

Proceedings of Pulsed Magnet Design and Measurement Workshop

T. Shaftan, R. Heese and S. Ozaki

Workshop on Pulsed Design and Measurement

July 27-28, 2009 Brookhaven National Laboratory, Upton, NY 11973

NSLS II

Brookhaven National Laboratory

P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BNL-90966-2010

Proceedings of Pulsed Magnet Design and Measurement Workshop

T. Shaftan, R. Heese and S. Ozaki

BNL-2009

Pulsed Magnet Design and Measurement Workshop

(Brookhaven National Laboratory, July 27-28, 2009)

Attendees

- BNL NSLS-II: T. Shaftan, R. Heese, R. Fliller, G. Wang, S. Ozaki, G. Ganetis, I. Pinayev, A. Jain, D. Hseuh, S. Kowalski, M. Rehak, and S. Sharma.
- BNL NSLS: G. Rakowsky, and P. Zuhoski
- BNL CAD: A. Zhang
- BNL SMD: B. Parker
- SLAC: C. Burkhart, and A. DeLira
- KEK: A. Ueda, M. Shimada, and T. Miyajima
- TLS: J.-R. Chen, and C.-C. Kuo
- Duke University: S. Mikhailov
- Tokyo University: H. Takaki

Pulsed Magnet Design and Measurement (PMDM) Workshop Schedule

Monday	27-July					
8:30-8:50 am	F. Willeke	Welcome and workshop goal				
8:50-9:15 am	T. Shaftan	NSLS-II injection system				
9:15-9:35 am	R. Heese	NSLS-II pulsed magnets				
		Septum/Bumps Circuit Topology and				
9:35-9:50	S. Kowalski	Simulations				
		Feasibility of NSLS-II injection scheme via				
9:50-10:15 am	R.P. Fliller	pulsed sextupole magnet				
10:15-11:00 am	JR. Chen	Pulsed magnets of the Taiwan Photon Source				

11:00-11:20 am		Break
11 00 10 00		Design and performance of fast injection- and
11:20-12:20 am	S. Mikhailov	extraction-kickers at Duke FEL/HIGS facility
12:20-1:35 pm		Lunch
		Pulsed magnets for the photon factory (PF) at
1:35-2:20 pm	A. Ueda	KEK
		Design and field measurement of the PSM at the
2:20-3:05 pm	H. Takaki	PF-ring
3:05-4:05 pm	H. Takaki	Results of the PSM operation at the PF-ring
4:05-5:35 pm	All attendees	Discussion on NSLS-II's pulsed magnet design
6:00 pm -		Dinner
Tuesday	28-July	
2	C. Burkhart/ A.	SLAC kicker systems applicable to NSLS2
8:30-9:15 am	DeLira	requirements
9:15-10:00 am	A. Jain	Field measurements in pulsed magnets
10:00-10:45 am	A. Wu	Looking forward
10:45-11:00 am		Break
11:00-12:10 pm	R. Heese	Tour of PML
12:10-1:25 pm	All attendees	Lunch
1:25-2:25 pm	A. Jain	Tour of RHIC
		Discussion on NSLS-II pulsed magnet
2:25-3:55 pm	All attendees	measurement
3:55-4:15 pm	All attendees	Closing comments

Abstracts

Welcome and Workshop Goals,

F. Willeke, NSLS-II, BNL

The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

NSLS-II injection system,

T. Shaftan, NSLS-II, BNL

The presentation offers an overview of the NSLS-II injector and gives the specifications on the injector's parameters.

NSLS-II pulsed magnets,

R. Heese, NSLS-II, BNL

The talk details the NSLS-II's pulsed-magnet systems, their parameters, tolerances, and designs.

Sextupole magnet,

R.P. Fliller, NSLS-II, BNL

We investigated using pulsed multipoles to inject into the storage ring, an idea pioneered at the Photon Factory at KEK. A pulsed sextupole has the advantage that the field and gradient is zero at the center of the magnet and rises quickly off axis. We present a detailed analysis of a pulsed sextupole injection scheme for the NSLS-II storage ring. This analysis shows that the beam motion requirements on the stored beam can be met with precise alignment of the sextupole. This is weighed against difficulties in constructing the transport line. On particular, the strong position dependant gradient at the location of the injected beam makes the transport line difficult to construct and operate reliably.

Other pulsed injection schemes were also studied and are briefly discussed in this presentation.

The pulsed magnets of the Taiwan Photon Source,

J.-R. Chen, C.-K. Chan, C.-S. Chang, H.-P. Chang, P.-J. Chou, C.-S. Fan, J.-C. Huang, C.-C. Kuo, K.-K. Lin, Y.-H. Liu, G.-Y. Hsiung, and C.-S. Yang, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

Studies were conducted to construct the Taiwan Photon Source (TPS), a 3 GeV synchrotron-light source with an emittance of 1.7 nm-rad. Among the many important parameters, a high-performance, top-up mode injection is essential to users. This report discusses the design of the pulse magnets of the TPS. The successful results are shown of reducing the stray fields, minimizing the noise, lowering the time jitter, and improving the components' reliability. The presentation also covers experiences at the Taiwan Light Source, a recently upgraded 1.5 GeV machine with top-up injection mode.

Design and performance of fast injection- and extraction-kickers at Duke FEL/HIGS facility, S. Mikhailov, Duke University

PO Box 90319, Duke University, Durham, North Carolina 27708-0319

The Duke FEL/HIGS (Free Electron Laser/High Intensity Gamma-ray Source) facility has recently undergone through a series of major upgrades. As a part of this upgrade, a kicker system was designed to provide reliable injection from the booster into the storage ring at any chosen energy in the range between 240 MeV and 1.2 GeV. The kickers had to comply with a rather challenging specification, requiring a low jitter of about 1 nS, and a pulse as short as 15 nS for extraction, and 100 nS for injection. The extraction kickers also needed a large dynamic range of the high voltage magnitude covering 4-30 kV. The kicker system was designed and fabricated by Budker Institute of Nuclear Physics, Novosibirsk, Russia. We discuss our

experience with the Duke kicker system design and operation in the prospective of their relevance for the NSLS II-kicker system.

Pulsed magnets for the photon factory (PF) at KEK,

A. Ueda, KEK, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

I'll talk about the pulse magnets for the photon factory at KEK without the pulse sextupole magnet. (Dr. H. Takaki is going to talk about the pulsed sextuple magnet into detail.) Kicker magnets: low impedance out-vacuum traveling wave type kicker magnet Septum magnets: passive septum magnet with magnetic shield And I'll mention outline of the other pulse magnets Pulse bending magnet at the Linac Kicker and septum magnets at PF Advanced Ring.

Design and field measurement of the PSM at the PF-ring and Results of the PSM operation at the PF-ring,

H. Takaki, Synchrotron Radiation Laboratory (SRL), Institute for Solid State Physics(ISSP),

University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

This talk discusses three main topics:

The stored beam stability with the PSM injection at the PF-ring; issues with pulsed magnet injection; and a case study of the possibility of PSM injection at the NSLS-II.

SLAC kicker systems applicable to NSLS2 requirements, (lower case for words as above) C. Burkhart and A. de Lira, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025

The parameters of several SLAC kicker systems are similar to those required for the NSLS2. The SPEAR3 injection kickers employ adder-type solid-state modulators, shorted stripline kickers, and matched impedance loads. They generate 0.8 μ s, 2- to 3-kA flattop pulses with a rise and fall of less than 0.4 μ s. The damping-ring injection/extraction kickers of the SLAC linac are based on thyratron- switched PFLs that drive matched-impedance, ferrite-loaded kickers. At SLAC, these systems produce ~3 kA, 150 ns flattop pulses with ~60 ns rise/fall time. A modified version of this kicker system at KEK delivers 0.3 μ s pulses. The LCLS's BXKIK and BYKIK systems for selective beam-bunch-dumping mate an IGBT-based solid-state modulator to an inductive kicker magnet. The systems produce a sinusoidal pulse with a period of 400 μ s and up to 0.5 kA current. The design of these kicker systems, modulators and magnets, discussed.

Field measurements in pulsed magnets, A. Jain, Superconducting Magnet Division, BNL Field quality in accelerator magnets often is expressed in terms of harmonics that is measured very conveniently using rotating coils. However, this technique is unsuitable for fast changing fields, since the typical measurement time is several seconds. For pulsed magnets, a suitable technique must be based on the time scales of interest. For data-sampling rates in the KHz range, analog Hall probes can be employed. A non-rotating pick up coil of a suitable design will measure both the strength of the main field, and the homogeneity of the field (harmonics), over a very wide range of field strengths and time scales. Some examples are presented of recent measurements with sampling rates ranging from several tens of milliseconds to a few microseconds.

Looking forward,

W. Zhang and J. Sandberg, CAD, BNL

Repetitive-pulsed power technology is one of the fast growing areas in accelerator engineering. A trend analysis is described, and a brief review of history given. Recommendations are offered based on the NSLS II's requirements, the technology landscape, as well as our R&D, project management, and operational experiences.

Workshop Notes

Disclaimer: These notes were taken during two discussions at the PMDM Workshop. Their intent is to informally answer the questions that the workshop focused on; they are not flow coherently, but rather represent the most important questions, answers, and comments as the discussions evolved. The Workshop participants are responsible for correcting and revising the text if they feel any changes are necessary. We welcome comments and suggestions.

Glossary: Q=question, A=answer, C=comment

	Did anybody use glass or quartz vacuum chamber for out-of-vacuum pulsed	
Q	magnet?	R. Heese
Α	Ceramics is the usual solution.	all
С	Duke University adopted a different solution, viz., a 10-inch diameter, 40 cm long glass with a $10-\mu$ s pulsed magnet. This design always works well. In addition, quartz can be a solution, as it is easy to weld.	I. Pinayev
Q	What about the thermal properties of the glass material? Has anybody considered the heating the internal coating from the beam and pulsed power?	B. Sheehy
C	LCLS kicker's chambers, made from aluminum, are 1 m long with a 1 inch cross- section. However, the duration of the pulse is very slow (about 400 µs response time).	C. Burkhart
С	The vacuum-chamber's ceramic is very expensive (30-50 k\$). What are the prices for the quartz materials?	R. Heese
А	We are waiting for pricing from the vendors.	J. Skaritka
Q	Where does NSLS-II plan to place the kicker modulators?	C. Burkhart
Α	Below the kicker magnets, inside the storage-ring's injection girder.	R. Heese
Q	Are the parameters of the NSLS-II pulsed magnets fixed or are they still evolving?	Z. Wu
	The main parameters of the magnets are defined by the injection/extraction straight-section geometry. However, optimization of the pulsed magnets and their kicker parameters is ongoing, and will continue until Final Design review in	
Α	2011.	T. Shaftan
Q	What is the experience using SCRs on pulse-to-pulse timing jitter?	G. Ganetis
A	The minimum achieved jitter is about 0.5ns for pulsed-magnet systems. This is possible with the Thyrotron systems, but difficult with the SCR-based systems.	S. Mikhailov

