tc from Supernates, Westinghouse Savannah River Company, Aiken, South Carolina, 1998.
- WSRC-TR-2000-00302, Summary of Testing of SuperLig® 639 at the TFL Ion Exchange Facility, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- WSRC-TR-2000-00303, Rev 0, Demonstration of an Ion Exchange Resin Addition/Removal System with SuperLig® 659, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- WSRC-TR-2000-00305, Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig® 639 Resin, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- WSRC-TR-2000-00419, Rev 0, Small-Scale Ion Exchange removal of Cesium and Technetium form Envelope B Hanford Tank 241-AZ-102, Westinghouse Savannah River Company, Aiken, South Carolina, 2001.
- WSRC-TR-2000-00420, Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- WSRC-TR-2000-00424, Rev 0, Tank 241-AZ-102 SuperLig® 639 Technetium Ion Exchange Eluate Evaporation Study, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.
- WSRC-TR-2002-00495, Rev 0, Evaluating the Effects of Tri-Butyl Phosphate (TBP) and Normal Paraffin Hydrocarbon (NPH) in Simulated Low-Activity Waste Solution on Ion Exchange, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2002.

- WSRC-TR-2003-00098, Rev 1, Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW-101 Waste Sample (U), Savannah River National Laboratory, Westinghouse Savannah River Company, Aiken, South Carolina, 2004.
- WSRC-TR-99-00317, Qualification of Reillex[™] HPQ Anion Exchange Resin for Use in SRS Processes, William J, Crooks III, et. Al., Westinghouse Savannah River Company, Aiken, SC, 2000.
- WTP-RPT-024, Rev 0, *Radiation Stability Testing of SuperLig*®639 and *SuperLig*®644 Resins, Battelle, Pacific Northwest Division, Richland, Washington, 2003.
- WTP-RPT-030, Rev 0, Small Column Testing of SuperLig® 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envelope A (Tank 241-AP-101), Battelle, Pacific Northwest Division, Richland, Washington, 2002.
- WTP-RPT-031, Rev 1, Small Column Testing of SuperLig 639 for Removing 99Tc from Hanford Tank Waste 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions, Battelle, Pacific Northwest Division, Richland, Washington, 2004.
- WTP-RPT-047, Rev 0, *Chemical Degradation of SuperLig*® 639 Ion Exchange Resin, Battelle, Pacific Northwest Division, Richland, Washington, 2003.
- WTP-RPT-058, Rev 1, Small Column Testing of SuperLig® 639 for Removing 99Tc from Hanford Tank Waste Envelope B (Tank 241-AZ-101), Battelle, Pacific Northwest Division, Richland, Washington, 2004.

6 GLOSSARY OF TERMS

ACIDITY: An expression of the concentration of hydrogen ions present in a solution.

ABSORPTION: The incorporation of a substance in one state into another of a different state (e.g., liquids being absorbed by a solid or gases being absorbed by a liquid).

ADSORBENT: A synthetic resin possessing the ability to attract and hold charged particles.

ADSORPTION: The attachment of charged particles to the chemically active groups on the surface and in the pores of an ion exchanger.

ALKALINITY: An expression of the total basic anions (hydroxyl groups) present in a solution. It also represents, particularly in water analysis, the bicarbonate, carbonate and occasionally the borate, silicate and phosphate salts which will react with water to produce the hydroxyl groups.

ANION: A negatively charged ion.

ANION INTERCHANGE: The displacement of one negatively charged particle by another on an anion exchange material

ASH: The residual mineral content of resin after incineration at 800° C.

ATTRITION: The rubbing of one particle against another in a resin bed; frictional wear that will affect the size of resin particles.

BACKWASH: The upward flow of water through a resin bed (i.e., in at the bottom of the exchange unit, out at the top) to clean and reclassify the bed after exhaustion.

BASE: The hydroxyl form of a cation or a compound that can neutralize an acid.

BASE-EXCHANGE: The property of the trading of cations shown by certain insoluble naturally occurring materials (zeolites) and developed to a high degree of specificity and efficiency in synthetic resin adsorbents.

BATCH OPERATION: The utilization of ion exchange resins to treat a solution in a container wherein the removal of ions is accomplished by agitation of the solution and subsequent decanting of the treated liquid.

BED: The ion exchange resin contained in a column.

BED DEPTH: The height of the resinous material in the column after the exchanger has been properly conditioned for effective operation.

BED EXPANSION: The effect produced during backwashing: The resin particles become separated and rise in the column. The expansion of the bed due to the increase in the space between resin particles may be controlled by regulating backwash flow.

BREAKTHROUGH: The first appearance in the solution flowing from an ion exchange unit of unadsorbed ions similar to those which are depleting the activity of the resin bed. Breakthrough is an indication that regeneration of the resin is necessary.

BRINE: A salt solution, generally sodium chloride, in a saturated solution.

CAPACITY: The ability of an ion exchange material to absorb ions; usually expressed in kilograins per cubic foot or milliequivalents per milliliter.

CATION: A positively charged ion.

CHANNELING: Cleavage and furrowing of the bed due to faulty operational procedures, in which the solution being treated follows the path of least resistance, runs through these furrows, and fails to contact active groups in other parts of the bed.

CHEMICAL STABILITY: Resistance to chemical change that ion exchange resins must possess despite contact with aggressive solutions.

COLLOIDAL: Composed of extremely small size particles that are not removed by normal filtration.

COLOR-THROW: Discoloration of the liquid passing through an ion exchange material; the flushing from the resin interstices of traces of colored organic reaction intermediates.

COLUMN OPERATION: Conventional utilization of ion exchange resins in columns through which pass, either up-flow or down-flow, the solution to be treated.

CROSSLINKAGE: The degree of binding of a monomer or set of monomers to form an insoluble tri-dimensional resin matrix.

CYCLE: A complete course of ion exchange operation. For instance, a complete cycle of cation exchange would involve exhaustion of regenerated bed, backwash, regeneration and rinse to remove excess regenerant.

DEIONIZATION: A more general term than deashing, deionization includes the removal of all charged constituents or ionizable salts (both inorganic and organic) from solution.

DENSITY: The weight of a given volume of exchange material, backwashed and in place in the column.

DIFFUSION: The diffusion of ions through the ion exchange resin beads.

DISSOCIATE: The process of ionization of an electrolyte or a salt upon being dissolved in water, forming ions of cation and anion.

DOWN-FLOW: Conventional direction of solutions to be processed in ion exchange column operation, i.e., in at the top, out at the bottom of the column.

DRY SOLIDS: The matter, usually expressed in weight percent, remaining after liquid removal.

EFFICIENCY: The effectiveness of the operational performance of an ion exchanger. Efficiency in the adsorption of ions is expressed as the quantity of regenerant required to remove a specified unit weight of adsorbed material.

EFFLUENT: The solution that emerges from an ion exchange column.

ELECTROLYTE: A chemical compound that dissociates or ionizes in water to produce a solution the will conduct an electric current -- an acid, base or salt.

ELUTION: The stripping of adsorbed ions from an ion exchange material by the use of solutions containing other ions in relatively high concentrations.

EQUIVALENT WEIGHT: The molecular weight of any element or radical expressed as grams, pounds, etc., divided by the valence.

EXCHANGE SITES: The reactive groups on an ion exchange resin.

EXHAUSTION: The state in which the resin is no longer capable of useful ion exchange; the depletion of the exchanger's supply of available ions. The exhaustion point is determined arbitrarily in terms of: (a) a value in parts per million of ions in the effluent solution; and/or (b) the reduction in quality of the effluent water determined by a conductivity bridge which measures the electrical resistance of the water.

FLOW RATE: The volume of solution passing through a given quantity of resin within a given time. It is usually expressed in terms of gallons per minute per cubic foot of resin, as milliliters per minute per milliliter of resin or as gallons per square foot of resin per minute.

