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SUMMARY 
 
This report investigates the uncertainties influencing the operations of a power system 
and their contributions to so-called tail events (the rare occurrences of large system 
imbalance usually caused by a combination of uncertainties), especially under high 
penetration of wind energy in the system. A Bayesian network model has been developed 
to quantify the impact of these uncertainties on system imbalance. A framework is 
presented for a decision support tool, which can help system operators to better estimate 
the need in balancing reserves and to prepare for tail events. 
 
There are many uncertainties in a power system affecting generation and load balance. 
Load variations, transmission outages, and generator startup failures are a few examples. 
With more intermittent resources integrated into the system, balancing the system 
becomes more challenging. This report analyzes what was involved in events resulting in 
large system imbalance (or tail events), using the Electric Reliability Council of Texas 
(ERCOT) reliability event on February 26, 2008 as the study case. As a widely reported 
event showing the impact of wind generation, analysis of this event can provide helpful 
insight to the sources of problems and actions that can improve system responses to tail 
events.  
 
In seeking approaches helping BPA operators to deal with uncertainties, this report uses 
yearly and hourly distributions of balancing requirement and tail events, respectively, to 
establish an overview of potential system imbalances, and to identify those hours when 
problems are most likely to occur. For real-time prediction, a Bayesian network model is 
constructed to reflect the statistical relationships between system imbalance and forecast 
errors, generation control errors, and other influential factors. Reserve requirements and 
the probability of tail events can be derived from the model to determine the sufficiency 
of system balancing reserves.  
 
Finally, the report presents a framework for a decision support tool to predict balancing 
resources needed in each operation hour, and suggest dispatch actions, such as acquiring 
more reserve, curtailing scheduled delivery, and reducing generation. Transmission 
impacts from suggested actions and the cost of actions or no actions can also be assessed. 
The tool can serve as a platform to integrate all balancing-related information (load 
forecast, wind power forecast, forecast errors, ramp prediction, etc) to provide real-time 
decision support. 
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I. Introduction 
 
Tail event refers to the situation in a power system when the imbalance between pre-scheduled 
generation and actual load becomes very significant. Tail events can be caused by unfavorable 
combination of load and wind forecast errors, and unpredicted fast load and wind ramps. This 
type of events occurs infrequently and appears on the “tails” of the probability distribution of 
system imbalance; therefore, they are referred to as tail events.  
 
Balancing reserve or balancing capacity refers to the flexible generation capacity used to 
balance the difference between hourly generation schedules, and actual load and control area 
interchange variations within the hour. Balancing capacity can be further separated into load 
following and regulation capacity, according to the time scale it is operated. Load following is 
the process to dispatch balancing resources every 5 to 15 minutes, while regulation process does 
it minute by minute. Tail events occur when balancing capacity is insufficient to match the 
difference between scheduled hourly generation and real-time needs. 
 
With increasing penetration of variable renewable resources, such as wind and solar generation, 
tail events have been occurring more frequently, and magnitudes of imbalance in these events are 
getting larger. Maintaining sufficient balancing reserves, both upward and downward, becomes 
increasingly challenging.  
 
One objective of this project is analyzing previously reported events, in which significant amount 
of wind generation was involved, to identify sources of problems and solutions. Section II 
analyzes such an event in the Electric Reliability Council of Texas (ERCOT) system. Analysis 
specifically on BPA system events was not conducted because of the lack of record. 
 
To understand the potential severity of tail events in the BPA system, this report includes an 
analysis of yearly and hourly distributions of regulation requirements and the size of tail events. 
Yearly distributions show the occurring frequency versus MW level of system imbalance; hourly 
distributions show the regulation requirement and average MW level of tail events corresponding 
to each of the 24 hours of a day. 
 
In order to procure sufficient balancing reserves and enforce procedures to cope with the tail 
events, it is important to develop approaches to predicting these events. A Bayesian network 
(BN) model is built to predict the distribution of balancing capacity requirement in real-time 
operation and the probability of tail events. Statistical relationships between system imbalance 
and forecast errors, generation schedule control errors, and other influential factors such as 
weather, temperature, wind speed, etc., are established using historical data. The proposed tool 
acts similarly to an experienced system operator estimating the difference between hourly 
generation schedule and actual generation needs, based on his/her experience.  
 