0	What is the experience with short-pulse kickers at the Taiwan Photon Source? Why they chose to develop in-vacuum rather than out-of-vacuum extraction kickers for their booster?	T. Shaftan
	We found that using a modulator-driving voltage higher than 25 kV results in poor reliability of the system. Thus, we designed kicker magnets with smallest	
A	possible aperture so to minimize the required voltage.	J.K. Chen
0	Have you considered other ceramics for the vacuum-chamber material?	B. Sheehy
А	A Japanese company manufactured our ceramic chambers. We are investigating opportunities for producing and coating the ceramic chambers at other companies	J.R. Chen
С	Comment: 25 kV is indeed the limiting voltage beyond which we might expect a dramatic reduction in the reliability of the pulsed system.	S. Mikhailov
C	Comment: To reduce stray fields from a pulsed magnet, a 0.35 mm silicon steel covers the KEK's 2mm septum copper coil. This has reduced the stray field, which was at the level of 350 Gs, to below 10 Gs. The high magnetic permeability of the silicon-steel helps in shielding the septum field.	A. Ueda
Q	Question to A. Ueda: Did you try high-pressure epoxy impregnation? Can this method help to prevent voids in the epoxy?	S. Mikhailov
A	That method would help. However, KEK did not use pressure impregnation for kicker high-voltage cells.	
	Our stien to H. Taladii Hanness the lastice of DOM shares in the lattice 2 Is	
Q	passing the PSM, does the injected beam see a different tune relative to the stored beam?	I. Pinayev
A	This consideration was taken into account during testing the PSM arrangement via one-turn tracking, which gave exact phase advance.	
С	Comment: The PSM experiment demonstrated that the injection rate with PSM is equal to approximately half of the rate with a conventional four-kicker bump.	H. Takaki
С	Comment: Also: The requirement of having a high rate of PSM injection severely restricts the choice of suitable betatron tunes for the PF ring.	
	Which bunch pattern was used for the PSM experiments, a single bunch or s train	
Q	of bunches?	T. Shaftan
Α	A single bunch was used.	H. Takaki
	What is the actual accuracy of measurement of DSM field?	T Shaftan
	What is the accuracy of determining the PSM axis?	1. Shattali
×		1

A	The mechanical accuracy of the alignment fiducial on the PSM is better than 50 μ m. The actual accuracy of measurements of the PSM field apparently is difficult to estimate.	H. Takaki
Q	What are consequences of driving all four kickers in parallel using a single, high-current power supply?	R. Heese
Q	In particular, how can you compensate for realistic differences between the kickers in terms of waveforms and timing?	B. Parker
А	One way to equalize the kicker fields is to shunt the others, rather than the weakest kicker. The shunting procedure should be transparent so the shunts can be retuned whenever this is required.	R. Heese
С	Comment: Duke University employs a composite kicker magnet with two coils Field oscillations between them make matching difficult.	I. Pinayev
С	The issue here is how to develop identical magnets, together with identical vacuum chambers. The complete four-kicker system can be characterized via beam-based measurement.	S. Mikhailov
Q	Requirements for such a power supply driving all four kickers are 24 kA, 4 kA/µs, 3.6 kV half-sine. What are the potential issues with such supplies?	T. Shaftan
A	A high current rate is needed. However, there exist IGCT devices that can generate $10kA/\mu s$ and these devices can operate at 6.5 kV. The high-voltage switch will see double voltage, but then an IGCT could be used (ABB will sell a stack of voltage).	C. Burkhart
Α	Differences in kickers are adjustable by correcting the inductive loads on every magnet. However, this method has limited Not adjustable.	R. Heese
С	Comment: What was missing in the scheme presented in Steve Kowalski's talk are the parasitic losses; these losses make kicker systems different from device to device.	C. Burkhart
С	Comment: However, if the kickers + drivers can be made identical, using the same technology the losses can be made nearly identical for different devices.	S. Mikhailov
С	Comment: Driving all SCRs with a single pulser does not seem to be a good idea because of the potential mismatch.	B. Sheehy
A	Comment: Actually, this design is feasible if all kind of waveforms and field corrections are built into the pulsed-system's design.	S. Mikhailov
A	Comment: You can minimize differences between different devices by fully optimizing the device's parameters; a) using field- and current-measurements, and, b) characterizing the device's performance using beam-based methods.	T. Shaftan

Q	How accurately can storage-ring kickers be aligned?	T. Shaftan
	<u></u>	
А	One way of correcting an undesirable horizontal field lies in using the skew dipole scheme of Bx correction.	R. Heese
С	Comment: The disadvantage of that scheme is the need of continuously monitoring the kickers' alignment.	I. Pinayev
С	Comment: There are limitations on the accuracy of alignment. There can be a 10 um discrepancy or worse in alignment between the survey on the measurement bench and then rechecking magnet survey in the tunnel. Comment: The measurement coils can be calibrated to increase accuracy of the alignment in the following way: Start with DC measurements, then make AC measurement with a sinusoidal current, and lastly measure the actual pulse to	S. Mikhailov
C	calibrate the coils.	S. Mikhailov
C	The last stage of the alignment is a final alignment with the electron beam.	S. Mikhailov
0	What are the magnet errors achieved at the TDS?	T. Shaftan
Q	what are the magnet errors achieved at the TPS?	1. Shanan
A	TPS achieved about 1% of differences in the field amplitude; every kicker sits on its own positioning stage. The alignment accuracy then is limited to few μ m across of 30 cm. Accelerator physicists set the specifications for acceptable kicker errors; nobody discussed these tolerances with the TPS users.	J.R. Chen
0	How any you blood the current off to food the correction coils in a kicker?	C Durkhart
A	We considered making slim correction coils (single turn) fed consecutively for the same power supply through a shunt so to adjust the amount of current flowing through the correction coil.	R. Heese
0	How do you keep current in phase with the main pulse using correction coils?	C. Burkhart
A	If this appears to be a problem, we can consider using separate drivers for correction coils driven by a half-sine waveform.	R. Heese
Q	Let us discuss the booster extraction kicker that requires 0.2% of the waveform flatness along the 300 ns-long portion of the kicker pulse (200 ns rise time, 300 ns flattop) so not to spoil the extracted beam's emittance.	T. Shaftan
С	Adjusting the driver's impedance might compensate for the droop.	I. Pinayev
С	The CERN kicker assures 1% of the flattop's flatness.	Z. Wu
С	I believe that a 1% value is achievable.	P. Zuhosky
С	I concur that 1% is achievable; however, we did not specify this tolerance for the TPS machine.	J.R. Chen
C	Less than 1% is very difficult since it may take a lot of stages in the kicker's modulator.	S. Mikhailov

С	The NLC's kickers had 60 cells generating pulses 2-3 µs long.	C. Burkhart
С	The kicker-to-load distance is equivalent to the second pulse being ~100ns away. Therefore, a load mismatch will affect the pulse later.	C. Burkhart
C	The measured DCCT signal does not represent correctly the actual field waveform seen by the beam. Filtering out modulation through the kicker ferrite and the coating limits the bandwidth.	S. Mikhailov
Q	If we assume that the modulator violates the specification, can we consider some kind of a correction circuit to correct the waveform modulation and slew?	T. Shaftan
С	As we discussed, a separate correction magnet might be installed later in the beamline.	R. Heese
C	Rather than the magnet, which will require a ceramic break, a correction stripline might be developed with $Z=50$ Ohm and high-power electronics for generating a programmable waveform.	T. Shaftan
С	This problem also can be solved by two extraction kickers with the same waveforms shifted by 1/2 period of modulation. Then, the second kicker's waveform will cancel the modulation of the bunch-to-bunch angle induced by the first kicker's nonuniform waveform.	J.R. Chen
С	A similar technique was used in the instrumentation of the NSLS's EPW (Elliptical Polarized Wiggler).	G. Rakowsky
С	In searching for a flat waveform, PFL might be used rather than PFN. It will take shaping a water line for 2 kA and 20 kV (10 Ohm impedance); for example, 150 ns is equivalent to 11 feet of water line. The challenge is using PFL is that it is not a constant impedance, but this can be improved by changing the geometry of the PFL's inner conductor to match the required value of the impedance. On other hand, aging of the PF can be a problem for the long-term operations.	C. Burkhart
С	A reduction in PS voltage is highly rewarding; to do so requires minimizing the magnet's aperture and, in turn, going to the in-vacuum magnet design. Advantageously, the in-vacuum fast kicker design is simple and perhaps less expensive than other designs. However, ferrite might be damaged by synchrotron radiation; hence, this needs to be checked.	J.R. Chen
	The voltage specifications are 12 kV for 100 ns rise time for the booster injection and extraction kickers. The charge voltage on the line is twice that of the required voltage on the magnet = 12 kV x 2= 24 kV. There are 70 kV/2 kA thyrotrons, which are discussed on the E2V's website. An issue is the required current rate, viz., dI/dt=20A/ns, which will be hard to meet. A two-gap thyrotron may be a good resolution for 10 kA/ μ s. We recommend calling E2V and asking if they have anything with 20 kA/ns.	C. Burkhart