FREEBOARD: The space provided above the resin bed in an ion exchange column to allow for expansion of the bed during backwashing.

GEL: Ion exchange resins that are made up of firm gel structure in a solid bead form allowing for the diffusion of ions through the gel.

HEADLOSS: The reduction in liquid pressure associated with the passage of a solution through a bed of exchange material; a measure of the resistance of a resin bed to the flow of the liquid passing through it.

HYDRAULIC CLASSIFICATION: The rearrangement of resin particles in an ion exchange unit. As the backwash water flows up through the resin bed, the particles become mobile. The larger particles settle and the smaller particles rise to the top of the bed.

HYDROXYL: The term used to describe the anionic radical (OH-), which is responsible for the alkalinity of a solution.

INFLUENT: The solution that enters an ion exchange unit.

ION: Any particle of less than colloidal size possessing either a positive or a negative electric charge.

IONIZATION: The dissociation of molecules into charged particles.

LEAKAGE: The phenomenon in which some of the influent ions are not adsorbed or exchanged and appear in the effluent when a solution is passed through an under- regenerated exchange resin bed.

MACROPOROUS: Resins that have a rigid polymer porous network in which there exists a true pore structure even after drying. The pores are larger than atomic distances and are not part of the gel structure.

MONOMER: A single reactive molecule capable of combining with another different monomer to form a polymer.

pH: The measurement of the acidity of a solution where 1 is very acidic, 7 is neutral and 14 is very basic.

PHYSICAL STABILITY: The quality that an ion exchange resin must possess to resist changes that might be caused by attrition, high temperatures and other physical conditions.

POROSITY: An expression of the degree of permeability in ion exchange resins to liquids and large organic molecules. Gel resins, even when referred to as highly porous, have a negligible porosity in comparison to the macropores inherent in the macroporous resins.

POSITIVE CHARGE: The electrical potential acquired by an atom that has lost one or more electrons; a characteristic of a cation.

QUATERNARY AMMONIUM: A specific basic group [-N(CH3)3+] on which depends the exchange activity of certain anion exchange resins.

RAW WATER: Untreated water from wells or from surface sources.

REGENERANT: The solution used to restore the activity of an ion exchanger. Acids are employed to restore a cation exchanger to its hydrogen form, while brine solutions may be used to convert the cation exchanger to the sodium form. The anion exchanger may be rejuvenated by treatment with an alkaline solution.

REGENERATION: Restoration of the activity of an ion exchanger by replacing the ions adsorbed from the treated solution by ions that were adsorbed initially on the resin.

RESIN: An insoluble matrix (or support structure) normally in the form of small (1–2 mm diameter) beads, fabricated from an organic polymer substrate. The material has highly developed structure of pores on the surface, which are sites with easily trapped and released ions.

RINSE: The operation that follows regeneration; a flushing out of excess regenerant solution.

SALT SPLITTING: The conversion of salts to their corresponding acids or bases by passage through ion exchange resins containing strongly acidic or strongly basic functional groups.

SELECTIVITY: The difference in attraction of one ion over another by an ion exchange resin.

SORPTION: Refers to the action of absorption or adsorption. Absorption is the incorporation of a substance in one state into another of a different state (e.g., liquids being absorbed by a solid or gases being absorbed by a liquid). Adsorption is the physical adherence or bonding of ions and molecules onto the surface of another phase (e.g., reagents adsorbed to solid catalyst surface).

SWELLING: The expansion of an ion exchange bed that occurs when the reactive groups on the resin are converted into certain forms.

THROUGHPUT: The amount of solution treated prior to the exhaustion of the ion exchange resin.

UP-FLOW: The operation of an ion exchange unit in which solutions are passed in at the bottom and out at the top of the container.

VALANCE: A measurement of the number of atoms or ions of hydrogen it takes to combine with, or be replaced by, an element or radical. In short, it is the number of positive or negative charges of an ion.

VOID VOLUME: The space between particles of ion exchange resins in a settled bed, also called interstitial volume.

WEAK ELECTROLYTE: The equivalent of weakly acidic or weakly basic resins not capable of splitting neutral salts.

ZEOLITE: A mineral composed of hydrated silicates of aluminum and sodium or calcium. The term has been used, sometimes improperly, to describe softening done by synthetic ion exchange resins.

APPENDIX A SORPTION MEDIA REFERENCE MATRIX

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
Duolite ^{™12} CS-100	Not Selected for Review (SME)	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				
ABEC 2000	Selected for Review	RR 196 New Technologies for Metal Ion Separations: Aqueous Biphasic Extraction Chromatography (ABEC). Part I. Uptake of Pertechnetate		Х			Х	
		DE-AC21-97MC33137 Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste	х	х		X	Х	These waste s cesium decont Hanford tank Valley Storag British Nuclea United Kingdo
Aliquat (tricaprylmethylammonium chloride)™ ¹³	Not Selected for Review (WTP Screening)	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		X				
		LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF)		Х				
		LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCAW)		Х				
		PNL-10750 Efficient Separations and Processing Crosscutting Program: Develop and Test Sorbents					Х	
Amberlite ^{™14} IRA-400	Not Selected for Review (SEM)	CONF-95051011 Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers				X		

Table A-6-1. Sorption Media References by Feed Solution

¹² Duolite materials are trademarked products of Rohm and Haas Corporation, of West Philadelphia, Pennsylvania.

¹³ Original product registrant was General Mills, of Minneapolis, Minnesota. Current registrant is Cognis IP Management GmbH Corporation of Duesseldorf, Germany.

¹⁴ Amberlite products are trademarked by Rohm & Haas Corporation, of West Philadelphia, Pennsylvania.

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
Amberlite IRA-904	Not Selected for Review (SME)	CONF-95051011 Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers				Х		
Amberlite XE-238	Not Selected for Review (WTP Screening)							
Azaphosphane-based resins	Not Selected for Review (WTP Screening)							
Bio-Rad™ ¹⁵ AG 1-x8	Not Selected for Review (SME)	K/TCD-1141 Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste						Simulated Oak Waste
Bio-Rad MSZ-1	Not Selected for Review (WTP Screening)							
BiQuat ¹⁶ RO-02-119	Not Selected for Review (WTP Screening)							
BiQuat VP-02-217	Not Selected for Review (WTP Screening)							

¹⁵ Bio-Rad products are trademarked by Bio-Rad Laboratories of Hercules, California.

¹⁶ BiQuat materials are formulated by Oak Ridge National Laboratory in conjunction with the University of Tennessee.

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
Boehmite, Synthetic aluminum oxyhydroxide gel	Not Selected for Review (WTP Screening)							
ABEC 5000	Selected for Review	PNNL-13386 Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal RR 196, New Technologies for Metal Ion Separations: Aqueous Biphasic Extraction Chromatography (ABEC) Part I. Untake of	X X				X	DSSF and 3 CC
		DE-AC21-97MC33137, Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste	X	X		X	Х	These waste strea cesium decontam Hanford tank wa Valley Storage T British Nuclear F United Kingdom
		PNNL-11398, Technetium Removal Column Flow Testing with Alkaline, High Salt, Radioactive Tank Waste WSRC-MS-98-00601, Pretreatment/Radionuclide Separations of	Х			x		DSSF/ AW-101 ORNL wastes
		Cs/Tc from Supernates CONF-970148—3, Comprehensive Supernate Treatment					X	MVST W-29 sur pertechnetate.
Activated Carbon	Not Selected for Review (WTP Screening)	SGW-46453, Testing Guidelines for Technetium99 Adsorption on Activated Carbon					Х	
Cross-linked Polyvinyl Pyridine	Not Selected for Review (WTP Screening)							

Comments

wastes (AN-107, SY-101, ANS SY-103)

eams include actual Hanford tank waste from tank AW-101, (a minated double shell slurry feed composite), three different aste simulants, actual waste samples from ORNL Melton Fanks W-29 and W-3, and waste simulant solutions from two Fuel (BNFL) locations—Capenhurst and Sellafield—in the n.

pernate depleted in cesium and strontium and spiked with

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Te)	DOE Radioactive tank waste from another site	Other	
Crypt-DER ¹⁷	Not Selected for Review (WTP Screening)							
Dowex 1X8	Selected for Review	K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste				Х		Simulated Oak R Waste
Dowex 2X8	Not Selected for Review (WTP Screening)	K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste				X		Simulated Oak F Waste
Forager ^{™18} Sponge	Not Selected for Review (WTP Screening)							
IONSIV ^{tm19} IE-910	Not Selected for Review (SME)							
Iron Sulfide	Not Selected for Review (WTP Screening)							
LANL ²⁰ – TiO2/carbon beads	Not Selected for Review (WTP Screening)	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				

¹⁷ No trademarks or proprietary information located.

