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ABSTRACT 

The l e v e l of radon and i t s daughters i n s i d e convent ional b u i l d i n g s 
i s often higher than the ambient background l e v e l . I n t e r e s t in conserv­
ing energy i s motivat ing home­owners and b u i l d e r s t o reduce v e n t i l a t i o n 
and hence to i nc r ea se the concen t ra t ion of indoor generated a i r contam­
i n a n t s , inc luding radon. I t i s un l ike ly t h a t the cu r r en t r a d i a t i o n l e v ­
e l s in convent ional homes and bu i ld ings from radon daughters could 
account for a s i g n i f i c a n t por t ion of the lung cancer r a t e in non­
smokers. However, i t i s l i k e l y t h a t some inc reased lung cancer r i s k 
would r e s u l t from inc reased radon exposures ; hence, i t i s prudent not to 
allow radon concen t ra t ions to r i s e s i g n i f i c a n t l y . There are s eve ra l 
ways to implement energy conserva t ion measures without inc reas ing r i s k s . 

Keywords: a i r p o l l u t i o n , energy conse rva t ion , houses , indoor a i r 
q u a l i t y , i n f i l t r a t i o n , radon, v e n t i l a t i o n 



INTRODUCTION 

Reduced v e n t i l a t i o n i n b u i l d i n g s , a major ene rgy c o n s e r v a t i o n m e a s ­
u r e , can l e a d t o e l e v a t e d l e v e l s of i n d o o r g e n e r a t e d a i r c o n t a m i n a n t s . 
One such c o n t a m i n a n t i s r a d o n - 2 2 2 , f o r which s e v e r a l i n d o o r s o u r c e s h a v e 
been i d e n t i f i e d . 

Radon and i t s d e c a y p r o d u c t s have a lways been p r e s e n t as p a r t of 
m a n ' s n a t u r a l r a d i a t i o n b u r d e n . Radon i s p r e s e n t i n s o i l , c o n c r e t e , and 
v a r i o u s b u i l d i n g m a t e r i a l s . S ince r a d o n may emana te from i n d o o r s o u r c e s 
o r be t r a n s p o r t e d i n d o o r s i n h i g h c o n c e n t r a t i o n s , r e d u c e d v e n t i l a t i o n 
c o u l d l e a d t o h i g h e r i n d o o r c o n c e n t r a t i o n s of r adon d a u g h t e r s and t h e 
a t t e n d a n t i n c r e a s e d r a d i a t i o n e x p o s u r e of b u i l d i n g o c c u p a n t s . The p o s ­
s i b l e i n c r e a s e d r i s k of d i s e a s e , e s p e c i a l l y l u n g c a n c e r , must be c o n ­
s i d e r e d when a d o p t i n g b u i l d i n g ene rgy c o n s e r v a t i o n s t a n d a r d s . The r i s k 
shou ld be a s s e s s e d i n t h e c o n t e x t of t h e n a t u r a l l y o c c u r r i n g e x p o s u r e t o 
r adon d a u g h t e r s and t h e p o s s i b l e h e a l t h i m p a c t of t h i s e x p o s u r e to t h e 
g e n e r a l p o p u l a t i o n . Measures a r e a v a i l a b l e t h a t would l i m i t i n c r e a s e s 
of r adon d a u g h t e r c o n c e n t r a t i o n s i n d o o r s w h i l e s t i l l a c h i e v i n g e n e r g y 
c o n s e r v a t i o n i n b u i l d i n g s . 

SOURCES AND CONCENTRATIONS 

Rad ium-226 , which i s p a r t of t h e u r a n i u m - 2 3 8 decay c h a i n , h a s a 
h a l f - l i f e of 1602 y e a r s . I t s a l p h a decay p r o d u c e s a c h e m i c a l l y i n e r t , 
r e c o i l i n g r adon -222 atom h a v i n g a h a l f - l i f e of 3 . 8 d a y s . Radon has f o u r 
s h o r t - l i v e d d a u g h t e r s , each w i t h a h a l f - l i f e of l e s s t h a n 30 m i n u t e s . 
The s u b s e q u e n t p r o d u c t i o n of l e a d - 2 1 0 , w i t h a 22 y e a r h a l f - l i f e e f f e c ­
t i v e l y ends t h e s e q u e n c e as f a r as d i s e a s e r i s k s a r e c o n c e r n e d . F i g u r e 
1 shows t h e decay c h a i n of r a d i u m - 2 2 6 . 