For the injection into the booster we are considering the four-kicker scheme that has not been used before in this context. What issues do you see with this scheme? We are planning on feeding two neighboring kickers with the same power supply because there are difficulties in controlling two pulses of independently. T. Shaftan The NSLS-II linac will generate high-charge beams with the longitudinal phase- space dominated by the energy droop along the bunch train. This may affect beam stacking using the four kickers. I. Pinayev A 50 kV thyrotron exists that can be used in the pulser simultaneously for both kickers. Its use requires prior analyses. C. Burkhart These will be relatively low-field devices, wherein magnet hysteresis may play a role in the mismatch between different kickers. C. Burkhart C able losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart C allo losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd etimese. C. Burkhart Q Two or four kickers in parallel may cause reflections between the different Q devices. <td< th=""><th>С</th><th>Some other recommendations are exploring solid-state options. Adder is a good solution.</th><th>C. Burkhart</th></td<>	С	Some other recommendations are exploring solid-state options. Adder is a good solution.	C. Burkhart
For the injection into the booster we are considering the four-kicker scheme that has not been used before in this context. What issues do you see with this scheme? We are planning on feeding two neighboring kickers with the same power supply because there are difficulties in controlling two pulses T. Shaftan Q independently. T. Shaftan T. Shaftan The NSLS-II linac will generate high-charge beams with the longitudinal phase- space dominated by the energy droop along the bunch train. This may affect I. Pinayev C beam stacking using the four kickers. I. Pinayev A 50 kV thyrotron exists that can be used in the pulser simultaneously for both kickers. Its use requires prior analyses. C. Burkhart These will be relatively low-field devices, wherein magnet hysteresis may play a role in the mismatch between different kickers. S. Mikhailov C Hysteresis is very small at 500 Gs. S. Mikhailov C hysteresis. R. Heese C able losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart C IBGTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart C aalaraan, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore th			
The NSLS-II linac will generate high-charge beams with the longitudinal phase-space dominated by the energy droop along the bunch train. This may affect I. Pinayev C beam stacking using the four kickers. I. Pinayev A 50 kV thyrotron exists that can be used in the pulser simultaneously for both kickers. Its use requires prior analyses. C. Burkhart These will be relatively low-field devices, wherein magnet hysteresis may play a cole in the mismatch between different kickers. C. Burkhart C Hysteresis is very small at 500 Gs. S. Mikhailov The ferrite material CMD5005 is of the highest quality and has the smallest chysteresis. R. Heese Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV versions of them exist. We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd cage. C. Burkhart Q Two or four kickers in parallel may cause reflections between the different devices. A. De Lira A The scanements of the coupling between the magnets can help in minimizing the coupli	Q	For the injection into the booster we are considering the four-kicker scheme that has not been used before in this context. What issues do you see with this scheme? We are planning on feeding two neighboring kickers with the same power supply because there are difficulties in controlling two pulses independently.	T. Shaftan
A 50 kV thyrotron exists that can be used in the pulser simultaneously for both kickers. Its use requires prior analyses. C. Burkhart These will be relatively low-field devices, wherein magnet hysteresis may play a role in the mismatch between different kickers. C. Burkhart C Hysteresis is very small at 500 Gs. S. Mikhailov The ferrite material CMD5005 is of the highest quality and has the smallest hysteresis. R. Heese Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C stage. C. Burkhart Q Two or four kickers in parallel may cause reflections between the different devices. A. De Lira A De Lira A. De Lira A This can be carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis A C. Burkhart S. Mikhailov	С	The NSLS-II linac will generate high-charge beams with the longitudinal phase- space dominated by the energy droop along the bunch train. This may affect beam stacking using the four kickers.	I. Pinayev
These will be relatively low-field devices, wherein magnet hysteresis may play a C. Burkhart C Hysteresis is very small at 500 Gs. S. Mikhailov The ferrite material CMD5005 is of the highest quality and has the smallest R. Heese C hysteresis. R. Heese C Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV V versions of them exist. We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C stage. C. Burkhart Q Two or four kickers in parallel may cause reflections between the different A. De Lira A De Lira A. De Lira A effect. G. Ganetis A C. Burkhart S. Mikhailov	С	A 50 kV thyrotron exists that can be used in the pulser simultaneously for both kickers. Its use requires prior analyses.	C. Burkhart
The ferrite material CMD5005 is of the highest quality and has the smallest R. Heese C hysteresis. R. Heese Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart C BGTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C. Burkhart Q Two or four kickers in parallel may cause reflections between the different devices. A. De Lira This can be carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis AC measurements of the coupling between the magnets can help in minimizing S. Mikhailov A back-up plan is needed for four separate modulators for the storage-ring S. Mikhailov	C C	These will be relatively low-field devices, wherein magnet hysteresis may play a role in the mismatch between different kickers. Hysteresis is very small at 500 Gs.	C. Burkhart S. Mikhailov
Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C. Burkhart C result in large losses in the cable, equivalent to about 0.5 Ohm. C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV C. Burkhart Glazman, Lambda (ILE) produces IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C. Burkhart Q Two or four kickers in parallel may cause reflections between the different A. De Lira A. De Lira This can be carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis AC measurements of the coupling between the magnets can help in minimizing A the coupling. S. Mikhailov	С	The ferrite material CMD5005 is of the highest quality and has the smallest hysteresis.	R. Heese
Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) C C result in large losses in the cable, equivalent to about 0.5 Ohm. C. Burkhart IGBTs may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV C. Burkhart We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd catage. C Two or four kickers in parallel may cause reflections between the different devices. A. De Lira A. De Lira A. De Lira A. De Lira A. De Lira A. De Lira A. De carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis A. C measurements of the coupling between the magnets can help in minimizing the coupling. S. Mikhailov A back-up plan is needed for four separate modulators for the storage-ring S. Mikhailov			
IGB Is may be of interest to use in such devices. Upeck (Mitsubishi) C. Burkhart C manufactures them. C. Burkhart Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira Versions of them exist. A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd stage. C stage. C. Burkhart Image: Image: C. Burkhart Image: C. Burkhart Image: Image: C. Burkhart Image: C. Burkhart Image: Image: C. Burkhart Image: C. Burkhart	C	Cable losses must be taken into account that may be quite significant for long lengths. For example, 100 feet of cable used in kicker system BYKIK (SLAC) result in large losses in the cable, equivalent to about 0.5 Ohm.	C. Burkhart
Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV A. DeLira C versions of them exist. A. DeLira We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C. Burkhart C stage. C. Burkhart C. Burkhart Image: C stage. Image: C stage Image: C stage Image: C stage. Image: C stage Image: C stage Image: C stage. Image: C stage Image: C stage Image: C stage. Image: C stage Image: C stage Image: C stage. Image: C stage Image: C stage Image: C stage: C stage: C stage Image: C stage Image: C stage Image: C stage: C stage: C stage Image: C stage Image: C stage Image: C stage: C stage: C stage Image: C stage Image: C stage Image: C stage Image: C stage: C s	С	manufactures them.	C. Burkhart
We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd C. Burkhart C stage. C. Burkhart Image: Image: Im	С	Glazman, Lambda (ILE) produces IGBTs operating at 3.3 kV; even 6.5 kV versions of them exist.	A. DeLira
Image: Constraint of the coupling Two or four kickers in parallel may cause reflections between the different devices. A. De Lira Image: Constraint of the coupling between the magnets can help in minimizing A. De Lira Image: Constraint of the coupling. G. Ganetis Image: A back-up plan is needed for four separate modulators for the storage-ring S. Mikhailov	C	We use two-stage modulator with IGBT on first stage and Thyratron on the second stage, which may be useful. In the analysis of such a scheme, it may be important to explore the prepulse, relevant to energy transfer from the 1st to 2nd stage.	C. Burkhart
Two or four kickers in parallel may cause reflections between the different A. De Lira Q devices. A. De Lira Image: the structure This can be carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis Image: the coupling. AC measurements of the coupling between the magnets can help in minimizing the coupling. S. Mikhailov Image: A back-up plan is needed for four separate modulators for the storage-ring S. Mikhailov			
A This can be carefully modeled in circuit analysis to see the importance of the effect. G. Ganetis A AC measurements of the coupling between the magnets can help in minimizing the coupling. S. Mikhailov A back-up plan is needed for four separate modulators for the storage-ring S. Mikhailov	Q	Two or four kickers in parallel may cause reflections between the different devices.	A. De Lira
AC measurements of the coupling between the magnets can help in minimizingA the coupling.A back-up plan is needed for four separate modulators for the storage-ring	A	This can be carefully modeled in circuit analysis to see the importance of the effect.	G. Ganetis
A back-up plan is needed for four separate modulators for the storage-ring	A	AC measurements of the coupling between the magnets can help in minimizing the coupling.	S. Mikhailov
C kickers. G. Ganetis	С	A back-up plan is needed for four separate modulators for the storage-ring kickers.	G. Ganetis

Q	Let us discuss methods of the online measurement of kicker fields.	T. Shaftan
C	The measurement circuit at Duke University uses 8 coils with BNC connectors on the ends. By subtracting the readings, this scheme allows us to deduce the aging of the pulsed-magnet ferrites	S Mikhailov
	Today's Hall probes can measure magnetic fields in the MHz or even 10s MHz	5. Wilkingilov
C	range. At these high frequencies, we must be careful with twisting the coils and creating other problems that might limit the bandwidth	S Mikhailov
C	Impedances in GOhm range define the time-constant of a measurement circuit	5. WIRHanov
	Therefore, the measurement circuitry must be analyzed carefully for any	
С	particular case.	A. Jain
C	There are several manufactures of fast transformers: Pierson from Palo-Alto Cal, Bergoz in GHz range. Stangenes also has them with a 2 ns bandwidth limit. To match the measurement device bandwidth we should buy 1 GHz and a10-bit digitizer	C. Canatia
C	To characterize the high frequency modulation of the higher ways form we could	0. Galletis
С	try offsetting the transformer pulse.	B. Sheehy
~	Another way to do this is to subtract the averaged (HF filterer) pulse from the	
C	measured pulse.	T. Shaftan
C	Aquarius sells a 3 GHz 10-bit digitizer.	B. Sheehy
	A problem with the Pulsed Sextupole Magnet lies in measuring the zero-field	
Q	point at the maximum current.	H. Takaki
А	We considered building a differential coil with symmetric loop geometry to subtract fluxes from the two opposite halves of the magnet.	R. Heese
Α	We at KEK are using a measurement system consisting of a coil and a filter.	H. Takaki
C	Commenting on storage-ring kickers that require very high precision on alignment and field quality, we note that the kicker field will change pulse-to- pulse as determined by hysteresis in ferrite. Hence, the actual BH curve must be taken into account while estimating the achievable tolerances for the kicker- magnet's design.	S. Mikhailov
С	Another comment is that defining the multipole magnetic center itself is quite unclear when the range of interest is only tens of microns. Thus, the center of the pulsed sextupole magnet may be determined only with limited accuracy (potentially limited to um or so).	T. Shaftan, S. Mikhailov
_		
	How can we measure fields with accuracies of 0.1% of waveform in	
Q	amplitude and time?	G. Ganetis
	We might employ a differential way by comparing the measurements between different kickers. Another differential method is to use two zero-flux	
С	transformers.	S. Mikhailov

	DCCT's and Pierson's white band current transducers reach a measurement	
С	reproducibility of 1E-4 peak-to-peak.	G. Ganetis
	A problem here might be shot-to-shot stability of the kicker waveforms at this	
С	level.	P. Zuhosky
	A laminate construction might be used rather than ferrite. The permeability of	
	this kind of material is much higher, thereby resulting in better magnetic	
	properties. Hitachi produces a material called Finemet, including 3 different	
С	major classes of these materials with different anneals.	C. Burkhart
	These magnetic materials were discussed by Hitachi at the PAC-2009	
	conference. We are considering to electrically discharge machine (EDM) the	
С	actual kicker's shape or cut it with a laser.	R. Heese
	Temperature compensation of the pulsed magnets must be considered to	
	achieve such high levels of the measurement accuracy. Also, aging of the	
Q	magnets may necessitate online adjustment of power supplies.	G. Ganetis
	The kicker magnet's alignment can be lost within 5 min of operating at the 10	
С	urad level.	I. Pinayev
G	The tunnel temperature is well maintained, within 0.1 degree. This will stabilize	
C	the performance of the magnet and driver.	G. Ganetis
С	The NSRRC achieves temperature stability within 0.1 deg.	J.R. Chen
Q	What are your thoughts on measuring the parameters of thyrotrons?	G. Ganetis
	A bench procedure for assessing jitters in the switching devices should be	
	developed before formulating the kicker drivers. For example, IGBTs exhibit a 2-	
С	ns jitter.	C. Burkhart
	One way to resolve problems with the high dldt in thyrotrons is to use a small	
	magnetic switch in parallel with thyrotron ("saturable reactor") working whilst	
C	the therefore turns on	C Burkhart

NSLS-II pulsed magnet parameters as of July 2009

Pulsed Magnet/Parameter	Numbers	Bend Angle (mP)	Length	Max. Field	Bend Radius (m
	required				Kaulus (II
Ring Injection Kicker					
(bump)	4	7.85	0.5	0.157	63.678
Ring Injection Septum	1	40	0.8	0.5	20
Ring Injection Septum	1	150	1.8	0.833	12
	-		110	0.055 @	
Pulsed Sextupole	1	2.83	0.5	<u>8.5mm</u>	
Booster Extraction					
Slow Bump	4	7.5	0.2	0.375	26.667
Booster Extraction					
Kicker	1	5	1	0.05	200
Booster Extraction					
Septum	1	48	0.6	0.8	12.5
Booster Extraction	1	06	1	1 000	10 417
Septum - DC	l	90		1.009	10.41/
Pooster Injustion					
Septum	1	142.5	0.75	0.127	5.263
Booster Injection Kicker	1	7.5	0.2	0.025	26.67