Comments

Ridge National Lab Newly Generaged Liquid Low-Level

Ridge National Lab Newly Generaged Liquid Low-Level

¹⁸ Forager sponges and other Forager products are manufactured by Dynaphore, Inc., of Richmond, Virginia.

¹⁹ ION-SIV products are trademarked by the Union Carbide Corporation, of New York, New York.

²⁰ Formulated at the Los Alamos National Laboratory.

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
Purolite A-520E	Selected for Review	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		х				
		LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.		х				
		LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA), Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.		х				
		ORNL/TM-13593, A Field Trial of Novel Bifunctinal Resins for Removing Pertechnetate (TcO4-) from Contaminated Groundwater					Х	
Purolite A-530E	Selected for Review	RPP-RPT-39195 Rev. 1					Х	Brine solution o ETF
		RPP-RPT-23199, Rev 0 The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins					Х	ETF Basin 44 R
		MSE-174, Development and Testing of a Portable Treatment Unit for Technetium-99 (Tc-99) in Groundwater at 200ZP-1 Operable Unit					Х	Column and bat (MMATC) usin
		PNNL-19681, Tc-99 Ion Exchange Resin Testing					Х	Groundwater fro
		LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				
		Environmental Science & Technology, 2000, 34, 1075-1080, Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate sorption from Contaminated Groundwater					Х	
Purolite A-532E	Selected for Review	RPP-RPT-39195 Rev. 1					Х	Brine solution of ETF

Comments of 25 wt% mimicking the anticipated Basin 43 waste from the Reverse Osmosis (RO) reject stream tch testing at the Mike Mansfield Advanced Technology Center ng the perrhenate ion as a surrogate for technetium-99 om well 299-W15-765

of 25 wt% mimicking the anticipated Basin 43 waste from the

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Te)	DOE Radioactive tank waste from another site	Other	r
Reillex – HPQ	Selected for Review	K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste				Х		Simulated Oak R Waste
		RPP-RPT-23199, Rev 0 The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins					Х	ETF Basin 44 Re
		PNNL-11386, Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal	Х					DSSF and 3 CC
		PNNL-11398 Technetium Removal Column Flow Testing with Alkaline, High Salt, Radioactive Tank Waste	Х					DSSF/ AW-101
		CONF-95051011, Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers				Х		
		LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				
		LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF)		х				
		LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA),		Х				
		WSRC-MS-98-00601, Pretreatment/Radionuclide Separations of Cs/Tc from Supernates	Х					
		WHC-SD-WM-TI-718, <i>Technetium Removal: Preliminary</i> Flowsheet Options	Х					
		CONF-970148—3, Comprehensive Supernate Treatment					Х	MVST W-29 sup pertechnetate.
		WHC-SD-WM-TI-699, Rev. 1, <i>Technical Basis for Classification</i> of Low-Activity Waste Fraction from Hanford Site Tanks		Х				DSSF simulants
		Environmental Science & Technology, 2000, 34, 3761-3766, Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate:					Х	

Comments

Ridge National Lab Newly Generaged Liquid Low-Level

everse Osmosis (RO) reject stream

wastes (AN-107, SY-101, ANS SY-103)

pernate depleted in cesium and strontium and spiked with
Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Te)	DOE Radioactive tank waste from another site	Other	ř
		Batch-Equilibrium Experiments						
Reillex 402	Not Selected for Review (WTP Screening)	CONF-95051011, Batch Test Equilibration Studies Examining the Removal of Cs, Sr, and Tc from Supernatants from ORNL Underground Tanks by Selected Ion Exchangers				X		
Reillex HP	Not Selected for Review (WTP Screening)	K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste				X		Simulated Oak F Waste
Sn ⁺⁺ apatite	Selected for	Vendor Questionnaire			?			"WTP Recycle s
	Kevlew	RPP-RPT-39195 Rev. 1, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine					Х	Simulant Basin 4 25 weight percer
		PNNL-14208, Selection and Testing of "Getters" for Adsorption of Iodine-129 and Technetium-99: A Review					Х	Groundwater ma
Sr-SPEC ^{TM²¹}	Not Selected for Review (WTP Screening)	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		X				
Steel Wool	Not Selected for Review (SME)	K/TCD-1141, Removal of Technetium-99 from Simulated Oak Ridge National Laboratory Newly-Generated Liquid Low-Level Waste					Х	Simulated Oak F Waste
SuperLig 639	Selected for Review	Science and Technology, 40: 1, 383 — 394, 2005, 'Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles', Separation			Х			
		PNWD-3004, BNFL-RPT-016, Rev 0 Small Column Testing of SuperLig 639 for Removing Tc-99 from Hanford Tank Waste Envelope A (241-AW-101)	Х					

²¹ Sr-SPEC is a trademarked product of Eichrom Industries of Darien, Illinois.

Comments

Ridge National Lab Newly Generaged Liquid Low-Level

surrogate and AN-104 Surrogate"

43 waste with concentrated brine consisting of approximately ent salts.

atrix and concentrated sodium salt solution.

Ridge National Lab Newly Generaged Liquid Low-Level

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Te)	DOE Radioactive tank waste from another site	e Other	
		PNWD-3028, BNFL-RPT-022 Rev. 0, Small Column Testing of Superlig 639 for Removing Tc99 from Hanford Tank Waste Envelope C (Tank 241-AN-107)	Х					
		WSRC-MS-2000-00499, Comprehensive Scale Testing of the Ion Exchange Removal of Cesium and Technetium from Hanford Tank Wastes	Х		Х			AN-103 salt solu
		WSRC-TR-2000-00420, Superlig 639 Intermediate - Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank AN-102	Х					Envelope C salt s
		WSRC-MS-2003-00792, Column Performance Testing of SuperLig 639 resin with simulated Hanford waste supernates: identification of the primary sorbing species and detailed characterization of their desportion profiles			Х			
		WSRC-TR-2000-00419, Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ- 102	Х					Envelope B salt s
		WSRC-MS-2001-00760, <i>Technetium Removal from Hanford and Savannah River Site Actual Tank Waste Supernates with SuperLig 639 Resin</i> , Westinghouse Savannah River Co., Aiken, South Carolina, 2001.	Х					AN-103
		WSRC-TR-2000-00302, BNF-003-98-0153, Summary of Testing of SuperLig® 639 at the TFL Ion Exchange Facility, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.	e .		Х			
		WSRC-MS-2001-00573, SuperLig® 639 Equilibrium Sorption data for Technetium from Hanford Tank Waste Supernates, Westinghouse Savannah River Company, Aiken, South Carolina, 2001.	Х					AN-103, AZ-102
		WSRC-TR-2000-00303, Rev 0, Demonstration of an Ion Exchange Resin Addition/Removal System with SuperLig® 659, Westinghouse Savannah River Company, Aiken, South Carolina, 2000.					Х	Demonstration o place of SuperLig
		WSRC-TR-2000-00305, Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig® 639 Resin						

Comments ution and AN-105 simulant spiked with rhenium solution from Hanford Tank 241-AN-102 solution from Hanford Tank AZ-102

2, and AN-102

of slurry transport of resin media; SuperLig 659 was used in ig 639.

