Recent results and future measurements for few body problems in Hall A

Alexandre Camsonne Hall A Jefferson Laboratory Asian Pacific Few Body Conference August 26th 2011

Outline

- Jefferson Laboratory Hall A experimental Hall
- Recent results
 - Short Range Correlation (Higginbotham)
 - Parity results (Michaels / Paschke)
 - He3 transversity result (Qian, Averett, Chen)
- 12 GeV upgrade
 - SoLID
 - Super BigBite
- Conclusion

Jefferson Laboratory

Continuous Electron Beam Accelerator Facility

Hall A Infrastructure

Focal-Plane Detectors

- Scintillator trigger
- MWDC tracking
- Pb-glass preshower/shower
- Gas Cherenkov
- Aerogel Cherenkovs
- Ring Imaging CHerenkov 8/26/2011

	HRS Spectrometers	FWHM
	Max. momentum	4.2 GeV/
	Momentum acceptance	± 4.5%
-	Momentum resolution	1.10-4
	Angular acceptance	6 msr
	Angular resolution	1 mrad
	Vertex acceptance	± 5 cm
	Vertex reconstruction	1 mm

Auxiliary Instrumentation

- Møller Polarimeter
- Compton Polarimeter
- Polarized ³He Target
- Cryo-target
- BigBite spectrometer
- Large on-floor detector arrays for neutrons and photons

Alexandre Camsonne Asian Pacific Few Body Conference 2011

Hall A equipment

- Standard experiment using one or two HRS
- Larger acceptance using BigBite Spectrometer
- Additional detector : Neutron detectors, calorimeters
- Targets :
 - Cryogenic unpolarized: H,D,He3,He4
 - Polarized He3
 - Solid targets : from B to Pb
 - Polarized NH3

Hall A Physics

- Nuclear : Medium effects, short range correlations, Hypernuclear spectroscopy
- Form Factors : on proton and polarized neutron (He3, H rosenbluth and polarization transfer)
- Nucleon structure : Deep inelastic, Semi inclusive and exclusive measurements (DVCS, SIDIS)
- Parity measurements : HAPPEX, PREX, PVDIS
- APEX : A' boson search (Dark matter)

Experiments in Hall A

- 2005 : SRC I, HAPPEX II
- 2006 : GEn, LEDEX, He3/He4 form factors
- 2007 : Lead ee'p, Coulomb Sum Rule
- 2008 : He3 family : transversity, Ay Quasielastic Ay DIS, ee'D
- 2009 HAPPEX III, PVDIS
- 2010 : PREX, APEX test run, DVCS2
- 2011 : SRC II, x>2 (inclusive SRC) , g2p,He4 ee'p

Recent results

Courtesy of Douglas Higinbotham

Bigbite spectrometer and neutron detector

From the (e,e'), (e,e'p), and (e,e'pN) Results

- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon short-range correlations
 - 18% np pairs
 - 1% np pairs
 - 1% nn pairs (from isospin symmetry)
- Less than 1% multi-nucleon correlations
- More on the SRC during the dedicated part of the workshop

-R. Shneor *et al.,* Phys. Rev. Lett. **99** (2007)

-R. Subedi et al., Science **320**, 1476 (2008), published online 29 May 2008 (0.1126/science.1156675).

18%

Single nucleons

n-p

n-n p-p

80%

%

Short range correlation and EMC

- Linear correlation of EMC slope and SRC
- R_{EMC} ratio of deep inelastic cross section in nuclei A to deuterium
- a2(A/d) ratio of SRC to deuterium

arXiv:1009.5666v4 Phys.Rev.Lett.106:052301,2011

Parity violation in Hall A

High Resolution Spectrometers

Lead / Diamond Target

٠

PARITY VIOLATION RESULTS

PREX Physics Result

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} =$$

 $\begin{array}{ccc} 0.6571 \pm 0.0604(stat) \pm 0.0130(syst) \\ \text{ppm} & \begin{array}{c} 9.2\% & \begin{array}{c} 2.0\% \\ \text{at} & Q^2 = 0.00906 & \text{GeV}^2 \end{array} \end{array}$

 \rightarrow Statistics limited (9%)

→ Systematic error goal achieved ! (2%)

PARITY VIOLATION RESULTS

Parity violation results

• HAPPEX III result

•Strong constraint of the strange quarks contribution in the proton

•arXiv:1107.0913

He3 results

Experimental Design

- Use two symmetric spectrometers for singles electron detection.
 Jefferson Lab Hall A HRS spectrometers.
- Vertically polarized ³He target.
- Measurements at $Q^2=0.1$, 0.5 and 1.0 GeV²
 - Test GPD calculation
 - Study Q² dependence
 - Parton to hadron
 - transition

Hall A polarized ³He target

W&M, UVa, JLab

- Effective polarized neutron target
- Spin Exchange Optical Pumping (SEOP) technology
- New Innovations:
- 5:1 ratio of K:Rb for high efficiency optical pumping and spin exchange.
- Spectrally narrowed diode lasers
- With 15uA beam, <P_{targ}>~65%
- Luminosity $L \sim 10^{36} / \text{cm}^2 / \text{s}$

8/26/2011

Preliminary Ay ³He results at $Q^2=0.5$ and 1.0 GeV^2

 3 He(e,e') $A_{v}^{^{3}}$ He

Transversity "Leading-Twist" TMD Quark Distributions

Separation of Collins, Sivers and pretzelocity effects through angular dependence in SIDIS

$$A_{UT}(\varphi_h^l,\varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$
+ $A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$

$$\begin{aligned} A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

E06-010: Single Target-Spin Asymmetry in Semi-Inclusive $n^{\uparrow}(e, e'\pi^{+/-})$ Reaction on a Transversely Polarized ³He Target

