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Abstract 

Battery testing procedures are important for understanding battery performance, including 

degradation over the life of the battery.  Standards are important to provide clear rules and uniformity to 

an industry.  The work described in this report addresses the need for standard battery testing procedures 

that reflect real-world applications of energy storage systems to provide regulation services to grid 

operators.  This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or 

V2G drive cycles.  Likewise, the stationary energy storage community is equally interested in 

standardized testing protocols that reflect real-world grid applications for providing regulation services. 

As the first of several steps toward standardizing battery testing cycles, this work focused on a 

statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland 

Interconnect with the goal to identify patterns in the regulation signal that would be representative of the 

entire signal as a typical regulation data set.  Results from an extensive time-series analysis are discussed, 

and the results are explained from both the statistical and the battery-testing perspectives.  The results 

then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering 

some recommendations for the next steps toward standardizing testing protocols. 
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Executive Summary 

The work described in this report is of importance to the general energy storage community.  The 

motivation for this analysis was inspired by the persistent interest in the Vehicle-to-Grid (V2G) concept, 

which is a strategy that requires a bi-directional exchange of electric energy with the electric grid and 

results in compensation of the owners of the vehicles by a grid operator.  There is a rich body of literature 

with discussions about the value of V2G, and many universities and research organizations are involved 

in research focused on control strategies to optimize the battery management system and overall system 

performance.  Despite this enthusiasm by the research community seeking to maximize the total value of 

a vehicle, the automotive manufacturing and transportation battery communities are reluctant to embrace 

V2G applications.  This reluctance is based on a lack of knowledge about battery degradation associated 

with the exposure to grid applications. 

This work addresses this knowledge gap.  It initiates an effort toward standardizing a set of duty 

cycles for battery performance testing procedures that will be representative of real utility applications.  

The work described in this report focuses on the characterization of grid services.  We envision that this 

and follow-on work will provide the basis for standards-development discussions that cover the entire 

spectrum of conditions that a battery may be exposed to during V2G applications.  This work is equally 

important for stationary energy storage systems because industry is demanding definitions and 

standardization of performance testing procedures that represent typical utility duty cycles. 

This report discusses the findings of a statistical analysis that utilized frequency regulation data from 

the Pennsylvania-New Jersey-Maryland Interconnect (PJM).  A data set containing 4-second regulation 

data for a period of 175 days spanning from the time period March 2011 through August 2011 was 

processed.  The objective of this work was to search for potential patterns or differentiations in the signal 

that would allow us to postulate one or more typical and distinct duty cycles or sequences of regulation 

segments that are representative for PJM’s regulation services.  It was unclear at the beginning of the 

study if a time-dependent parameterization would be possible.  In other words, would the signal indicate a 

different characteristic as a function of time-of-day or even month-of-the-year?  The results of a statistical 

exploration of the data set and our findings in the context of battery life impacts are summarized.  We 

explored the possibility of defining a set of duty-cycle candidates that could be discussed with the broader 

energy storage community for initiating standards development activities. 

The following synopsis provides an overview of the key outcomes of this work. 

1. Spectral results 

The spectral analysis revealed patterns in the regulation signal with distinct periodicities in the  

1-hour, 30-minute, and 7.5-minute cycles.  These periodicities are believed to reflect the specific PJM 

market design. 

2. Time-of-day difference observations 

 Mean value of regulation:  There is a propensity for the mean of the regulation signal to be 

slightly biased above zero during the middle of the day (06:01 to 18:00) and slightly biased below 

zero during the night (18:01 to 06:00).  This finding has important implications to batteries in 
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that, unless otherwise compensated, on average there would be a resulting net charge of a battery 

plugged in during the night and, conversely, a net discharge during the day.  A net charge during 

the night for plug-in electric vehicles can be accommodated easily without any compensation, but 

a net discharge during the day will need to be compensated so the vehicle battery can be 

recharged for the next drive. 

 Amplitude of regulation cycling:  The amplitude swing (i.e., the minimum-maximum spread) of 

the cycles in the regulation signal has a propensity to be higher at night and lower during the 

day.  In fact, we found that a significant relationship exists between the system load level and the 

amplitude of the regulation signal; that is, under low-load conditions, the amplitude of regulation 

grows exponentially compared regulation under high-load conditions.  This means that, during 

the day, either fewer vehicle resources are necessary to meet the regulation requirements, or if the 

resource availability constant is kept constant during the 24-hour period (i.e., the same number of 

vehicles offering the same service for 24 hours), the individual contribution by each vehicle is 

less during the day than during the night.  As a consequence, the amplitude for defining a 

performance test or drive-cycle could potentially be smaller during the day than at night. 