The framework for a new decision support tool, based on the BN model, is developed in this 
project. The framework describes major components of the tool that predicts balancing reserve 
requirements and suggests dispatch actions. The tool can serve as a platform to integrate all 
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balancing-related information (load forecasts, wind power forecasts, forecast errors, ramp 
predictions, etc) to aid real-time decision-making.  
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II. Lessons Learned from ERCOT Feb 26, 2008 Event 
 
On February 26, 2008, the ERCOT system implemented step two of its emergency electric 
curtailment plan (EECP) during an evening load ramp due to the increasing imbalance between 
generation and load. The event was widely reported because wind generation forecast error 
contributed partially in the event. The event time line is listed in detail in ERCOT operations 
report [1]. Description of the EECP steps can be found in [2]. Main findings on this event that 
are related to the purpose of this project are summarized in the following. 

2.1 Contributing Factors 
 
There are three contributors to this event: load forecast error during a larger than expected 
evening load ramp-up from 17:00 to 19:00, wind forecast error as large as 1000 MW during a 
ramp-down of wind generation from 15:00 to 21:00, and unexpected loss and unavailability of 
conventional generation. The first two are major causes, with the third one adding complexity to 
the problem. Collectively these factors led to ERCOT calling on reserve capacity, including 
curtailments of “loads acting as a resource” (LaaR) – large industrial and commercial electricity 
users who have agreed to allow ERCOT to curtail their electricity supply in exchange for 
economic compensation.  

2.2 Services and Actions Involved 
 
Main system services and actions, involved in the ERCOT event, include the following (listed in 
the order of actual implementation): 

(1) Up balancing energy service 
(2) Regulation up service  
(3) Non-spinning reserve service  
(4) Dispatch of out of merit energy and capacity  
(5) Deployment of responsive reserve  
(6) Reducing distribution voltage to reduce load 
(7) Requesting emergency energy from other systems 
(8) Deployment of LaaR. 

 
In ERCOT, each market participant is obligated to provide ancillary services (AS). Market 
participants may provide the AS themselves, or rely on the ERCOT to acquire the AS through a 
centralized auction. ERCOT operates the following day-ahead AS markets for the balancing 
between generation and load: balancing energy service, regulation down service (RgDn), 
regulation up services (RgUp), responsive reserves services (RRS), non-spinning reserve 
services (NSRS), replacement reserve services (RPRS) and out of merit energy and capacity 
(OOME and OOMC) [3]. 
 
Regulation down and regulation up services are used to control the power output of resources to 
maintain the frequency within predetermined limits. RRS is intended to help restore the 
frequency of the interconnected transmission system within the first few minutes of an event that 
causes a significant deviation from nominal frequency. RRS is similar to the “spinning reserve 
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service” in other electricity markets. NSRS is a service that is provided through utilization of the 
portion of off-line generation capacity capable of being synchronized and ramped to a specified 
output level within thirty minutes (or load that can be interrupted within thirty minutes and that is 
capable of running (or being interrupted) at a specified output level for at least one hour). NSRS 
may also be provided from unloaded on-line capacity that meets the above response 
requirements and that is not participating in any other activity, including ERCOT market, self-
generation and other energy transaction. RPRS is a service that is procured from generation 
resources units planned to be off-line, but which can be brought on-line, and loads acting as a 
resource that are available for interruption. OOMC and OOME are used by ERCOT to provide 
for the availability of sufficient capacity so that balancing energy bids are available to solve 
capacity insufficiency, congestion, or other reliability needs. 

2.3 What Has Helped Prominently? 
 
Demand response implemented in the ERCOT system effectively stopped the fast ramp-up 
during the event. Before the deployment of LaaR, load was ramping up very quickly at an 
unpredicted rate of ~60MW/min (refer to Figure 2). After the deployment of LaaR, load almost 
flattened. With the deployment of LaaR, the event lasted less than two hours. No customers lost 
power involuntarily. Also, according to [1], the response of LaaRs to deployment signal was 
generally good.  Only two loads failed to deploy within 10 minutes. It appears to be the 
deployment of LaaR which halted frequency decline and restored ERCOT to stable operation.  
 

 
Figure 1. LaaR deployment during February 26, 2008 event [1] 

 

2.4 What Should Be Improved? 
 
ERCOT relies on resource plans provided by qualified scheduling entities (QSE’s) for its 
assessment of available capacity. The unpredicted large load ramp and wind forecast error were 
two major contributors to the event. The combination of these two factors made the procured 
balancing reserve appear insufficient.  
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2.4.1 Load Forecast 
As shown in Figure 2, the day-ahead load forecasts in hour ending at 1800 and hour ending at 
1900 were both higher than the actual load. However, the ramp rate predicted in the day-ahead 
forecast was ~1750 MW/hour (35650 MW at 1900 minus 33900 MW at 1800), while the actual 
load between 18:00 and 18:41 grew from ~33000 MW to ~35550 MW or an increase of ~2550 
MW in 40 minutes. In real-time operations, the generation schedule might have been adjusted 
downward to meet the actual load during hours before 1800. Then the combination of 
unpredicted high load ramp rate during the hour ending at 1900 and the shortage of 900 MW 
from wind caused difficulties in balancing the system. Associated with the underestimation of 
combined load and wind ramp rate, ERCOT seemed not to have obtained sufficient balancing 
reserve for that period. During this period ERCOT exhausted its available regulation up service 
(~1000 MW) and up balancing energy service. 
 

