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Abstract

Past efforts to identify areas with higher than average indoor radon concentrations by exam-
ining the statistical relationshin between iocal mean concentrations and physical parameters
such as the soil radium concentration have been hampered by the variation in local means
caused by the small number of homes monitored in most aress. In this paper, indoor radon
data from a survey in Minnesota are analyzed to minimize the effect of finite sample size
within counties, to determine the true county-to-county variation of indoor radon ¢oncentra-
tions in the state, and to find the extent to which this variation is explained by the variation
in surficial radium concentration among counties. The analysis uses hierarchiczl modeling,
in which some parameters of interest (auch asz county geometric mean (GM) radon concen-
trations) are assumed to be drawn from a single population, for which the distributional
parameters are estimated from the data. Extensions of this technique, known a5 » random
effects regression and mixed effects vegression, are used to determine the relationship be
tween predictive variables and indoor radon concentrations; the results are used to refine
the predictions of each county’s radon levels, resulting in a great decrease in uncertainty.
The true county-to-county vaciation of GM radon levels is found to be substantialiy less
than the county-to-county variation of the observed GMs, much of which is dee to the small
sample size in each county. The variation in the logacithm of surficial radivm content is
shown to explain approximately 830% of the variation of the logarithra of GM radon con-
centration among counties. The influences of housing and measurement factors, such as
whether the monitored home has a basernent and whether the measurement was made in
a basemnent, are also discussed. The statistical method can be nged to p;edict mean radon

concentrations, or applied to other geographically distributed environmental parameters.



Introduction

The overall 11.8. distribution af indoor radon concentrations iz a mixture of subsidiary
local distributions that are approximately lognormal [Nero et al. 1990). The variation in
the geometric means (GMs) among county-sized areaz is generally much greater than the
variation of geometric standard deviations {(G5Ds), so that most high-radon homes are
located in areas with relatively high GMs. Identifying such areas iz thus a wseful step
towards focusing efforts to Jocate homes with indoor radon levels much higher than average.

In 1987-88, the Minnesota Department of Health conducted a radon survey as part
of U.5. Environmental Protection Agency’s State/EPA Residential Radon Survey (SRRS)
program [Tate et al. 1988 White et al. 1992, Alexander et 2l 1994). The results indicate
that indoor radon Jevels in Minnesota are higher than is typical in the U.8., and that there is
significant variation of radon concentrations among the counties in the state. Earlier analysis
{MNero et al. 1994] using ordinary regression techniques indicated that much of the varistion
in county GM indoor radon concentration coutd be predicted from surficial soil radium data
obtained from the National Uranium Resource Evaluation (NURE}. That analysis, as well
as accurate prediction of individual county GMs, was hampered by uncertainties in county
GMs due to small sampie sizes in most counties.

The present paper develops an improved atatistical approach, again using the SBRS
survey data from Minnesota as s demonstration. The analysiz i performed in several
parts, with the goal of introducing the use of Bayesian random effects regressions as a way
of determining the approximate underlying true distribution of county radon concentrations
by minimizing effecis of small sample size.

The Minnesota data include measurements made in a stratified random sample of 319
owner-gecupied ground-contact homes in Minnescta, performed with a “screening” protocol:
a two- to four-day, winter charcoal-canister measurement was taken, usually in the lowest

level of each home. The survey was conducted primarily with the goal of determining



the overall screening radon distribution in the state. In addition to the measured radon
concentration, data collected on each home include: the county in which the home sits,
whether or not the home has 4 basement, whether the home was “single-family” (a2 opposed
to a duplex, condominivm, ste.}, what room the measurement was made in (family room,
dining room, etc), and on what floor of the home the measurement was made. We use the
screening data because they are available and can be expected to exhibit roughly the same
spatial distribution as would dats from long-term monitoring in living areas. Locating areas
that have generally high long-term living-ares radon concentrations would require long-term
measurement data, either to supplant or to normalize the screening data.

The survey used a population-based stratification scheme to choose the number of par-
ticipants per county. Adjustments were made to increase the sampling rate of expected
high-raden counties and of low-population counties [Wirth 1992, but the distribution of
measurements by county i8 extremely uneven: some counties had over 100 messurements,
while other counties had few or none at afl. Thug any attemnpt to use the data to determine
parameters describing county radon concentrations—sach as the geometric mean radon
concentration for each county—must contend with the effects of small sample size. The un-
certainty due to small sample gize aleo confounds analysis to find the relationship between
county radon eoncentrations and physical factors such as geologic or soil information.

In this paper, we nse the survey data to answer several questions:

1. What is the best estimate and uncertainty of each county’s true geometric mean of
radon screening measurements? By “true GM", we mean the GM that would have
been obtained if every eligible home in the county had been measured with the survey
protocol, and if measurernent error due to background subiraction (discussed below)

were ehiminated.

2. How much of the county-to-county variation can be explained by the variation in

surficial radium coneentration from the Mational Uranium Resouce Evaluation?



3. Some of the observed variation between county radon concentrations is probably due
to differences in known house construction parameters and messurement procedures
{such as whether the home has a basement, and whether the measurement was made
in a basement). How can we discover the county-to-county variation that remains

when these affects are removed?

We use regression techniques known as “random effects regression” and “mixed effects
regression” to answer these questions. Although such technigues have heen used 1o other
fields for at least 15 years, we are not aware of their previous use in characterizing radon
distributions or other environmental parameters. The procedures applied here are partic-
ularly useful when attempting to estimate parameters (such as county geometric means)
based on sparse data.

A complete discuszion of the mathematical details of hierarchical models and random
effects regression is beyond the scope of this paper. Discussion of Bayesian hierarchical
modeling in general can be found in Lindley and Smith 1972, Box and Tiao 1973, Bryk and
Raudenbush 1992, or Gelman et al. 1995. Computational details can be found in Gelman
et al. 1995 and Boscardin and Gelman 1994. Since these methods have not vet become as
ubiguitons as more familiar tools such as conventional regressions, we discuss them brieffy

here in the context of the current problem, rather than simply presenting the results,

The Minnesota Screening Data.

Figure 1 shows a histogram of the radon concentrations reported from the state radon
survey [Wirth 1992), weighted according to the sampling weights reported in the data set. A
lognormal curve with GM == 132 Bq/m?® (3.6 pCi/L) and GSD= 2.18 has been superimposed
on the data. The okaerved radon distribution in the state as a whole is-nea.rl;,r consistent

with a lognormal distribution. The importart exception for our purposes is the presence of



2 few too many extremely low radon concentrations (affecting the lowest bin in the linear
plot of Fig. 1), which skews the calcalation of geometric mean concentrations. Indeed, some
of the reported radon concentrations are zerc; in other state surveys, using similar protocols,
negative radon concentrations have been reported. The distribntion above ebout 40 Bq/m?
appears almost perfactly lognormal.

'The excess of low radon concentration measurements is consistent with being due to sta-
tistical errors in background subtraction: in detexmining radon levels, an expected number
of background couats is subtracted from the cbserved number of total radioactive decays.
The number of radivactive decays exceeding the expecied background count is ascribed to
radon. Since the actual number of background cownts varies statistically around the ex-
pected number, the nmamber of counts attributed to raden {and thus the calculated radon
concentration) will differ from the actual number by a small amount (typically equivalent
to a few Bg/m®). This phenomencn can have a large relative effect when the actual radon
concentration is small; indeed, it can lead to negative reported concentrations.