 

3. Seasonal (month-of-the-year) differences observations 

Exploring the range of low-frequency (1-hour cycles) to high-frequency (7.5-minute cycle) signals 

across all seasons indicates that the lower frequency component in the regulation signal increases in 

significance during winter to summer months.  The mid-range frequency (30-minute cycle) remains 

constant over the months studied, while the higher-frequency components (7-minute cycle) slightly 

decrease their contribution to the overall signal from March through August.  Low-frequency cycles 

require more energy (kWh) capacity than do high-frequency cycles.  Low-frequency cycles with 

higher energy requirements cause large cycles across the state-of-charge (SOC) scale for any given 

battery size.  For transportation batteries, this would place a higher burden on the remaining life of the 

battery, as it may encounter deeper depths of discharge over any given period of time than would 

occur if the battery was exposed to higher frequency regulation signals.  This also could affect 

thermal management of batteries at low SOCs as the internal resistance is higher at low SOCs.  

Hence, in addition to energy considerations, the ability of the batteries to provide the required power 

at low SOCs needs to be assured as part of the test profiles being developed. 

4. Other observations 

 The statistical clustering approach used in this work reflected the large diversity in regulation signal 

patterns, thus resulting in rather large numbers of clusters to characterize the entire data set.  As a 

consequence, the prospect of finding a small number of representative cycles solely derived from the 

clustering approach does not seem to be promising.  Additional information based on an 

understanding of battery testing procedures must be used to inform the selection process. 

 Despite of the large diversity in regulation data the analysis distinguished clusters of similar behavior 

based on dominant low-frequency cycles (30-minute to 1-hour cycles). 

 Cycles in the same cluster have similar time-of-day properties, indicating similar patterns occur in 

many cases at the same time of the day. 
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 The regulation signals revealed system behaviors of PJM’s market structure.  The 1-hour cycle 

components of the regulation signal clearly reflect the hourly markets, thus causing a rearrangement 

of generators participating in the day-ahead hourly energy market.  The regulation signal dependency 

on the frequency and timing of market clearings suggests that the results are strictly valid for the 

current PJM wholesale markets.  As PJM’s market design changes, it is very likely that the key 

oscillatory content also will change.  With the general trend in the competitive wholesale market to 

clear in shorter and shorter time periods, there could be a propensity for regulation signals to increase 

the importance of the shorter cycles.  Furthermore, integration of the increasing capacity of 

intermittent wind and solar resources will very likely introduce new dynamics to the regulation 

requirements caused by the varying output of the wind and solar installations.  How the growing wind 

and solar capacity may influence the regulation signal is unclear.  Weather phenomena and the 

diversity of the wind and solar insolation across a balancing area will impact the regulation signal.  

Furthermore, the change in the generation inertia by the growing wind and solar generation also may 

influence the dynamics of the power system and, in turn, impact the regulation signal. 

5. Recommendations for selection of V2G drive cycles 

 Despite the large diversity of lower- and higher-frequency characteristics across the time scale in the 

PJM data set, we do offer some recommendations for the selection of potential candidates for testing 

cycles that is informed by battery experts.  As a result, the recommendations are based on both the 

findings of the cluster analysis and then further informed by an understanding of battery degradation 

mechanisms and battery performance testing.  From 30 distinct clusters, a set of duty cycles from three 

particular clusters are recommended as potential candidates for future standards development.  They are 

discussed as follows: 

1. Curves with directionality and sign of the signal changing from positive to negative or vice versa.  

Cluster 1 in Figure 3.6 is an example of a representative duty cycle for this characteristic. 

2. A low frequency signal.  Cluster 10 is an example. 

3. High frequency signals oscillating symmetrically around zero.  This case is quite straightforward 

and is ideal for batteries.  Cluster 17 is an example. 

6. Next Steps toward standardizing V2G drive cycles 

 This analysis is the first of several steps toward standardizing V2G drive cycles or battery testing 

cycles.  The next step is to perform a similar exploratory analysis with regulation data sets from other 

regions of the United States to explore potential regional differences that are reflective of different market 

designs, system responses, and system characteristics.  After these regional studies, the results can be 

discussed from a national perspective to identify a set of characteristics that are sufficiently representative 

of the U.S. grid. 