The f o u r r a d i o a c t i v e d a u g h t e r s of radon a r e n o t i n e r t . Most a t t a c h 
t h e m s e l v e s by c h e m i c a l or p h y s i c a l means t o a i r b o r n e p a r t i c u l a t e s . When 
i n h a l e d , t h e s e p a r t i c u l a t e s may be r e t a i n e d i n t h e t r a c h e o b r o n c h i a l and 
pulmonary r e g i o n s . Subsequen t d e c a y s t o l e a d - 2 1 0 r e s u l t i n a r a d i a t i o n 
d o s e t o t h o s e a r e a s . The p r i m a r y h a z a r d i s due t o t h e a l p h a e m i s s i o n s 
of po lon ium-218 and p o l o n i u m - 2 1 4 . S ince a l p h a p a r t i c l e s have a v e r y 
s h o r t r a n g e (a few t e n s of m i c r o n s i n t i s s u e ) , e s s e n t i a l l y a l l of t h e 
e n e r g y i s d e p o s i t e d n e a r t h e s u r f a c e of t h e l u n g t i s s u e . 

Because radon i t s e l f i s i n e r t , i t i s no t t h e p r i n c i p a l h e a l t h h a z a r d 
i n t h e decay c h a i n ; however , i t s c o n c e n t r a t i o n * i s a good i n d i c a t o r of 
e x p o s u r e t o t h e b i o l o g i c a l l y i m p o r t a n t radon d a u g h t e r s . 

*Radon c o n c e n t r a t i o n s can be e x p r e s s e d i n n a n o c u r i e s pe r c u b i c me te r 
( n C i / m 3 ) , which i s e q u i v a l e n t t o t h e more commonly used u n i t , p i c o c u r i e s 
p e r l i t e r ( p C i / 1 ) , or i n B e c q u e r e l s pe r c u b i c me te r ( B q / m 3 ) ; 1 nCi 
e q u a l s 37 Bq. 
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Any substance conta in ing radium-226, the p recursor of radon, i s a 
p o t e n t i a l emanation source . Since radium-226 i s a t r a c e element in most 
rock and s o i l , sources of indoor radon inc lude b u i l d i n g m a t e r i a l s , such 
as concre te or b r i c k , and the s o i l under b u i l d i n g founda t ions . The 1602 
year h a l f - l i f e of radium-226 i n s u r e s a continuous source of radon for 
the l i f e of a b u i l d i n g . 

There are at l e a s t th ree d i s t i n c t phys i ca l mechanisms by which 
radon from s o i l or bu i ld ing m a t e r i a l s may be t r anspo r t ed i n d o o r s . Radon 
atoms which end t h e i r r e c o i l in an i n t e r s t i t i a l (or pore) space of the 
s o l i d source ma te r i a l may d i f fuse to the sur face and en ter the a i r . 
Diffusion through ma te r i a l i s a r e s u l t of the radon thermal motion of 
gas molecules and occurs whenever a concen t ra t ion grad ien t e x i s t s . Air 
i n f i l t r a t i o n through the envelope of the house provides a second impor­
t a n t t r a n s p o r t mechanism. I n f i l t r a t i o n r e s u l t s p r imar i ly from wind 
blowing aga ins t and over t h e house and from temperature d i f f e r e n c e s 
between indoor and outdoor a i r and can ca r ry radon in high concent ra ­
t i ons from pore spaces of bu i ld ing m a t e r i a l s and s o i l i n t o the house. 
In a d d i t i o n , radon gas from s o i l and b u i l d i n g m a t e r i a l s can be forced 
i n t o the house by a drop in baromet r ic p r e s s u r e . The t h i r d p o t e n t i a l 
t r a n s p o r t mechanism i s v ia tap water taken from wel l s or underground 
s p r i n g s . This water may en te r the house with a high concen t ra t ion of 
radon, which i s then t r a n s f e r r e d to the indoor a i r . 

Figure 2 i l l u s t r a t e s the primary pathways by which radon i n b u i l d i n g 
m a t e r i a l s and s o i l gas e n t e r s a b u i l d i n g . The r e l a t i v e importance of 
these pathways depends on the s p e c i f i c l o c a t i o n , design and cons t ruc t ion 
m a t e r i a l s and techniques used in a given b u i l d i n g . 