When the reported value is extremely small, it is almost certain that the true value is
higher than the reported value; however, the exact magnitude of this effect is uninown. We
cannot simply discard the problematic points, since the low reported vatues really do oceur
in low-radon homes. If we were interested only in estimating distribution parameters for
aggregated data, such as the geometric mean and geometric standard deviation, we could
use a censored maximum likelihood estimate [Harter et al. 1966] with a censoring threshold
set high enough to exclude the problematic points—that ig, at 5 to 10 Bq/m3. However, in
the present paper we wish to perform analyses at the level of individual homes rather than
county ageregates, so distribution estimates are not suflicient.

Since incorrect extremely low values can. cause problems, we have adjusted all of the low
values upwards slightly, with the extremely low values brought up the mt and the values

above 50 Bq/m?® essentiaily unaffected.



The empirical adjustment we used to convert the reported radon concentration Cfps®

te 2 new value Cf7Y was

TGS IeAS 42
aew :Cﬁg +‘/——1’-‘-"——a—':(j4 L2 (1)

with I = 6.25 Bq/m® (0.25 pCi/L), which was found to make the entire distribution
appear nearly lognormal even for low radon levels. We do not claim that this equation bas
any underlymg physical validity—it is merely a convenient one-parameter correction that
adjusts very low values upwards very slightly in absolute terms, while leaving higher vaiues
virtually unchanged: a measured value of 0.00 Bg/m? is converted to 9.25 Bq/m®, while
a measured value of 20 Ba/m® js converted to 23.6 Ba/m®. Only a few measurements are
affected substantially: of the 919 reported values, only 13 are below 20 Bg/m® In this
paper all of our discussion of observed radon concentrations refers to the adjusted values
CReY , hereafter referved to simply as Cry , rather than the measured values. The results
presented here are quite insensitive to the exact value of 12, as long as it is above about 5
Bg/m®. Mean outdoor concentrations are typically 5 to 10 Eq,ﬂ'ma [Gesell 1983], s0 a value
around 10 Bg/m? ig a reasonable lower bounds for actnal indoor radon concentrationg. In
addition, county GMs calculated with the adjusted valves of Cgr,, =2re in good agreement
with the censored maximum likelibood estimates for the counties.

In addition to the sfatewide distribution of radon messurements being nearly log-
pormal, the observed distributions within the individual wellsampied counties are also
appremimately lognormal.  Also, it has previously been noted that raden disiributions
in county-sized areas tend to be approximaiely lognormally distributed [Nero et al. 1986,
Dudney et al. 1992]. (However, see Cohen 1985, White et al. 1992, and Janssen et al. 1992
for some discussion and counterexamples.) For the present paper we have chosen $o model
the within-county distribution of raden measurements as lognormal.

In order to characterize a lognormal distribution, both the GM of the distribution and

the geometric standard deviation (GSD) must be known. In Minnesota, all of the counties
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with more than 20 observations have obsgerved G3Ds between 1.8 and 2.35. The observed
variability in (G5Ds iz only slightly greater than would be expected if all of the counties

have the same true GGSD {equal ta about 2.1}.

Calculation of Posterior Estimates for the County GMs.

We focus on predicting county GMs, for two reazons. Fivst, since within-connty distriby-
tions are approximately lognormal and the GEDs for all of the counties ase about the same,
krowledge of the GMs completely characterizes the distribution within counties. Further-
more, models are constructed in log space, which makes it computationally easier to predict
(GMs.

For simplicity, in this section we ignore the explanatory variables related to 20il radinm
concentration and to housing type, and discuss only the county peometric mean radon
concenirations; vse of the explanatory variables will be discussed in the ngxt section.

We wish to use the observed county GMs to try to predict the true county GMs (of
“screening” radon concentrations). One approach is to vse the observed GM as a direct
prediction of the true GM (that is, to take GMP*? = GM®"), but this has at least one
serious drawback: it leads to a distribution of predicted GMs that is almost certain to
b2 touch wider than the distribution of true GMs, because of the effect of finite sample
size. Given the small number of observations in most counties, some high-radon counties
will happen to yield observed GMs even higher than their true GMs, and some low-radon
counties will happen to yield GMs even lower than their true GMs. Imagine, for example,
the effect of Anite sample size en a group of counties with exactly the same true GM: the
measured GMs will be spread about the true GM, with the degree of spread depending on
the number of observations in each county.

All of our questions about the true county GMs and the overall distribution of county

GMs wonld be easily answered if a large amount of data were available for each county.



Unfortunately, abont twenty observatioms are needed to determine a coomty GM with a
standard srror of twenty percent, while the median number of observations per county in
Minnesotz is only five. Much of the variation in observed county radon levels is certainly due
to the offecte of the small sample gize in most counties. For example, consider Lac Qui Parle
County: this county has only two observations, and the GM of the observations is about 500
Bq/m®. This GM is considerably higher than the GMs of well-sampled counties {e.g. those
with more than fifteen observations), all of which lie between 75 and 150 Bg/m®. It seems
likely that the true GM of Lac Qui Parle County is considerably lower than 500 Bg/m?,
and that the monitered homes from that county simply happened to have unusaally high
radon levels {at least over the days they were tested). How, then, can we obtain statistically
well-founded predictions of the actual county GMs that adjust for the variation due to finite
sample size?

A reasonabie answer to this question is provided by a hierarchical model: we assume
the true county Ghiz are drawn from some distribution of “possible” county GMa, and that
the parameters of this distribution can be estimated from the data. For instance, suppose
we knew the true GM for 86 counties, randomiy selected from the 87 counties in Min-
nesota. Furthermore, suppose these 86 values were found to be approximately lognormally
distributed with a geometric mean of 145 Bq/m® and a geometric standard deviation of 1.4.
Then, even if we had no observations from the missing county, it would be reasonable to
guess that its trne GM is likely to fall between 75 Bq/m® and 285 Bg/m? (two GSDs below
and above the GM of the county GMs, respectively) with about 95% certainty.

In the hypothetical situstion described here, we have substantial knowledge of the range
in which the migsing county’s true GM is likely to fall even though we have no measyrements
at alf from that county. This conclusion relies on the plausible assumption that the GM of
the missing county is drawn from the same distribution as the GMs of the known counties;

we would cerfainly be surprised if the GM of the missing county were later found to be,



say, 800 Bq/m® or 1 Ba/m?® In conventional siatistical notation, with & representing the
true value of the logarithm of the county’s geometric mean radon concentration, knowiedge

of the distribution from which the missing county’s log{GM) is drawn would be written:
pid) = Nz, 0%, {2

indicating that the probability of chiaining a particular value of 8 is normally distributed
about g [equal to log{145 Bg/m?) in the current example] with standard deviation o [equal
tc log{1.4} in the current example|. In such a case, in which the distribution from which the
mizsing county's GM s drawn is known, p() is known as an informative prior distribution.
The case of ¢> — 0, corresponding to a distribution of county GMs that has infinite
variance, would be a rmoninfermative prior distribution, indicating total ignorance of the
likely range containing the missing connty’s true log{GM).

We wigh o avoid the misconception that the assumption of a distribution from which
parameters are drawn is equivalent to the assumption that the variation between covnties
is “random”™ rather than having some physical explanation—in fact all it means iz that
explanatory variables useful to predict the exact values are unknown for purposes of the
analysis.