 
Figure 2. 02/26/08 16:00 – 22:00 load and day-ahead load forecast (from ERCOT Operations Report [1]) 

2.4.2 Wind Forecast  
The ERCOT day-ahead resource plan was not able to forecast the magnitude of the drop in wind. 
The wind power was about 1300 MW in forecast, while it was 400MW during the operating 
hour. This resulted in a 900 MW shortage of generation from wind resources.  
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Figure 3. 02/26/08 15:00 – 21:00 total wind output, wind forecast in the 16:00 day-ahead resource plan [1] 

 
However, the 80% wind forecast shown in green did predict the wind output with good fidelity 
[1]. This forecast looking ahead to evaluate system resource adequacy could mitigate the severity 
of consequences resulting from wind forecast error. 

2.4.3 Prediction of Adequacy of Balancing Reserve 
ERCOT system purchases balancing capacity and energy to cover the variability of the system, 
caused by load forecast errors, wind power forecast errors, uninstructed generation deviations, 
etc., and to maintain system frequency.  
 
Regulation service is a part of the overall balancing capacity addressing minute-to-minute 
variability. To evaluate the regulation service requirements, ERCOT collects monthly historic 
deployed regulation service data. This data is used to calculate average historically deployed 
regulation service for one-minute periods. By calculating the 98.8 percentile of the deployed 
regulation up and regulation down by hour, ERCOT estimates the expected needs for similar 
months [4]. 
 
It is, therefore, by design that for a certain amount of time the system will be lacking of sufficient 
balancing capacity, or experience load-generation imbalance, because of the exhaustion of 
available resource. The imbalance can be small and negligible, but it can also get very large and 
cause intolerable frequency deviation in the system. ERCOT Feb 26, 2008 event is an occasion 
of the later. In these occasions, it would be of great help if the operators can have a prediction of 
system imbalance based on forecast and system resource information updated in real time. When 
the operators are aware of the possible forthcoming event, and amount of shortage in resources, 
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they can prepare ahead of the time to avoid large frequency deviations. A methodology to 
provide such real-time prediction is described in Section IV of this report as well as in [5]. 

2.5 Summary of Lessons Learned 
 
This section analyzes the ERCOT reliability event on February 26, 2008, which was widely 
reported because of the involvement of wind generation. The following lessons can be derived 
from the analysis: 
 
Large mismatches between generation and load can be caused by load forecast errors, wind 
forecast errors, and control errors on traditional generators, or a combination of all of the 
above. 
 
Usually forecast errors in capacity or MW could cause balancing capacity insufficiency in real-
time operation. Unpredicted ramp rates can also cause problems, even if the forecasted 
generation capacity requirement is higher than the actual need. Therefore, the system balancing 
resources should be evaluated and procured based on their capacity (MW) and ramping 
capability (MW/min). This flexibility requirement should be met by the day-ahead and hour-
ahead unit commitment and scheduling processes. 
 
Unexpected ramps caused by load and wind can cause serious problems with the system 
balance. Power system operators are usually concerned by the fast ramps caused by wind power 
plants. The ERCOT event on February 26, 2008 shows that unexpected fast load ramps can also 
cause problems. 
 
A predictive tool evaluating system balancing requirements and comparing them with available 
system characteristics will be very helpful. This tool could take inputs, including load forecast, 
wind power forecast, predicted availability of system balancing resources, and then evaluate the 
capability of system resources to meet system capacity and ramping requirements for the next 
few hours.  
 
Demand response can effectively reduce load-generation mismatches in an emergency situation. 
Demand response in the ERCOT event only involved load reduction (LaaR). The response from 
LaaR effectively flattened the upward ramp of evening load in the ERCOT system during the 
event, alleviating the generation insufficiency problem and terminating frequency drop.  
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III. Analysis of Tail Events Distributions 
 
Analysis of probability distributions of tail events provides an overview of system within-hour 
balancing requirements and the expected frequency of tail events at various MW levels. The 
analysis contains two steps:  

1. Yearly distributions showing the occurrence frequency versus MW level of system 
imbalances; 

2. Hourly distributions showing the balancing requirement and average MW level of tail 
events corresponding to each of the 24 hours of a day;  
 

The analysis uses the approach developed in our previous studies for BPA [6, 7]. This approach 
assumes that the within-hour balancing capacity is required to compensate for system imbalances 
in 99.5% of the cases. By definition, a tail event occurs when the balancing capacity needed is 
larger than the amount available. The study is focused on capacity requirements of the reserves; 
however, other types of requirements, such as ramp rate and ramp duration [7], can be analyzed 
in a similar fashion. All of the results shown in this paper were generated based on a set of 21-
month data provided by BPA.  

