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Abstrac t 

Past efforts to identify areas with higher than average indoor radon concentrations by exam

ining the statistical relationship between local mean concentrations and physical parameters 

such as the soil radium concentration have been hampered by the variation in local means 

caused by the small number of homes monitored in most areas. In this paper, indoor radon 

data from a survey in Minnesota are analyzed to minimize the effect of finite sample size 

within counties, to determine the true county-to-county variation of indoor radon concentra

tions in the state, and to find the extent to which this variation is explained by the variation 

in surficial radium concentration among counties. The analysis uses hierarchical modeling, 

in which some parameters of interest (such as county geometric mean (GM) radon concen

trations) are assumed to be drawn from a single population, for which the distributional 

parameters are estimated from the data. Extensions of this technique, known as a random 

effects regression and mixed effects regression, are used to determine the relationship be

tween predictive variables and indoor radon concentrations; the results are used to refine 

the predictions of each county's radon levels, resulting in a great decrease in uncertainty. 

The true county-to-county variation of GM radon levels is found to be substantially less 

than the county-to-county variation of the observed GMs, much of which is due to the small 

sample size in each county. The variation in the logarithm of surficial radium content is 

shown to explain approximately 80% of the variation of the logarithm of GM radon con

centration among counties. The influences of housing and measurement factors, such as 

whether the monitored home has a basement and whether the measurement was made in 

a basement, are also discussed. The statistical method can be used to predict mean radon 

concentrations, or applied to other geographically distributed environmental parameters. 



Introduction 

The overall U.S. distribution of indoor radon concentrations is a mixture of subsidiary 

local distributions that are approximately lognormal [Nero et al. 1990]. The variation in 

the geometric means (GMs) among county-sized areas is generally much greater than the 

variation of geometric standard deviations (GSDs), so that most high-radon homes are 

located in areas with relatively high GMs. Identifying such areas is thus a useful step 

towards focusing efforts to locate homes with indoor radon levels much higher than average. 

In 1987-88, the Minnesota Department of Health conducted a radon survey as part 

of U.S. Environmental Protection Agency's State/EPA Residential Radon Survey (SRRS) 

program [Tate et al. 1988, White et al. 1992, Alexander et al. 1994]. The results indicate 

that indoor radon levels in Minnesota are higher than is typical in the U.S., and that there is 

significant variation of radon concentrations among the counties in the state. Earlier analysis 

[Nero et al. 1994] using ordinary regression techniques indicated that much of the variation 

in county GM indoor radon concentration could be predicted from surficial soil radium data 

obtained from the National Uranium Resource Evaluation (NURE). That analysis, as well 

as accurate prediction of individual county GMs, was hampered by uncertainties in county 

GMs due to small sample sizes in most counties. 

The present paper develops an improved statistical approach, again using the SRRS 

survey data from Minnesota as a demonstration. The analysis is performed in several 

parts, with the goal of introducing the use of Bayesian random effects regressions as a way 

of determining the approximate underlying true distribution of county radon concentrations 

by minimizing effects of small sample size. 

The Minnesota data include measurements made in a stratified random sample of 919 

owner-occupied ground-contact homes in Minnesota, performed with a "screening" protocol: 

a two- to four-day, winter charcoal-canister measurement was taken, usually in the lowest 

level of each home. The survey was conducted primarily with the goal of determining 
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the overall screening radon distribution in the state. In addition to the measured radon 

concentration, data collected on each home include: the county in which the home sits, 

whether or not the home has a basement, whether the home was "single-family" (as opposed 

to a duplex, condominium, etc.), what room the measurement was made in (family room, 

dining room, etc), and on what floor of the home the measurement was made. We use the 

screening data because they are available and can be expected to exhibit roughly the same 

spatial distribution as would data from long-term monitoring in living areas. Locating areas 

that have generally high long-term living-area radon concentrations would require long-term 

measurement data, either to supplant or to normalize the screening data. 

The survey used a population-based stratification scheme to choose the number of par

ticipants per county. Adjustments were made to increase the sampling rate of expected 

high-radon counties and of low-population counties [Wirth 1992], but the distribution of 

measurements by county is extremely uneven: some counties had over 100 measurements, 

while other counties had few or none at all. Thus any attempt to use the data to determine 

parameters describing county radon concentrations—such as the geometric mean radon 

concentration for each county—must contend with the effects of small sample size. The un

certainty due to small sample size also confounds analysis to find the relationship between 

county radon concentrations and physical factors such as geologic or soil information. 

In this paper, we use the survey data to answer several questions: 

1. What is the best estimate and uncertainty of each county's true geometric mean of 

radon screening measurements? By "true GM", we mean the GM that would have 

been obtained if every eligible home in the county had been measured with the survey 

protocol, and if measurement error due to background subtraction (discussed below) 

were eliminated. 

2. How much of the county-to-county variation can be explained by the variation in 

surficial radium concentration from the National Uranium Resouce Evaluation? 
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3. Some of the observed variation between county radon concentrations is probably due 

to differences in known house construction parameters and measurement procedures 

(such as whether the home has a basement, and whether the measurement was made 

in a basement). How can we discover the county-to-county variation that remains 

when these effects are removed? 

We use regression techniques known as "random effects regression" and "mixed effects 

regression" to answer these questions. Although such techniques have been used in other 

fields for at least 15 years, we are not aware of their previous use in characterizing radon 

distributions or other environmental parameters. The procedures applied here are partic

ularly useful when attempting to estimate parameters (such as county geometric means) 

based on sparse data. 

A complete discussion of the mathematical details of hierarchical models and random 

effects regression is beyond the scope of this paper. Discussion of Bayesian hierarchical 

modeling in general can be found in Lindley and Smith 1972, Box and Tiao 1973, Bryk and 

Raudenbush 1992, or German et al. 1995. Computational details can be found in Gelman 

et al. 1995 and Boscardin and Gelman 1996. Since these methods have not yet become as 

ubiquitous as more familiar tools such as conventional regressions, we discuss them briefly 

here in the context of the current problem, rather than simply presenting the results. 

The Minnesota Screening Data. 

Figure 1 shows a histogram of the radon concentrations reported from the state radon 

survey [Wirth 1992], weighted according to the sampling weights reported in the data set. A 

lognormal curve with GM — 132 Bq/m3 (3.6 pCi/L) and GSD= 2.18 has been superimposed 

on the data. The observed radon distribution in the state as a whole is nearly consistent 

with a lognormal distribution. The important exception for our purposes is the presence of 
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a few too many extremely low radon concentrations (affecting the lowest bin in the linear 

plot of Fig. 1), which skews the calculation of geometric mean concentrations. Indeed, some 

of the reported radon concentrations are zero; in other state surveys, using similar protocols, 

negative radon concentrations have been reported. The distribution above about 40 Bq/m3 

appears almost perfectly lognormal. 

The excess of low radon concentration measurements is consistent with being due to sta

tistical errors in background subtraction: in determining radon levels, an expected number 

of background counts is subtracted from the observed number of total radioactive decays. 

The number of radioactive decays exceeding the expected background count is ascribed to 

radon. Since the actual number of background counts varies statistically around the ex

pected number, the number of counts attributed to radon (and thus the calculated radon 

concentration) will differ from the actual number by a small amount (typically equivalent 

to a few Bq/m3). This phenomenon can have a large relative effect when the actual radon 

concentration is small; indeed, it can lead to negative reported concentrations. 