If we are now given some measurements from the missing county {in the form of 3 list ),
Bayes’s theorem [Bayes 1763] can be applied to determine a new estimate of the connty’s

true GM. Bayes’s thearem states that

_ plf)plylé)
p(fly) = T (3}

The notation p{fly) reads “the probability of & given y *; in the current context it represents
the probability that “the true mean is 8", given “the set of observations 4.” In order Lo apply
this equation, we must have some way of calculating p{y|#), known as the likelthood. The
likelihood ply|6) is the probability that the values y would have been abserved, if the true

value of log(GM) is 6. In order to evaluate this likelihood, we require a statistical model for



the distribution of ohservations withitn a county. The value of & that maximizes Eguation 3
can be thonght of as a “best guess” at the true value of 8. (Note that the denominator of
Fq. 3 iz independent of &; in practice we need not evaluate it, since it mersly provides a
normalization factor.} Generally, we are not interested only in the best guess but also in the
uncertainty—the range of values of # that are reasonably consistent with the cbservations
¥ and with our prior knowledge of the possible values of 8.

Usuaily, 25 in the case of the current Minnesota data set, we do not have direct knowledge
of the true distribution of county GMs. There are only eight Minnesota counties for which
more than twenty observations were made, 50 for most Minnesota counties the true GM is
quite uncertain.

The observed county GMs, however, are approximately lognormally distributed, and
the distribution of measurements within each county is also approximately lognormal. We

therefore select the following statistical model for the distribution of radon measurements:

1. The true county GMs are lognormally distributed: the values of log(GM) are drawn

from » normal distribution with unknown mean 4 and unknown variance o2, a$ in

Eq. 2.

2. The observations urthin a county are also lognormally distributed: the logarithms of
the observations are drawn from a normal distribution with a mean equal to the true
value of log{ GM) and unknown variance «2. For the purposes of the present analysis,
x% is assumed to be the same for ail counties. This is equivalent to the assumption

that all of the counties have the same GE5T.

The true value of log{GM} for each county is the main parameter of interest. With the
lognormality assomptions mentioned above, the application of Bayes's theorem [Eq. 3)
yields a particularly simple result for the estimate of log{GM) for county i: the most

probable value of the true log(GM] is given by a weighted average between the observed



value of log{GM} for the county and the ‘grand mean’ g of the distribution from which all of
the connty log{GM) values are drawn, where the relative weights depend upon the number

of observations n; in the county, and the variance estimates 0% and x7%:

_ {Lfe)n + {nife?) log(GMEH)
- (1) + (n:/s?) '

(4)

]ﬂE{GHfm nt estimate:l

Equation 4 provides a point estimate of the true GM, but this estimate is uncertain: the
probability distribution of the true value about this estimate, given g, 0%, and /5%, is
described by:

P(bliz, 0% ms/rt) = N{log(GME™=1m2), v2) (5}

where

VE = (1/0® +ngf s ()

Mathematically it’s as though we already had some number (equal to % /o2 of observations
of log(Cry) in each county, with the mean of the observations being p, before any actual
observations were made.

In order to actualiy perform this adjustment, we need values for u, o, and x. These
parameters are estimated from the data. A point estimate for p is provided by the mean
of the observed county log{GM}s, yielding a value g == 4.96 (in units of Jog(Bg/m*)).
Approximate estimates for the true withjn-county variance 2 a7 0.54 and the true between-
county variance o° 2 0.11 are determined from an anslysis of variance. These correspond
to & within-county GSD of exp{v054) = 2.1, and a distribution of true county GMs that
hag 2 GM of exp{p) = 143 Bg/m® and a GSD of exp{+/0.11) = 1.4. The method of using
point estimates of parameters generated from the data themselves, and then uging those
estimates throvgh Bayes’s theorem to estimate quantities of nterest, 15 sometimes referred
to as an “empirical Bayes™ method.

Although use of the point estimates for the model parameters leads to reasonable esti-

mates of the county GMs, the resulting uncertainty estimates are too small, since they do
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not include the uncertainties in the model parameters themselves. For thiz reason, we do
not restrict ourselves to point estimates of the valves of the parameters; rather, we estimate
the distribution of likely values for the parameters, then draw randomly from that distri-
bution and uge the resnlting parameters in Eq. b to obtain an estimate for each county's
true log{GM]}. Details of this so-called “full Bayes™ procedure can be found in Gelman et
al. {1995). The sampling procedure is repeated many times (1000 in the current case},
with each set of parameters yielding an estimate for each county's log{GM); the resulting
distribution of 1000 GM estimates for each county is spread over a range due to both the
uncertainty in the true values of the parameters in the hicrarchical mode! ard the uncer-
tainty due to the finite nurnber of measurements (which would rernain even if we knew the
exact parameters of the distribution from which the county GMs are drawn). We select the
mean of the 1000 estimates for each county as our “best guess”, or pesterior estimate, of
the county's GM. The procedure described here can be carried out directly, or as a special
case of A random effects regression, described in the next section.

Results for counties with more than five observations are shown in Figure 2, in which the
posterior estimates of county GM and uncertainty {an error bar containing the middle 50% of
the posterior estimates for each county’s GM when the sampling procedure described above
is performed 1006 times) are plotted against the GM of the measurements in the county.
The points are plotted a5 numbers, with the number being the number of observations in
the county. The distribution of posterior estimates of the GMs (shown on the abscissa)
iz much narrower than is the distribution of cbserved county GiM: {(on the ordinate), as
expected. The mean estimate of «? is 0.570, corresponding to a within-county GSD of 2.13.
The mean estimate of ¢ is 4.95, corresponding to a GM of 141 Bg/m? for the distribution
of county GMs; and the mean estimate of o? is 0.097, corresponding to a GSD of 1.37 for
the distyibution of county GMs.

Fac Qui Parle County, with only two observations yielding an observed GM of 498

11



Bq/m®, has & mean posterior estimate of 196 Bq/m®, although the true value may be as
low as 113 Ba/m® or as high as 342 Bq/m® {the 2.5 and 97.5 percent posterior interval
limits, respectively). The results appear reasonable, although it may be surprising how
large the effect of finite sampie size ig estimated io be,

Interestingly, although Lac Qui Parle County had the highest observed GM (493 Bq/m?),
it dogs not have the highest “best guess™ GM, losing out to Blue Earth County, which had
an obgerved GM of 250 By/m” and has a posterior estimate of 210 Bq/m®. This iz a
consequence of the fact that Blue Earth County had many more observations than Lac Qui
Parle County {14 as opposed to 2). Simply put, the distmbution of obzerved county GMs
suggests that most troe county GMs fall in the range between 75 to 150 Bg/m?, and there
it more evidence that Blue Earth County falls beyond that range than there 15 evidence
that Lac Qui Parle does so.

The predictions from the model seem reasonable, but that alone is not, of course, suffi-
cient to give us confidence in them. Several validation checks have been carried out. One
type of check concerns the degree of agreement between the model predictions and the ob-
gservations. For example, given the posterior estimates of the county GM3, how often would
we expect to see an observed GM as high as 500 Bq/m®? To answer this question, we
start with the posterior estimates for the county GMs, then simulate the sampling proce-
dure {by selecting the appropriate number of simulated “cbservations™ from each county’s
asgumed distribution) and examine the resulting “chservations” to see how they compare
statistically with the actual observations. Repeated simulation of the sempling procedure,
using the actual aumber of chservations in each county yields at least one county with
an “chserved” county GM higher than 500 Bq/m? about 30% of the time, s0 such a high
cbservation clearly does not violate the conclusions based on the model.