	Horizontal	Vertical	Imax	
Pulsed	Aperture	Aperture	(A) or	
Magnet/Parameter	(mm)	(mm)	A-T	Pulse shape
Ring Injection Kicker				
(bump)	65	27	3710	1/2 sine
Ring Injection				
Septum	32	23	11810	Full sine
Ring Injection			191.5 x	
Septum DC	50	20	80 A-T	DC
Pulsed Sextupole	27	27	3200	1/2 sine
Booster Extraction			411 x 20	
Slow Bump	50	25	A-T	1/2 sine
Booster Extraction				<200 ns risetime, 300 ns flat-
Kicker	50	25	1100	top

Booster Extraction				
Septum	32	23	16100	1/2 sine
Booster Extraction			220.6 x	
Septum - DC	50	20	80 A-T	DC
Booster Injection				
Septum	20	15	1800	Full sine
Booster Injection				100 ns rise/fall time, 300 ns
Kicker	50	25	600	flat-top

Pulsed	Pulse length	Inductance	Drive Voltage	Drive Capacitance
Magnet/Parameter	(µs)	(µH)	(kV)	(µF)
Ring Injection Kicker				
(bump)	5.2	1.513	3.525	1.675
Ring Injection Septum	100	1.191	0.885	212.6
Ring Injection Septum - DC				
Pulsed Sextupole	5.2	14	27	
^				
Booster Extraction				
Slow Bump	1000	201	0.025 - 0.030	504
Booster Extraction				
Kicker		2.513	19.62 at magnet	n/a
Booster Extraction				
Septum	60	1.049	0.885	348
Booster Extraction				
Septum - DC				
Booster Injection				
Septum	150	1.257	0.175	114
Booster Injection				
Kicker		0.754	4.5 at magnet*	n/a

Attendees	phone	Org.	E-mail
C. Burkhart	1 650 926-3212	SLAC	burkhart@slac.stanford.edu
J. R. Chen	(03)578-0281 (6323)	NSRRC	jrchen@nsrrc.org.tw
A. De Lira	1 650 926-3463	SLAC	aclira2000@gmail.com
R. Fliller	1 631 344 2356	BNL	rfliller@bnl.gov
G. Ganetis	1 631 344 4476	BNL	ganetis@bnl.gov
R. Heese	1 631 344 4902	BNL	rheese@bnl.gov
D. Hseuh	1 631 344 4890	BNL	hseuh@bnl.gov
A. Jain	1 631 344-7329	BNL	jain@bnl.gov
S. Kowalski	1 631 344 4834	BNL	<u>skowalski@bnl.gov</u>
C.C. Kuo	(03)578-0281 (6323)	NSRRC	cckuo@nsrrc.org.tw
S. Mikhailov	1 919 660-2647	Duke University	smikhail@fel.duke.edu
T. Miyajima	+81-29-864-5200	KEK	tsukasa.miyajima@kek.jp
S. Ozaki	1 631 344 5590	BNL	<u>ozaki@bnl.gov</u>
B. Parker	1 631 344-3231	BNL	parker@bnl.gov
I. Pinayev	1 631 344 5706	BNL	pinayev@bnl.gov
G. Rakowsky	1 631 344-5298	BNL	rakowsky1@bnl.gov
M. Rehak	1 631 344 4708	BNL	rossum@bnl.gov
T. Shaftan	1 631 344 5144	BNL	tshaftan@bnl.gov
S. Sharma	1 631 344 4423	BNL	sharma@bnl.gov
B. Sheehy	1 631 344 3720	BNL	sheehy@bnl.gov
M. Shimada	+81-29-864-3880	KEK	miho.shimada@kek.jp
H. Takaki	+81-4-7136-3563	Tokyo University	<u>takaki@issp.u-tokyo.ac.jp</u>
A. Ueda	+81-29-864-5651	KEK	akira.ueda@kek.jp
G. Wang	1 631 344-7329	BNL	gwang@bnl.gov
F. Willeke	1 631 344 2216	BNL	willeke@bnl.gov
A. Wu	1 631 344-5369	BNL	arling@bnl.gov
P. Zuhosky	1 631 344-4742	BNL	zuhoskip@bnl.gov

Names and contact information of the participants

Present Status and Time Line

- Building construction in Progress
- Procurement of major components (linac, booster, magnets, vacuum chambers in progress)
- Production of components in 2010-2011
- Installation 2011-2012
- Testing and commissioning 2013-2014

Scope Overview
 NSLS-II requires a reliable injector capable of filling and maintaining storage ring current. Top-off mode of injection is required Specifications for NSLS-II injector Storage ring: 3 GeV, 0.5 A, 1080 bunches in 1320 RF buckets, 3 hr lifetime Top-off: deliver 80150 bunches with 7.3 nC total charge once a minute → total stability of ring current 0.55%, bunch-to-bunch charge deviation 20% Repetition rate of 1 Hz (initial fill 0 → 0.5 A in 3 min) Supported Storage Ring Bunch patterns: Baseline: uniform fill with 20% ion-clearing gap Baseline: 4-5 bunch trains with short gaps Future upgrade: camshaft bunch(es), uniform fill Future upgrade: Bunch cleaning, Empty/Full RF bucket charge ratio 0.01% Injector scope: 200-MeV linac with 100-keV thermionic gun Linac-to-booster transport line 3 GeV booster
Booster-to-Storage ring transport line Storage ring injection straight section
ENERGY 2 NATIONAL LABORATOR BROOKHAVEN SCIENCE ASSOCIATES

Extraction Kicker Parameters						
Bending Angle:		5.0 mR for 3 GeV				
Magnetic Field:		0.05 T				
Magnet length:		1 m				
Full magnet vertical gap:		0.042 m				
Full magnet horizontal gap:		0.07 m				
Type of magnet:		Window frame				
Required current:		1900 A in 1 turn				
Current pulse shape:		100 nsec rise time, 300 nsec flat-top,				
		fall time not critical				
Ripple and droop of current pulse:		<0.2 %				
Repetition rate		1 Hz				
Magnet Inductance:		1.737 μH				
Magnet resistance:		10 – 12 mΩ @ 2.5 MHz				
Magnet Impedance (calculated):		1.6 mΩ				
	8	BROOKHAVEN NATIONAL LABORATOR BROOKHAVEN SCIENCE ASSOCIATES				

Tolerances for Storage Ring Top-off Injection

- Transparent top-off cycle is highly desirable
- Orbit motion of 10% of rms beam size of damped beam in synchrotron is a challenging requirement for top-off

For the two alternative injection schemes, four kickers or pulsed sextupole magnet, the following parameters are required due to the very small ring emittance:

- Relative field tolerance among the injection bumps of <0.008%
- Vertical alignment of injection bump roll to better than 12.5 µrad
- For alternative PSM injection, vertical placement of magnet to <10 µm

 Many modern Light Sources run successfully with more moderate tolerances

U.S. DEPARTMENT OF

anako

11

4-Kicker – PSM Comparison										
	Magnets									
Parameter	DC sept.	Pulsed	sept.	Kicke	er	Parameter	DC sept.	Pulsed sept.	PSM	
Length m	1.8	0.8		0.5		Length, m	1.5	0.8	0.5	
Eold T	0.922	0.8		0.157		Field, T or else	1.5	0.5	1550 T·m ⁻³	
Poletin field T	0.833	0.5		0.157		Poletip field, T	1.5	0.5	0.484	
Bend angle, mrad	190	40		7.85		Bend angle, mrad	225	40	2.8	
Half aperture mm x mm	50/20	32/23		70/44		Half aperture, mm x mm	50/20	32/23	25/25	
Design	1/4 SiS lam.	1/4 SiS	lam.	CMD5005		Design	1/4 SiS lam.	1/4 SiS lam.	1/4 SiS lam	
Inductance, uH	n/a	1.399		1.009		Inductance, uH	n/a	1.399	14	
Power Supplies Pulse shape/width, μs n/a 100 μs sine ½ sine/5.2 Pulse shape/width, μs n/a 100 μs sine ½ sine/5.2								¹ / ₂ sine/5.2		
Capacitance of driver, µF	n/a		181.1		2.83	Capacitance, µF	n/a	181.1	200	
Current, kA	191.5	x80AT	10.07		6.047	Current, kA	0.33x80AT	10.07	3.2	
Voltage, kV	0.06		0.885		3.59	Voltage, kV	0.083	0.885	27	
Flatness/ Field Error tol.,	% n/a/0.	03	0.2/0.2		8x10E-3	Flatness/ Field Error tol., %	n/a	0.2/0.2	n/a/1	
Align. tolerances, roll (ra	d) 100/1	00/0.2	100/100/0.2		1.2E-5 ve	Align. tol, µm/µm/mrad	100/100/0.2	100/100/0.2	100/ <mark>10</mark> /1	
	ĞY				15		BI NAT BRC	ROOKH IONAL LAE	EXTEN BORATORY ASSOCIATES	

Injection Magnets for Ring PSM Injection

Parameter	DC septum	Pulsed septum	PSM
Length, m	1.5	0.8	0.5
Field or gradient	1.5 T	0.5 T	1550 T·m ⁻³
Bend angle, mrad	225	40	2.8
Aperture, mm	5/20	32/23	25/25
Pulse shape/width, µs	DC	Full sine/100	¹ / ₂ sine, 5.2
Flatness/ Field Error	n/a	n/a	<1
tol, %			
Align. tol,	10 ² /10 ² /0.2	10 ² /10 ² /0.2	100/ <u>10/</u> 1
µm/µm/mrad			
Inductance µH	n/a	1.399	14
I(ka)/V(kV)	n/a	10.07/0.885	3.2/27

Aspects

- •2 pulsed magnets only
- •Transport line so far not satisfactory due to large gradient of sextupole at end of transport line
- •Magnet made of thin 0.2 mm laminations, final pole contour EDM cut after assembly

•Micro-positioning table for vertical adjustment designed

Simulation Results									
Pulsed Magnet/ Parameter	#	Pulse shape	Imax (A) or A-T	Pulse length (µs)	Inductance (µH)	Drive Voltage (kV)	Drive Capacitanc e (µF)	di/dt	dv/dt
Ring Injection Kicker (bump)	4	1/2 sine	3710A	5.2us	1.5uH	4075V	1.5uF	1426A/us	2037V/us
Ring Injection Septum	1	Full sine	11810A	100us	1.19uH	1057V	186uF	472A/us	53V/us
Booster Extraction Slow Bump	4	1/2 sine	411A	1000us	201uH	280V	480uF	2.06A/us	2V/us
Booster Extraction Septum	1	1/2 sine	16100A	60us	1.049uH	975V	330uF	536A/us	55V/us
Booster Injection Septum	1	Full sine	1800A	150us	1.25uH	155V	300uF	48A/us	6.9V/us
BROOKHAN ENERGY 8 BROOKHAN				DKHAVE L LABORATO N SCIENCE ASSOCIAT					