Sca t t e red obse rva t ions have shown tha t indoor concen t r a t ions of 
radon are gene ra l ly higher than l o c a l ambient concen t ra t ions (see Figure 
3 ) . The Environmental Measurements Laboratory measured radon concen t ra ­
t ions in 21 homes in the New York/New Je r sey area [ 1 ] . The geometric 
mean of the annual average radon concen t ra t ion on t h e f i r s t f loor of 
these homes, 0.83 nCi/m-% was f i ve times the comparable ambient l e v e l of 
0.18 nCi/m3 . A study in Salzburg, A u s t r i a , measured radon concen t ra ­
t i o n s a t s eve r a l hundred s i t e s [2] . The r e s u l t s are s imi la r t o the New 
York s tudy: geometric mean radon concen t r a t ions were found to be 0.42 
nCi/m^ indoors and 0.16 nCi/m^ ou tdoo r s . 

In F l o r i d a , homes b u i l t on land reclaimed from phosphate s t r i p min­
ing show radon concen t ra t ions much higher than in other homes in the 
s t a t e [3] . These e leva ted radon l e v e l s are a s s o c i a t e d with the high 
radium concen t ra t ion in F lo r ida phosphate d e p o s i t s . 

DISEASE EFFECTS 

Radon daughter concen t ra t ions may be expressed in terms of the Work­
ing Level (WL), a un i t designed to i n d i c a t e r e l a t i v e hea l th hazard . One 
WL i s defined as any combination of radon daughters in one l i t e r of a i r 
such tha t the decay to lead-210 w i l l r e s u l t in the u l t ima te emission of 
1.3 x 105 MeV of alpha energy. This un i t i s i n s e n s i t i v e to the degree 
of r a d i o a c t i v e equ i l ib r ium e x i s t i n g among the a i rborne daughters and 



radon. If radon and its first four daughters are in radioactive equili­
brium, 100 nCi/m3 of radon implies 1 WL. In well ventilated air, where 
the daughters have not reached secular equilibrium, somewhat more than 
100 nCi/m3 are necessary to generate 1 WL. An equilibrium fraction* of 
about 0.5 has been measured in both New York and Swedish homes [1,4]. 
For this discussion we will assume that 200 nCi/m3 of radon yields 1 WL. 

Radon daughter exposures are usually expressed in terms of working 
level months (WLM), where 1 WLM is realized by exposure to 1 WL for a 
working month of 173 hours. Members of the general public are probably 
exposed to concentrations which average less than a few percent of a WL, 
so that annual exposures are fractions of a WLM.** 

Experience with high levels of exposure to radon daughters clearly 
suggest an increased risk of lung cancer. The principal evidence arises 
from epidemiological studies of uranium miners who worked underground in 
poorly ventilated areas before proper occupational health controls were 
imposed. For example, Figure 4 shows the results of one study of excess 
lung cancer mortality as a function of dose [5] . In this study 
increased incidence of lung cancer was observed at doses in the range of 
hundreds to thousands of WLM, much larger than doses to the general pub­
lic. 

Since epidemiological studies have not observed effects at doses 
much below 100 WLM, the limited high dose information must be used 
together with other information, such as animal experiments, to predict 
effects at lower doses. A commonly used method for rough estimates is 
based on the "linear hypothesis" that risk is directly proportional to 
dose. For example, 1% of a given dose would cause 1% as much risk as 
the risk at the full dose. The validity of this hypothesis is not 
known. Biological defense mechanisms may repair low dose damage, thereby 
providing a threshold for exposure below which no adverse effects are 
realized. It is also possible that the linear hypothesis may underesti­
mate the risk [6]. Even within the linear hypothesis, there is 
disagreement among the experts in Interpreting any dose response data, 
including the increased lung cancer incidence among miners. In "abso­
lute risk" models, an additional dose to a given population causes 

^The equilibrium fraction, F, is defined as 

100 x ^ 
radon concentration 

where the radon concentration is in nCi/m3. 
**For example, exposure of the general public to 1 nCi/m3 for a full 
8760­hour year would result in an annual exposure of about 0.25 
WLM/year, derived as follows: 