Ancther type of validation check that we performed was to creats a validation data

set by discarding 4 random 90% of the data from the four countiss with more than 50
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tbservations. Complete data from all of the other counties, plus the reduced data from
those four counties, were then used to fit the mode! again. The predictions for those four
counties were then ¢omparad to the true GMs as knowe from the complete datz for those
counties. Thiz sampling/predicting procedure was carrted out many times. The moadel
validated well, in the sense that the true values for the well-aampled counties fell within one
standard error of the estimate in about 68% of the tests, and within two standard errors in
about 95% of the tests.

Although the statistical mode] discussed above does validate well and does appear to
provide better estimates for each county's GM, the estimates are stiil fairly uncertain,
aspecially for the many poorly-sampled counties. In the next section, we discuss the use of

predictive variables to improve the predictions for the county GME.

Regression prediction of the county GMs.

It has beer noted previously [Nero et al. 1994} that much of the county-to-county variation
in Minnesota's indeor radon levels (25 measured by the GM) can be explained by variation
in surficial radivm content as determined by the aerometric survey conducted as part of the
National Uranium Rescurce Evalnation (NURE). The NURE survey measured radiation
spectra along flight lines spaced at 6 to 12 miles across the U.S. These data were pro-
cested using various extrapolation and smoothing schemes [Duval et al. 1989) to prodnee a
naticnwide map of equivalent surface uranium concentration, which was used to estimate
the concentration of radium, a uranium decay product. Previous work [Moed et al. 1985,
Revzan et al. 1988, Gundersen et al. 1991, Jackson 1982, Nero et al. 1994] has used nerial
radiometric survey data to predict distributions of radon concentration measurements or to
locate areas with high radon “potential®. We have aggregated the NUURE data of Duval et
al. (1949} to generate average surface radium concentration {expressed in equivalent ppm

of radium) by county; in Minnesota, the resulting NURE walues range from 0.14 ppm to
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(.57 ppm, with a median of 0.39 ppm.

Figure 3 plots the GM of the radon concentration measurements in each county wversus
the GM predicted by a conventional weighted linear repression of the logarithm of each
county's GM on the logarithm of the county-averaged NURE walug; conventionsl error bars
{1 standard error) are plotted for the observed GMs, based on the approximation that the
true GSD of eack county 15 2.1, Only counties with more than five observations are shown, to
avoid clutter. Note that over 60% of the error bars cross the 45-degree line, indicating that
the observations vary from the predictions only slightly more than the expected variation
due to small sample sizes if the NURE predictions were exactly equal to the true GMs. For
the log-space conventional linear regression the value of R?, a standard measure of model fit,
is .58 for the eounties shown here. However, this figure substantialiy underestimates the
real predictive ability of NURE in this case, since much of the variation between predicted
and observed GMs is certainly due to small-sample noise rather than differences between
the true GMs and their predicied values.

In thiz section, we discuss a procedure to predict the true county M using both the
observations and the fitted results for the county. This procedure provides a method of using
both observational dats, and explanatory variahleg together in 4 statistically consistent way
in order to predict each county’s true GM. The statistica]l model we wish to apply is defined

ag followa:

1. The true values of log{GM) for each county are drawn from a normal distribution with
a mean equal to the predicted value of log{GM) based on a regression, with unknown

VATIAnce r:rz, 50 that for county ¢
log{Gi,) = Gy + Puure log(NURE,) + 4., (7)
where p{é,) = N{0, #%}; or squivalently, with &, = log{GM,},

p{8,|NURE,) = N (£ + Buyre log(NURE,}, o%). {8)
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The parameter #° does not have the same value as the 0% in the previous section
unless Syurg = 0, in which case the model reduces to the model in the previous

section.

2. We number the 919 radon messurements with the index {j}, and assume that the

logarithm of ohservation § within county ¢ is drawn from a normal distribution with a

mean equel to the county’s tive log{GM), and with an unknown veriance #* assumed
the zame for all counties, so that
p{log(Cra) ;) = N{log(GM.), £°). (9)

The parameters 83, Mure, o, and 5 are again to be estimated from the data. A large
value of ¢? would indicate that NURE is a poor predictor of true county GMs, while a
simall value of o2 would indicate that the true county GMs are closely grouped around theic
NURE predictionsg.

A simpile but imperfact estimate of o? can be obiained as follows: regress observed
log{GM) on log(NURE), then apply the hierarchical model described in the previous section
to the residuals. This procedure g correct in gpirit and provides a quick estimate of the true
distribution of the residuals. Howeswer, this method yields confidence intervals that are too
narrow, since it does not inciude the uncertainty in the regression coefficients themselves.
Rather than present results of such an incomplete analysia, we will carry out a procedure,
called “random effects regression”, that takes into account all sources of uncertainty in the
mode] parameters. Before describing random effects regressions, we first discuss the use of
“dummy variabdes” in conventional linear regressions, In statistical regression, a dummy
variable is used to indicate the presence or absence of a particular characteristic, or that
the data are included or excluded from a particular class. For example, in the present case
we create a dummy variable for each county in Minnesoia (85 in all, if we include only the

counties for which there is at least one measurement}. Bach of the 919 radon measurements
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CRa 15 therefore associated with 85 dummy explanatory variables, all but one of which takes
the valne of zerc; the value unity is assigned to the variable that denotes the county in which
the measurement was made.

A conventiona! linear regregsion of the values of log{Cr,] on these 85 dummy ex-
planatory variables alone yields 85 regression coefficients, each of which is the mean of the
abservations of log{CRy) in the indicated county. The hierarchical model introduced in
gection 3 can be reproduced by applying Bayes's theorem with the sssumption that these
regression ¢o¢lficients are measnrements with error of underlying “true™ parameters, which
are drawn from a nermal distribution.

The hierarchical regression model introducsd in the present section can be applied alse,
and the uncertainties properly estimated, by including ancther explanatory vanable, in
addition to the county dummy variables; for each of the 919 observations this variable takes
the value of NURE averaged over the county that contains the observation. With NURE
incloded as an explanatory variable, the values of {4} from Eq. 7, indicate the “irue”
residuals from the NURE regression (i.2. the difference between the troe value of log{GM;}
and the NURE predictions).

The difference between a county’s true log((GM) and the regression prediction for the
county is referred to as the “county effect”. Regression coefficients (such as county ef-
fects) that are assumed to be drawn from a comumon distribution are uenally referred to
a2 “random effacts”; hence the name “random effects regression” When a modsl includes
both conventional regression variables (“fixed effects™) and random effects, it is called a
“mixed cffects model™. All models discussed hereafter are mixed effecta models. As before,
the assumption that random effects are drawa from a common distribution does not imply
that there is no reason that some of the county effects are large while others are small,
meiely that we have no information {other than the data being ana,lyz.ed]. that a-la.]lows us to

determine which counties have large effects and which don't.
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The mathematical detaile of performing a Bayesian mixed effects regression are rather
involved-—see the *Notes and Acknowledgerments” section at the end of this paper. The basic
ideas of the mived effects regression are those discussed in the previous section: the condi-
tional distributions of the parameters {regression coefficients and variance components) are
calculated, and parameters are drawn from the calculated distribution. Where appropriate,
a hierarchical model is assumed (a3 for the county effects). The procedure is repeated many
times in order to obtain posterior intervals {conceptually similar to confidence intervals, in
that they reflect the range in which the true value is likely to fall} on the parameters.