	Mag	net Pa	rameter	S
Parameter	DC septum	Pulsed septum	PSM	
Length, m	1.5	1	0.5	
Field or gradient	1.5 T	0.4 T	1550 T·m ⁻³	 Injection straight optimized to reduce the
Angle, mrad	225	40	2.8	strength of the sextupole as
1/2 aperture, mm	5/20	20/15	25/25	maintaining requirement
Pulse shape/width, µs	DC	sine/100	¹ / ₂ sine 5.2	that injected beam is 8.5mm from stored beam.
Flatness/ Field Error tol., %	n/a	0.2/0.2	<1	 Magnet design optimized to lower inductance of sextupole as much as
Align. tol., µm/µm/mrad	100/100/ 0.2	100/100/ 0.2	100/10/1	 possible Alignment tolerances for
Inductance, µH	n/a	3.35	14	sextupole determined by
Current, kA/	26400at/	5.25/	3.2/	slide)
Voltage, kV	0.083	0.56	27	BROOKHAVEN NATIONAL LABORATORY BRONKHAVEN SCIENCE ASSOCIATES

Static error		Jitter Error		
Dipole field error	0.1%	Booster extraction kicker	0.2%	
Quads field error	0.2%	Booster extraction septum	0.03%	
All magnet and BPM roll error	2 mrad	Storage ring pulsed septum	0.03%	
Quads transverse misalignment	0.15mm	DC dipole power supply	0.003%	
Dipole longitudinal misalignment	1 mm	DC quads power supply	0.1%	
Quads longitudinal misalignment	2 mm	booster beam position	15 µm	
BPM transverse misalignment	0.1 mm	booster beam angle	6 μrad	
BPM transverse misalignment before the1 st sextupole	50µm			
Tolerances in green are looser than in Tolerances in black are identical to s Tolerances in red are still difficult to a	n the single sex single sextupole chieve.	tupole case. e case.		

1

July 27-28, 2009

Acknowledgement Beam Dynamic Group H.-P. Chang, P.-J. Chou, C.-C. Kuo Injection Group C.-S. Fan, K.-K. Lin Magnet Group C.-S. Chang, J.-C. Huang, C.-S. Yang Utility Group Y.-H. Liu Vacuum Group C.-K. Chan, G.-Y. Hsiung, L.-H. Wu

OUTLINE

- I. The Taiwan Photon Source
- II. TPS Injection System and Design Considerations
- III. Booster Injection and Extraction
- IV. Storage Ring Injection
- V. Pulsed Magnet Prototypes and Field Mapping System
- VI. Summary

NSR Parameters of TPS Storage Ring 3 GeV • Beam energy : 300 mA (Phase-1) • Beam current: • Emittance: 1.7 nm-rad • Lifetime: > 10 hours • Straight Sections: 7 m (x18); 12 m (x6) • Lattice structure: 24 DBA • Circumference: 518.4 m Critical photon energy: 7.13 keV • RF frequency 500 MHz

8

NSRRC Parameters of TPS Booster

Injection Energy:Extraction Energy :Repetition Rate:	150 MeV 3 GeV 3 Hz
 Emittance: Straight section: Superperiod: Circumference: Harmonic Number: RF frequency 	10.32 nm-rad 6 m 6 496.8 m 828 500 MHz
	9

NSRR <i>Milest</i>	ones of TPS Construction	n
• Oct. 2007	Lattice approved by BOT	
	Architect firm selected	
• Dec. 2007	TPS final approval by Legislative Yuan	
• June 2008	EPA approval; site plan completed	
• June 2008	Accelerator design book issued	
• Oct. 2009	1/24 ring (one cell) prototype construction	
• Dec. 2009	Groundbreaking	
• July 2012	Starting storage ring installation	
• Oct. 2014	Open to users	10
		10

NSRRC E	Boost	er Injection Septum				
Booster Injection Septum	3 Hz	Features Less critical for power supply				
Electron energy (GeV)	0.15	Injection energy is low (150 MeV)				
Bend angle (mrad)	209.44					
Mag. aperture (mm)	28*22	Septum (out-or-vacuum)				
Length (m)	0.8	easy labrication for septum				
Maximum field (T)	0.131	easy tabrication for champer				
Bend radius (m)	3.8197	0.4 mm thickness (less heat and field				
Beam aperture (mm)	26*20	aistortion)				
Max. current (A)	2292	With shielding to reduce leakage field				
Pulse shape	full sine					
Pulse duration (us)	300	332				
Energy in magnet (J)	3.36					
Impedance (Ohm) 0.027						
Inductance (mH)	1.28					
Inductance (simulated)	1.95					
Capacitance (mF)	1782					
Drive voltage (kV) 0.061						
Leakage field (%)	< 0.1					
Field error (%)	0.5					

NSRRC	Boost	er Injection Kicker
BR inj. Kicker	3Hz	Features
Energy (GeV)	0.15	Less critical for power supply
Bend angle (mrad)	16	Injection energy is low (150 MeV)
Mag. aperture (mm)	50*21	
Length (m)	0.5	Long pulse injection 1000ns
Maximum field (T)	0.016	In-vacuum kicker
Bend radius (m)	31.25	Outgassing rate OK, after baking
Beam aperture (mm)	35*20	PFN circuit
Max. current (A)	267	e 🚔
Pulse shape	Flat top	
Fall time (ns)	100	
Pulse duration (ns)	1000ns-FT	
Energy in magnet (J)	0.053	
Impedance (Ohm)	25	
Inductance (mH)	1.50	
Capacitance (mF)		
Drive voltage (kV)	13.4	

NSRRC B	ooste	er Extraction Septum
BR Extraction AC septum	3Hz	Features
Energy (GeV)	3.0	Septum AC+DC
Bend angle (mrad)	55.5	to reduce the field of AC septum
Mag. aperture (mm)	22*15	DC septum
Length (m)	0.8	double layer shielding
Maximum field (T)	0.694	AC Septum
Bend radius (m)	14.4144	out-of-vacuum
Beam aperture (mm)	20*13	easy fabrication for septum and chamber
Max. current (A)	8281	0.4 mm thickness (less heat and field
Pulse shape	half sine	distortion)
Pulse duration (us)	150	
Energy in magnet (J)	50.6	DC Septum
Impedance (Ohm)	0.031	(75.5 mrad)
Inductance (mH)	1.47	(55 5 mrad)
Inductance (simulated)	2.85	
Capacitance (mF)	1546	
Drive voltage (kV)	0.302	URATE BATA
Leakage field (%) (DC)	<0.01%	
Field error (%)	< 1	

PD out Kiekon	2 Uz	Features					
En ext. Kicker	3 HZ						
Energy (Gev)	3.0	Similar to the booster injection kicker					
Mana angle (mrad)	2.0	Long pulse extraction 1000ns					
Mag. aperture (mm)	50*18	• 1m in-vacuum kicker					
Length (m)	1	high outgassing rate (increase pumping)					
Maximum field (T)	0.026	high inductance					
Bend radius (m)	384.6154	PEN circuit					
Beam aperture (mm)	35*18						
Max. current (A)	372						
Pulse shape	Flat top						
Rise time (ns)	200						
Pulse duration (ns)	1000ns-FT						
Energy in magnet (J)	0.24						
Impedance (Ohm)	25						
Inductance (mH)	3.49						
Capacitance (mF)							
Drive voltage (kV)	18.6						
Field error (%)	1						

NSRRC	SR I	njection Septum
AC septum	3Hz	Features (similar to the booster ext. septum)
Energy (GeV)	3.0	Septum AC+DC
Bend angle (mrad)	55.5	to reduce the field of AC septum
Mag. aperture (mm)	22*15	DC septum
Length (m)	0.8	double laver shielding
Maximum field (T)	0.694	
Bend radius (m)	14.4144	AC Septum (out-or-vacuum)
Beam aperture (mm)	20*13	easy labrication for septum and champer
Max. current (A)	8281	0.4 mm thickness (less heat and lield
Pulse shape	full sine	aistortion)
Pulse duration (us)	300	
Energy in magnet (J)	50.6	
Impedance (Ohm)	0.031	DC Septum
Inductance (mH)	1.47	(75.5 mrad) e
Inductance (simulated)	2.85	AC Septum
Capacitance (mF)	1546	(55.5 mrad)
Drive voltage (kV)	0.302	0
Leakage field (%) (AC)	< 0.1%	Lina and
Field error (%)	1	L'ALLER AND

D	Parameters of the 1.2 GeV Duke	e FEL ring	-
	Maximum beam energy E max [GeV]	1.2	INP NOVOSIBIRSK
Contra et	Injection energy E inj [GeV]	0.24 - 1.2 GeV	NR SER
	Stored beam current [mA]		
all sold	- in single bunch/in multibunch	100/400	
	Circumference [m]	107.46	
	Bending radius [m]	2.1	The state of the
	RF frequency [MHz]	178.55	
	Harmonic number	64	
	(a) $E_{max} = 1.0 \text{ GeV}$:		
2 × 3	Beam emittance ε_x	18	1 1 1 1 1
	Betatron tunes Q_x/Q_y	9.11 / 4.18	Sec. Size
	Momentum compaction factor	0.0086	and the second
	Natural chromaticities C_x / C_y	-10.0 / -9.8	
6	Damping times $\tau_{x,y}/\tau_s$ [ms]	18.3 / 17.0	
3 12	Energy spread	5.8.10-4	N. L. Star
	Enormy of Compton at more by Harf	10 60 MeV	Sec. 2
	Energy of Compton 7-rays by mys	1.0 - 00 WeV	ALC: NO
24	Energy spread of γ-rays (commated)	$104 109 \ m/max$	
C Nos	y-ray nux on target (commated)	$10^{\circ} - 10^{\circ} \gamma$ /sec	
	Stepan Mikhailov July 27, 2009Pulsed Magnet Design Workshop at BNL, NSLS-II	DFELL	IVNL.