More results to come

- Being Analyzed
 - Lead ee'p
 - He4/He3 elastic form factor
 - Coulomb Sum Rule
- To be submitted :
 - APEX, Ay
- Just taken
 - SRC, DVCS, x>2 on Ca⁴⁰
- To be taken before 12 GeV
 - $-g_{2p}$

12 GeV Upgrade

Continuation of Hall A physics at 12 GeV

- Physics with larger kinematical coverage
 - Inclusive
 - Form factors
 - Semi-inclusive

- Hypernuclear (HKS in Hall A)
- New non baseline equipment
 - Solenoidal Large Intensity Device SoLID
 - SuperBigBite

Solenoid Detector for 11 GeV SIDIS

This study done with CDF magnet. Earlier study with BaBar

Kinematic Coverage

- Precision 4-D (x, Q², p_T and z) mapping of Collins, Sivers and pretzelosity.
- Coverage with 11 GeV beam shown here
 - Black: forward angle
 - Green: large angle
- x_{B} : 0.1 ~ 0.6
- P_T: 0 ~ 1.5 GeV/*c*
- W: 2.3 ~ 4 GeV
- z: 0.3 ~ 0.7
- M_m: 1.6~ 3.3 GeV

Projected Data

- Total 1400 bins in x, Pt and z for 11/8.8 GeV beam.
- z ranges from 0.3 ~ 0.7, only a sub-range of 11/8.8 GeV shown here.

Power of SOLID

0.30 < z < 0.35	0.35 < z < 0.40	0.40 < z < 0.45	I 1 < Q ² < 2 0.45 < z < 0.50	1 < Q ² < 2 0.50 < z < 0.55	1 < Q ² < 2 0.55 < z < 0.60	1 < Q* < 2 0.60 < z < 0.65	1 < Q ⁺ < 2 0.65 < z < 0.
	;;;	ij	;;;		;;;	;;;	jji
2 < Q ² < 3 0.30 < z < 0.35	2 < Q ² < 3 0.35 < z < 0.40	2 < Q ² < 3 0.40 < z < 0.45	2 < Q ² < 3 0 45 < z < 0.50	2 < Q ² < 3 0.50 < z < 0.55	2 < Q ² < 3 0 55 < z < 0.60	2 < Q ² < 3 0.60 < z < 0.65	2 < Q ² < 3 0.65 < z < 0
							; ; ;
3 < Q ² < 4 0.30 < z < 0.35	3 < Q ² < 4 0.35 < z < 0.40	3 < Q ² < 4 0.40 < z < 0.45	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65	3 < Q ² < 4 0.65 < z < 0
() () () () () () () () () () () () () (434453 2 444652 4 ******	1361+1 1 		1200 g 	2 2 4 4 1000-1 2 1000-1	€ <u>†</u> + •==+÷ ÷ •== +	
4 < Q ² < 5 0.30 < z < 0.35	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45 ∎	4 < Q ² < 5 0.45 < z < 0.50	4 < Q ² < 5 0.50 < z < 0.55	4 < Q ² < 5 0.55 < z < 0.60	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.65 < z < 0.
** » !!!!!! » !!!!!! *	* * 1111 * 1012 *	2 8 319 8 8 910 7		•••	••	**** *	÷
5 < Q ² < 6 0.30 < z < 0.35	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.65 < z < 0.
, ini ,	•••	•••	•••	••	••	•	•
6 < Q ² < 8 0.30 < z < 0.35	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0.65 < z < 0
•	•	=	•	Ŧ	Ŧ	ł	ŧ
	$2 < Q^{2} < 3$ $0.30 < z < 0.35$ $3 < Q^{2} < 4$ $0.30 < z < 0.35$ $4 < Q^{2} < 5$ $0.30 < z < 0.35$ $4 < Q^{2} < 5$ $0.30 < z < 0.35$ 1122 $5 < Q^{2} < 6$ $0.30 < z < 0.35$ 1222 $5 < Q^{2} < 6$ $0.30 < z < 0.35$ 1222	$2 < Q^{2} < 3$ $0.30 < z < 0.35$ $2 < Q^{2} < 4$ $0.30 < z < 0.35$ $3 < Q^{2} < 4$ $0.35 < z < 0.40$ $4 < Q^{2} < 5$ $0.35 < z < 0.40$ $4 < Q^{2} < 5$ $0.35 < z < 0.40$ $4 < Q^{2} < 5$ $0.35 < z < 0.40$ $1 = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SuperBigBite G_{ep} setup

Projected EMFF data with SBS @ 12 GeV

Super BigBite

Super BigBite Physics

Detector configurations in SBS program

	Front GEM	Polar GEM	Had Calo	Elec Calo	Big Ben	Big Bite	RICH a/gas	BB Calo	preShower (HERMES)
GEP	Х	X	Х	X	X				
GEN	X(BB)	X(BB)	х		X	X		x	
GMN	X(BB)	X(BB)	х		x	x		x	
A1n+	X (BB)	X	х		X	X	X,gas	x	X
T:u/d	X (BB)	X	х		X	X	X,gas	x	Х
SIDIS+	X (BB)	X	х		X	X	X,a	x	
D(e,e'p)	X (BB)	X	х		x	x	*X,a	x	
SRC	X (BB)	x	х		x	x			
e,e'φ	X (BB)	X	х		X	X	X,a	X	
A(Q ²)	X (BB)	X	х		X	X	X,gas	X	

Conclusion

- Wide array of measurements relevant to Few Body Physics in Hall A
- Large projects for 12 GeV
 - SoLID
 - SuperBigBite
- New proposals or involvement on current experiments welcomed !