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Te)	DOE Radioactive tank waste from another site	Other	ſ
		WSRC-TR-2002-00495, Rev 0, Evaluating the Effects of Tri-Butyl Phosphate (TBP) and Normal Paraffin Hydrocarbon (NPH) in Simulated Low-Activity Waste Solution on Ion Exchange			х			Testing the influ performance.
		WTP-RPT-024, Rev 0, PNWD-3239, Rev 0, <i>Radiation Stability</i> <i>Testing of SuperLig</i> ®639 and <i>SuperLig</i> ®644 Resins						
		BNF-003-98-0219, Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102	Х					
		PNWD-3251, WTP-RPT-026 Equilibrium Batch Contact Testing of SuperLig 639					Х	
		PNWD-3222, WTP-RPT-030 Rev 0, Small Column Testing of SuperLig 639 for Removing Tc99 from Hanford Tank Waste Envelope A (Tank 241-AP-101)	Х					
		PNWD-3252, WTP-RPT-031, Small Column Testing of Superlig 639 for Removing Tc99 from Hanford Tank Waste 241-AN-102 Supernate (Envelope C) mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions	Х					
		PNWD-3345, WTP-RPT-047, Chemical Degradation of Superlig 639 Ion Exchange Resin		Х				Simulated LAW
		PNWD-3281, WTP-RPT-058, Small Column Testing of Superlig 639 for Removing Tc99 from Hanford Tank Waste Envelope B (Tank 241-AZ-101)	Х					
		PNWD-3037, BNFL-RPT-028 Rev. 0, Analysis of Spent Ion Exchange Media: SuperLig 639 and SuperLig 644	Х					samples from Ta
		BNF-003-98-0230, Intermediate-Scale Ion Exchange Removal of Technetium from Savannah River Site Tank 44 F Supernate Solution				Х		
		BNF_003-98-0140, Evaluation of SuperLig 639 Ion Exchange Resin for the Removal of Rhenium from Hanford Envelope A Simulant			X			
		SRTC-BNFL-013, Evaluation of Radiation Stability of SuperLig 639			Х			

Comments
ence of two organics, TBP and NPH, on SuperLig 639
based on AN-105
nks 241-AW- 101 and 24 1-AN-1 07

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
		WSRC-TR-2000-00424, ART-RPP-2000-00024 Tank 241-AZ-102 Superlig 639 Technetium Ion Exchange Eluate Evaporation Study	Х					
		WSRC-TR-2003-00098, Rev 1, (SRT-RPP-2003-00026, Rev 1), Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW-101 Waste Sample (U)	Х					
		PNWD-2467, BNFL-RPT-009, Ion Exchange Distribution Coefficients for Cs137 and Tc99 removal from Hanford Tank Supernatants AW-101 (Envelope A) and AN-107 (Envelope C)	Х	х				
		WSRC-MS-2003-00789, Multiple Ion Exchange Column Tests for Technetium Removal from Hanford Tank Waste Supernate	х					AW-101 sample
		BNFL-RPT-022, Rev. 0, Small Column Testing of Superlig 639 for Removing 99Tc from Hanford Tank Waste Envelop C (Tank 241- AN-107)	Х					
		BNF-003-98-0146, Rev. 1, Small Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103	Х					
Sybron ^{™22} Ionac SR-3	Not Selected for Review (WTP	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				
	Screening)	LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF)		х				
		LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA),		х				
Sybron Ionac SR-6	Not Selected for Review (WTP	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY		Х				
	Screening)	LA-12863, Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-shell Slurry Feed (DSSF)		х				

²² Sybron materials are trademarked products of Sybron International Corporation of Milwaukee, Wisconsin.

Ion Exchange / Sorbent Media	Disposition	References	Hanford Tank Waste	Hanford Tank waste simulant spiked with Tc	Hanford tank waste simulant with Re (as a surrogate for Tc)	DOE Radioactive tank waste from another site	Other	
		LA-12889, Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCWA),		Х				
Sybron Ionic SR-7	Not Selected for Review (SME)	RPP-RPT-23199, Rev 0 The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins					Х	ETF Basin 44 R
TEVA ²³	Not Selected for Review (WTP Screening)							
TRU-SPEC ²⁴	Not Selected for Review (WTP Screening)	LA-12654, Rev., Distributions of 14 Elements on 63 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY						
Zero-valence Iron filings/beads	Not Selected for Review (WTP Screening)							

Comments

Reverse Osmosis (RO) reject stream

²³ No trademarked or proprietary information located.

²⁴ No trademarked or proprietary information located.

RPP-RPT-50122

APPENDIX B VENDOR INFORMATION

Figure B-1. ABECTM 2000 Page 1

	1	Influent
pH Range		≥12
Viscosity of Feed		1-20 cP
Specific Gravity		1 to 1.46
	R	esin Type
Inorganic		Y or NOT Orgainic
Organic		YES or N - Organic
	If Known for Perte	chnetate (TcO4') Removal
	Vendor	Depends on other analyte concentrations but improves with higher concentration of anions
	WTP Resin Screening Presentation	Kd: 141-160 ml/g λ50: 40-60BV at 10BV/hr
Kd [Tc]	DE-AC21- 97MC33137—43	1000 100 100 100 100 100 100 100
	RR-196	Highest Dw of 410 was obtained for ABEC 2000 for testing of Hanford waste with SY-101 waste.
Selectivity to Tc	The	e resin has good selectivity for Tc(VII) but will co-extract I and Re(VII)
Poisons	Reducing agents capab will not be retained by	ble of reducing Tc(VII) will reduce the Tc(IV) which the resin
Equivalents/L		0.8 moles / L
	Resi	n Properties
Preparation Procedure	ABEC® resin show mot	ald be preconditioned with a basic solution of similar larity prior to loading waste solutions
Radiological Stability and/or Gas Generation	There is potent	ial for CO_2 evolution from radiolysis of the resin
Bed Volumes per Hour	Fet	timate 45 - 60 hed volumes per hour
Operation	Lot	innate 45 – 00 bed volumes per nour.

Figure B-2. ABECTM 2000 Page 2

Elutable	YES or N
Eluant	Water, dilute saline or dilute acid
Storage, Shelf Life	Anticipate greater than 2 years of shelf life under environmentally controlled conditions.
Handling Specifications	Resin will shrink and swell up to 30% depending on ionic strength of solutions passed through the resin bed.
Loading Cycles	Estimate 20 loading cycles for the resin but actual results will depending on the effects of radiolytic damage to the resin.
Resin Density (weight per unit volume)	0.8 g/mL in H ₂ O and 1.1 g/mL in 6M KOH
pH operating range	pH 6 to 14+
Temperature operating range	10°C – 50°C
Cost per Pound (or ft ³)	See attached quotation
Ability to supply amounts of ≥ 2000 lbs	Will require scale up development but is technological possible.
Vendor: Eichrom Tec	nnologies LLC, Lisle, IL Resin: ABEC \$-2000

Figure B-3. DOWEX® 1-X8, Aldrich® Page 1 of 3

Ion Exchange Resins: Classification and Properties

Ion exchange resins are highly ionic, covalently cross-linked, insoluble polyelectrolytes supplied as beads. The beads have either a dense internal structure with no discrete pores (gel resins, also called microporous resins) or a porous, multichannelled structure (macroporous or macroreticular resins). They are commonly prepared from styrene and various levels of the cross-linking agent divinyl benzene, which controls the porosity of the particles. Porous beads can be made also by adding homopolystrene, which is soluble in the monomer mixture, and leaching it out later with, toluene, for instance. The PS-DVB precursor beads are post-functionalized to yield the finished resin. Acrylic based, ion exchange resins are also available (see Table I).