When the reported value is extremely small, it is almost certain that the true value is 

higher than the reported value; however, the exact magnitude of this effect is unknown. We 

cannot simply discard the problematic points, since the low reported values really do occur 

in low-radon homes. If we were interested only in estimating distribution parameters for 

aggregated data, such as the geometric mean and geometric standard deviation, we could 

use a censored maximum likelihood estimate [Harter et al. 1966] with a censoring threshold 

set high enough to exclude the problematic points—that is, at 5 to 10 Bq/m3. However, in 

the present paper we wish to perform analyses at the level of individual homes rather than 

county aggregates, so distribution estimates are not sufficient. 

Since incorrect extremely low values can cause problems, we have adjusted all of the low 

values upwards slightly, with the extremely low values brought up the most and the values 

above 50 Bq/m3 essentially unaffected. 
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The empirical adjustment we used to convert the reported radon concentration Cf^35 

to a new value CR„W was 

/^meas h/~<meas \2 

C£enW =^f- + ]l 4 + - ° 2 (D 

with D = 9.25 Bq/m3 (0.25 pCi/L), which was found to make the entire distribution 

appear nearly lognormal even for low radon levels. We do not claim that this equation has 

any underlying physical validity—it is merely a convenient one-parameter correction that 

adjusts very low values upwards very slightly in absolute terms, while leaving higher values 

virtually unchanged: a measured value of 0.00 Bq/m3 is converted to 9.25 Bq/m3, while 

a measured value of 20 Bq/m3 is converted to 23.6 Bq/m3. Only a few measurements are 

affected substantially: of the 919 reported values, only 13 are below 20 Bq/m3. In this 

paper all of our discussion of observed radon concentrations refers to the adjusted values 

^RnW > hereafter referred to simply as CB.U , rather than the measured values. The results 

presented here are quite insensitive to the exact value of D, as long as it is above about 5 

Bq/m3. Mean outdoor concentrations are typically 5 to 10 Bq/m3 [Gesell 1983], so a value 

around 10 Bq/m3 is a reasonable lower bounds for actual indoor radon concentrations. In 

addition, county GMs calculated with the adjusted values of CRn are in good agreement 

with the censored maximum likelihood estimates for the counties. 

In addition to the statewide distribution of radon measurements being nearly log-

normal, the observed distributions within the individual well-sampled counties are also 

approximately lognormal. Also, it has previously been noted that radon distributions 

in county-sized areas tend to be approximately lognormally distributed [Nero et al. 1986, 

Dudney et al. 1992]. (However, see Cohen 1985, White et al. 1992, and Janssen et al. 1992 

for some discussion and counterexamples.) For the present paper we have chosen to model 

the within-county distribution of radon measurements as lognormal. 

In order to characterize a lognormal distribution, both the GM of the distribution and 

the geometric standard deviation (GSD) must be known. In Minnesota, all of the counties 
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with more than 20 observations have observed GSDs between 1.8 and 2.35. The observed 

variability in GSDs is only slightly greater than would be expected if all of the counties 

have the same true GSD (equal to about 2.1). 

Calculation of Posterior Estimates for the County GMs. 

We focus on predicting county GMs, for two reasons. First, since within-county distribu

tions are approximately lognormal and the GSDs for all of the counties are about the same, 

knowledge of the GMs completely characterizes the distribution within counties. Further

more, models are constructed in log space, which makes it computationally easier to predict 

GMs. 

For simplicity, in this section we ignore the explanatory variables related to soil radium 

concentration and to housing type, and discuss only the county geometric mean radon 

concentrations; use of the explanatory variables will be discussed in the next section. 

We wish to use the observed county GMs to try to predict the true county GMs (of 

"screening" radon concentrations). One approach is to use the observed GM as a direct 

prediction of the true GM (that is, to take GMpred = GMobs), but this has at least one 

serious drawback: it leads to a distribution of predicted GMs that is almost certain to 

be much wider than the distribution of true GMs, because of the effect of finite sample 

size. Given the small number of observations in most counties, some high-radon counties 

will happen to yield observed GMs even higher than their true GMs, and some low-radon 

counties will happen to yield GMs even lower than their true GMs. Imagine, for example, 

the effect of finite sample size on a group of counties with exactly the same true GM: the 

measured GMs will be spread about the true GM, with the degree of spread depending on 

the number of observations in each county. 

All of our questions about the true county GMs and the overall distribution of county 

GMs would be easily answered if a large amount of data were available for each county. 
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Unfortunately, about twenty observations are needed to determine a county GM with a 

standard error of twenty percent, while the median number of observations per county in 

Minnesota is only five. Much of the variation in observed county radon levels is certainly due 

to the effects of the small sample size in most counties. For example, consider Lac Qui Parle 

County: this county has only two observations, and the GM of the observations is about 500 

Bq/m3. This GM is considerably higher than the GMs of well-sampled counties (e.g. those 

with more than fifteen observations), all of which lie between 75 and 150 Bq/m3. It seems 

likely that the true GM of Lac Qui Parle County is considerably lower than 500 Bq/m3, 

and that the monitored homes from that county simply happened to have unusually high 

radon levels (at least over the days they were tested). How, then, can we obtain statistically 

well-founded predictions of the actual county GMs that adjust for the variation due to finite 

sample size? 

A reasonable answer to this question is provided by a hierarchical model: we assume 

the true county GMs are drawn from some distribution of "possible" county GMs, and that 

the parameters of this distribution can be estimated from the data. For instance, suppose 

we knew the true GM for 86 counties, randomly selected from the 87 counties in Min

nesota. Furthermore, suppose these 86 values were found to be approximately lognormally 

distributed with a geometric mean of 145 Bq/m3 and a geometric standard deviation of 1.4. 

Then, even if we had no observations from the missing county, it would be reasonable to 

guess that its true GM is likely to fall between 75 Bq/m3 and 285 Bq/m3 (two GSDs below 

and above the GM of the county GMs, respectively) with about 95% certainty. 

In the hypothetical situation described here, we have substantial knowledge of the range 

in which the missing county's true GM is likely to fall even though we have no measurements 

at all from that county. This conclusion relies on the plausible assumption that the GM of 

the missing county is drawn from the same distribution as the GMs of the known counties; 

we would certainly be surprised if the GM of the missing county were later found to be, 
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say, 800 Bq/m3 or 1 Bq/m3. In conventional statistical notation, with 0 representing the 

true value of the logarithm of the county's geometric mean radon concentration, knowledge 

of the distribution from which the missing county's log(GM) is drawn would be written: 

p(6)=N((i,o-2), (2) 

indicating that the probability of obtaining a particular value of 0 is normally distributed 

about \x [equal to log(145 Bq/m3) in the current example] with standard deviation a [equal 

to log(1.4) in the current example]. In such a case, in which the distribution from which the 

missing county's GM is drawn is known, p(9) is known as an informative prior distribution. 

The case of a2 -» oo, corresponding to a distribution of county GMs that has infinite 

variance, would be a noninformative prior distribution, indicating total ignorance of the 

likely range containing the missing county's true log(GM). 

We wish to avoid the misconception that the assumption of a distribution from which 

parameters are drawn is equivalent to the assumption that the variation between counties 

is "random" rather than having some physical explanation—in fact all it means is that 

explanatory variables useful to predict the exact values are unknown for purposes of the 

analysis. 