D U	Parameters o	f the boos	ter	Budker
aliena er Welling		Single bunch	Multi bunch	NOVOSIBIR
	Maximum beam energy E max [GeV]	1.1	2	
	Injection energy E ini [GeV]	0.	18	
	Stored beam current [mA]	1.5 - 3.0	10-12	
	Circumference [m]	31	.902	
	Bending radius [m]	2.2	273	
	RF frequency [MHz]	17	8.55	
	Harmonic number	19		
	Operation cycle [sec]	1.8-2.0	3.3-5.5	
	Energy rise rate [sec]	0.7	0	
	(a) $E_{max} = 1.2 \text{ GeV}$	V:		
	Beam emittance ε_x , ε_y	440 /	6	
	Betatron tunes Q_x / Q_y	2.37	5/0.425	
	Momentum compaction factor	0.1	58	
	Maximum $\beta_x / \beta_y / \eta_x$ [m]	9.9 /	27.2 / 1.65	
	Natural chromaticities C_x / C_y	-1.7	/ -3.7	
	Damping times $\tau_{x,y}/\tau_s$ [ms]	3.16	/ 1.60	
	Energy loss per turn [KeV]	80.7		
	Energy spread	6.8.1	0-4	
5	Stepan Mikhailov Pulsed Magnet Desig July 27, 2009 BNL, NSI	gn Workshop at LS-II	(DFELI)	IVN

Kicker	Switch type	#	Voltage range	Pulse width	Jitter	Charge/ Pulse (max)
Booster Injection	TPI1- 1k/20	1	4-10kV	106 ns/ 17 ns	1-2 ns	12 μC/ 2 μC
Booster Extraction	TPI1- 1k/20	2	4-20kV	10 ns	1-2 ns	7 μC
Ring	TPI3- 101/25	3	4-25kV	50 ns	~5 ns	100 μC

		Extraction
Min e-Beam Energy, MeV	150	250
Max e-Beam Energy, MeV	300	1200
Min Angle Kick, mrad	0.6	0.6
Nominal Angle Kick, mrad	0.675	0.675
Max Angle Kick, mrad	0.75	0.75
Max Repetion Rate, pps	2	25
Geometrical Kicker Gap, mm	27	27
Effective Kicker Gap, mm	27	27
Effective Kicker Length, cm	30	30
Min Kicker Voltage, kV	2.0	3.4
Max Kicker Voltage, kV	5.1	20.3
PFN Type	Single Line	Double Line
Pulse shape	trapezoid	bell-shape
Rise/Fall Time 10%-90%, nsec	5	7
Flat Top Time, nsec	100/0	4
Impedance, Ohm	50	50
Min Kicker PS Voltage, kV	4.1	3.4
Max Kicker PS Voltage, kV	10.1	25.3
PFN Capacitance, nF	2.1	0.4
Charging Rate, J/sec	0.22	3.52
Jitter peak-to-peak, nsec (from trigger signal)	<2	<1.6
Overshoot (Undershoot)	<10%	A STATE WE DOWN
Flatness	<10% peak-to-	<10% peak-to-
Pulse Form Reproducibility	within 5%	within 5%

	Section 1	1224.54	S I S Y
Parameter	Kicker #1	Kicker #2	Kicker #3
Min e-Beam Energy, MeV	250	250	250
Max e-Beam Energy, MeV	1200	1200	1200
Min Angle Kick, mrad	1.5	0.3	1.5
Nominal Angle Kick, mrad	1.8	0.4	1.8
Max Angle Kick, mrad	2	1.38	2
Max Repetion Rate, pps	25	25	25
Geometrical Kicker Gap, mm	58	58	58
Effective Kicker Gap, mm	46	46	46
Effective Kicker Length, cm	111.8	77	111.8
Min Kicker Voltage, kV	3.8	1.1	3.8
Max Kicker Voltage, kV	24.6	24.6	24.6
PFN Type	Double Line	Double Line	Double Line
Pulse shape	bell-shape	bell-shape	bell-shape
Rise/Fall Time 10%-90%, nsec	30	30	30
Flat Top Time, nsec	5	5	5
Impedance, Ohm	25	25	25
Min Kicker PS Voltage, kV	3.8	1.1	3.8
Max Kicker PS Voltage, kV	24.6	24.6	24.6
PFN Capacitance, nF	2.8	2.8	2.8
Charging Rate, J/sec	17.8	18.6	17.8
Jitter peak-to-peak, nsec (from trigger signal)	TBD	TBD	TBD
Flatness	< 10% peak-	< 10% peak-	< 10% peak-
Pulse Form Reproducibility	within 5%	within 5%	within 5%

Pulsed magnets for the photon factory at KEK

Pulsed Magnet Design and Measurement Workshop 27 July 2009

Akira Ueda Photon factory ,KEK

Pulsed magnets for the photon factory 2 Septum magnets 4 Kicker magnets (for injection) 1 pulsed sextuple magnet Takaki's talks

Septum magnets

Septum magnets

94

Passive type septum (eddy current septum wall)

Septum I 7deg@2.5 Gev electron beam 1.5m 5mm copper

Septum II 5deg@2.5 Gev electron beam 1m 2mm copper &0.35mm silicon steel

1988 :first install this type magnets 2004: exchange the magnets (almost same magnets)

Septum magnets parameters

	septum I	septum II
Bend angle	7deg	5deg
Length	1.5m	1m
Max. Field	0.7 4T	0.7 4T
Horizontal Aperture	23mm	23mm
Verical Aperture	9.5mm	9.5mm
Imax	6000A	6000A
Pulse shape	half sine	half sine
pulse length	120µsec	80µsec
Inductance	6.8µH	4.8µH
Septum wall	5mm copper	2mm copper with 0.35 mm silicon steel

time intervals are 20μ sec within current pulse, 500μ sec after current pulse.

Kicker magnets

102

traveling wave type

Impedance 6.25Ω Out of the vacuum Total length: 400mm 4mrad @ 2.5GeV electron Pulse length 1.4μ sec

2000 Jan: Install in the PF ring 2001 Jun: PFL break down (change old kickers) 2002 Aug: reinstall

Kicker design parameters

Magnetic length	345mm
Gap height	60mm
Gap width	170mm
Peak field	942Gauss(at 4500A)
Characteristic impedance	6.25Ω
Field propagation time	187nsec
Number of cell	30cell
Inductance of 1cell	31.9nH (34.3nH measured)
Capacitance of 1cell	815pF (849pF measured)
Dielectric material	Alumina ceramics
Molding material	Silicone Rubber

Installation of the kicker magnet

Ceramics breakdown

106

Ceramics is breakdown during pulse test

(Beginning of my work)

Silicon Rubber molding cell

108

Making many type cell molding material plate shape impregnant

Silicon Rubber cell good performance

(Safe under 15 KV)

Pulsed Bending magnet

Max. peak current 32KA

200µsec half sine Max 25Hz

Pulsed bending magnet parameters

Max. beam energy	3 GeV
Deflection angle	114.4mrad
Field strength@3GeV	1.15 T
Magnet core length	990mm
Magnet core gap & width	30x155mm
Max.PS peak current	32kA
Pulse width & shape	200µsec & half sine
Max repetition	25Hz
Stability	1x10 ⁻³ (p-p)
Magnet inductance	6.6µН
Coil turn	1

Septum magnets PF-advance ring(PF-AR)

Active type

SI 1 turn SII 2 turn

Half sine (0.5msec &1.3msec)

Septum magnets parameters

septum I	septum II
Active	Active
45mrad	80mrad
1.2m	1.2m
3750Gauss	6670Gauss
70mm	70mm
16mm	916mm
4800A	4250A X 2
half sine	half sine
0.5msec	1.3msec
7.0µH	27.4µH
1	9
	septum I Active 45mrad 1.2m 3750Gauss 70mm 16mm 4800A half sine 0.5msec 7.0µH

Kicker magnets PF-advance ring(PF-AR)

Window frame

1turn

2.5µsec half sine

Kicker magnets parameters

Туре	Window frame
Bend angle	1.85mrad (3GeV)
Length	250mm
Max. Field	740Gauss
Horizontal Aperture	116mm
Vertical Aperture	68mm
Imax	2000A
Pulse shape	half sine
pulse length	2.5µsec
Inductance	5µH
Number of turn	2

Design and field measurement of the PSM at the PF-ring

Hiroyuki Takaki Institute of Solid State Physics (ISSP), University of Tokyo

<u>Outline</u>

- · Principle of the Pulsed Sextupole Magnet (PSM) injection
 - Differences from the conventional injection
 - How does the PSM work?
- Design of the PSM as an application for the PF-ring
- Field measurements
 - Installation
 - Multi-particle simulation
 Mext talk
 - Experimental results
 - \cdot Case study of NSLS-II injection

Photon Factory (PF) and Photon Factory Advanced Ring (PF-AR)

116

Conventional Injection Using Bumped Orbit

 $\cdot \mbox{To}$ reduce coherent dipole oscillation of an injected beam

- •Imperfection of the bumped orbit
 - field errors, timing jitters and mismatch of injection kickers
 - non-linear magnetic field like sextupole magnets inside the bump

Examples of Stored Beam Oscillation in beam injection

Mismatch of the injection kicker magnets.

"Suppression of injection bump leakage caused by sextupole magnets within a bump orbit", H. Tanaka et al., Nucl. Inst. Meth. A 539, 547 (2005).

Beam Injection with Pulsed Multi-pole Magnets

Pulsed Quadrupole Magnet: PQM (PF-AR 2004~)

"New injection scheme using a pulsed quadrupole magnet in electron storage rings", K. Harada, Y. Kobayashi, T. Miyajima and S. Nagahashi, Phys. Rev. ST Accel. Beams 10 123501 (2007).

Pulsed Sextupole Magnet: PSM (PF-ring 2008~)

Stored Beam Profile (PQM Injection at the PF-AR)

fast gated camera

Tunability of PSM Position in Phase Space

- (1) Changing phase advance ->betatron function
 - may change the operating tune
 - may break periodicity of the ring optics
- (2) Changing injection angle (x') -> septum kick angle

PSM parameters (PF-ring)

$$K_{2} = \frac{B''l}{B\rho} = 13 [m^{-2}]$$

$$E_{beam} = 2.5 [GeV]$$

$$B'' = \frac{K_{2}E_{beam}}{0.3l} = 416 [T/m^{2}]@L = 0.3m$$

$$By L = \frac{1}{2}B''x^{2}L \sim 120 [G \cdot m]@x = 15mm$$

Beam ducts for quadrupole magnets

Beam stay clear at the PSM

Field strength with different pole shape

123

Field measurement set up

Search coil (single turn fine cupper wire)

Excitation curve of the magnetic field

070720_3kA_Z

<u>SUMMARY</u>

- Design and Fabrication of the PSM was done.
- The magnetic field satisfied the requirement.
- Next step is whether the PSM injection system will work well.

Results of the PSM operation at the PF-ring

Hiroyuki Takaki Institute of Solid State Physics (ISSP), University of Tokyo

<u>Outline</u>

- Installation of the PSM
- Multi-particle tracking simulations
- · Latest experimental results of the PSM injection
- NSLS-II case study (single particle simulation)

The inner side is coated with a titanium layer of 3 μm thick

2-turn injection (specific problem of the PF-ring)

Example of 2-turn injection

$$X=\frac{x}{\sqrt{\beta}}\,,\quad P=\frac{\alpha x+\beta x'}{\sqrt{\beta}}$$

K₂=10 [m⁻²] # of particles:1000 emittance x: 150 nm·rad y: 150 nm·rad z: 12 mm·rad

Septum Kick Angle 1.7mrad Timing Delay 467nsec

COD correction

Operating point for the PSM and pulsed bump

Capture efficiency vs injection angle

13

136

Timing tuning

<sup>Peak current is 3000A at 16.7kV
WCM with 150MHz HPF</sup>

 \cdot Revolution period ~ 0.6 μ sec

·Excitation pulse width of 1.2 μ sec or less is preferable

• The existing pulsed power supply has the full width of 2.4 $\mu sec \qquad \downarrow$

2nd. kick to injected beam

Injection rate (K₂ dependency)

Multi-bunch injection with PSM

Continuous (Top-up) beam injection with PSM Start 1Hz injection at 450.00 mA Stop injection at 450.05 mA 30 Beam current monitor: 2 Hz 20 451 08/7 y/m/dH:M:S 451 Stored Beam Current [mA] 450.5 Stability $\sim 0.02\%$ pp (mg 450. 450 Beam Current Beam Current Beam Current A50 450 450 450 450 450 450 450 450 450 2 hours 10 minutes 449.5 08/7/1 7:25:00 08/7/1 7:30:00 y/m/d H:M:S 08/7/17:25:00 08/7/1 8:25:00 y/m/d H:M:S

138

Stored beam oscillation during beam injection

The dipole oscillations of the stored beam in the PSM injection were sufficiently reduced.