These ionic polymers contain two types of ions, those which are bound within the structure and the oppositely charged counter ions which are free. The property of ion exchange is a consequence of *Donnan exclusion* – when the resin is immersed in a medium in which it is insoluble, the counter ions are mobile and can be exchanged for other counter ions from the surrounding medium; ions of the same type of charge as the bound ions do not have free movement into and out of the polymer. Ion exchange resins have been classified based on the charge on the exchangeable counterion (cation exchanger or anion exchanger) and the ionic strength of the bound ion (strong exchanger or weak exchanger). Thus, there are four primary types of ion exchange resins:

- Strong cation exchange resins, containing sulfonic acid groups or the corresponding salts.
- Weak cation exchange resins, containing carboxylic acid groups or the corresponding salts.
- Strong anion exchange resins, containing quarternary ammonium groups. Of these, there are two types: Type I resins contain trialkyl ammonium chloride or hydroxide and Type II resins contain dialkyl 2-hydroxyethyl ammonium chloride or hydroxide.
- Weak anion exchange resins, containing ammonium chloride or hydroxide.

Additional types of ion exchange resins include blends of cation and anion exchange resins, called *mixed bed resins*. A resin which contains both an anion and a cation as bound ions is said to be *ampholytic*. Some ion exchange resins are prepared with *chelating* properties making them highly selective towards certain ions. In addition to their use in ion exchange, organic polymer supports, many of which are based on PS-DVB resins, are being used as *polymeric catalysts* in the expanding research area involving heterogenization of homogenous catalysts and as polymeric supports and reagents in combinatorial chemistry.

The internal structure of the resin beads, i.e., whether microporous (gel-type) or macroporous, is important in the selection of an ion exchanger. Macroporous resins, with their high effective surface area, facilitate the ion exchange process. Also, they give access to the exchange sites for larger ions, can be used with almost any solvent, irrespective of whether it is a good solvent for the uncrosslinked polymer, and take up the solvent with little or no change in volume. They make more rigid beads, facilitating ease of removal from the reaction system. In the case of the microporous resins, since they have no discrete pores, solute ions diffuse through the particle to interact with exchange sites. Despite diffusional limitations on reaction rates, these resins offer certain advantages: they are less fragile, requiring less care in handling, react faster in functionalization and applications reactions, and possess higher loading capacities.

In addition to being a function of bead morphology, the kinetics of the exchange depends on the particle size distribution of the resin. It is enhanced by a monodisperse resin, for example, see the Marathon® and Amberjet® resins in Table I; they permit faster elution and regeneration times with reduced back pressure.

To help you select an exchanger or combination of exchangers, Table I provides a compilation of ion exchange resins offered by Aldrich, classified by type, as defined above, along with characteristics of each resin such as particle size, functional group, ionic form (i.e., the counterion), exchange capacity, and operating conditions. For additional information on ion exchange resins from Aldrich, please request <u>Aldrich Technical Bulletin AL-142</u>. For additional information on polymeric supports, please refer to the <u>Applications</u> Section.

Table I: Classification and Properties of Numerous Ion Exchange Resins offered by Aldrich

Cat. No.	No. Exchanger % cross			Mesh/	Ionic	*	Max.Op.	Total Exchan	pH range	
		linking		Bead size	Form	Moisture	Temp. *C	meg/ml	meq/g	
Strong (Cation Exch.	angers on	Polysty	rene				NI		
Amberlite	*/Amberlyst*//	Amberjet [®]	(Sulfonic	Acid)						
21.653-4	IR-120 Plus(H) 8	G	16-50	н	45	120	1.9	4.4	0-14
22,435-9	IR-120 Plus	· .	G	16-50	Na	45	120	1.9	4.4	D-14
27.427-5	IRP-69		-	25-150µm	Na	10	-	1.	-	
21,638-0	15	-	Mp	18-50	H	<1	120	2.8	4.7	0-14
43.673-9	1200(H)	-	G	20-35	H	52	120	1.8	4.7	D-14

28 • Polymer Products from Aldrich

Figure B-4. DOWEX® 1-X8, Aldrich® Page 2 of 3

(1) b) b)	and the second se	the second se								
	IICauro	JIIS								
lable I: Cl	assification	and Prop	erties of	Numerou	s Ion E	kchange Re	esins offere	d by Aldric	n (continued)	
Cat NO.	exenanger	linking		Bead size	Form	Moisture	Temp. *C	meq/ml	meq/g	рн гаод
Strong Ca	ation Exchan	gers on P	olystyre	ne (contin	ued)					
Dowex [®] (St	Ifonic Acid)	1.41	Jacob 1	1201012121	2.4	14-14	1125212	19190	100.001	120.04
21.744-1	50WX2-100 50WX2-200	22	G	50-100	H	78	150	0.6	4.8	0-14
21.747-6	50WX2-400	2	G	200-400	н	78	150	0.6	4.B	0-14
42,882-0	50WX4-00	4	G	50-100	H	68	150	1.1	4.8	0-14
42,209-6	50WX4-200	4	G	100-200	H	68	150	1.1	4.8	0-14
42.807-1 21.748-4	50WX4-200R 50WX4-400	4	G	200-400	H	68	150	11	4.8	0-14
21,749-2	50WX8-100	8	Ğ	50-100	H	53	150	1.7	4.8	0-14
21.750-6	50WX8-200 50WX8-400	8	G	100-200 200-400	H	54 54	150	17	4.8	0-14
42.872-8	HCR-S	8	Ğ	20-50	H	53	150	1.8	4.8	D-14
42.870-1	HCR-W2	8	G	16-40	Na	52	150	1.8	4.8	0-14
43.661-5	650C		G	25-30	H	50	150	1.9	1.9	0-14
43,395-0	Marathon C MSC-1		G	30-40	H	53	149	1.8	2.6	0-14
TE.010-1			90	20-00	144	31	100	1.0		0-1-
43.669-0	C-26		Mp	520um	Na	50	150	18		0-14
	179555			36.50	102	122	1.566	1355		201
Weak Cat	tion Exchang	iers on Po	olyacrylic	C (
Amberlite ^a	(Carboxylic A	Acid)	00100		1.7		72500	12000	2277	00000
21.635-6	CG-50 Type I	4	Mp	100-200	H	5	120	3.5	10.0	5-14
21.657-7	IRC-50S	1	Mp	400um	H	48	120	3.5	10.0	5-14
27,428-7	IRP-64		Mp	100-400	н	5	-	-	10.0	-
Dowex® (Ca	arboxylic Acid									
42,881-7	CCR-3	22	8	20-50	н	50	120	3.9	1	ŝ
Strong A	nion Exchan	aers on P	olystyre	ne						
Amberlite	Strong Anion	Exchance	rs. Type I	(Trialkylber	zvi Anst	nonium)				
24,766-9	IRA-400(CI)	8	G	16-50	CI	45	77	1.4	3.8	0-14
21.644-5	IRA-743		G	450µm	OH	58	77	0.6		-
21,658-5	IRA-900	•	Mp	16-50	CI	60	77	1.0	4.2	0-14
43.674-7	4200(CI)		G	25-25	CI	53	50	1.2	3.7	0-14
Dowex® Ty	pe I (Trimethy	Ibenzyl An	nmonium)		-					12.00
21.737-9	1X2-100 1X2-200	2	G	50-100	C	70	66	0.7	3.5	0-14
21,739.5	1X2-400	2	G	200-400	C	75	66	0.6	3.5	0-14
42,861-2	1X4-50	4	G	20-50	CI	50	66	1.0	3.5	0-14
42,858-2	1X4-100	4	G	50-100	CI	50	66	1.0	3.5	0-14
42,859-0	1X4-200	4	G	100-200	CI	59	66	1.0	3.5	0-14
42,860-4	1X4-400	4	G	200-400	CI	59	66	1.0	3.5	0-14
21,740-9	1X8-50	8	G	20-50	C	40	00	1.2	3.0	0-14
21.742-5	1X8-200	8	G	100-200	C	48	66	12	3.5	0-14
21.743.3	1X8-400	B	G	200-400	CI	48	66	12	3.5	0-14
and the second s	MSA-1		Mp	20-50	a	60	66	1.0	4.0	0-14
42,876-0	21K	(5)	G	16-30	CI	54	60	1.2	3.8	0-14
42,876-0 43,665-8	550A	2.00	G	25-35	OH	48	60	1.1	3,4	0-14
42,876-0 43,665-8 43,660-7		2.02	G	30-40	u	9/	00	1.2	4.0	0-14
42,876-0 43,665-8 43,660-7 43,394-2	Marathon A	Contraction of the	and the second se	benzyl Amr	nonium)	42	41.77	14	37	0.14
42,876-0 43,665-8 43,660-7 43,394-2 Amberlite*	Type II (Dime	ethyl-2-hyd	G	20-50				1.4.1	10.0	- 1ª
42,876-0 43,605-8 43,660-7 43,394-2 Amberlite 21,656-9	IRA-410	ethyl-2-hyd	G	20-50	G					
42,876-0 43,665-8 43,660-7 43,394-2 Amberlite 21,656-9 Dowex Ty	IRA-410	ethyl-2-hyd - I-2-hydroxy	G (ethylben)	20-50	ium)	20	60	10		0.14
42,876-0 43,665-8 43,660-7 43,394-2 Amberlite 21,656-9 Dowex Ty 42,862-0 42,863-9	IRA-410 pe II (Dimethy) 2X8-100 2X8-200	ethyl-2-hyd - I-2-hydroxy 8 8	G (ethylben) G G	20-50 zyl Ammoni 50-100 100-200	um) Cl	38 37	66 66	12		0-14
42,876-0 43,605-8 43,600-7 43,394-2 Amberlite 21,656-9 Dowex Typ 42,862-0 42,863-9 42,863-9	IRA-410 pe II (Dimethy) 2X8-100 2X8-200 2X8-400	ethyl-2-hyd - I-2-hydroxy 8 8 8 8 8	G (ethylben) G G G	20-50 zyl Ammoni 50-100 100-200 200-400	um) CI CI CI CI CI	38 37 37	66 66 66	12 12 12	1	0-14 0-14 0-14
42,876-0 43,605-8 43,600-7 43,394-2 Amberlite 21,656-9 Dowex Tyj 42,862-0 42,863-9 42,863-9 42,864-7 42,877-9	A rype II (Dime IRA-410 pe II (Dimethy 2X8-100 2X8-200 2X8-400 MSA-2	ethyl-2-hyd - I-2-hydroxy 8 8 8 8 8	G G G G G Mp	20-50 cyl Ammoni 50-100 100-200 200-400 16-50	um) 0000	38 37 37 56	66 66 66 77	12 12 12 12	3.7	0-14 0-14 0-14 0-14