3.1 Yearly Distribution of Tail Events  
 
Yearly distributions are based on the analysis of system balancing requirements, which is 
calculated from system load and wind data using the methodology developed in [7]. Required 
balancing capacity is defined as the MW level that can cover 99.5% of the cases that have been 
simulated. By subtracting available balancing reserve from the balancing requirement, we get the 
MW shortage of balancing capacity in the system. Figure 4 and Figure 5 show the distribution of 
the regulation capacity requirement and distribution of MW shortage in regulation in the BPA 
system in 2007 and 2010, respectively. As the other component of balancing reserve, sufficiency 
of load following capacity can be analyzed similarly but was not considered in Figure 4 and 
Figure 5. The 2010 results were obtained based on forecasted load and wind data in the BPA data 
set. 
 

    
(a) Regulation     (b) Tail events 

 
Figure 4. 2007 BPA system regulation capacity requirement and tail event distribution 
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(a) Regulation     (b) Tail events 

 
Figure 5. 2010 BPA system regulation capacity requirement and tail event distribution 

 
From the distribution of tail events, the number of minutes during the year when the system will 
be in shortage of regulation-up or regulation-down capacity at any specific MW level can be 
determined. For example, from plot (b) of Figure 4 and Figure 5 it can be seen that in 2007, 
under the assumptions in the analysis, there were only several minutes when the system 
experienced a shortage of 500 MW regulation-down capacity, while in 2010, the same situation 
will be occurring for around 100 minutes in total.  

 
Yearly distribution plots provide an overview of the balancing requirement and frequency of tail 
events in the system under study, enabling a quick estimate of the degree of risk associated with 
any given level of reserve capacity.  

3.2 Hourly Distribution of Tail Events 
 
Hourly distributions are also generated based on system balancing requirement and available 
balancing reserve at 99.5% level. The process contains the following steps: 

1. Data series of balancing capacity requirement are generated using the methodology 
developed in [7].  

2. A time series representing the MW balancing capacity shortage, both upward and 
downward, is derived by subtracting the available balancing reserve from the balancing 
requirement data series.  

3. The derived data points are then grouped into 24 hours of a day based on when the 
shortage occurred.  

4. Data points allocated into the same hour are averaged to represent the average MW level 
of balancing capacity shortage.  

 
The hourly distribution provides general information on which hours operators should watch 
carefully for the sufficiency of system balancing reserve.  
 
In Figure 6, hourly distribution of regulation requirements and average MW shortage during each 
hour is plotted (again, sufficiency of load following capacity can be analyzed similarly but was 
not considered here). To also show the effect of wind power on the magnitudes of system tail 
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events, scenarios with wind and without wind in year 2007 (historical year) and 2010 (future 
year) in the BPA system are plotted in the same figure. 

 
Figure 6. Average regulation capacity shortage of all tail events: distribution corresponding to each hour 

during a day 
 
In Figure 6, the average MW shortage in tail events is shown hour by hour for 24 hours of a day. 
The green bars are results for 2007, and red lines for year 2010. The tip points of the green bars 
and the red arrows correspond to “with wind” conditions, while the flat end of the green bars or 
the red lines correspond to “without wind” conditions. The length of the bars and the lines 
indicate the contribution of wind generation to the MW shortage of regulating reserve in the 
BPA system. By comparing the tip points of the bars and the lines, one can see the expected 
increment of tail event MW level for the corresponding hours. 
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IV. Real-time Prediction of Balancing Reserve Requirements and 
Tail Events 

 
In this section, statistical relationships between system imbalance and forecast errors, generation 
schedule control errors and other influential factors such as temperature, wind speed, etc., are 
modeled using an approach called Bayesian network (BN). This model preserves the statistical 
characteristics obtained from system historical data and uses them as the basis for the prediction 
of the future. It is similar to the process when an experienced system operator estimates the 
difference between generation hourly schedules and the actual generation requirements in the 
system, based on the operating experience he/she has accumulated. Naturally, the prediction 
given by the BN model is more quantitative than human estimates. The model is expected to be 
able to help system operators to determine the sufficiency of balancing capacity in the system in 
real time. 