Using the model described by equations 7 and 9 above, we perform 1000 simulations
to abtain 1000 estimates for each of the parameters: B, Suvre, &, o, and each of the 85
values of d;. The estimated county effects {3} do donble duty: they allow vs to predict
the county GMs, and they also provide a way of measuring the extent to which the oiher
explanatory variahles allow prediction of indoor radon levels. The extent to which NURE
is a good predictor of the true county (GMs can be pauged from the likely values of o if
o i3 small (and thus the county effects are all near zero), then NURE alone is enough to
predict the GM of radon concentrations in a county from Eq. 7. If & is large, then at least
some of the individual ecounty effects are lavge, and NURE alone is not sufficient to obtain
a good estimaie of the county’s true GM. Furthermore, o can be wsed {o define 3 measure
of model fit for the county radon levels that is analogous to R%: as in Bryk et al. (1002),
we define an effective R as

unexplained variance of truelog{GM} values

total variance of true log{GM) values (20)

RE“‘EI—

We do not know either the unexplained variance or the total variance of true valyes, but
we do have astimates of each: we obtain estimates of 0% from random effects repressions
performed with and without NURE (or other explanatory variables), in both cases including
the county dummy variables. The best estimate of 22 when only the county dummy variabies

are included provides us with an estimate of the true total variance of the county GMs, while
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the best estimate of o2 when dummy variables and other variables are included provides
us with an estimate of the unexplained variance. Az long as only county-level variables are
included, the estimate of R2, obtained thig way will behave similarly to the conventional
measure of R?, in the sense that it will always incresse {or remain constant} as additional
variables are added. However, if the model contains individual-house variables, then the
value of R% can actually decrease as additional variables are added. An interesting and
informative example is considered in the next section.

For the current case, with NURE included as the only explanatory variable, the mean
posterior estimate of o2 is 0.019. Combining this with the value of ¢2 = 0.097 obtained
when anly the county effects are included, we obtain the an estimated value of A2 = 0.80;
our best estimate is that log(NURE) explains 80% of the county—to—county variation n
log{GM). In terms of determining a county’s log(GM), knowledge of the county’s NURE
value is “worth” am extrs x2fo? =~ 30 observations in each county {see the comments
following Eq. 6.

The ability of NURE to predict connty GMs o well appears to be unigoe to the state of
Minnesota—in the several other states of the 175, that we have examined, NURE has lower
predictive power, with log(NURE) typically explaining about 30% &0 65% of the variztion
in the logarithm of the county GMs.

The coefficient of log(NURE) in Eq. 7 is estimated to be b= 0.711, with 95% posterior
bounds of 0.537 and 08380, Since a cosflicient of log(NURE) different from unity implies
{after transforming back from log space) a nonlinear relationship between county soil radivm
concentration and county indoor radon concentration, this result may seem peculiar: at
least for individual homes, physical models suggest the indoor concentration should be
approximately proportional to the radium concentration in the surrounding soil.

Several factors may contribute to a2 non-linear relstionship between county-average

NURE and the indoor radon concentration measurements. First, the use of county-average
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NURE wouid be completely eppropriate only if homes in each county are uniformly dis-
tribited over the entire area of the county. But since homes are clustered within comnties,
it's likely that io some countie: homes are more conecentrated in areas with radinm coneen-
trations above the county average, while in others they're more concentrated in low-radium
areas. A consequence of such an occurrence would be a decressed coefficient of log{ NURE},
through the regression effect (see Price 1995, for example). Furthermore,the NURE mea-
surements are subject to errors dus to factors such as seil moisture content that are likely to
affect indoor radon concentrations [Duval et al. 1989, Schumann et ol. 1994]. Given these
facts, a cosfhcicnt different from unity in the regression is not surprising.

Figure 4 shows the result of performing the mixed effects regression; as in Fig. 3, only
counties with more than 5 observations bave been plotted. The posterior predicted GM
for each county has been ploited with a square, as & function of the prediction ased on a
conventional regression on Jog(MURE); thus, if the posterior prediction and the conventional
regresgion prediction agreed perfectly, the squares would be plotted on the 45-degres line
on the figure. The GM of observations in each eounty has been plotied with 2 point {the
same as Figure 3, except that that error bars are not shown). The position of each square
represents a sort of weighted average between the observed GM and the GM predicted from
a conventional regression on log(NURE), with the relative weighting determined from the
data.

For counties with many observations the posterior estimate is always very close to the
observed GM, while for counties with fewer observations the final estimate can differ sub-
stantially from the obgerved GB, Most of the final estimates are very close to the regression
line—there iz strong evidence that NURE explains almost all of the county-to-county vari-
ation in radon levels in Minnesota. However, as noted previously the distribution within
each county is quite broad: the best estimate of & is 0.T6, corresponding to a G5D of 2.1.

Tsble 1 presents results for each county in Minnesota (including the two counties with
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no observations): the mimber of observations in $he county, the GM of the observations, the
predicted GM from a conventionsal linear regression of county log{ GM) on county log{NWURE)
alone, and the posterior estimate and uncertainty (one standard error) of the county’s
true GM, based on the mixed effects regression described above. The ‘uncertainty’ is an
approximation, treating the posterior GM estimates ag if they were normally distributed.
If more accurate summaries of the uncertzinties are desired, posterior intervals casn be
determined directly from the distribution of 1000 posterior estimates from each county.
Figure 5 displays histograms of the distribution of observed and estimated county Ghds.
Each county is represented by a number indicating the number of observations in the county,
and each number is stacked in the column appropriate to the county GM radon concentra-
tion. Thus the 105" in the 120-140 Bg/m? interval does not represent & county with 105
observations all of which fell in that interval; the observations from that county are spread
over a very jarge range, (from 9.25 Bg/m® to 888 Bg/m®, as it happens), with a GM that
falls in the range 120-140. Note that all of the counties with observed Gis over 250 Bq,/m?
have 5 or fewer observations. The distribution of predicted GMs is much tighter than the
distribution of observed GhMs—there is no convincing evidence that any of the true GMs
are as high as 250 Bg/m®, although some county predictions barely include 250 Bg/m*
within two standard errors. The distribution of true GMs is somewhat broader than the
distribuition of predicted Gis that is shown, since the true GMs are distributed about the

predicted values, with standard errors given in Table 1.

Inciuding additional explanatory variables.

In addition to the measured indoor radon concentration and the county NURE measure-
ment, we have some information on each home in the survey: does the home have a bage-
ment, and, if so, was the meagurement made in the basement. The presence of a basement

might be expected to have some effect even on first-floor indoor radon measurements, and
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certainly measurements made in basements are expected to be higher than measurements
made on the first floor. There are Ewo substantive reasons that we wish to take account of
the basement and fAoor effects.

First, we are interested in the magnitude of the coefficients themseives: how much higher
are measurements made in the basement than those made on the first floor?

Second, what are the county effects gfter controlling for the floor effect in the homes
in gach county? For example, do the low-radon counties have lower radon levels merely
because they have more non-basement homes?