A nCiv / 1WL v / 1WLM ■, ,8760 hrs,. .. 0.25 WLM 
m
3 200nCi/m

3 " ' ^ X 1 7 3 h r s ' ^
a r S ~ ^

a r 

Assuming a 20 year latency period for lung cancer induction, a person 
living a 70 year lifetime in an environment with such a concentration 
would be exposed to about 12.5 WLM. 
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a d d i t i o n a l r i s k s t r i c t l y p r o p o r t i o n a l t o t h a t d o s e , b u t i n d e p e n d e n t of 
t h e n o r m a l l y o c c u r r i n g d i s e a s e r a t e . R e l a t i v e r i s k mode l s a s s i g n a d d i ­
t i o n a l r i s k p r o p o r t i o n a l t o t h e n o r m a l l y o c c u r r i n g d i s e a s e r a t e f o r t h e 
p o p u l a t i o n group c o n s i d e r e d . For e i t h e r s c h o o l of t h o u g h t , r i s k e s t i ­
ma tes i n t h e l i t e r a t u r e v a r y , p r o b a b l y b e c a u s e of t h e d i f f e r e n c e s i n 
p o p u l a t i o n s under s t u d y , t h e d u r a t i o n of t h e f o l l o w - u p , t h e d o s e s 
r e c e i v e d , t h e d o s e r a t e s , and p e r h a p s o t h e r f a c t o r s . 

C o n s i d e r i n g b o t h t y p e s of m o d e l s , t h e d a t a and t h e i r a n a l y s e s p r o ­
v i d e r i s k e s t i m a t e s t h a t r a n g e over an o r d e r of m a g n i t u d e . For c o n t i n u ­
ous e x p o s u r e t o 1 nCi/m-% c o r r e s p o n d i n g t o a b o u t 12 .5 WLM, s u c h e s t i ­
mates s u g g e s t an added a n n u a l r i s k of l u n g c a n c e r in t h e v i c i n i t y of 100 
c a s e s pe r m i l l i o n . * 

I n t h e U n i t e d S t a t e s , t h e 45-64 y e a r age group i s a t h i g h e s t r i s k t o 
l u n g c a n c e r . Annual i n c i d e n c e r a t e s d u r i n g 1969-1971 f o r t h i s age group 
were 1200 c a s e s pe r m i l l i o n f o r w h i t e males [9] . A l though p r e c i s e q u a n ­
t i f i c a t i o n i s d i f f i c u l t , t o b a c c o smoking i s g e n e r a l l y t h o u g h t t o be 
c a u s a l l y a s s o c i a t e d w i t h 80% or more of t h e male l u n g cance r c a s e s [ 1 0 ] . 
Based on t h e above e s t i m a t e s of r i s k due t o e x p o s u r e t o 1 n C i / m 3 , l i f e ­
t i m e e x p o s u r e t o a few nCi /m J cou ld y i e l d i n c r e a s e d lung c a n c e r 
i n c i d e n c e e q u a l t o t h e o b s e r v e d r a t e f o r male n o n - s m o k e r s . 

These s t a t e m e n t s a r e n o t meant t o imply t h a t radon d a u g h t e r e x p o ­
s u r e s a r e t h e p r o p e r e x p l a n a t i o n f o r a p p r o x i m a t e l y 100 a n n u a l c a s e s of 
l ung cance r pe r m i l l i o n , b e c a u s e i n p a r t i t i s u n l i k e l y t h a t t h e a v e r a g e 
p e r s o n i s exposed t o radon a t 1 n C i / m 3 . A d d i t i o n a l l y , t h e e t i o l o g y of 
l u n g c a n c e r i s u n d o u b t e d l y more c o m p l i c a t e d t h a n such a s i m p l e model 
a l l o w s . As we do n o t y e t know enough abou t t h e a c t u a l d o s e - r e s p o n s e 
c h a r a c t e r i s t i c s of l o w - l e v e l r a d i a t i o n e x p o s u r e , we c a n n o t s a y w i t h c e r ­
t a i n t y w h e t h e r t h e r e i s any added r i s k from a l i f e t i m e e x p o s u r e of 10 t o 
15 WLM. However, u s e of t h e l i n e a r h y p o t h e s i s i s c o n s i d e r e d p r u d e n t for 
r a d i a t i o n p r o t e c t i o n p u r p o s e s u n t i l we do have a b e t t e r u n d e r s t a n d i n g of 
t h e d o s e - r e s p o n s e c h a r a c t e r i s t i c s of r a d i a t i o n e x p o s u r e . 