4.1 Bayesian Network Models 
 
Bayesian network (also called Bayes net) models are used to represent relationships among 
uncertain variables. The graphical representation of a BN consists of nodes and directed links or 
arrows. The nodes represent variables, and the arrows show the inter-dependencies between 
these variables. Arrows point from parent nodes to their child nodes; they show the direction of 
conditional dependence. Child nodes are conditionally dependent on their parents and are 
conditionally independent of their non-descendents given their parents.  
 
Dynamic systems that change continuously through time, such as power systems, can be 
modeled using dynamic Bayesian network (DBN) models, where the state space of the system is 
modeled for successive time intervals. There are two simplifying assumptions that are typically 
used in constructing DBNs. One is stationarity—the probabilities of transitions from on state to 
another within each time slice are the same. The other is the Markov condition—the transition 
probabilities between time slices depend only on a finite number of states in previous periods. 
For a first order DBN they would depend only on one previous period states. Additional 
information on BN models can be found in [8-10].   

4.2 Building a Bayesian Network Model for the BPA Power System 
 
The proposed DBN model is a prediction tool for real-time operation of the BPA system. This 
model, shown in Figure 7, forecasts the value or state of system imbalance (SI) for future time 
intervals depending on system parameters observed in the current and future intervals. The nodes 
representing variables with uncertainty are depicted in Figure 7 as ovals. The model may also 
include decisions that might be made depending on the forecasted system imbalance. These 
decisions can be curtailment operations, for example, shown as rectangles. The model could also 
identify potential outcomes resulting from the predicted system imbalance, e.g., transmission 
congestion problems and control performance standard (CPS) violations, which are shown as 
hexagons in Figure 7.  
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As can be seen in Figure 7, system imbalance in the proposed model has three primary causes: 
load forecast error (LFE), wind forecast error (WFE), and generator scheduling control error 
(SCE). All three are stochastic and have strong serial correlation. The LFE at time (t+1) is 
forecasted from the LFE at time (t) as well as from the load and temperature and the wind and 
storm information at that time step.  LFE is affected by diurnal and seasonal cycles, as well as 
meteorological events such as the passage of fronts (storms) with associated rapid changes in 
temperature and wind velocity. WFE at time (t+1) is analogously predicted from WFE, wind 
power, and storm information at time (t). SCE is also predicted from relevant variables in a 
previous time step as shown in Figure 7. 
   

 
 

Figure 7. Bayes net model for predicting system imbalance. 
 
The system can be perturbed by events such as transmission and generation outages. The 
occurrence of these events is unpredictable, but their effects on the system imbalance are 
deterministic in nature and are incorporated into the model to show their potential impact on 
LFE, WFE, SCE and subsequently on the system imbalance. 
 
The hierarchy in Figure 7 shows the dependency relationship between nodes. Nodes for load, 
load forecast error, temperature, wind power, and wind forecast error observed at the current 
time step (t), are used in forecasting LFE and WFE in the next time step (t+1). The forecasted 
values of LFE, WFE and SCE are used in turn to forecast system imbalance at time (t+1). In 
application, observed values at the current time step (t) are entered into the DBN model to 
generate forecasted values for LFE, WFE and SCE at the next time step (t+1). Forecast for future 
system imbalance at (t+n) can be generated using the hidden Markov model as needed. 
 

 LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error

LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error

LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error

LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error

LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error

LFE: Load Forecast Error
WFE: Wind Forecast Error
SCE: Generation Schedule Control Error
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As a proof of concept, the model shown in red in Figure 7 has been implemented and tested. The 
focus was put on these variables because they have the greatest impact on system imbalance and 
should serve well as an initial test of the feasibility of this modeling approach. 

4.3 Preprocessing the Data 
 
The state-spaces for BN nodes were derived from a historical time series of hourly observations 
on these components in the BPA system. The data set provided consists of continuous variables. 
While it is possible to build a BN model from continuous variables, the algorithms are much 
more complicated and the usual practice is to discretize the data. The process results in a 
histogram of the data and consists of dividing the data into discrete intervals that are non-
overlapping and mutually exclusive. Data falling into each of these categories is given state 
names that correspond to the variable states defined in the BN model. The resulting 
discretization is simply a bar-plot of the frequency counts of observations in each bin. This can 
be done either using the R programming language, or in some cases it was done using the GeNIe 
® software (http://genie.sis.pitt.edu) that was used to implement the BN model. The GeNIe® 
program has user friendly utilities for discretizing data and viewing histograms and pie-charts of 
the resulting distributions. A screen shot showing the discretization of the temperature data using 
GeNIe is shown in Figure 8.   
 

 
 

Figure 8. Screen shot of discretized temperature using GeNIe software. 