Beam based field center search (preliminary)

Maximum vertical oscillation amplitude of the stored beam

NOT decreasing horizontally

Solutions

- (1) Pulsed dipole magnet for correction
 - 180 µm needs 0.03 mrad kick (K2=13 m⁻² ~1.5 mrad @ 15 mm)
 - may produce mismatch of 2 magnets (discarding PSM policy)
- (2) Remote controllable end-shim to produce dipole field

(3) Something else

NLSL-II injection parameters (single particle simulations)

- Injected beam is 25 mm off axis at the exit of injection septum
- Septum magnet is 4.5 m away from PSM in the same straight.
- The ring horizontal acceptance is +/- 15 mm in the center of the straight section, where betax=20m.

Injection point

x0 = 25 mm at the exit of the septum magnet

K₂ (High-beta section) $W_{red} = \gamma x^2 + 2\alpha x x' + \beta x'^2 = 11.25 [mm \cdot mrad]$ (x=15mm,x'=0,\beta=20m, α =0) L = 2.25 [m] L = 2.25 [m] L = 2.5 [m] x0= 25 [mm] x0= 20 [mm] x0= 20 [mm] Winj=123 [mm·mrad] Winj=40 [mm·mrad] Winj=40 [mm·mrad] [njection angle [mrad] 1.4 20 12.5 1.4 2.4 $\frac{B''L}{Bo}[m]$ 1.2 1.2 2.2 1.0 1.0 0.8 0.8 2.0 0.6 0.6 1.8 0.4 0.4 0.2 0.2 1.6 0.0 0.0 10 12 14 16 18 8 10 12 14 16 18 20 Wred [mm•mrad] 10 12 14 16 18 Wred [mm•mrad] 20 8 Wred [mm•mrad] Septum width + beam size, etc. $15[mm] \frac{\sqrt{20.5 (septum)}}{2}$ + 5[mm] ~ 20[mm] $\sqrt{20}$ (center) Physical aperture at the center of the straight section
<u>SUMMARY</u>

- Experimental results
 - We successfully injected an electron beam with PSM.
 - Stored beam oscillation was smaller than that of the conventional injection system.
 - The PSM injection is suitable for "top-up injection".

SLAC Kicker Systems Applicable to NSLS-II Requirements

Craig Burkhart & Antonio de Lira

- · Slow-sinusoidal kickers
 - Magnets
 - Air-core: LCLS BX/BYKIK
 - · Steel-core: A-line
 - Modulators
 - Thyristor: A-line
 - · IGBT : LCLS BX/BYKIK
- · Fast-matched impedance kickers
 - Magnets
 - Air-core: SPEAR3
 - · Ferrite-core: Linac DR-ATF
 - Modulators
 - PFL-thyratron: Linac DR-ATF
 - Inductive adder-IGBT: SPEAR3

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart A. de Lira

Slow-Sinusoidal Kickers

- · A-line
 - Direct bunches to ESA
 - · Two to three, 1-m magnets
 - 4.0 kG-m
 - Tape wound magnet: commissioned ~'75
 - Solid state modulator: commissioned '95
- LCLS
 - BXKIK: direct bunches onto diagnostic screen
 - · One, 1-m air-core magnet
 - 0.05 kG-m
 - BYKIK: direct unwanted bunches to dump
 - Two, 1-m air-core magnets
 - 0.85 kG-m
 - Solid state modulators
 - Commissioned '08

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart

A-line Kicker Magnet Design

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory W.O. Brunk & D.R. Walz

A-line Kicker Magnet Field

Fig. 4-- / Sdl vs Ipeak as measured

W.O. Brunk & D.R. Walz

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A-line Kicker Modulator Design

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory J. de Lamare

LCLS BX/BYKIK Magnet Design

- 8-turns (rectangle ≡ 2 turns), 1meter long sections, water cooled magnet.
- Ceramic beam pipe (BXKIK)
 S.S. beam pipe (BYKIK)
 Coil ID = 1.5".
- 31µH (BYKIK, 2 in series 62µH)
- Nominal peak current = 0.4 kA
 Maximum peak current = 0.5 kA

Pulsed Magnet Design & Measurement Workshop

July 27-28, 2009 Brookhaven National Laboratory

400ft cable, 29 µH

LCLS - BX/BYKIK Magnet Assembly

LCLS BX/BYKIK Modulator Design

BYKIK Current/Voltage Waveforms

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart T. Beukers

BYKIK Pulser System

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart T. Beukers

BYKIK Modulator

SPEAR3 Injection Kickers

SPEAR3 Injection Kickers

- SPEAR3 injection system
- Parameters and requirements for operation
- Magnet design
- Modulator design
 - Waveforms
 - Timing
- Operation
 - Programming output voltage
 - · Optimizing for top-up injection

SPEAR3 Injection Kickers

- Injection system:

- · 3 kicker magnets and their associated pulsers
- · magnet design based on the DELTA kicker magnets
 - Low RF impedance to the beam
 - Straightforward to construct
- Pulsers:
 - cascaded IGBT stages (adder topology)

Pulsed Magnet Design & Measurement Workshop A. de Lira 15

SPEAR3 Injection Kickers

Parameter	K1	К2	КЗ	Units
Beam Energy	3.3	3.3	3.3	GeV
Bend Angle	2.2	1.2	2.2	mrad
Magnet Length	1.2	0.6	1.2	т
Magnet Aperture	60 x 34	60 x 34	60 x 34	mm
Magnitude B	20	22	20	тT
Magnetic Gain	8.7	8.7	8.7	μ <i>Τ/</i> Α
Current	2381	2619	2381	А
Output Voltage	20	10	20	kV
Rise/Fall Time	<375	<375	<375	ns
Pulse Width	<750	<750	<750	ns
PRF	10	10	10	Hz

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira C. Pappas

K2 Magnet - 3D Model

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory A. de Lira C. Pappas

Modulator Design

Modulator Design

Modulator Design

SLAGE Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira C. Pappas

K2 and K3 Mechanical Assembly

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira C. Pappas

IGBT Driver & Transformer

Power Conversion 23

Pulser Rack Assembly

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira 24 C. Pappas

K2 Modulator

IGBT Current & Voltage

IGBT Timing Delays

157

Programming Output Voltage

Variable	Definition	Units
1	Magnet Current	Amps
Ν	Number of Cells	
Vo	HVPS Output Voltage	Volts
Z	Modulator Impedance	Ohms
Mg	Magnet Gain	Tesla/Amp
Vg	Voltage Gain	Tesla-meter/Volt
Gdw	Digital Word Gain	Tesla-meter/bit

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira 29 C. Pappas

 $I = 2N\frac{V_0}{Z}$

 $K_{*} = M_{g} M_{I} I$

 $V_g = 2N \frac{M_g M_l}{7}$

Programming Output Voltage

- · Modulator output current
- · Beam Kick
- · Voltage gain of modulator
- The 3000 V supply is controlled by a 0-10 VDC reference which is programmed by a 16 bit word.
- Digital word gain (Tesla-meter/bit)

$$G_{dw} = 0.18N \frac{M_g M_l}{Z}$$

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

A. de Lira C. Pappas

Programming Output Voltage

Kicker	Voltage Gain	Digital Word Gain
K1	1.55×10⁻⁵	1.4×10 ⁻⁶
K2	7.73×10 ⁻⁶	0.71×10 ⁻⁶
K3	1.55×10⁻⁵	1.4×10 ⁻⁶

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory A. de Lira 31 C. Pappas

Optimizing for Top-up Operation

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory A. de Lira J. Safranek

SLC Damping Ring-ATF Kickers

- Developed for SLAC Linac damping rings during SLC, mid-80's
- 3rd generation "Epoxy" magnet
 - Ferrite loaded, matched impedance, slow-wave structure
 - 0.5 m (35 ns)
 - 0.21 kG-m
- · Modulator
 - Commercial co-ax cable (RG-220) PFL
 - Thyratron switched (pulse-charged, inductively-isolated)
 - 70 kV charge
 - SLAC: 12.5 Ω, 2.8 kA, 60 ns
 - ATF: 16.7/2 Ω , (2)(2.1) kA, 300 ns

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart

"Epoxy" Magnet

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart R. Cassel

"Epoxy" Magnet

"Epoxy" Magnet Flux Lines

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart C. Pappas

Vacuum Chamber Position

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

SLC Kicker Pulser

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart R. Cassel

ATF Kicker Pulser

SLAGE Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart

R. Cassel

SLC Kicker Pulser

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart J. Krzaszczak

Kicker Pulse Loads

Change # of resistor 15 to 10 each

Use third cable termination

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

Kicker Pulser

Pulser Current

Magnet current 2200A Load Current & dB/dt

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart R. Cassel

Shock Lines - Ferromagnetic

SLAC Pu

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory

C. Burkhart R. Cassel

Summary: SLAC Kicker Technologies Applicable to NSLS-II Requirements

- · Slow-sinusoidal kickers
 - A-line
 - · 3.2 kG-m per 1-m magnet
 - 1.7 ms period
 - LCLS BX/BYKIK
 - 0.43 kG-m per 1-m magnet
 - 420 µs period (BYKIK: 2 magnets, 400' cable)
- · Fast-matched impedance kickers
 - SPEAR3
 - · 3.1 kG-m per 1.2-m magnet
 - · Solid state modulator
 - $T_R/T_F < 375$ ns (reduce with magnetic switching?), T < 750 ns
 - SLC Damping Ring/ATF
 - 0.21 kG-m per 0.5-m magnet
 - $T_R/T_F \sim 30$ ns, T = 60 ns (SLC), 300 ns (ATF)

Pulsed Magnet Design & Measurement Workshop July 27-28, 2009 Brookhaven National Laboratory C. Burkhart A. de Lira

Field Measurements in Pulsed Magnets

Pulsed Magnet Design and Measurement Workshop July 27-28 2009

Animesh Jain, BNL

Introduction

- Measurement techniques for field measurements in magnets operating at a DC field are well established.
 - Rotating coils, Flip coils, Hall probes, NMR,
- For time varying fields (AC or pulsed), several of the well established techniques can not be used.
- The most appropriate measurement method depends on the time scale of interest, and the field parameters that need to be measured.
- Some examples of AC and pulsed magnetic field measurements will be presented in this talk.

Disclosure: Examples are drawn from personal experience only.