 It is anticipated that the statitistical analyses will provide the background information needed to 

formulate a set of test procedure proposals.  With continuing support for this analysis, it is reasonable to 

expect statistical analysis for the entire United States could be completed toward the end of FY 2012, with 

standards discussions commencing in the fall and winter of 2012.  The appropriate standards body would 

be the Institute of Electrical and Electronics Engineers. 
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1.0 Introduction  

Power system operators continuously balance generation and load.  The load can be decomposed into 

base-load, load-following, and regulation components.  The blue line in Figure 1.1 shows the sum of the 

base-load and load-following components [6].  The green line shows the actual load, and the difference 

between the green and the blue lines represents regulation as shown on an expanded scale by the red line. 

 

 

Figure 1.1.  Load Profile at Different Scales 

 

Load following represents the general trend over a time scale on the order of 10 minutes, whereas 

regulation represents variations over a time scale on the order of 1 minute.  Regulation requires online 

power sources under automatic generation control (AGC) that can provide rapid response to up and down 

requirements to correct for load fluctuations and unintended or unpredictable fluctuations in generator 

output. 

Electric batteries are excellent candidates as regulation providers because of their quick response and 

precise control.  Both stationary batteries and batteries in plug-in electric vehicles (PEV) can provide 

regulation services.  It is of utmost importance to both the stationary energy storage and the transporation 

battery industries to understand the use patterns for typical or representative real-world regulation service 

duty cycles.  To provide insights into the characteristics of regulation signals, this analysis was initiated 

as a starting point.  This report discusses the results from a statistical analysis of one set of data from the 

Pennsylvania-New Jersey-Maryland Interconnect (PJM).  It explains the results from a statistical 

perspective and then projects the results into a battery context.  Throughout this work, a set of statistical 

tools was developed that would allow analysts to process regulation signals from other grid operators to 

explore regional variations in the statistics of regulation data. 
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1.1 Motivation of Analysis 

The analysis of regulation data is of importance to the energy storage community at large.  The actual 

motivation for such analysis first emerged during the hightened interest in Vehicle-to-Grid (V2G) 

applications as a means to provide regulation service to grid operators.  There is a rich body of literature 

that focuses on the value of V2G, and many universities are involved in research of control strategies to 

optimize the battery management system and overall system performance.  Despite this enthusiasm by the 

research community seeking to maximize the total value of a vehicle by exploring other services beyond 

the transportation, the automotive manufacturing and transportation battery communities remain reluctant 

to embrace V2G applications because of uncertainties associated with the exposure to grid applications 

and concerns about potential degradation of the transportation battery.  Rather than to delving into another 

technology demonstration to test the degradation of transportation batteries during mixed use (for its 

primary use of transportation and its secondary use as a grid service provider), we initiated a statistical 

analysis with the goal of characterizing one or more typical V2G profiles that then could be standardized 

as a V2G- or utility-drive profile, very similar to the other vehicle drive cycles that represent typical 

driving behaviors (such as Federal Test Procedure 75 [4]).  The goal is to indentify if there are regional 

differences or temporal differences that would require several standard test cycles representative for the 

entireV2G application spectrum. 

During the early phases of this work, we realized that the need to characterize regulation data is not 

only a concern for the transportation battery industry but likewise for the stationary energy storage 

community.  As the stationary storage community is gaining momentum, battery vendors are seeking 

standards against which they can test their energy storage products.  There now is equal interest in 

standardizing various standards for stationary system to represent various duty cycles to which a modern 

battery could be exposed.  The analysis undertaken in this study is the first step toward standardizing duty 

cycles (the term commonly used for the storage energy storage community) or drive cycles (the term 

commonly used in the vehicle community). 
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2.0 Exploratory Analysis 

This section presents the results of an intensive exploratory data analysis of frequency regulation data.  

The purpose of this analysis is to uncover any information that reveals insights into the nature of the 

regulation signal and how it behaves with regard to known physical factors such as time-of-day or time-

of-year.  Regulation patterns are interesting in that they exhibit both random and deterministic behavior.  