If we are now given some measurements from the missing county (in the form of a list y), 

Bayes's theorem [Bayes 1763] can be applied to determine a new estimate of the county's 

true GM. Bayes's theorem states that 

The notation p{9\y) reads "the probability of 9 given y "; in the current context it represents 

the probability that "the true mean is 9", given "the set of observations y." In order to apply 

this equation, we must have some way of calculating p(y\9), known as the likelihood. The 

likelihood p{y\9) is the probability that the values y would have been observed, if the true 

value of log(GM) is 9. In order to evaluate this likelihood, we require a statistical model for 
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the distribution of observations within a county. The value of 9 that maximizes Equation 3 

can be thought of as a "best guess" at the true value of 9. (Note that the denominator of 

Eq. 3 is independent of 9; in practice we need not evaluate it, since it merely provides a 

normalization factor.) Generally, we are not interested only in the best guess but also in the 

uncertainty—the range of values of 9 that are reasonably consistent with the observations 

y and with our prior knowledge of the possible values of 9. 

Usually, as in the case of the current Minnesota data set, we do not have direct knowledge 

of the true distribution of county GMs. There are only eight Minnesota counties for which 

more than twenty observations were made, so for most Minnesota counties the true GM is 

quite uncertain. 

The observed county GMs, however, are approximately lognormally distributed, and 

the distribution of measurements within each county is also approximately lognormal. We 

therefore select the following statistical model for the distribution of radon measurements: 

1. The true county GMs are lognormally distributed: the values of log(GM) are drawn 

from a normal distribution with unknown mean /j, and unknown variance cr2, as in 

Eq. 2. 

2. The observations within a county are also lognormally distributed: the logarithms of 

the observations are drawn from a normal distribution with a mean equal to the true 

value of log(GM) and unknown variance K2. For the purposes of the present analysis, 

K2 is assumed to be the same for all counties. This is equivalent to the assumption 

that all of the counties have the same GSD. 

The true value of log(GM) for each county is the main parameter of interest. With the 

lognormality assumptions mentioned above, the application of Bayes's theorem (Eq. 3) 

yields a particularly simple result for the estimate of log(GM) for county i: the most 

probable value of the true log(GM) is given by a weighted average between the observed 
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value of log(GM) for the county and the 'grand mean' y, of the distribution from which all of 

the county log(GM) values are drawn, where the relative weights depend upon the number 

of observations n; in the county, and the variance estimates a2 and K2: 

W P M p o i n t estimate^ ( l / a 2 ) / i + ( ^ / « 2 ) log(GM°bs) 
l 0 g ( G M i } = (1/a2) + (n,/«2) • ( 4 ) 

Equation 4 provides a point estimate of the true GM, but this estimate is uncertain: the 

probability distribution of the true value about this estimate, given /u, a2, and rii/n2, is 

described by: 

p(e\n,o*,TH/K2) = N(log(GMr i n t e s t ima te),^2) (5) 

where 

V? = (l/o*+ni/K2)-1 (6) 

Mathematically it's as though we already had some number (equal to K2/a2) of observations 

of log(CRn) in each county, with the mean of the observations being /i, before any actual 

observations were made. 

In order to actually perform this adjustment, we need values for p,, a, and K. These 

parameters are estimated from the data. A point estimate for /x is provided by the mean 

of the observed county log(GM)s, yielding a value p w 4.96 (in units of log(Bq/m3)). 

Approximate estimates for the true within-county variance K2 « 0.54 and the true between-

county variance a2 « 0.11 are determined from an analysis of variance. These correspond 

to a within-county GSD of exp(-\/0.54) = 2.1, and a distribution of true county GMs that 

has a GM of exp(^) = 143 Bq/m3 and a GSD of exp(v'O.ll) = 1.4. The method of using 

point estimates of parameters generated from the data themselves, and then using those 

estimates through Bayes's theorem to estimate quantities of interest, is sometimes referred 

to as an "empirical Bayes" method. 

Although use of the point estimates for the model parameters leads to reasonable esti

mates of the county GMs, the resulting uncertainty estimates are too small, since they do 
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not include the uncertainties in the model parameters themselves. For this reason, we do 

not restrict ourselves to point estimates of the values of the parameters; rather, we estimate 

the distribution of likely values for the parameters, then draw randomly from that distri

bution and use the resulting parameters in Eq. 5 to obtain an estimate for each county's 

true log(GM). Details of this so-called "full Bayes" procedure can be found in Gelman et 

al. (1995). The sampling procedure is repeated many times (1000 in the current case), 

with each set of parameters yielding an estimate for each county's log(GM); the resulting 

distribution of 1000 GM estimates for each county is spread over a range due to both the 

uncertainty in the true values of the parameters in the hierarchical model and the uncer

tainty due to the finite number of measurements (which would remain even if we knew the 

exact parameters of the distribution from which the county GMs are drawn). We select the 

mean of the 1000 estimates for each county as our "best guess", or posterior estimate, of 

the county's GM. The procedure described here can be carried out directly, or as a special 

case of a random effects regression, described in the next section. 

Results for counties with more than five observations are shown in Figure 2, in which the 

posterior estimates of county GM and uncertainty (an error bar containing the middle 50% of 

the posterior estimates for each county's GM when the sampling procedure described above 

is performed 1000 times) are plotted against the GM of the measurements in the county. 

The points are plotted as numbers, with the number being the number of observations in 

the county. The distribution of posterior estimates of the GMs (shown on the abscissa) 

is much narrower than is the distribution of observed county GMs (on the ordinate), as 

expected. The mean estimate of K2 is 0.570, corresponding to a within-county GSD of 2.13. 

The mean estimate of \x is 4.95, corresponding to a GM of 141 Bq/m3 for the distribution 

of county GMs; and the mean estimate of a2 is 0.097, corresponding to a GSD of 1.37 for 

the distribution of county GMs. 

Lac Qui Parle County, with only two observations yielding an observed GM of 498 
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Bq/m3, has a mean posterior estimate of 196 Bq/m3, although the true value may be as 

low as 113 Bq/m3 or as high as 342 Bq/m3 (the 2.5 and 97.5 percent posterior interval 

limits, respectively). The results appear reasonable, although it may be surprising how 

large the effect of finite sample size is estimated to be. 

Interestingly, although Lac Qui Parle County had the highest observed GM (498 Bq/m3), 

it does not have the highest "best guess" GM, losing out to Blue Earth County, which had 

an observed GM of 250 Bq/m3 and has a posterior estimate of 210 Bq/m3. This is a 

consequence of the fact that Blue Earth County had many more observations than Lac Qui 

Parle County (14 as opposed to 2). Simply put, the distribution of observed county GMs 

suggests that most true county GMs fall in the range between 75 to 150 Bq/m3, and there 

is more evidence that Blue Earth County falls beyond that range than there is evidence 

that Lac Qui Parle does so. 

The predictions from the model seem reasonable, but that alone is not, of course, suffi

cient to give us confidence in them. Several validation checks have been carried out. One 

type of check concerns the degree of agreement between the model predictions and the ob

servations. For example, given the posterior estimates of the county GMs, how often would 

we expect to see an observed GM as high as 500 Bq/m3? To answer this question, we 

start with the posterior estimates for the county GMs, then simulate the sampling proce

dure (by selecting the appropriate number of simulated "observations" from each county's 

assumed distribution) and examine the resulting "observations" to see how they compare 

statistically with the actual observations. Repeated simulation of the sampling procedure, 

using the actual number of observations in each county yields at least one county with 

an "observed" county GM higher than 500 Bq/m3 about 30% of the time, so such a high 

observation clearly does not violate the conclusions based on the model. 

Another type of validation check that we performed was to create a validation data 

set by discarding a random 90% of the data from the four counties with more than 50 
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observations. Complete data from all of the other counties, plus the reduced data from 

those four counties, were then used to fit the model again. The predictions for those four 

counties were then compared to the true GMs as known from the complete data for those 

counties. This sampling/predicting procedure was carried out many times. The model 

validated well, in the sense that the true values for the well-sampled counties fell within one 

standard error of the estimate in about 68% of the tests, and within two standard errors in 

about 95% of the tests. 