4.4 Learning Probabilities from the Data   
 

http://genie.sis.pitt.edu/
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The discretized data is the basis for computing the conditional probability tables (CPT) for the 
BN model. For the root nodes (nodes without parents), the prior probability of being in a 
particular state is just the relative frequency for which the state occurs. The conditional 
probabilities are learned in an analogous fashion. For each combination of parent states, the 
proportion of times the child is in each of its states is determined. This becomes the basis for the 
learned probabilities. While this is the basic principle, the algorithm is slightly more complex 
because of the need to account for combinations of parent states that did not occur in the data set. 
These are accounted for in GeNIe software by using the expectation maximization (EM) 
algorithm [9].   
 
Once the parameters were learned using the BN shown in red in Figure 7, the probability 
distributions were then used to build a DBN as in Figure 9. System imbalance depends on WFE 
and LFE. They each depend on themselves in the previous time period, as shown by the looping 
arrow with a “1”. In addition, Temperature at time t is used to predict LFE at time t+1. The time 
slices in the temporal plate of GeNIe is set to 4, thus one observation will produce predictions for 
three periods in the future. The model can be exercised with any number of time slices. 
 
To make the four time slice model even more explicit we built a model in which the variables 
were duplicated for each of the four time slices. This is shown in Figure 10. Each color in the 
figure represents a single time slice. One can clearly see that this DBN is a first order Markov 
model because the probabilities in a given time slice depend only on the previous time period; 
i.e., conditionally probability arcs connect successive time periods. This DBN also has the 
property of stationarity, meaning the conditional distributions within time slices are the same 
across time periods.  

 
Figure 9. Screen shot of DBN for predicting system imbalance as implemented in GeNIe. 
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Figure 10. First order dynamic Bayes net used to predict system imbalance. 

4.5 Generation of Forecast Data 
 
Table 1 shows the initial eleven records used to run the GeNIe DBN model shown in Figure 9.  
The complete data set consisted of 15,379 records from October 2006 to June 2008.  For each 
hour, the data for time (t) were entered into the model as evidence and the model provided a 
forecast of system imbalance for three subsequent time periods. Figure 11 is a snapshot of 
exercising GeNIe for one time slice.  A program was written in C++ to read evidence for time (t) 
and generate predictions for time (t+1), (t+2), and (t+3).   
 

Table 1. Sample of data used to run the BN model 
 

 
 

day year hour load.t loaderr.t loaderr.t1 wind.t winderr.t winderr.t1 sys.t sys.t1 temp.t
30 2006 10 MW4500 MW0 MW0 MW600 MW0 MW100 MW0 MW0 s05_50_60
30 2006 11 MW5000 MW0 MW0 MW600 MW100 MW_100 MW0 MW0 s05_50_60
30 2006 12 MW5000 MW0 MW_200 MW600 MW_100 MW0 MW0 MW_200 s05_50_60
30 2006 13 MW4500 MW_200 MW200 MW600 MW0 MW_100 MW_200 MW200 s05_50_60
30 2006 14 MW5000 MW200 MW400 MW400 MW_100 MW0 MW200 MW200 s05_50_60
30 2006 15 MW5500 MW400 MW200 MW400 MW0 MW100 MW200 MW200 s05_50_60
30 2006 16 MW5500 MW200 MW0 MW600 MW100 MW0 MW200 MW0 s05_50_60
30 2006 17 MW5500 MW0 MW0 MW600 MW0 MW100 MW0 MW0 s05_50_60
30 2006 18 MW5500 MW0 MW_200 MW600 MW100 MW0 MW0 MW_200 s05_50_60
30 2006 19 MW5500 MW_200 MW0 MW600 MW0 MW0 MW_200 MW_200 s05_50_60
30 2006 20 MW5500 MW0 MW0 MW600 MW0 MW0 MW_200 MW0 s05_50_60
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Figure 11. Output generated by GeNIe for predicting system imbalance. 
 
In Figure 11, each color band represents a system imbalance state, such as MW0 (0 MW 
imbalance), MW_200 (-200 MW imbalance), etc. The width of the color band at a particular 
hour (hour 1, 2 and 3) is the predicted probability of the corresponding state at that hour. 
Therefore, the sum of the width of all color bands is equal to “1”. 

4.6 Bayesian Network Model Output 
 
An example output of the BN model shown in Figure 9 is the probability distribution of system 
imbalance in future time steps. Because hourly data were used to generate the model, prediction 
results have a time step of one hour. Figure 12 and Figure 13 show the predicted probability 
distribution of system imbalance in the next 1 and 2 hours, respectively. If the system is assumed 
to have a 500 MW upward regulating reserve and 700 MW downward regulating reserve, then 
system imbalance lower than -500 MW and higher than 700 MW indicates a tail event. In Figure 
12 and Figure 13 the bar at -600 MW represents the interval between -500 MW and -700 MW, 
and the bar at 800 MW represents the interval between 700 MW to 900 MW. Therefore, the 
probability of a tail event is calculated by accumulating the probabilities including and beyond 
these two bars. 
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Figure 12.  Prediction of system imbalance for the next hour. 