As an mitial attempt to answer these questions, we introduce three individual-home
explanatery dummy variables, One wariable (7) indicates homes that have basementz and
were monitored in the basement, one {¢) indicates homes that have basements but were
monitored on the first Boor, and one {+) indicates homes without basements, Most homes—
769 of the 919 homes tested—have a basement and were monitored in the basement. Of
the remaining 150 homes, 92 have a basament but were monitored upstairs, while the rest
do not have a basement.

The madel is defined as follows. For a home 7 in county i, the probability of chiaining

a given observation is given by
pllog{Chrs) ;) = N(Buyre log{NURE;) + foy¥; + o185 + Bagers + 61,671 (11)

Here By, 18 the effect associated with a basement home that is monitored in the basement,
By ig the effect for 2 basement home monitored on the first floor, and 3., is the effect
for a home without & basement. As before, the county effects {§;} measure the extent
to which the explanatory variables in the linear model fail to explain all of the county-
to-¢ounty variation it radon concentrations, and are assumed to be normally distributed.
If NURE and the housing dummy variables were sufficient to predict the distribution of
measured values in homes in different counties, with ne remaining evidence of unexplained

between-county variation, then the county effects would be nsar zero. Coeflicient estimates
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and variance estimates are presented in Table 2, along with estimates from other models
discussed belgw. The coefficient estimates all happen to have standard errors of abont 0.1
or o, €xcept for the coefficient associated with the fraction of homes that do not have
hasements (discussed helow), which hag a standard error of about +0.3.

The model including individual-house explanatory varizbles does net allow direct pre-
diction of the county GMz, since Eq. 11 does not contain only county-level vanables. Essen-
tially, we obtain separate estimates for each county for homes in three different categories:
homes with basements in which the Ra levels were measured in the basement, homes with-
out basements, and homes with basernents but in which the monitoring was nevertheless
performed on the first floor. Use of these resulis to estimate the true county GMs would
require knowledge of the distribution of housing types by county. We have not attempted
to model the distribution of housing types. We perform the individeal-house analysis only
to illustrate that the technigues described in this paper can handle both individual and
county-level data.

An interesting result of this regzession is that the variance of the county effects goes
up compared with the previons, NUJRE-only regresgsion. How can this happen? Consider
Rogeaw county. The NURE value, when used in the conventional NURE—only regression,
predicts the average value of log{Cgp) for homes in the county shounld be abount log{126
Ba/m?), in good agreement with the observed value of log{131 Bg/m®). However, in 5 of
the 14 monitored honses in Hosean county, the measurement was made on the first floor of
a home rather than in a basernent. Since first-floor measurements are expected (based on
the full regression} to be about half as high as basement levels, and since 5714 represents a
much larger fraction of non-basement homes than s typical in connties in Minnesota, the
full repression prediction for the homes in Roseau county is now much too !uw, sc the county
effect estimate for this counfy must be made fairly large in order to briﬁg the prediction

into agreement with the observations.
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The increase of the size of the county effects when additional data are included indicates
some violation of the model. In this case, it indicates that there is some difference be-
tween: counties with many non-hazement homes and those with few non-bagement homes—
some difference that affects radon levels. For example, we speculate that counties with
generally high soil meisture may have fewer baserment homes, and the soil moisture may
alzo influence indoor tadon concentrations (and perhaps the NURE chservations as well
[Duval &t al. 1989]).

To help resolve this issue, we add another county-level explanatory variable: obgserved
fraction of non-basement homes. For all the homes in a county (whether or not they have a
basement) this variable takes the value of the fraction of survey howes in the county that de
not have a basement. {We would prefer to nse actua! fraction of non-basernent homes in the
county, rather than eserved fraction, which is subjecs to significant noise due to the small
number of observations in most counties. Unfortunately the actual fraction for each county
is not available.) A sigeable coefficient for this variable would indicate that the fraction of
non-basement homss iz correlated with courty radon levelz, over and obove the correlation
due to the fact that levels in the measured homes depend upon whether the measurement
was made in a basement or not.

Including the county-level non-basement fraction variable does decrease the magnitade
of the county effects when individual-house basement categories are incleded (Model 5),
although the county effects are still slightly emaller in the models that de pot include

individual-house variables.

Spatial distribution of county eflects.

Thus far, we have not included any spatial information in our analysis. This fact does not
invalidate any of the analyses discussed abwove; specifically, the estimates of the county effects

{and the estimates of #) are valid even though spatial information has not been included.
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(Given these facts, there might seem to be no need to delve into the spatial relationships in
the data.

Howewer, there are pitfalls to blindly applying the repression resuvlts withont regard
to spatial concerns. For example, suppose we wish to use the NURE-only regression to
predict the mean rador level in some group of couniies. If these counties are selected at
random acrogs the state, there is no problem with combining the regression predictions for
the individual counties to predict the geomeiric mean of the eptive group, and the more
counties that are included in the group, the lowser the error in the estimated GM is likely
to be. I, on the other hand, the counties were all selected from a particular region of the
state, then the presence of spatial correlations in the county effects would lead to problems:
our estimated group GM would be overcertamn, unless we account for such correlation.

Also, spatial correlation in the county effects presents an opportunity: if there are
some areas that are higher or lower in radon than predicted, even after controlling for the
available explanatory variables, then the locations of these areas might suggest avenues of
exploration to improve the models. In principle, even if ne explanatory variables can be
found that explain the spatial corvelations, the presence of the correlations themselves can
allow improvements in the accuracy and precision of the models by creating an explicitly
spatial model. However, such in-depth analysis of the spatial correlations is beyond the
scope of the present paper.

Instead, we dieplzy the estimated county effects from Model 5 on 2 map of Minnesota
{Figure 6). The estimated county effecta have been multiplied by 100 to avoid printing
unnecessary digits. MNotice that there do seem to be patterns in the distributien of ¢ounty
effects; specifically, most of the large negative county effects occur in counties to the sast of
about 94 degrees longitude, while most of the large positive county effects occur to the west
of that line. “Large” is only relative in this context—the county effects with the largest

magnitudes correspond to modifications from the ordinary regression predictions of only
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about 15%, and most of the affects are much lower.

T remove the obvious east-west spatial trend, we added a “longitude” variable to the
madel. This county-level variable assigns to each data point the scaled longitude of the
center of the county in which the house sits; the variable was defined g2 (longitude — 97) /7,
which is zero at the western edge of the state, and unity near the eastern edge. The
resulting models {numbers 6-9 in Table 2} show a baraly improved fit, as indicated by the
decrease in ¢. In addition, examination of the spatial distribution of the associated county
effects reveals no obvious large-acale trends, although non-random clumps of positive or
negative county effects can still be found. The negative coefficient of the longitude variable
indicates that county mean radon concentrations tend to be lower in the eastern part of
the state than would be predicted based on the other explanatory vadables alone, and
higher on the western part of the state. However, the effect is quite small, changing most
county posterior predicted GMs by a few Bg/m® in spite of the fact that the coefficient of
the longitude variable is substantial: the effect of the sizeable coefficient of the longitude
variable is largely offset by the decrease in the coefficient of log{NURE), which is partiatly
collinear with longitude {a carrelation of r = ~0.35).

In summacy, slthough there is evidence for spatial variation i county Gbis that is not
explained by the included explanatory variables, the effect of auch unexplained variation on

the predictions for the true county GMs is very small.

Discussion and Conclusions.