Although the statistical model discussed above does validate well and does appear to 

provide better estimates for each county's GM, the estimates are still fairly uncertain, 

especially for the many poorly-sampled counties. In the next section, we discuss the use of 

predictive variables to improve the predictions for the county GMs. 

Regression prediction of the county GMs. 

It has been noted previously [Nero et al. 1994] that much of the county-to-county variation 

in Minnesota's indoor radon levels (as measured by the GM) can be explained by variation 

in surficial radium content as determined by the aerometric survey conducted as part of the 

National Uranium Resource Evaluation (NURE). The NURE survey measured radiation 

spectra along flight lines spaced at 6 to 12 miles across the U.S. These data were pro

cessed using various extrapolation and smoothing schemes [Duval et al. 1989] to produce a 

nationwide map of equivalent surface uranium concentration, which was used to estimate 

the concentration of radium, a uranium decay product. Previous work [Moed et al. 1985, 

Revzan et al. 1988, Gundersen et al. 1991, Jackson 1992, Nero et al. 1994] has used aerial 

radiometric survey data to predict distributions of radon concentration measurements or to 

locate areas with high radon "potential". We have aggregated the NURE data of Duval et 

al. (1989) to generate average surface radium concentration (expressed in equivalent ppm 

of radium) by county; in Minnesota, the resulting NURE values range from 0.14 ppm to 
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0.57 ppm, with a median of 0.39 ppm. 

Figure 3 plots the GM of the radon concentration measurements in each county versus 

the GM predicted by a conventional weighted linear regression of the logarithm of each 

county's GM on the logarithm of the county-averaged NURE value; conventional error bars 

(1 standard error) are plotted for the observed GMs, based on the approximation that the 

true GSD of each county is 2.1. Only counties with more than five observations are shown, to 

avoid clutter. Note that over 60% of the error bars cross the 45-degree line, indicating that 

the observations vary from the predictions only slightly more than the expected variation 

due to small sample sizes if the NURE predictions were exactly equal to the true GMs. For 

the log-space conventional linear regression the value of R2, a standard measure of model fit, 

is 0.58 for the counties shown here. However, this figure substantially underestimates the 

real predictive ability of NURE in this case, since much of the variation between predicted 

and observed GMs is certainly due to small-sample noise rather than differences between 

the true GMs and their predicted values. 

In this section, we discuss a procedure to predict the true county GM using both the 

observations and the fitted results for the county. This procedure provides a method of using 

both observational data and explanatory variables together in a statistically consistent way 

in order to predict each county's true GM. The statistical model we wish to apply is defined 

as follows: 

1. The true values of log(GM) for each county are drawn from a normal distribution with 

a mean equal to the predicted value of log(GM) based on a regression, with unknown 

variance a2, so that for county i 

log(GM0 = & + /?NURE log(NURE0 + 8t, (7) 

where p(6t) = N(0, a2); or equivalently, with 9t — log(GMj), 

p(0»|NUREt) = JV(/30 + /3NURE log(NURE2), a2). (8) 
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The parameter a2 does not have the same value as the a2 in the previous section 

unless /?NURE = 0, in which case the model reduces to the model in the previous 

section. 

2. We number the 919 radon measurements with the index {j}, and assume that the 

logarithm of observation j within county i is drawn from a normal distribution with a 

mean equal to the county's true log(GM), and with an unknown variance «2 assumed 

the same for all counties, so that 

p(log(CRn) J.) = N(log(GMi),«2). (9) 

The parameters AbAroRE,^ and K are again to be estimated from the data. A large 

value of a2 would indicate that NURE is a poor predictor of true county GMs, while a 

small value of a2 would indicate that the true county GMs are closely grouped around their 

NURE predictions. 

A simple but imperfect estimate of a2 can be obtained as follows: regress observed 

log(GM) on log(NURE), then apply the hierarchical model described in the previous section 

to the residuals. This procedure is correct in spirit and provides a quick estimate of the true 

distribution of the residuals. However, this method yields confidence intervals that are too 

narrow, since it does not include the uncertainty in the regression coefficients themselves. 

Rather than present results of such an incomplete analysis, we will carry out a procedure, 

called "random effects regression", that takes into account all sources of uncertainty in the 

model parameters. Before describing random effects regressions, we first discuss the use of 

"dummy variables" in conventional linear regressions. In statistical regression, a dummy 

variable is used to indicate the presence or absence of a particular characteristic, or that 

the data are included or excluded from a particular class. For example, in the present case 

we create a dummy variable for each county in Minnesota (85 in all, if we include only the 

counties for which there is at least one measurement). Each of the 919 radon measurements 
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CRn is therefore associated with 85 dummy explanatory variables, all but one of which takes 

the value of zero; the value unity is assigned to the variable that denotes the county in which 

the measurement was made. 

A conventional linear regression of the values of log(CRn) on these 85 dummy ex

planatory variables alone yields 85 regression coefficients, each of which is the mean of the 

observations of log(CRn) in the indicated county. The hierarchical model introduced in 

section 3 can be reproduced by applying Bayes's theorem with the assumption that these 

regression coefficients are measurements with error of underlying "true" parameters, which 

are drawn from a normal distribution. 

The hierarchical regression model introduced in the present section can be applied also, 

and the uncertainties properly estimated, by including another explanatory variable, in 

addition to the county dummy variables; for each of the 919 observations this variable takes 

the value of NURE averaged over the county that contains the observation. With NURE 

included as an explanatory variable, the values of {5} from Eq. 7, indicate the "true" 

residuals from the NURE regression (i.e. the difference between the true value of log(GMj) 

and the NURE predictions). 

The difference between a county's true log(GM) and the regression prediction for the 

county is referred to as the "county effect". Regression coefficients (such as county ef

fects) that are assumed to be drawn from a common distribution are usually referred to 

as "random effects"; hence the name "random effects regression." When a model includes 

both conventional regression variables ("fixed effects") and random effects, it is called a 

"mixed effects model". All models discussed hereafter are mixed effects models. As before, 

the assumption that random effects are drawn from a common distribution does not imply 

that there is no reason that some of the county effects are large while others are small, 

merely that we have no information (other than the data being analyzed) that allows us to 

determine which counties have large effects and which don't. 
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The mathematical details of performing a Bayesian mixed effects regression are rather 

involved—see the "Notes and Acknowledgements" section at the end of this paper. The basic 

ideas of the mixed effects regression are those discussed in the previous section: the condi

tional distributions of the parameters (regression coefficients and variance components) are 

calculated, and parameters are drawn from the calculated distribution. Where appropriate, 

a hierarchical model is assumed (as for the county effects). The procedure is repeated many 

times in order to obtain posterior intervals (conceptually similar to confidence intervals, in 

that they reflect the range in which the true value is likely to fall) on the parameters. 