Figure B-5. DOWEX® 1-X8, Aldrich® Page 3 of 3

Cat. No.	Exchanger	li cross-	Matrix ¹	Mesh/	Ionic	*	Max.Op.	Total Excha	nge Capacity	pH range
Weak An	ion Exchange	s on Po	lvstvren	9	Form	Moisture	Temp. C	meq/mi	med/g	
Amberlite*	(Polyamine)									
47.063-3	IRA-67	-	G	16-50	FB	60	60	1.6	5.6	7-9
Dowex [®] (P	olyamine)		122	221148-13		3 M		1404421		
43,667-4	WGR-2 66	2	Mp	20-50	FB	55 45	93	1.9	6.1	0-7
43.668-6	Marathon WBA	042	Mp	25-50	FB	54	60	1.25	4.2	0-7
Duolite* (F	olyamine)		1221	A-10.20-1						
43.670-4	A-7	185	Mp	16-50	FB	56	40	2.2	13.9	0-6
Mixed Be	d Resins on Po	olystyre	ne							
Dowex [®] M	ixed Bed Resins			DEMONTS	(2.75.20)	2410	1.45			Sec.
42.873-6	MR-3 MR-3C	-	G	20-50	H,OH	50 50	50	2	1.7	0-14
42.869-8	11A8 Retardion	12	G	35-80	Na	45	70	Na	Na	0-14
Chelating	r Resins									
Amberlite	(Iminodiacetic	Acid)								
21,645-3	IRC-718	64F	Mp	16-50	Na	65	90	1.1	4.4	1.5-14
Polymeri	c Catalysts									
Amberlyst	* Strong Acid (S	ulfonic A	cid)							
21,638-0	15 Dry	250	120	<1.5	45	0.30	1.8	4.7		
21.639-9 43.671-2	15 Wet 36 Wet	250 200	120	55	35	0.30	1.9	5.4		
DOWEX® S	trong Acid (Sulfo	nic Acid)	10053		5 M 86	1.3147275	6.490	60493		
44,648-3	DR-2030			3					2.6	
Amberlyst	Weak Base (Al	kyl Amin	e)							
21.641-0	A-21 Wet	400	100	64	25	0.20	1.1	4.7		
Amberjet, A Dowex, Mar	mberlite, Amberlyst, a	and Duolite	are registere	d trademarks ks of Dow Chr	of Rohm an	d Haas Co.				

Figure B-6. DOWEX[™] 1-X8 Cost from GFS Chemicals (supplier/non-bulk)

HEMICALS	ne MY GFS A	nalytical	Chemical Listings R&E) Shopping Cart Sign In				
877.534.0795 Bulk C	Chemicals Rapid Order	Request Catalo	g Contact Us Si	ipport FAQ Forums Brochure (
Search:		[1	Entire Site 🛛 🔄	earch More search options				
Popular Searches: Periodi	<u>c Table Search</u> MSDS S	earch <u>Struct</u>	ure search					
Certificate of Analysis: Lot	ŧ.	Go	Product Specific	ations: Item#				
Nphabetical Search: <u>A</u> BC	DEEGHIJK		QRSIUV	<u>w</u> <u>x</u> <u>y</u> <u>z</u>				
Chemical Manufacturer of Labo	pratory Reagents, Bulk In	iorganics and C	rganics for Process	Chemistry Since 1928.				
/ou are here: Home >> Analyti	cal >> Separations Medi	ia >> DOWEX®	1X8-100					
	DOWEX® 1X8-10	0, ANTON-E	CHANGE RESIN	6				
GES								
				OF SAMPLE CA				
CHEMICALS	ITEM#:2671							
Itom#12671	CAS#:69011-19-4	4 F	.w.:	NFPA#:				
Item#:2071	Specific Gravity:	DOT:NR						
Product Line Information	Descriptions: Type I strong base anion exchange resin with 8% cross-linking; chlorid							
Ask the Chemist	form; 50-100 mes	ih.						
Certificates of Analysis	Item			MSDS Tell Frien				
Request a Product	SKU Price	Size	Quantity	Action				
Catalog	88641 \$72.20	100 G		🛛 Add to Cart 🛒 🚺 Favorite 😭				
GFS Chemicals Product	88642 \$248.60	500 G		🛛 Add to Cart 🛒 🚺 Favorite 🔥				
Catalog	88643 \$406.00	1 KG		🛛 Add to Cart 🛒 🗍 Favorite 🕁				
Pre-View	Annual Constantion							
No là cur	Bulk Quantity Requ	uest						
Noncent				Add Items to Car				
	Specification							
	Specification							
	Specification		TEST					
	Specification	apacity, Cl form	TEST 1.2 meq/mL min.					
	Specification 1. Wet volume ca 2. Water retentio	apacity, Cl form n capacity, Cl fo	TEST 1.2 meq/mL min. rm 43 - 48%					
	Specification 1. Wet volume ca 2. Water retentio 3. Particle size or	apacity, Cl form In capacity, Cl fo 1 35 mesh 15% 1	TEST 1.2 meq/mL min. rm 43 - 48% nax.					
	Specification 1. Wet volume ca 2. Water retentio 3. Particle size or 4. Particle size th	apacity, Cl form In capacity, Cl fo In 35 mesh 15% I Irough 80 mesh 1	TEST 1.2 meq/mL min. rm 43 - 48% nax. 15% max.					