CONTROL STRATEGIES 

R i s i n g ene rgy p r i c e s h a v e g e n e r a t e d a f i n a n c i a l i n c e n t i v e t o r e d u c e 
v e n t i l a t i o n r a t e s and t h e r e b y r e d u c e h e a t i n g and c o o l i n g l o s s . Th i s may 
have t h e e f f e c t of i n c r e a s i n g c o n c e n t r a t i o n s of i n d o o r g e n e r a t e d con t am­
i n a n t s . I t i s w e l l known t h a t m o i s t u r e a c c u m u l a t e s on w a l l s and windows 
of p o o r l y v e n t i l a t e d b u i l d i n g s . Recen t s t u d i e s have shown t h a t s p e c i a l 
k i t c h e n v e n t i l a t i o n may be r e q u i r e d t o p r e v e n t t h e b u i l d u p of combus t i on 
p r o d u c t s from gas s t o v e s [ 1 1 ] . O r g a n i c c h e m i c a l s o u t g a s s i n g from 

*For example , t h e r e c e n t UNSCEAR r e v i e w of t h e uran ium m i n e r d a t a a r r i v e s 
a t a r i s k of 200-450x10"° e x c e s s c a n c e r s pe r WLM [ 7 ] , which we c o n v e r t 
t o 50-110 c a s e s pe r m i l l i o n a t o u r n o m i n a l c o n c e n t r a t i o n of 1 n C i / m 3 . 
However, u s i n g t h i s or o t h e r e s t i m a t e s [8] fo r a p a r t i c u l a r env i ronmen­
t a l c o n c e n t r a t i o n e n t a i l s o t h e r u n c e r t a i n t i e s of a f a c t o r of two or 
more , a r i s i n g from p o s s i b l e d i f f e r e n c e s i n e x p o s u r e r a n g e , manner of 
d e p o s i t i o n , age g r o u p , e t c . 
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building materials and plastics, as well as odors from cooking and from 
occupants, may reach unacceptable levels if ventilation rates are 
reduced. Increased concentrations of indoor contaminants must be con­
sidered in formulating building standards. However, the increase in 
radon levels and the rise in the attendant risk of lung cancer that 
could occur as a result demand specific attention. 

Two regulatory approaches are possible for limiting exposure to 
radon and its daughters. One is to specify a maximum permissible con­
centration level and to accept the disease incidence, if any, that may 
be associated with increases of radon levels to this limit. There is a 
precedent for selecting such a level in the setting of occupational 
exposure standards* and standards for the general public are sometimes 
selected by comparison with occupational standards. The other approach 
is to set standards based on an explicit comparison of the disease 
incidence that may be caused by increased radon concentrations with the 
cost of preventing these increases. Such a comparison would balance the 
benefits of reduced energy usage with the adverse effects of increased 
indoor pollutant levels. 

Although there is currently no standard specifically limiting radon 
daughter concentrations in the general housing stock, the U.S. Environ­
mental Protection Agency has recommended a guideline** to the state of 
Florida for houses on phosphate reclaimed land [13]. A similar standard 
has been promulgated in Canada*** to limit radon daughter concentrations 
in houses in four communities associated with uranium mining and pro­
cessing [14] . At an equilibrium fraction of 0.5, the EPA guideline of 
0.02 WL is equivalent to 4 nCi/m-* radon. In the Nordic countries (Den­
mark, Finland, Norway and Sweden), concern about high radon levels has 
led to a recommended minimum ventilation rate standard of 0.5 air 
changes per hour (ach) in residential buildings [15]. 

A simple interim approach to the radon question would be to avoid 
increasing indoor concentrations. There are many ways to do this 
without compromising efforts to conserve energy in buildings. 

We may broadly classify radon control strategies as passive or 
active. In passive systems, the control mechanism usually blocks or 
eliminates radon at the source, while active systems operate typically 
by removing radon and its daughters from the indoor air. 

*"Threshold Limit Values" (TLV) have been established for several chemi­
cals and physical agents encountered in the occupational environment 
[12]. 
**U.S. EPA Guideline: 0.01-0.02 WL remedial action should be taken to 

reduce such concentrations to as low as 
reasonably achievable. 

above 0.02 WL remedial action should be undertaken. 
***Canadian Standard: Prompt interim action - greater than 0.15 WL. 