Using the model described by equations 7 and 9 above, we perform 1000 simulations 

to obtain 1000 estimates for each of the parameters: /?o, /?NURE> «> o~, and each of the 85 

values of Si. The estimated county effects {6} do double duty: they allow us to predict 

the county GMs, and they also provide a way of measuring the extent to which the other 

explanatory variables allow prediction of indoor radon levels. The extent to which NURE 

is a good predictor of the true county GMs can be gauged from the likely values of a: if 

a is small (and thus the county effects are all near zero), then NURE alone is enough to 

predict the GM of radon concentrations in a county from Eq. 7. If a is large, then at least 

some of the individual county effects are large, and NURE alone is not sufficient to obtain 

a good estimate of the county's true GM. Furthermore, a can be used to define a measure 

of model fit for the county radon levels that is analogous to R2: as in Bryk et al. (1992), 

we define an effective R2
S as 

p2 _ i unexplained variance oftruelog(GM) values . 
e total variance of true log(GM) values 

We do not know either the unexplained variance or the total variance of true values, but 

we do have estimates of each: we obtain estimates of a2 from random effects regressions 

performed with and without NURE (or other explanatory variables), in both cases including 

the county dummy variables. The best estimate of a2 when only the county dummy variables 

are included provides us with an estimate of the true total variance of the county GMs, while 
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the best estimate of a2 when dummy variables and other variables are included provides 

us with an estimate of the unexplained variance. As long as only county-level variables are 

included, the estimate of i?2
ff obtained this way will behave similarly to the conventional 

measure of R2, in the sense that it will always increase (or remain constant) as additional 

variables are added. However, if the model contains individual-house variables, then the 

value of R^g can actually decrease as additional variables are added. An interesting and 

informative example is considered in the next section. 

For the current case, with NURE included as the only explanatory variable, the mean 

posterior estimate of a2 is 0.019. Combining this with the value of a2 — 0.097 obtained 

when only the county effects are included, we obtain the an estimated value of R2
S — 0.80; 

our best estimate is that log(NURE) explains 80% of the county-to-county variation in 

log(GM). In terms of determining a county's log(GM), knowledge of the county's NURE 

value is "worth" an extra K2 /a2 ~ 30 observations in each county (see the comments 

following Eq. 6). 

The ability of NURE to predict county GMs so well appears to be unique to the state of 

Minnesota—in the several other states of the U.S. that we have examined, NURE has lower 

predictive power, with log(NURE) typically explaining about 30% to 65% of the variation 

in the logarithm of the county GMs. 

The coefficient of log(NURE) in Eq. 7 is estimated to be b = 0.711, with 95% posterior 

bounds of 0.537 and 0.880. Since a coefficient of log(NURE) different from unity implies 

(after transforming back from log space) a nonlinear relationship between county soil radium 

concentration and county indoor radon concentration, this result may seem peculiar: at 

least for individual homes, physical models suggest the indoor concentration should be 

approximately proportional to the radium concentration in the surrounding soil. 

Several factors may contribute to a non-linear relationship between county-average 

NURE and the indoor radon concentration measurements. First, the use of county-average 
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NURE would be completely appropriate only if homes in each county are uniformly dis

tributed over the entire area of the county. But since homes are clustered within counties, 

it's likely that in some counties homes are more concentrated in areas with radium concen

trations above the county average, while in others they're more concentrated in low-radium 

areas. A consequence of such an occurrence would be a decreased coefficient of log(NURE), 

through the regression effect (see Price 1995, for example). Furthermore,the NURE mea

surements are subject to errors due to factors such as soil moisture content that are likely to 

affect indoor radon concentrations [Duval et al. 1989, Schumann et al. 1994]. Given these 

facts, a coefficient different from unity in the regression is not surprising. 

Figure 4 shows the result of performing the mixed effects regression; as in Fig. 3, only 

counties with more than 5 observations have been plotted. The posterior predicted GM 

for each county has been plotted with a square, as a function of the prediction based on a 

conventional regression on log(NURE); thus, if the posterior prediction and the conventional 

regression prediction agreed perfectly, the squares would be plotted on the 45-degree line 

on the figure. The GM of observations in each county has been plotted with a point (the 

same as Figure 3, except that that error bars are not shown). The position of each square 

represents a sort of weighted average between the observed GM and the GM predicted from 

a conventional regression on log(NURE), with the relative weighting determined from the 

data. 

For counties with many observations the posterior estimate is always very close to the 

observed GM, while for counties with fewer observations the final estimate can differ sub

stantially from the observed GM. Most of the final estimates are very close to the regression 

line—there is strong evidence that NURE explains almost all of the county-to-county vari

ation in radon levels in Minnesota. However, as noted previously the distribution within 

each county is quite broad: the best estimate of K is 0.76, corresponding to a GSD of 2.1. 

Table 1 presents results for each county in Minnesota (including the two counties with 
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no observations): the number of observations in the county, the GM of the observations, the 

predicted GM from a conventional linear regression of county log(GM) on county log(NURE) 

alone, and the posterior estimate and uncertainty (one standard error) of the county's 

true GM, based on the mixed effects regression described above. The 'uncertainty' is an 

approximation, treating the posterior GM estimates as if they were normally distributed. 

If more accurate summaries of the uncertainties are desired, posterior intervals can be 

determined directly from the distribution of 1000 posterior estimates from each county. 

Figure 5 displays histograms of the distribution of observed and estimated county GMs. 

Each county is represented by a number indicating the number of observations in the county, 

and each number is stacked in the column appropriate to the county GM radon concentra

tion. Thus the "105" in the 120-140 Bq/m3 interval does not represent a county with 105 

observations all of which fell in that interval; the observations from that county are spread 

over a very large range, (from 9.25 Bq/m3 to 888 Bq/m3, as it happens), with a GM that 

falls in the range 120-140. Note that all of the counties with observed GMs over 250 Bq/m3 

have 5 or fewer observations. The distribution of predicted GMs is much tighter than the 

distribution of observed GMs—there is no convincing evidence that any of the true GMs 

are as high as 250 Bq/m3, although some county predictions barely include 250 Bq/m3 

within two standard errors. The distribution of true GMs is somewhat broader than the 

distribution of predicted GMs that is shown, since the true GMs are distributed about the 

predicted values, with standard errors given in Table 1. 

Including additional explanatory variables. 

In addition to the measured indoor radon concentration and the county NURE measure

ment, we have some information on each home in the survey: does the home have a base

ment, and, if so, was the measurement made in the basement. The presence of a basement 

might be expected to have some effect even on first-floor indoor radon measurements, and 
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certainly measurements made in basements are expected to be higher than measurements 

made on the first floor. There are two substantive reasons that we wish to take account of 

the basement and floor effects. 

First, we are interested in the magnitude of the coefficients themselves: how much higher 

are measurements made in the basement than those made on the first floor? 

Second, what are the county effects after controlling for the floor effect in the homes 

in each county? For example, do the low-radon counties have lower radon levels merely 

because they have more non-basement homes? 

As an initial attempt to answer these questions, we introduce three individual-home 

explanatory dummy variables. One variable (7) indicates homes that have basements and 

were monitored in the basement, one (</>) indicates homes that have basements but were 

monitored on the first floor, and one (u) indicates homes without basements. Most homes— 

769 of the 919 homes tested—have a basement and were monitored in the basement. Of 

the remaining 150 homes, 92 have a basement but were monitored upstairs, while the rest 

do not have a basement. 

The model is defined as follows. For a home j in county i, the probability of obtaining 

a given observation is given by 

p(log(CRn) j) = N(/?NURE log(NUREi) + /3bb7i + Mj + A»ob^ + *«. «2)- ( n ) 

Here (3^ is the effect associated with a basement home that is monitored in the basement, 

/?bi is the effect for a basement home monitored on the first floor, and /3n0b is the effect 

for a home without a basement. As before, the county effects {Si} measure the extent 

to which the explanatory variables in the linear model fail to explain all of the county-

to-county variation in radon concentrations, and are assumed to be normally distributed. 