 
Figure 12 shows that during the next operation hour, the probability of generation shortage in the 
provided example is 0.16%, and the probability of over generating is 1.95%. The most likely 
state of system imbalance is 200 MW, representing the interval between 100 MW and 300 MW. 
 
Figure 13 shows that during the second operation hour, the probability of generation shortage is 
0.08%, and the probability of over generating is 6.95%. The most likely state of system 
imbalance is 0 MW, representing the interval between -100 WM and 100 MW. 
 
The actual system imbalance observed in the system for this example was: Hour 0 (current hour) 
= 132 MW, Hour 1 = 333 MW, Hour 2 = -162 MW. 
 

 
Figure 13. Prediction of system imbalance for the second hour. 

4.7 Validation Studies 

4.7.1 Comparison with Naïve Persistence Forecasts 
Validation of the BN forecasts on system imbalance were done in comparison to the naïve 
persistence (NP) forecast model. The NP model uses the observed system imbalance at time (t) 

Hour 1 System Imbalance Prediction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-800 -600 -400 -200 0 200 400 600 800 1000 1200

MW

Pr
ob

ab
ili

ty

Tail event Tail event 

Hour 2 System Imbalance Prediction

0.00

0.05

0.10

0.15

0.20

0.25

-800 -600 -400 -200 0 200 400 600 800 1000 1200

MW

Pr
ob

ab
ili

ty

Tail event Tail event 



 

24 

as the forecast for future times (t+n; n≥1). The NP model provides only a point estimate forecast 
without any measure of uncertainty. The BN model provides the Bayesian posterior probability 
distribution of the forecasted system imbalance conditioned on all system components in the 
model, and thus explicitly provides a measure of uncertainty. Before forecasts from the BN and 
NP models can be directly compared, the BN forecast needs to be converted to a point-estimate. 
BN point estimates are computed as probability-weighted averages of state-space interval mid-
points. The algorithm for this conversion is diagramed in Figure 14.  
 

 
Figure 14.  Example demonstrating method for converting BN model forecasts from posterior probability 

distribution on system imbalance to point-estimates. 
 
Direct comparisons of the BN and NP model forecast accuracy are shown in Figure 15 and 
Figure 16 for 1-, 2-, and 3-hour forecasts as mean absolute error (MAE). Because the 
significance of system imbalance being negative or positive may be quite different in a power 
system, these two types of cases were compared separately in Figure 15 and Figure 16. Errors 
were computed by subtracting the observed system imbalance from the NP and BN forecasted 
system imbalances, respectively. Smaller MAE values indicate more accurate forecasts. 
 

 Posterior Probability on
System Imbalance States (Si)
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Figure 15. MAE comparison between BN and NP models forecasting at one, two and three hours: positive 

system imbalance cases 
 

 
Figure 16. MAE comparison between BN and NP models forecasting at one, two and three hours: negative 

system imbalance cases 
 
The BN model showed consistently improved accuracy over NP model on the 1-, 2- and 3-hour 
forecasts. The average improvements over NP model forecast results are 16%, 26% and 31% for 
1-, 2- and 3-hour forecasts, respectively. 

4.7.2 Prediction of Tail Event Probability 
Probability of tail event can be calculated from the BN model output, as described previously. To 
validate the prediction results, all cases are grouped based on the probability of tail event 
predicted by the BN model, such as 0~0.1, 0.1~0.2, etc. Then in each group, the number of cases 
when tail events were observed (regulating capacity is insufficient) is divided by the total 
number of cases in that group. The results are deemed as the actual probability that tail events 
occurred. They are shown in Figure 17 and Figure 18 for positive imbalance and negative 
imbalance cases, respectively. 
 
Figure 17 and Figure 18 show that the observed probability of tail events does not match very 
well with the probability predicted by the BN model, which demands improvements of the 
model. There could be a high false alarm rate, with the predicted probability always higher than 
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the actual probability observed. Nevertheless, there is a significant correlation between the two, 
which is more obvious in Figure 18. It does show that when the BN model predicts a high 
probability of tail event, the chance of a tail event actually occurring is also high. 
    

 
Figure 17. Observed probability of tail events vs. predicted probability by the BN model: positive system 

imbalance cases. 
 

 
Figure 18. Observed probability of tail events vs. predicted probability by the BN model: negative system 

imbalance cases. 