Primary criterion - greater than 0.02 WL. 
Investigation level - greater than 0.01 WL. 

-6-



n \ 
"' & '■•*' "->' ' J .5 '-J 

The pass ive approach to radon con t ro l r e q u i r e s l i t t l e or no mainte­
nance. Unfor tuna te ly , t h i s approach i s not e f f e c t i v e in reducing l e v e l s 
of other p o l l u t a n t s which may be more important than radon . Active s y s ­
tems, converse ly , requ i re some a t t e n t i o n by t he occupants but can ac t on 
o the r p o l l u t a n t s in add i t ion to radon . 

The bes t pass ive con t ro l s are those t h a t e l i m i n a t e t he radon pa th ­
ways i n t o b u i l d i n g s . These pathways inc lude the f loor wal l j o i n t s , the 
basement f loor d r a i n , loose f i t t i n g p i p e s , and cracks in the conc re t e . 
Eliminat ing t hese pathways r e q u i r e s some ex t r a expense in new cons t ruc ­
t i o n . 

An example of an a c t i v e radon c o n t r o l system i s t h e r e c i r c u l a t i o n of 
indoor a i r through an e l e c t r o s t a t i c p r e c i p i t a t o r or other type of or 
p a r t i c l e f i l t e r . Such devices could s u b s t a n t i a l l y reduce the concent ra­
t i o n s of radon daughters as well as reducing other p a r t i c u l a t e contam­
inan t s but would not be e f f e c t i v e in reducing concen t r a t ions of gaseous 
contaminants ( inc lud ing radon g a s ) . Units which can mainta in a r e c i r c u ­
l a t i o n r a t e of about 5 house volumes per hour in a 150 m home are com­
merc ia l ly a v a i l a b l e for $200 [ 1 6 ] . 

A promising a c t i v e system i s a mechanical v e n t i l a t i o n system coupled 
t o an a i r ­ t o ­ a i r heat exchanger. Cur ren t ly , most s i n g l e family homes in 
t he U.S. are v e n t i l a t e d by i n f i l t r a t i o n through cracks in t h e bu i ld ing 
envelope. One could cons t ruc t the bu i ld ing much t i g h t e r and use a 
mechanical system t o maintain v e n t i l a t i o n r a t e s (and, t h e r e f o r e , radon 
and other p o l l u t a n t concen t ra t ions ) at cur ren t l e v e l s . A savings would 
r e s u l t from the reduced heat l o s s ; however, more work i s r equ i red t o 
determine t h e circumstances in which t h i s i s a c o s t ­ e f f e c t i v e s t r a t e g y . 
Heat exchangers are already in use in l a r g e r bu i ld ings and are being 
marketed for homes i n Europe and Japan [ 1 7 ] . 

The e f fec t iveness and a d v i s a b i l i t y of con t ro l measures as descr ibed 
above depend on var ious circumstances such as the type of b u i l d i n g , the 
geographical l o c a t i o n , and the cost of the con t ro l s t r a t e g y . At t h i s 
t ime , we have i n s u f f i c i e n t information t o provide a b a s i s for a con­
s idered r egu la to ry d e c i s i o n . The e f f e c t s of e leva ted radon l e v e l s a re 
highly u n c e r t a i n , and the impact of bu i ld ing energy conserva t ion meas­
ures i s not known in d e t a i l . Moreover, the r egu la to ry a u t h o r i t i e s w i l l 
have to choose whether or not to make an e x p l i c i t r i s k ­ b e n e f i t compari­
son. 

A long term so lu t ion r equ i r e s a comprehensive approach which b a l ­
ances f ac to r s such as the impact on human hea l t h of radon and o the r con­
taminants and the need for energy conse rva t ion . For radon, such an 
approach demands s u b s t a n t i a l work t o d e l i n e a t e more p r e c i s e l y i t s 
s o u r c e s , the e f fec t s of conserva t ion measures on radon l e v e l s , and the 
d i sease e f f e c t s of such changes. 
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Figure 1. Decay Chain, Radium-226 to Lead-210 
(a, 8 energies in MeV). 
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Figure 2. Some primary pathways for radon entry in residences. 
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