If NURE and the housing dummy variables were sufficient to predict the distribution of 

measured values in homes in different counties, with no remaining evidence of unexplained 

between-county variation, then the county effects would be near zero. Coefficient estimates 
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and variance estimates are presented in Table 2, along with estimates from other models 

discussed below. The coefficient estimates all happen to have standard errors of about ±0.1 

or so, except for the coefficient associated with the fraction of homes that do not have 

basements (discussed below), which has a standard error of about ±0.3. 

The model including individual-house explanatory variables does not allow direct pre

diction of the county GMs, since Eq. 11 does not contain only county-level variables. Essen

tially, we obtain separate estimates for each county for homes in three different categories: 

homes with basements in which the Rn levels were measured in the basement, homes with

out basements, and homes with basements but in which the monitoring was nevertheless 

performed on the first floor. Use of these results to estimate the true county GMs would 

require knowledge of the distribution of housing types by county. We have not attempted 

to model the distribution of housing types. We perform the individual-house analysis only 

to illustrate that the techniques described in this paper can handle both individual and 

county-level data. 

An interesting result of this regression is that the variance of the county effects goes 

up compared with the previous, NURE-only regression. How can this happen? Consider 

Roseau county. The NURE value, when used in the conventional NURE-only regression, 

predicts the average value of log(CRn) for homes in the county should be about log(126 

Bq/m3), in good agreement with the observed value of log(131 Bq/m3). However, in 5 of 

the 14 monitored houses in Roseau county, the measurement was made on the first floor of 

a home rather than in a basement. Since first-floor measurements are expected (based on 

the full regression) to be about half as high as basement levels, and since 5/14 represents a 

much larger fraction of non-basement homes than is typical in counties in Minnesota, the 

full regression prediction for the homes in Roseau county is now much too low, so the county 

effect estimate for this county must be made fairly large in order to bring the prediction 

into agreement with the observations. 
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The increase of the size of the county effects when additional data are included indicates 

some violation of the model. In this case, it indicates that there is some difference be

tween counties with many non-basement homes and those with few non-basement homes— 

some difference that affects radon levels. For example, we speculate that counties with 

generally high soil moisture may have fewer basement homes, and the soil moisture may 

also influence indoor radon concentrations (and perhaps the NURE observations as well 

[Duval et al. 1989]). 

To help resolve this issue, we add another county-level explanatory variable: observed 

fraction of non-basement homes. For all the homes in a county (whether or not they have a 

basement) this variable takes the value of the fraction of survey homes in the county that do 

not have a basement. (We would prefer to use actual fraction of non-basement homes in the 

county, rather than observed fraction, which is subject to significant noise due to the small 

number of observations in most counties. Unfortunately the actual fraction for each county 

is not available.) A sizeable coefficient for this variable would indicate that the fraction of 

non-basement homes is correlated with county radon levels, over and above the correlation 

due to the fact that levels in the measured homes depend upon whether the measurement 

was made in a basement or not. 

Including the county-level non-basement fraction variable does decrease the magnitude 

of the county effects when individual-house basement categories are included (Model 5), 

although the county effects are still slightly smaller in the models that do not include 

individual-house variables. 

Spatial distribution of county effects. 

Thus far, we have not included any spatial information in our analysis. This fact does not 

invalidate any of the analyses discussed above; specifically, the estimates of the county effects 

(and the estimates of a) are valid even though spatial information has not been included. 
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Given these facts, there might seem to be no need to delve into the spatial relationships in 

the data. 

However, there are pitfalls to blindly applying the regression results without regard 

to spatial concerns. For example, suppose we wish to use the NURE-only regression to 

predict the mean radon level in some group of counties. If these counties are selected at 

random across the state, there is no problem with combining the regression predictions for 

the individual counties to predict the geometric mean of the entire group, and the more 

counties that are included in the group, the lower the error in the estimated GM is likely 

to be. If, on the other hand, the counties were all selected from a particular region of the 

state, then the presence of spatial correlations in the county effects would lead to problems: 

our estimated group GM would be overcertain, unless we account for such correlation. 

Also, spatial correlation in the county effects presents an opportunity: if there are 

some areas that are higher or lower in radon than predicted, even after controlling for the 

available explanatory variables, then the locations of these areas might suggest avenues of 

exploration to improve the models. In principle, even if no explanatory variables can be 

found that explain the spatial correlations, the presence of the correlations themselves can 

allow improvements in the accuracy and precision of the models by creating an explicitly 

spatial model. However, such in-depth analysis of the spatial correlations is beyond the 

scope of the present paper. 

Instead, we display the estimated county effects from Model 5 on a map of Minnesota 

(Figure 6). The estimated county effects have been multiplied by 100 to avoid printing 

unnecessary digits. Notice that there do seem to be patterns in the distribution of county 

effects; specifically, most of the large negative county effects occur in counties to the east of 

about 94 degrees longitude, while most of the large positive county effects occur to the west 

of that line. "Large" is only relative in this context—the county effects with the largest 

magnitudes correspond to modifications from the ordinary regression predictions of only 
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about 15%, and most of the effects are much lower. 

To remove the obvious east-west spatial trend, we added a "longitude" variable to the 

model. This county-level variable assigns to each data point the scaled longitude of the 

center of the county in which the house sits; the variable was defined as (longitude — 97)/7, 

which is zero at the western edge of the state, and unity near the eastern edge. The 

resulting models (numbers 6-9 in Table 2) show a barely improved fit, as indicated by the 

decrease in a. In addition, examination of the spatial distribution of the associated county 

effects reveals no obvious large-scale trends, although non-random clumps of positive or 

negative county effects can still be found. The negative coefficient of the longitude variable 

indicates that county mean radon concentrations tend to be lower in the eastern part of 

the state than would be predicted based on the other explanatory variables alone, and 

higher on the western part of the state. However, the effect is quite small, changing most 

county posterior predicted GMs by a few Bq/m3 in spite of the fact that the coefficient of 

the longitude variable is substantial: the effect of the sizeable coefficient of the longitude 

variable is largely offset by the decrease in the coefficient of log(NURE), which is partially 

collinear with longitude (a correlation of r = —0.35). 

In summary, although there is evidence for spatial variation in county GMs that is not 

explained by the included explanatory variables, the effect of such unexplained variation on 

the predictions for the true county GMs is very small. 

Discussion and Conclusions. 

The models discussed above contain four variables believed to be directly related to indoor 

radon concentration measurements: NURE, which is a measure of surficial radium concen

tration; and the three housing variables, which are related to the coupling between soil-gas 

radon concentrations and the indoor radon concentration. 

We have included two additional county-level variables in the model: observed fraction 
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of non-basement homes, and county longitude. These variables are not directly related to 

indoor concentration measurements; to the extent that they increase the predictive value 

of the models, they must be proxy for other (presently unknown) variables. 

Inclusion of the individual-house basement categories improves the within-county fits, 

as indicated by the decrease in n, although it does not decrease a. Although including the 

basement categories does not result in lower county effects, it does lead to a slight decrease 

in the uncertainty of the individual county effect estimates—this is a small effect in most 

counties, but for a few counties the uncertainty (the width of the 68% posterior intervals) 

decreases by 15% or more. 

Which of the models discussed above should be preferred? The answer depends on the 

purpose of the analysis. For purposes of estimating the true county GM's in Minnesota, 

using both the regression fits and the observations in each county (i.e., including the county 

effects estimates), models 2 or 6 are most convenient. Model 6 contains longitude, which 

obviously acts as a proxy for some other variable or variables; this fact does not affect its 

value in the prediction of radon levels in Minnesota counties, but does make it harder to 

compare the results of the current study to those from other states in which longitude does 

not act as a useful proxy. 