4.8 Potential Improvements on the Bayesian Network Model 

4.8.1 Improve Prediction Accuracy 
The current BN model has a time step of one hour. In real-time operations, predictions with 
higher time resolution are sometimes preferable because large system imbalance can be missed 
in forecasts if the forecasts are averages over long time intervals. Therefore, a BN model with 5 
to 15 minute time interval could be constructed for the use in real time.  
 
Another potential improvement is to use second or third order Markov process to see the trends 
of data series. For example, in the current model (first order Markov process), LFE at time (t+1) 
is affected by the temperature at time (t), and is irrelevant to temperature at and before time (t-1). 
If a second order Markov process is used, LFE at (t) would be affected by both the temperature 
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at time (t) and (t-1). The approach may be able to improve the prediction accuracy of the BN 
model. 
 
Various techniques can also be explored and tested in dealing with the issue of insufficient data 
when forming the transition matrices between different system states. 
 
On the other hand, dimension of the transition matrices for the model increases linearly with the 
time resolution and the order of Markov model. Lack of sufficient data will also become more 
challenging. These problems need to be taken care of appropriately to improve the model. 

4.8.2 Adapt the Prediction Model to Changed System Composition 
The need in balancing capacity depends on multiple factors and is driven mostly by the 
variability and forecast errors of load and variable generation resources. Composition of system 
load and generating resources affects their variability. As configuration of the control area 
changes, and penetration of wind power in the system increases, the statistical relations between 
system parameters and system imbalance in the BN model will certainly change accordingly. 
Improvement in forecast techniques will also change the transition probabilities between state 
variables in the BN model. To maintain a balancing reserve prediction model that represents the 
system accurately, the BN model needs to be adaptive. Historical load data, wind data, wind 
power data, and other necessary inputs to the model need to be saved. Forecast data together with 
the newly accumulated historical data can be used to modify the balancing reserve prediction 
model. In other words, after a certain period, the proposed tool can be trained with new sets of 
historical and simulated data that reflect the effect of new forecast efforts and changed system 
compositions. 
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V. Framework of a Decision Support Tool for Within-hour Balance 
of the System 

 
The framework of a decision support tool for within-hour balancing operations is proposed in 
this section. The tool will be able to determine the amount of balancing capacity needed in each 
hour, the chance of tail events and provide dispatch suggestions. 
 
Based on studies of historical data, the statistical relationship between system imbalance and 
various influential factors, such as wind power, load, generation status, time of the day, and 
ambient air temperature can be modeled using a Bayesian network model that was introduced in 
Section IV. This model can be further developed using more BPA system data (involving more 
input variables) and made adaptive to changing system compositions (e.g., higher wind 
capacity). Load forecast, wind power forecast, ramp prediction, and other operational 
information generated using existing operation tools can be incorporated into the model. 
Prediction of balancing reserve requirements (system imbalance) for a number of operation hours 
will be the output of the model.  
  
The tool will also contain an intelligent system model, using system imbalance prediction and 
available reserves as inputs, in addition to supervisory control and data acquisition (SCADA) 
measurements, to suggest dispatcher actions. BPA operational procedures and rules will be 
followed when making these suggestions, with meeting reliability standards and regulatory 
requirements as objectives. Since the delivery of balancing reserves is constrained by 
transmission capability and may affect voltage profile of the system, the impact of suggested 
actions on major transmission paths and buses need to be assessed. Risks and costs of taking 
these actions or no actions can also be formulated and evaluated. Intelligent system techniques, 
such as rule-based expert system, fuzzy logic, and artificial neural networks, can be explored in 
the development of this model.  
 
Development of the tool will need data collection, interviews and discussions with BPA 
engineers and operators, algorithm development, program coding, offline testing and 
verification, and feedback collection. 
 
The decision support tool based on Bayesian network model is illustrated in Figure 19. 
 
A block diagram of the Intelligent System model in the decision support tool is shown in Figure 
20.  
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Figure 19. Decision support tool for balancing operations based on Bayesian network model. 
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Figure 20. Block diagram of the intelligent system model in the decision support tool. 
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VI. Conclusion 
 
This report summarizes the factors that affect balancing operations in the power system. A 
methodology based on the analysis of historical data is developed to identify distribution patterns 
of tail events (large system imbalance). The report also demonstrates that the relations between 
influential factors and system imbalance can be established using a Bayesian network model. It 
is shown that such models can provide better estimates of balancing reserve requirements in real-
time operations than a persistence model, which assumes system imbalance in the future will be 
the same as the present time interval. The framework for a decision support tool is described, 
which includes the Bayesian network model and an intelligent system model. The tool will be 
able to determine the chance of tail events and provide dispatch suggestions.  
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