The models dizscussed above contain four variables believed to be directly related to indoor
radon concentration measurements: NURE, which is a measure of swcficial radinm concen-
tration; and the three housing variables, which are ralated to the covpling between soil-gas
radon concentrations and the indoor radon concentration.

We have included two additional connty-level variables in the model: observed fraction
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of non-basement homes, and county longitude. These variables are nof directly related to
indoor concentration measurements; to the extent that they increasse the predictive value
of the models, they mnst be proxy for other (presently unknown) variables.

Inclusion of the individual-house basement categories improves the within-county fits,
as indicated by the decrease in £, although it does not decrease #. Although including the
basement categories does not result in lower county effects, it does lead to a shght decrease
in the uncertainty of the individual county effect estimates—this is a small effect in most
connties, but for a few counties the uncertainty [the width of the 68% posterior intervals)
decreazes by 15% or more.

Which of the meodels discussed above should be preferred? The answer depends on the
purpose of the analysis. For purposes of estimating the true county GM's in Mionesota,
vsing both the regression fits and the observations in each county (i.e., including the county
effects estimates), models 2 or 6 are most convenient. Model 6 coptains longitude, which
obviously acts 45 a proxy for some other variable or variables; this fact does not affect its
vailug in the prediction of radon levels in Minnesota counties, but does make it harder to
compare the results of the current study to thase from other states in which longitnde does
not act a% a useful proxy.

Model 2, whick contains only NURE as an explanatory variable (and which was used
to penerate the predicted GMs in Table 1), still does an excellent job at fitting the county
ms=ans. The estimated county geomstric means are slightly less certain than in model §, but
the fact that only one variable is included, and that it hag direct physical interpretation,
may be sufficient reason to prefer this model in some instances. Note, however, that it is
possible that the NURE measurement is itself partly & proxy for other important variables,
as illustrated perhaps by the overlap in explanatory pawer between NURE and seil classes
observed in previous work [Ners et al. 1994].

The models that include individual-house explanatory variables are usefu] for nnder-
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standing the factors {bat infloence radon concentration measurements. All of the modsls
agree that bagement measurements in 2 county arve about twice as high as first-floor measure-
ments, and that there is no evidence that first-Aoor measurements are higher in basement
homes than in non-basement homes in the same county. In addition to the models dis-
cussedd in this paper, we also looked for variation of basement effect with latitude, and for a
difference betwesn measurements in finished and unfinished basements; the magnitudes of
those effects were found to be very small, and to have no significant effect on the posterior
estimates for the county GMs.

Random and mixed effects regression modeling of the Minnesota radon data have proved
to be extremely useful in obtaining predictions for the true county geometric mean indoor
screening (i.e., short-term winter} radon measurements, and in determining the explansa-
tory value of NURE and of the housing parametexrs. The predictions use all of the available
data—hoth measurements and explanatory variables—and take proper aceount of the vary-
ing number of measuraments in each county. The techniques discussed in the present work
allow investigation of the use of various explanatory variables to account for variations
in radon measurements, while minimizing the effects of finite sample size in the various
counties.

The models seem appropriate te the data, and we have confidence in their basic con-
clusions; specifically, we beiieve the county GM estimates preserted in Table 1, and their
posterior mbtervals, to be substantially correct. We feel that the posterior sstimates of the
county GMs should be used rather than taking the observed GM as an estimate of the true
(M. for example, it seems extremely unlikely that Lac (tui Parle county and Murray county
Lha.ve true screening GMs over 450 Bg/m?, or even over 350 Bq/m®.

The Bayesian technigues described in the current work promise more efficient use of data
and more reliable prediction than other technigques currently in use in the cadon character-

ization field, and we recommend their more widespread use. They are particularly valuable
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when only sparse monitoring data are available; attempts to predict radon levels at smaller
spatial scales such as zip code areas or census tracts will inevitably need to cope with the
effects of small sample sizes, Furthermore, the statistical techniquea are not specific to

radom, and could profitably be applied to a wide variety of epvironmentsl problems.

Notes and Acknowledgements.

Although they are becoming & standard tool in statistics, fully Bayesian mixed effects regres-
sion computations are not currently available with commercial statistics software packages.
The program we used was written in the statistics language "5° by U.C. Berkeley statistics
graduate student John Boscardin and iz available on http:/ /stat-www.berkeley.edu fusers /gelman /.
The steps for a slisghtly more complicated version of the mode] are described in Section 3.2
of Boscardin and Gelman (1986); fuller discussions of such moedels and computation appear
in Gelman et al. {1995). The program will also be part of a package of radon ressarch
tools currently being assembled by the Indoor Environment Program of the Ernest Orlando
Lawrence Berkeley National Laboratory, which will be available from the lab in late 1996.
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Table 1: Corparizon of GM of chgervations, GM predicted by ordinary vegression on NURE,
and posterior prediction as discussed in the text. Absolute yncertainties tend to be larger for
high-radon counties than for low-radon counties. Ali posterior predictions and uncertainties

are subject to small exrors due to the finite number of simulation runs.

Table 2: Coeflicient estimates and measures of model fit for models discussed in the text.
Recall that coefficients appiy in transformed space, to predict the natural logarithm of the
measurement (in Bg/m?} of the indoor radon concentration. Each row includes all of the
coefficients estimated for a given model, except that each model aiso included county dummy
variables which were treated as random affects {assumed drawn from a normal distribntion
with mean 0 and variance o2). “Const” refers to the constant term in the models (where

appropriate), and “long.” refers to the scaled longitude variable {longitude—90)/7.
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TABLE 1

county number NURE

fips county of observed GM  predicted GM  posterior GM
code  name abs. {Bq/m?) (Ba/m*) [Bq/m?)
1 AITKIN 4 T3 W BT+ 12
3 ANOKA 52 BE &0 B+ 8
B BECKER 3 107 135 131+ 18
7 BELTRAMI 121 a6 100+13
2 BENTON 130 133 131 £ 18
11 BIGETONE 169 193 188 + 24
13 BLUEREARTH 14 250 178 134 + 24
15 BROWN 4 189 179 179+ 25
17 CARLTON 1) a5 1i6 10912
19 CARVER ) 144 157 153 £ 18
21 CASS 151 HE 100 £ 14
23 CHIFFEWA 210 178 170+ 24
23 CHISAGO 107 87 85+ 12
27 CLAY 14 222 187 105 + 23
209 CLEARWATER i 100 140 134+ 1%
31 COOK T3 103 00 4 14
33 COTTONWOOD 4 a7 186 1721 24
36 CROWWING 12 ar 94 95111
37 DAKOTA 63 137 144 138 + 10
30 DODGE 3 224 177 179+ 24
41 DOVGEAS 9 194 164 168 £ 21
43 FARIBAULT i T3 181 156 & 22
45 FILLMORE 2 105 197 187 £ 25
47 FREEBORN o 259 172 185 L 24
49 GCUODHUE 14 235 169 184 £ 23
51 GRANT 0 NA 190 191 & 27
63 HENNEFPIN 104 135 137 136+ O
55 HOUSTON 172 210 201 =+ 27
LY HUBBARD 83 110 105+13
59 ISANTI 107 86 87+ 12
i} ITASCA 11 a5 92 9311
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TABLE 1 (cont.)