Model 2, which contains only NURE as an explanatory variable (and which was used 

to generate the predicted GMs in Table 1), still does an excellent job at fitting the county 

means. The estimated county geometric means are slightly less certain than in model 6, but 

the fact that only one variable is included, and that it has direct physical interpretation, 

may be sufficient reason to prefer this model in some instances. Note, however, that it is 

possible that the NURE measurement is itself partly a proxy for other important variables, 

as illustrated perhaps by the overlap in explanatory power between NURE and soil classes 

observed in previous work [Nero et al. 1994]. 

The models that include individual-house explanatory variables are useful for under-
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standing the factors that influence radon concentration measurements. All of the models 

agree that basement measurements in a county are about twice as high as first-floor measure

ments, and that there is no evidence that first-floor measurements are higher in basement 

homes than in non-basement homes in the same county. In addition to the models dis

cussed in this paper, we also looked for variation of basement effect with latitude, and for a 

difference between measurements in finished and unfinished basements; the magnitudes of 

those effects were found to be very small, and to have no significant effect on the posterior 

estimates for the county GMs. 

Random and mixed effects regression modeling of the Minnesota radon data have proved 

to be extremely useful in obtaining predictions for the true county geometric mean indoor 

screening (i.e., short-term winter) radon measurements, and in determining the explana

tory value of NURE and of the housing parameters. The predictions use all of the available 

data—both measurements and explanatory variables—and take proper account of the vary

ing number of measurements in each county. The techniques discussed in the present work 

allow investigation of the use of various explanatory variables to account for variations 

in radon measurements, while minimizing the effects of finite sample size in the various 

counties. 

The models seem appropriate to the data, and we have confidence in their basic con

clusions; specifically, we believe the county GM estimates presented in Table 1, and their 

posterior intervals, to be substantially correct. We feel that the posterior estimates of the 

county GMs should be used rather than taking the observed GM as an estimate of the true 

GM: for example, it seems extremely unlikely that Lac Qui Parle county and Murray county 

have true screening GMs over 450 Bq/m3, or even over 350 Bq/m3. 

The Bayesian techniques described in the current work promise more efficient use of data 

and more reliable prediction than other techniques currently in use in the radon character

ization field, and we recommend their more widespread use. They are particularly valuable 
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when only sparse monitoring data are available; attempts to predict radon levels at smaller 

spatial scales such as zip code areas or census tracts will inevitably need to cope with the 

effects of small sample sizes. Furthermore, the statistical techniques are not specific to 

radon, and could profitably be applied to a wide variety of environmental problems. 
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Table 1: Comparison of GM of observations, GM predicted by ordinary regression on NURE, 

and posterior prediction as discussed in the text. Absolute uncertainties tend to be larger for 

high-radon counties than for low-radon counties. All posterior predictions and uncertainties 

are subject to small errors due to the finite number of simulation runs. 

Table 2: Coefficient estimates and measures of model fit for models discussed in the text. 

Recall that coefficients apply in transformed space, to predict the natural logarithm of the 

measurement (in Bq/m3) of the indoor radon concentration. Each row includes all of the 

coefficients estimated for a given model, except that each model also included county dummy 

variables which were treated as random effects (assumed drawn from a normal distribution 

with mean 0 and variance a2). "Const" refers to the constant term in the models (where 

appropriate), and "long." refers to the scaled longitude variable (longitude-90)/7. 
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TABLE 1 

county 

fips 

code 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

41 

43 

45 

47 

49 

51 

53 

55 

57 

59 

61 

county 

name 

AITKIN 

ANOKA 

BECKER 

BELTRAMI 

BENTON 

BIGSTONE 

BLUEEARTH 

BROWN 

CARLTON 

CARVER 

CASS 

CHIPPEWA 

CHISAGO 

CLAY 

CLEARWATER 

COOK 

COTTONWOOD 

CROWWING 

DAKOTA 

DODGE 

DOUGLAS 

FARIBAULT 

FILLMORE 

FREEBORN 

GOODHUE 

GRANT 

HENNEPIN 

HOUSTON 

HUBBARD 

ISANTI 

ITASCA 

number 

of 

obs. 

4 

52 

3 

7 

4 

3 

14 

4 

10 

6 

5 

4 

6 

14 

4 

2 

4 

12 

63 

3 

9 

6 

2 

9 

14 

0 

105 

6 

5 

3 

11 

observed GM 

(Bq/m3) 

73 

88 

107 

121 

130 

169 

250 

189 

96 

144 

151 

210 

107 

222 

100 

73 

97 

97 

137 

224 

194 

75 

105 

259 

235 

NA 

136 

172 

85 

107 

95 

NURE 

predicted GM 

(Bq/m3) 

90 

80 

135 

96 

133 

193 

178 

179 

116 

157 

95 

178 

87 

187 

140 

103 

186 

94 

144 

177 

164 

181 

197 

172 

169 

190 

137 

210 

110 

86 

92 

posterior GM 

(Bq/m3) 

87 ±12 

84 ± 8 

131 ± 18 

100 ± 13 

131 ± 18 

188 ± 24 

194 ± 24 

179 ± 25 

109 ± 12 

153 ± 18 

100 ± 14 

179 ± 24 

88 ±12 

195 ± 23 

134 ± 18 

100 ± 14 

172 ± 24 

95 ± 1 1 

139 ± 10 

179 ± 24 

168 ± 21 

156 ± 22 

187 ± 25 

185 ± 24 

184 ± 23 

191 ± 27 

136± 9 

201 ± 27 

105 ± 13 

87 ±12 

93 ± 1 1 
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TABLE 1 ( c o n t . ) 

county 

tips 

code 

63 

65 

67 

69 

71 

73 

75 

77 

79 

81 

83 

85 

87 

89 

91 

93 

95 

97 

99 

101 

103 

105 

107 

109 

111 

113 

115 

117 

119 

121 

county 

name 

JACKSON 

KANABEC 

KANDIYOHI 

KITTSON 

KOOCHICHING 

LACQUIPARLE 

LAKE 

LAKEOFTHEWOODS 

LESUEUR 

LINCOLN 

LYON 

MCLEOD 

MAHNOMEN 

MARSHALL 

MARTIN 

MEEKER 

MILLELACS 

MORRISON 

MOWER 

MURRAY 

NICOLLET 

NOBLES 

NORMAN 

OLMSTED 

OTTERTAIL 

PENNINGTON 

PINE 

PIPESTONE 

POLK 

POPE 

number 

of 

obs. 

5 

4 

4 

3 

7 

2 

9 

4 

5 

4 

8 

13 

1 

9 

7 

5 

2 

9 

13 

1 

4 

3 

3 

23 

8 

3 

6 

4 

4 

2 

observed GM 

(Bq/m3) 

280 

128 

291 

115 

57 

498 

54 

168 

185 

314 

242 

118 

145 

127 

100 

126 

69 

109 

183 

448 

323 

255 

103 

126 

144 

78 

72 

200 

146 

134 

NURE 

predicted GM 

(Bq/m3) 

183 

141 

158 

145 

78 

183 

90 

91 

168 

201 

194 

162 

163 

148 

165 

149 

127 

137 

176 

195 

175 

195 

177 

174 

127 

139 

131 

206 

177 

179 

posterior GM 

(Bq/m3) 

191 ±27 

137 ±19 

168 ± 24 

141 ± 18 

73 ±10 

192 ± 29 

80 ±10 

95 ±14 

169 ± 23 

207 ± 28 

201 ± 26 

147 ± 18 

162 ± 22 

141 ± 17 

150 ± 19 

145 ± 19 

119 ±17 

130 ± 15 

177 ± 21 

196 ± 29 

185 ± 26 

198 ± 28 

166 ± 22 

152 ± 17 

129 ± 17 

130 ± 17 

118 ± 1 6 

205 ± 27 

171 ± 23 

175 ± 24 



TABLE 1 ( c o n t . ) 

county 
fips 

code 

123 

125 

127 

129 

131 

133 

135 

137 

139 

141 

143 

145 

147 

149 

151 

153 

155 

157 • 

159 

161 

163 

165 

167 

169 

171 

173 

county 

name 

RAMSEY 

REDLAKE 

REDWOOD 

RENVILLE 

RICE 

ROCK 

ROSEAU 

STLOUIS 

SCOTT 

SHERBURNE 

SIBLEY 

STEARNS 

STEELE 

STEVENS 

SWIFT 

TODD 

TRAVERSE 

WABASHA 

WADENA 

WASECA 

WASHINGTON 

WATONWAN 

WILKIN 

WINONA 

WRIGHT 

YELLOWMEDICINE 

number 

of 

obs. 