second construction and writing the				
Figure B-7.	DOWEXTM	1-X8	Supplier	Information

DOWEX ^e Ion Exchange Resins	DOWEX* 1X2 (200)-400 mesh) pract.
DOMENT reside of aphysical applicity. The bounds	Anion exchanger of type	L strongly basic.
for the user is a highly efficient exchange process, due	Cross Linkage	2 % DVB
to optimal flow-through kinetics because of the round	Loas on Drying	7D - 80 %
(spherical) particles. We offer a broad range of DOWEX [®] ion exchangers (anion		Cat.No.
and cation) featuring small particle sizes and narrow		41030.01 11
particle size distributions (50 - 100 mesh, 100 - 200 mesh, 200 - 400 mesh) In addition, analytical grade qualities	DOWEX® 1X2 (200	-400 mesh) anavtical grade
of DOWEX [®] resins are available. These products are	HS 39140000	
processed from original DOWEX® (-practical grades-)	Anion exchanger of type Cross Linkage	1, strongy basic. 2 % DVB
resins, following a proprietory procedure developed by us.	Capiacity	min. 0.6 eq/l
DOWEX [®] 1 - anion exchangers of type I, strongly basic:	man on of hill	Cat.No.
A series of gei ion exchangers based on styrene-DVB- copolymerisates of type I, Refers to U.S. Food Additive		41031.01 10
Regulations, Ref. 1.21.1148	to the second store	41031.02 5
Supplied form of all DOWEX® anionic resins:	DOWEX* 1X8 (20-	50 mesh) pract.
 pract. grade = CI form analytical grade = CI form 	Agion exchanger of type	L strongly basic
Maximum working temperature for all DOWEX® anion resins	Cross Linkage	I % DVB
isted: • 60 °C (140 °E) for CI- form	Loss on Drying	min. 1.a egn 50 - 60 %
• 40 °C (104 °F) for OH form		Cat.No.
For other counter ions please inquire for special bulk		41080.03 14
DOWEX® 50 W - cation exchangers strongly acidic-	DOWEX* 1X8 (20-	50 mesh) analytical grade
Spherical beads, sulfonated polystyrene/ DVB matrix.	HS 39140000	
Supplied form of all DOWEX® 50 W resins:	Anion exchanger of type	i, strongly basic.
 analytical grade = Na* form 	Capacity	1.0 - 1.5 eq/
For other counter ions please inquire for special bulk	Loss on Drying	50 - 60 %
production.		41061.03 1
DOWEX [®] is a trademark of Dow Chemical Comp.,		41061.04 5
Michigan, USA.	DOWEX® 1X8 (50-	100 mesh) pract.
	Anion exchanger of type	I, strongly basic.
HS 29140000	Cross Linkage	H % DVB
Anion exchanger of type I, strongly basic.	Loss on Drying	43 - 47 %
Cross Linkage 2 % DVB Capacity min. 0.7 eq/l		Cat.No.
Loss on Drying 65 - 75 %		41090.01 5
UUWEX*IS a trademark of Dow Chemical Comp., Michigan, USA.	DOWEX#1X8 /50-1	100 mesh) analytical grada
41010.01 SIZE	HS 39140000	
41010.02 500 g	Anion exchanger of type	t, strongly basic,
DOWEX® 1X2 (50-100 mesh) analytical grade	Capacity	min. 1.2 eq/l
H5 39140000 Anion exchange of time L strangty basis	Loss on Drying	45 - 56 %
Cross Linkage 2 % DVB		41091.01 10
Capacity min. 0.7 eq/l Loss on Drying 65 - 75 %		41091.02 50
Cat.No. Size		
41011.01 100 g 41011.02 500 g		
we g		

Figure B-8. PuroliteTM A-520E

——————————————————————————————————————		
Ir	ifluent	
pH Range	≥12	
Viscosity of Feed	1-20 cP	
Res	sin Type	
Inorganic	No	
Organic	YES - Purolite A520E	
If Known for Pertec	hnetate (TcO4') Removal	
Kd [Te]		
Selectivity to Tc		
Poisons	Competing anions (SO4, CI, HCO3, NO3, U)	
Equivalents/L	0.9 eq/1 min.	
Resin	Properties	
reparation Procedure Backwash to classify bed and then riv		
Radiological Stability and/or Gas Generation		
Bed Volumes per Hour Operation	Depends on concentration of competing anions	
Particle Size	300 - 1200 micron diameter	
Elutable	No	
Eluant	No	
Storage, Shelf Life	5 years	
Handling Specifications		
Loading Cycles	Single use disposable resin	
Resin Density (weight per unit volume)	675 705 g/1	
pH operating range	0 - 14	
Temperature operating range	5 - 60C	
Cost per Pound (or ft ³)		
Ability to supply amounts of ≥ 2000 lbs	Yes	

Figure B-9. Purolite[™] A-530E

Iı	ifluent		
pH Range	≥12		
Viscosity of Feed	1-20 cP		
Res	sin Type		
Inorganic	No		
Organic	YES - Purolite A530E		
If Known for Pertec	hnetate (TcO4') Removal		
Kd [Te]			
Selectivity to Tc			
Poisons	Competing anions (SO4, Cl, HCO3, NO3, U)		
Equivalents/L	0.6 eq/1 min.		
Resin	Properties		
Preparation Procedure	e Backwash to classify bed and then rinse		
Radiological Stability and/or Gas Generation			
Bed Volumes per Hour Operation	Depends on concentration of competing anions		
Particle Size	300 - 1200 micron diameter		
Elutable	No		
Eluant	No		
Storage, Shelf Life	5 years		
Handling Specifications			
Loading Cycles	Single use disposable resin		
Resin Density (weight per unit volume)	670 g/1		
pH operating range	0 - 14		
Temperature operating range	5 - 60C		
Cost per Pound (or ft ³)			
Ability to supply amounts of ≥ 2000 lbs	Yes		

Figure B-10. Reillex™ HPQ (from Vertellus®)

TYPICAL PROPERTIES REILLEX TM crosslinked poly-4-vinylpyridines				
	Reillex TM 402	Reillex [™] 425	<u>Reillex™ HP</u>	<u>Reillex</u> [™] HPQ
Appearance	granular powder	spherical beads	spherical beads	spherical beads
Weak Base Capacity	8.0 eq/kg dry	6.0 eq/kg dry 1.7 eq/l wet	6.0 eq/kg dry 1.7 eq/l wet	N/A
Strong Base Capacity	none	none	none	4.0 eq/kg dry (min)
Water (%)	10% max.	~50%	~50%	~50%
DVB (%)	2	25	25	25
Particle Size (U.S. Mesh)	-60/+200	-18/+50	-30/+60	-30/+60
Bulk Density (Kgs/ft ³)	-	27.2	26.2	25.2
Average Pore Size (A)	none	450	600	600

Figure B-11. SuperLig® Vendor Information (page 1 of 3)

Date: Mon, 25 Apr 2011 13:01:27 -0600 From: <u>rbruening@ibcmrt.com</u> To: slzatt@ibcmrt.com; Rebecca_A_Robbins@rl.gov Subject: Tc and SuperLigR 639 Questions

Dear Rebecca

The following is an answer to your questions. Please note that IBC does not have a copy of the data reports for the SuperLigR 639 like we do for at least some of the SuperLigR 644 testing for Cs. Hence, much of the information we do not have the ability to send you the reports to give you back up graphs, etc. This information has been communicated to us largely by showing us data without giving us copies of reports, etc. Perhaps some of the se reports are now public. We would be happy to comment on any of the reports you might have or could provide.