Some Measurement Techniques & Time Scales

Time Scale	Measurement Technique	Quantity Measured
	Rotating Coils	Main field and harmonics
DC	Sliding Coils/Flip Coils	Main field and field homogeneity
	Hall probes (1D/3D)	Local field (Component/Vector)
	Stretched Wire	Main field; Magnetic Center
	NMR (in uniform field only)	Field Magnitude
1.0	Rotating Coils with special analysis	Main field and harmonics
~18	Hall probes (1D/3D)	Local field (Component/Vector)
	Fast Rotating Coils (Special Geometry)	Specific harmonics
> 100 ms	Hall probe arrays	Specific harmonics
	Hall probes (1D/3D)	Local field (Component/Vector)
	Stationary Coils (Special Geometry)	Main field
>1 ms	Stationary Coil Array	Main field and harmonics
	Hall probe arrays	Specific harmonics
	Analog Hall probes (1D/3D)	Local field (Component/Vector)
<1 m/	Stationary Coils (Special Geometry)	Main field
	Stationary Coil Array	Main field and harmonics

Pick up Coils: General Principle

Time dependence of flux gives: . E

$$V(t) = -\frac{d\Phi}{dt} = -\frac{d}{dt} \left[\int_{S} \mathbf{B} \cdot d\mathbf{S} \right]$$

The change in flux is given by:

$$\Phi_{end} - \Phi_{start} = -\int_{t_{start}}^{t_{end}} V(t) \cdot dt$$

and can be measured by integrating the voltage signal.

To know the flux at a given instant, one needs to know Φ_{start} \Rightarrow (1) Use Φ_{start} = 0; (2) Flip Coil/Rotating coil: $\Phi_{end} = -\Phi_{start}$

BROOKHAVEN SCIENCE ASSOCIATES

Some Coil Geometries

Examples of Multipole Coils

Pulsed Quad Using Fixed Quadrupole Coils

Pulsed Quad Using Fixed Quadrupole Coils

Pulsed Quad Using Fixed Quadrupole Coils

Pulsed Quad Using Fixed Quadrupole Coils

SNS Injection Kicker Using Fixed Dipole Coils

Sinusoidal Excitation: NSLS-II Dipole Correctors

Data Analysis

An Example of Data and Analysis

Effect of Vacuum Chambers: Integral Field

Effect of Vacuum Chambers: Phase Shift

Measurements Using an Array of Coils

- · Sometimes it may not be enough to measure just the main field.
- In order to measure field homogeneity (equivalently, the field harmonics), it is necessary to measure the field at many points in space.
- Ideally, one needs an array of similar coils to measure field harmonics. The number of coils depends on the number of harmonics of interest.
- For precise measurement of harmonics, all coils in the array must be built as close to each other as possible, and inter-calibrated precisely.
- It may be possible to use fewer coils and several angular positions to effectively increase the array size, provided ramps are reproducible.

Pulsed Magnet Design and Measurement Workshop, July 27-28, 2009 16

BNL Harmonic Coil Array

Linear Up & Dn Ramps: Superconducting Dipole

32 Angular Positions Using 2 Steps of 16 Coils

Harmonic Analysis: Cycle to Cycle Consistency

Fast Tune Jump Quads in AGS

- Fast tune jump quadrupoles will be installed in the Alternating Gradient Synchrotron at BNL to overcome horizontal depolarizing resonances.
- The pulse profile is given by:
 - + 100 μs rise time (0 to 1 kA), 4 ms flat top, 100 μs fall time (0 to 1 kA)
- Quadrupole field and some harmonics were measured using a coil with 3 different windings (D1, T1 and T2) in 72 orientations.
- D1 is a dipole winding (180 deg.) with 3 turns, and is sensitive to all odd harmonics.
- T1 and T2 are two tangential windings, 180 deg. apart, with ~14 deg. opening angle and a single turn.
- (T1+T2) contains all even terms, (T1-T2) contains all odd terms.

Measuring Coil for Fast Tune Jump Quads

Fast Tune Jump Quads: Raw Data

BROOKHAVEN SCIENCE ASSOCIATES

Fast Tune Jump Quads: Instantaneous Flux

Fast Tune Jump Quads: Angular Profiles

Summary

- Field quality measurement techniques for DC fields are well established.
- Measurements of field quality in changing fields become increasingly more difficult as the time scales become shorter.
- Pick up coils are perhaps the most convenient means of characterizing pulsed fields on a test bench.
- The main field component is relatively easy to obtain, but the measurement of harmonics requires extra care in probe calibration and control of other experimental parameters.
- Field quality measurements at microsecond time scales, and shorter, remain quite challenging at present.

Pulsed Magnet Design and M	leasurement	Workshop,	July 27-28, 2	009
	26			

Acknowledgements

- M. Anerella
- S. Dimaiuta
- G. Ganetis
- W. Louie
- D. Oldham
- D. Sullivan
- P. Wanderer

- J. Cintorino
- J. Escallier
- P. Joshi
- A. Marone
- A. Sauerwald
- R. Thomas

Thank You !

Pulsed Magnet Design and Measurement Workshop, July 27-28, 2009 28

Arlene W. Zhang and Jon Sandberg Collider-Accelerator Department Brookhaven National Laboratory July 28, 2009

Introduction

- Repetitive pulsed power technology
- Trend analysis
- Technology landscape
- NSLS II Requirements & Constraints
- Recommendations
- R&D, PM, and Operation experiences

Growth Trend

PAC	Kicker (key word)	Kicker (text)
65	0	0
67	4	10
69	5	16
71	6	19
73	8	23
75	5	21
77	6	34
79	9	42
81	17	56
83	19	73
85	15	71
87	22	79
89	17	71
91	46	121
93	41	148
95	25	148
97	16	162
99	27	161
01	23	152
03	17	134
05	48	185
07	95	292

Kicker is a typical repetitive fast pulsed power system. Numbers of kicker related papers at PAC and EPAC have grown rapidly over last four decades.

EPAC	Kicker (key word)	Kicker (text)
88	16	66
90	17	74
92	20	60
94	30	96
96	19	129
98	9	108
00	19	118
02	17	138
04	41	151
06	98	259
08	71	188

July 28, 2009

NSLSII Pulsed Magnet Workshop

Growth Trend Graph (PAC)

Number of Kicker Related Papers at PAC

182

Growth Trend Graph (EPAC)

Number of Kicker Related Papers at EPAC

5

183

Technology Landscape

- Switch
- Topology
- Magnetic Material
- Measurement
- Magnet Design
- Advanced Approach

Switch

- Closing switch
 - Thyratron
 - SCR
- Opening switch
 - IGBT, IGCT, etc.
 - MOSFET
- Fixed on time switch

July 28, 2009

NSLSII Pulsed Magnet Workshop

202

Topology and Advanced Concepts

Topologies

- PFN, PFL, Blumlein, ...
- Capacitor discharge
- Inductive Adder
- Marx Generator
- ...

Advanced Concepts

- FFT
- Wakefield
 - ...

July 28, 2009

Magnetic Material

- Laminated Steel
- Ferrite
- Metglass
- Finemet

July 28, 2009

NSLSII Pulsed Magnet Workshop

Magnet Design

- Traveling Wave Magnet
 - High impedance magnet designs exist for both in vacuum or in air depending on voltage requirement.
 - Low impedance, high field magnet is challenging.
- Lumped Magnet
 - Ferrite magnets in vacuum are common in large colliders and accelerators. Beam protection design has matured and well tested for decades.

Measurement

- Spot or integrated magnetic field probe measurement
 - Probe conductor and magnet conductor interaction
 - Shielding, grounding, high voltage arcing, etc.

Laser measurement

July 28, 2009

NSLSII Pulsed Magnet Workshop

11

186

NSLS II Requirements

- Light Source pulsed power system requirements differ from large collider or high power accelerators
- Advantage
 - Lower peak power and lower average power
 - Smaller magnetic loads
- Challenge
 - Tighter stability and regulation level
 - Tighter space

NSLS II Constraints

- Resource
- Technology
- Schedule
- Cost
- Performance

July 28, 2009

NSLSII Pulsed Magnet Workshop

13

00

Parameter Evaluations

- Most specifications are well within performance range of existing accelerator pulsed power systems.
- If the required regulation and precision were in the range of a percent, then the parameters are achievable with today's technology.

 High precision and stability will need further development.

Booster Kickers

- Specification
 - Baseline stability: a few percent tolerance
- Pulser
 - Inductive Adder
 - PFL
 - ...

Kicker

- Lumped magnet
- Transmission line magnet
- Parallel plates

July 28, 2009

NSLSII Pulsed Magnet Workshop

15

8

Booster Injection Kicker

- PFL Design Example
- 25 ohm PFL, lumped magnet, 25 ohm load with capacitor compensation.

Booster Extraction Kicker

- Blumlein Design Example Charging before injecting beam
- Push-Pull lumped magnet structure, magnetic field deflection
- 37.5 ohm Load with capacitor compensation
- +/- 40 kV charging voltage & nominal magnet voltage
- Simulation Slow rise time

Booster Extraction Kicker

- PFL Design Example: Loss Less PFL and transmission cable, Push-Pull traveling wave magnet structure
- 25 ohm impedance, +/- 55 kV charging voltage, +/- 27.5 kV nominal magnet voltage for 1100A magnet current.
- Contribution of electrical field deflection should be included.

July 28, 2009

NSLSII Pulsed Magnet Workshop

19

Design Concerns

- Low Loss PFL and transmission cable availability
- Cable length vs. pulse flat top ripple due to impedance mismatch
- Accessibility and maintainability
- Radiation and safety issues
- Lumped magnet → Magnetic field deflection
- Traveling wave magnet or parallel plate → Electrical field & Magnetic field deflection

Collider-Accelerator Complex

July 28, 2009

NSLSII Pulsed Magnet Workshop

ő

C-A Pulsed Power Systems

- Fast kickers
- Septa
- Pulsed and DC bumps
- Gamma Transition PS
- EBIS pulsed power systems
- Tune meters
- Polarized Proton fast quads power supply
- Experiments' pulsed power systems
- Other Systems for Accelerators

July 28, 2009

NSLSII Pulsed Magnet Workshop

Pulsed Power System Design

23

192

 Complete Pulsed Power System design, such as high voltage modulators, pulse transmission systems, trigger systems, auxiliary systems, diagnostic and instrumentation systems, PLC and PLD design and programming, grounding and shielding designs, etc.

- Analysis and simulations, system layout, modulator layout, mechanical packaging, customer components development, installation, commission, etc.
- Experienced with both thyratrons & solid state devices

- High voltage modulators located inside accelerator tunnels or in service buildings, driving load magnets directly or through high voltage transmission cables
- Control and auxiliary system located remotely in service buildings
- Unattended operations since 1990

July 28, 2009

NSLSII Pulsed Magnet Workshop

103

SNS Extraction Kicker System by BNL

US Spallation Neutron Source at ORNL

ORNL SNS Extraction Kicker System by BNL

- A giga-watt class pulsed power system
- A state-of-art continuous operation high repetition rate pulsed power system
- Under budget, within schedule, excellent system performance, total customer satisfaction

July 28, 2009

NSLSII Pulsed Magnet Workshop

10/2

SNS EXTRACTION FAST KICKER

SNS EXTRACTION FAST KICKER

July 28, 2009

NSLSII Pulsed Magnet Workshop

29

195

Thank You!