32 

0 

5 

3 

11 

2 

14 

116 

13 

8 

4 

25 

10 

2 

4 

3 

4 

7 

5 

4 

46 

3 

1 

13 

13 

2 

observed GM 

(Bq/m3) 

112 

NA 

234 

156 

221 

137 

131 

83 

181 

111 

129 

148 

181 

222 

100 

164 

231 

208 

103 

62 

131 

344 

344 

163 

182 

122 

NURE 

predicted GM 

(Bq/m3) 

110 

146 

190 

192 

168 

213 

126 

105 

153 

90 

173 

159 

177 

205 

183 

142 

209 

165 

91 

170 

132 

167 

173 

205 

138 

189 

posterior GM 

(Bq/m3) 

110 ± 10 

148 ± 21 

193 ± 26 

186 ± 25 

177 ± 22 

205 ± 29 

127 ± 14 

88± 6 

159 ± 19 

92 ± 1 3 

166 ± 2 1 

153 ± 15 

178 ± 20 

205 ± 29 

170 ± 24 

142 ± 19 

209 ± 28 

.170 ± 22 

92 ± 1 2 

151 ± 2 1 

131 ± 11 

177 ± 26 

175 ± 25 

190 ± 23 

147 ± 18 

181 ± 24 



2 

coefficient estimates std. deviations 

county-level 

log of fraction 

const NURE w/o bmt long. 

individual house 

has bmt has bmt 

meas bmt meas 1st no bmt 

4.86 

5.73 

5.74 

5.83 

5.86 

0.71 

0.70 

0.71 

0.75 

0.67 

0.63 

0.67 

0.64 

-0.13 

0.54 

-0.40 

0.22 

-0.32 

-0.41 

-0.52 

-0.55 

5.85 5.22 5.22 

5.87 5.24 5.19 

6.03 5.38 5.34 

6.03 5.38 5.37 

0.76 

0.76 

0.72 

0.76 

0.72 

0.76 

0.76 

0.72 

0.72 
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Statewide radon concentration measurements 
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Figure 1: Histogram showing the distribution of screening radon concentration measurements in 
Minnesota, weighted by sampling weight reported in the SRRS data set. A lognormal 
distribution with GM=132.5 Bq/m3 and GSD=2.18 has been superimposed on the data 
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Posterior vs. observed county GMs 

50 100 150 200 250 

GM of observations (Bq/m°) 

Figure 2: Posterior predictions of county GM values vs. GM of observations, for counties with 
more than 5 observations. Bars indicate the range that includes the middle 50% of posterior 
predictions based on 1000 simulation draws from the probability distribution of parameter 
values, as discussed in the text. The posterior prediction for each county is a compromise 
between the observed GM in the county and the grand mean of all of the county GMs, with the 
relative weighting determined from the data as described in the text. 
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Observed GM vs. NURE prediction 
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Predicted GM (Bq/m ) from NURE regression. 

Figure 3: Results of a conventional regression of log(GM) on log(NURE), for counties with more 
than 5 observations. Note that more than 60% of the error bars cross the line representing perfect 
agreement, and that predictions for well-sampled counties (those with small error bars) tend to 
fall close to the line representing perfect agreement. 
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Posterior Predicted County GMs 

50 100 150 200 250 

Predicted GM (Bq/m ) from NURE regression. 

Figure 4: Results of a mixed-effects regression of logarithm of individual-house radon 
concentration on logarithm of county NURE and county random effects. Only counties with 
more than 5 observations are shown, although all counties were used in the analysis. Prediction 
from a conventional NURE regression is on the x-axis. Posterior predicted GMs are indicated by 
squares, while the GM of observations for each county is plotted as a point. Note that the 
posterior prediction for each county lies between the observed GM (point) and the conventional 
NURE prediction (45-degree line). For highly sampled counties, the posterior prediction always 
lies near the observed value, while for poorly sampled counties the posterior prediction can be 
very different from the observed value. Posterior predictions are subject to slight variation due 
to the finite number of simulation draws. 
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Minnesota County GMs 

c 
o 
O 

CM 

co 
.?> o 

CD 

E 
3 

00 -

ir CO -

CM 

2 
2 
3 
4 
4 

7 6 

4 
5 
10 
11 
12 

2 
3 
3 
3 
3 
4 
4 
5 
6 
7 
8 
9 

2 
2 
2 
4 
4 
4 
5 
7 
9 
14 
23 
46 

52 13 63 

1 
3 
4 
5 
6 
8 

3 
3 
4 
6 

4 
4 2 
5 3 
9 4 
10 5 3 
13 11 8 
13 4 14 9 1 

9 6 1163210525 13 13 7 14 14 5 4 4 4 3 
I I I I I I I I I I I I I I I I I I 

1 
I I I 

2 
I I 

100 200 300 400 500 

GM of observations (Bq/m ) 

CO 
CD 

c 3 
o 
O 
o 
fl> 

XJ 
£ 
Z3 

in 
CM 

o 
CM 

U5 

o 

lO -

3 
4 
4 
5 
5 
6 
7 
8 
9 

2 
5 
10 

2 
3 
3 
3 
4 
4 
4 
6 
8 
9 

ll 

1 
3 
4 
5 
6 
9 
9 

1§ 

1 
2 
2 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
5 
6 
7 
7 
9 
10 
11 

1! 7 11 32 46 25 14 

1 
2 
2 
2 
3 
3 
3 
4 
4 
5 
8 

2 
4 
4 
6 

,52,12,11tj105,63,23,14,13, 
i 1 — ■ i - - i i i 

100 200 300 400 500 

Predicted true GM (Bq/m ) 

Figure 5: Stacked-number histograms showing the distribution of observed county GMs (top) and 
the distribution of posterior predicted GMs (bottom). Each county is represented by digit(s) 
indicating the number of observations in the county. For example, in the upper figure the value 
"105" in the 120-140 Bq/m3 interval represents a county with an observed GM between 120 and 
140 Bq/m , based on 105 observations. Note that the distribution of predicted true GMs is much 
tighter than the distribution of observed GMs. However, recall that the predicted GMs are 
themselves uncertain (by about 15 to 30 Bq/m3 —about one bin—for most counties). 
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Estimated model 5 county effects (times 100) 

scaled longitude 

0.2 0.4 0.6 0.8 1.0 

45 -

44 -

97 96 95 94 93 92 91 

west longitude 

-45 

90 

Figure 6: Map showing estimated county effects from model 5, multiplied by 100. Note the 
spatial grouping of negative county effects in the northeastern portion of the state, and the 
sparseness of negative county effects in the western half of the state. 
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