county pumber NURE

fips county of observed GM  predicted GM  posterior GM
code  name obs, (Bqfm®*) (Bq/m*) (Bq/m?)
63 JACKSON 5 280 183 191 &£ 27
& KANABEC 4 128 141 137419
67 KANDIYOHI 4 291 158 168 £ 24
69 KITTSON 3 115 145 141 £ I8
Tl KOOCHICHING K 57 78 T3t 10
73 LACQUIPARLE 2 498 L83 1492 & 29
75 LAKE 0 54 ] 80210
ikl LAKEOFTHEWOODS 4 168 a1 05414
™ LESUEUR 5 185 168 169 £ 24
81 LINCOLN 4 314 201 27 28
83 LYON 8 242 194 201 + 26
85 MCLEQD 13 118 162 147 += 18
57 MAHNOMEN 1 145 1583 162 22
i3] MARSHALL 0 127 148 141 £17
91 MARTIN 7 100 165 150 £19
93 MEEKER. il 126 149 145 £ 19
o5 MILLELACS 2 i) 127 119 =17
o7 MORRISON g 100 137 130 £ 15
99 MOWER. 13 183 176 17T+ 21
101 MURRAY I 4458 195 196 £ 20
103 NICOLLET 4 323 174 185+ 26
103 NOBLES 3 255 195 198 + 28
107 NORMAN 3 103 177 166 + 22
109 OLMSTED 23 126 174 152 £17
1i1 OTTERTAIL B 144 127 129417
113 PENNINGTON 3 TE 139 130 417
115 PINE i 72 13 118+ 16
117 PIPESTONE 4 200 206 205 £ 27
119 POLK g 14ii 177 171 4+ 23
121 POPE 2 134 179 175+ 24



TABLE 1| (cont.)

county nurmber NURE

fips county of observed GM predicted GM posterior GM
code  name obs. (Bq/m¥) [Bq/m?) {Ba/m?)
123 RAMSEY 32 112 110 110+ 10
125 REDLAKE o NA 146 148 + 2%
127 REDWOOD 234 180 193 4+ 26
129 RENVILLE 3 156 192 186 £25 -
131 RICE 11 221 168 177 + 22
133 ROCK 2 137 213 205 £ 2%
135 ROSEAU 14 131 126 127+ 14
137 STLOUIS 116 83 165 38+ ©
134 5COTT 13 181 153 159 19
141 SHERBURNE ] 111 a0 92+ 13
143 FIBLEY 4 128 173 166 + 21
145 STEARMNS 25 14% 159 i53 =+ 15
147 STEELE 10 181 177 178 £ 20
149 STEVENS 2 222 205 205 + 29
151 SWIFT 4 100 i83 170+ 24
153 TODD 3 164 142 142 +19
155 TRAVERSE q 231 200 209 X 28
157 - WABASHA ¥ 208 165 170+ 22
159 WADENA 5 103 ! 92 + 12
161 WASECA 4 62 L70 151+ 21
163 WASHINGTON 46 131 132 131£11
165 WATONWAN 3 344 167 17T+ 26
167 WILKIN 1 344 173 175+ 25
169 WINGNA i3 163 205 190 + 23
171 WRIGHT i3 182 138 147+ 18
173 YELLOWMEDICINE 2 122 159
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TAELE 2

coefficient estimates std. deviations
county-leve] individual house
log of fraction has bmt  has bon

const NURE wjobmt long. | meas bmt  meas lst oo bmt " =

L] 4.86 (.76 0.3l
21 573 0.71 0.7% 0.14
3 0.70 2.85 0.22 5.22 | .72 0.17
41 5.74 0.71 -0.13 (.76 0.14
b 075 .54 5.87 5.24 519 | .72 .15
fi| 5.83 (L67 —0.32 76 .13
7| 586 63 -040 =041 0.76 0.13
B .67 022 —0.h2 6.03 5.38 5.34 .72 G6.13
9 0.654 ={.55 6.03 538 537 | .72 n.13
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Frastion of MN homes

Statewide radon concentration measurements
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Figu:c L: }ﬁst(:_g:am showing the distribution of sereening radon concentration measurements in
hr_[ln?esqta. weighted by sampling weight reported in the SRRS data set. A lognormal
dismibation with GM=132.5 B¢/m’ and GSD=2.18 has been superimposed on the data.
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Posterior vs. observed county GMs
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Figure 2: Posterior predictions of county GM values vs. GM of cbservations, for counties with
mote than 5 observations. Bars indicate the range that includes the middle 50% of posterior
predictions based on 1000 simulation draws from the probability distribution of parameter
values, as discussed in the text. The postesior prediction for sach county is a compromise
between the ohserved GM in the county and the grand mean of all of the county GMs, with the
relative weighting determined from the data as described in the text.
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Observed GM vs. NURE prediction
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Figure 3: Results of a conventional regreszion of logiGM} on log{NURE), for countiss with more
than 5 observations. Note that more than 60% of the error bars cross the line representing perfect
agreament, and that predictions for well-sampied counties (those with small error bars) tend to

fall clase to the line representing perfoct agreement.
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Posterior Predicted County GM (Ba/m)
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Figure 4: Results of 2 mixed-effects regression of logarithm of individual-house radon
concentration on logarithm of county NURE and county random: effects. Only counties with
more than 5 observations are shown, although all countiss were used in the analysis. Prediction
from a conventional NURE regression s on the x-axis. Postenior predicted GMs are indicated by
squares, while the GM of cbservations for each county is plotted as a point. Note dhat the
postedior prediction for each county lies betwesn the observed GM (paint) and the conventional
NURE prediction {45-degres line). Far highty sampled counties, the posterior prediction abways
lizs naar the obsarved value, while for poorly sampled counties the pasterior pradiction can be
very different from the observed value. Posterior predictions are subject to shght variatiot due
to the finite number of simulation draws.
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Minnesota County GMs

ALl 2 2
32
o 32
g a4
@
=2 34
5 44
S o - 4 5 4
= 2 485871 4 )
N © - 2 E 6 9 3 5 3
-E 217144 3 0 4
S = - 4118235 310 & 3
= 412 ¢ 48 & 413 11 8
o - 7 §E21363 8 6 12 £ 14 & 1
B OGIGIAZINEIS 131 T 14145 4 4 4 3 1 o
o [ TR R T T T T T R T N T T S Y T N Y N I
L] 4 T L] T T
Q 100 200 300 4] 500
. 5
G of obsenvations (Badm)
w
Ol
g ¥ 3
E :
§ * 7 :
é 4
=]
& o . i 3]
it 4 4
E 5 gg
= 5
z T ?Egggatg
L SaihEt
o . 2, 12,11ioe88 28 14,1,
T T T L) 1 [
0 100 200 300 £0H) SO0
a
Predicted triee GM (Eg/fm’)

Figure 5: Stacked-number histograms showing the distribution of observed county GMs (top) and
the distribution of posterior predicted GMs (bottom}. Each county is represented by digit(s)
indicating the number of observations in the county. For example, in the npper figure the valae
“105" in the: 120-140 Bg/m? interval represents a county with an obsarved GM between 120 and
144 qumi based on 105 observations. Note that the distribution of predicted aue GMs is much
tighter than the distribution of observed GMs. However, recall that the predicted GMs are
themselves uncertain (by about 15 to 30 Bg/m® —-about one bin-—~for most counties).
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Figure 6: Map showing estimated county effects from mode] 5, multiplied by 100. Note the
spatial grouping of negative county effects in the northeastern portion of the state, and the
sparseness of negative county effects in the western half of the state,
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