Past testing summary

SuperLigR 639 has been shown to have the ability to reduce the amount of Tc present as pertechnetate multiple orders of magnitude. Any Tc present in other oxidation states has not been removed. The tanks containing significant organics have shown levels of Tc up to 20% (and occasionally higher) that were not removable due to other oxidation states being present while most of the tanks have shown 99 to 99.9% Tc removal. BNFL concluded that all requirements (as they were present in their time) could be met by mixing the outputs of the organic and non-organic containing tanks to reach the necessary Tc decontamination factor. All separation methods studied for Tc removal had the same issue and so the superiority of the SuperLigR 639 was based on its superior removal of the pertechnetate in tanks with high nitrate/nitrite and its ability to be eluted with water (rather than with large excesses of nitrate, etc.).

SuperLigR 639 is a ligand covalently bound to polysytrene. Hence, its radiolytic stability is primarily the radiolytic stability of the polystyrene (as per all other polystyrene based resins) which is around 1 x 10 7 rads. This has required that SuperLigR 639 and all other polystyrene and other organic supported resins for Tc removal be used after the Cs has already been removed to allow for many cycles of operation to be obtained. SuperLigR 639 had to be prepared in a maximized density state (issue for all polystyrene based resins) in order for the resin not to float in some of the highest density feed solutions (density of 1.25 to 1.27 g/ml). This has already been achieved and demonstrated in production of the SuperLigR 639 later batches after this requirement was communicated to IBC.

Tc removal from a variety of tanks including high and low nitrate/nitrite, high and low organic content, high and low K with Tc removal being very high for all pertechnetate in all cases and not removing the Tc present in other oxidation states has all been tested in columns of lab and pilot size. In all cases the Tc was eluted with deionized water. In cases where the high K was present the elution required 70 C water instead of room temperature water.

Resin Description

Organic polystyrene support (0.5 mm beads) with covalently bonded ligands present. This is an elutable resin that is eluted in room temperature water except when the pertechnetate binds significantly as the K or ammonium salt (higher binding constants in this case) where 70 C deionized water is required for elution. SuperLigR 639 had to be prepared in a maximized density state (issue for all polystyrene based resins) in order for the resin not to float in some of the highest density feed solutions (density of 1.25 to 1.27 g/ml).

Details of Eluent

This is an elutable resin that is eluted in room temperature water except when the pertechnetate binds significantly as the K or ammonium salt (higher binding constants in this case) where 70 C deionized water is required for elution. The eluent in total usually requires approximately 10-15 bed volumes at a flow rate of 0.1 bed volumes per minute. However, if desired the elution can be divided into two halves or three thirds with only the first outlet portion of the eluent sent to the Tc recovery section of the plant and the remaining tail of the elution recycled as the first part of the next elution.

Figure B-12. SuperLig® Vendor Information (page 2 of 3)

Resin shelf life

5-10 years

Resin storage requirement

Resin can be stored dry or in water.

Resin handability

Resin is readily handled similarly to standard IX resin as it has similar solid support and similar particle size. The difference is in the ligand present that has the high pertechnetate over other anion selectivity, but this does not affect the physical characteristics of the resin. SuperLigR 639 had to be prepared in a maximized density state (issue for all polystyrene based resins) in order for the resin not to float in some of the highest density feed solutions (density of 1.25 to 1.27 g/ml).

Resin preparation/conditioning requirement

Soak in water for 30 minutes or longer to wet and slurry pack into packed bed column. No other preparation/conditioning requirement to contend with. There is a slight shrink/swell of the material in going from neutral pH to basic pH and acidic pH.

Tc Loading

This varies with the level of Tc in the feed. Typical loading amounts are 70-200 Bed volumes and then the amount of Tc loaded depends on the Tc level in the feed. For higher Tc feed levels, higher Tc loadings (not higher Bed volumes) have been obtained. It would be wise to obtain some of the lab and pilot reports from the DOE complex to be able to have examples of specific loadings for specific feed types and concentrations that are not available directly to IBC.

Anticipated loading cycles before failure

Determined primarily by when 1 x 107 rads of exposure are reached. Assuming the Cs is removed first, this exposure is expected to take around 100-200 cycles to occur, but this will vary with the radiation level of the Tc and other radioactive elements present. Hence, you will want to check what the radioactivities of the different tank feeds are (with the Cs removed) to determine this for different tank feeds.

Selectivity with respect to competing anions

Virtually infinite selectivity over hydroxide, chloride, fluoride, and bromide. Selectivity over 2-3 M nitrate and nitrite of multiple orders of magnitude such that there is minimal effect on pertechnetate binding up to this range of nitrate/nitrite concentrations.

Resin poisons

No poisons found in tank feeds to this point in testing. Feed needs to be fully clarified prior to entry of resin column as solids can block physical access of pertechnetate to resin ligand sites. Note that this requirement is the case with any resin system and is not unique to SuperligR. Radioactivity stability to 1 x 107 rads. Operating temperature range

Because the binding constants for the pertechnetate decrease with increasing temperature a temperature range of 5 C to 40 C is recommended. The elution, however, can either always be done at 70 C or done at 70 C with high K feeds.

Operating pH range

No limit in either acidic, neutral, or basic range. The Tc binds to a completely neutral ligand as a total salt. Hence, the requirement for Tc binding is sufficient Na+, K+, NH4+, or H+ being present.

Process rate

Loading, washing, and elution done at 0.1 Bed Volumes per hour.

Potential for gas generation (due to radiolysis)

Same as for other polystyrene based resins.

Figure B-13. SuperLig® Vendor Information (page 3 of 3)

Estimate of Tc remaining on spent resins Less than 0.01% of Tc loaded on last loading cycle.

Suggestions for disposition of spent resins

Same methods applicable to other polystyrene based resins applicable to SuperLigR 639.

ROM cost/lb

Cost per lb is dependent on volume and commercial terms. SuperLigR 639 will, however, be economic based on all studies to date.

Development requirements None that IBC is aware of.

Technology risks None that IBC is aware of.

I hope that this information is helpful to you. Regards,

Ron Bruening IBC Advanced Technologies, Inc. (801) 763-8400 (phone) (801) 763-8491 (fax) http://www.ibcmrt.com

Figure B-14. TAM (Kurion, Inc)

Vendor:Kurion, Inc Contact Name/Phone/Email:Dr. Mark S. [Denton, 865-368-0979
I	influent
pH Range	≥12
Viscosity of Feed	1-20 cP
Re	isin Type
Inorganic	Y or N
Organic	Y or N
If Known for Pertec	chnetate (TcO4') Removal
Kd [Tc] SnII Apatite Microspheres (TAM)	pH 8.6 WTP Recycle Surrogate: 6.19E+01 pH 13.2 At tank AN-104 Surrogate: 6.94E+02
Selectivity to Tc	Extremely specific at high salt molarity and high pH
Poisons	Neither salts nor chelants seem to have an affect
Equivalents/L	~ 2.25-2.50
Resin	1 Properties
Preparation Procedure Sn II substitution for Ca in Hydrox, (CaPO4) Microsphere production. Gla initiator.	
Radiological Stability and/or Gas Generation	Extreme rad stability. No know gas generation.
Bed Volumes per Hour Operation	Depends on application.
Particle Size	20-50 mesh. ~ 300-850 micron
Elutable	Unknown at this time
Eluant	Ditto (the object is to trap Tc-99, not elute it)
Storage, Shelf Life	Indefinite
Handling Specifications	No special specs.
Loading Cycles	See above.
Resin Density (weight per unit volume)	~ 1.37 g/cc
pH operating range	6.5-14 (not for acidic conditions)
Temperature operating range	Made from glass microspheres at high temperatures So none known.
Cost per Pound (or ft ³)	To be specified.
Ability to supply amounts of ≥ 2000 lbs	Depends on time frame specified.