The signal is fundamentally driven by load, which in the short term is very stochastic in nature.  We 

presume that there are different patterns in the regulation signal due to the time-of-day and the time-of-

year because of how human activity changes throughout the course of the day and year, and possibly 

because of the inertia in the entire grid that changes with the level of generation and the generation mix. 

2.1 PJM Frequency Regulation Data 

The signal of interest in our study is the frequency-only regulation signal reported by PJM. 

PJM has made regulation data publicly available for download from their website.  At the time of this 

study, data was available continuously from March 2011 to August 2011.  We studied 175 complete days 

of data,which amounted to approximately 3.8 million observations.  The frequency regulation signal is 

time stamped and reported every 4 seconds.  When studying time-of-day behavior, we honor daylight 

savings time because human activity ultimately drives the systematic variability in the data. 

Figure 2.1 illustrates what the frequency regulation signal looks like for four randomly sampled days.  

The data fluctuates around zero in cycles.  In this figure, we see that properties of the signal can vary from 

one day to the next and across the course of a day.  For example, the cycles on April 17 have quite a high 

amplitude throughout the course of the day when compared to June 10.  There seems to be a pattern of 

higher amplitudes during the midnight hours in each day.  These and many more observations are 

discussed in greater detail in the following sections. 

 

Figure 2.1.  Four Days of Arbitrarily Selected PJM Regulation Data 
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2.2 Systematic Mean Properties 

From Figure 2.1, we have some reason to investigate the properties of the low-frequency mean 

behavior of the data over time because it appears to stray slightly from zero at times.  For example, the 

early morning hours of May 11 are consistently below zero.  Here we investigate whether there is any 

systematic behavior in the low-frequency means.  To do so, we split the data into 2-hour blocks, with 

1800 observations within each block.  Let   
     

     
     

 denote the series of observations for day 

            beginning at hour               , with       . We simply compute the sample 

mean within each block  ̅         ∑   
     

     
 and group them by time-of-day. 

 

 

Figure 2.2.  Means of 2-Hour Time Blocks against Time-of-Day across Month-of-Year  

 

 Figure 2.2 shows boxplots of the means against time-of-day across months.  This plot allows us to 

directly compare the median, indicated by a filled black dot, and the 25
th
 and 75

th
 quantiles, which 

determines the range of the box across the time-of-day and time-of-year.  A very consistent pattern 

emerges.  While the range of the means is quite large within each boxplot (illustrated by the dashed lines 

extending from the box), we see that the frequency regulation signal is typically negatively biased during 

the night-time hours and slightly positively biased during the middle of the day, and that this pattern is 

consistent across time-of-year. 

2.2.1 Implication from a Battery Point of View 

This finding has important implications on a battery providing regulation service based in this signal.  

Before explaning these, we first point out that a positive frequency regulation signal means that a battery 

providing regulation service must inject electricity into the grid (i.e. discharge) while a negative 

frequency regulation signal means that a battery must withdraw energy out of the grid (i.e. charge). 

Time-of-day differences are noticeable in the statistical means of the regulation signal.  The 

propensity for the means to be slightly negative at night and slightly positive during the day for all 

months suggests that, on average, the regulation signal demanded more decrementing the generation 
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during the night and incrementing during the day.  From a battery perspective, this means that, on 

average, there would be a resulting net charging during the night and, conversely a net discharging during 

the day.  This means that the cycling would be a slight charging trend during the night, while during the 

day, the trend would drift to a slight discharging trend.  To put this into the perspective from a 

transportation battery, the slight charging trend could be easily accommodated, because on net, the 

vehicle battery would need to be recharged at night anyway.  The slight charging trend would cause the 

battery to be charged slightly sooner than otherwise predicted. 

To provide the regulation service during the day, the slight discharging trend most likely will need to 

be compensated by the vehicle battery management system by resetting the operating point around which 

the battery performs charging/discharging cycles.  In most cases, for V2G applications during the day, the 

battery management system would perform some biasing (i.e., moving the average operating point) 

upward so the vehicle battery will be on a net recharge trend.  This would ensure that the battery will 

never be depleted by V2G applications during the day; rather, it would be partially or fully recharged by a 

given time. 

2.3 Systematic Variance and Amplitude Properties 

There are many interesting properties related to the magnitude of the cycles of the frequency 

regulation data.  A classical statistical measure of variability is the variance, which measures the deviation 

of the series from the mean.  Another measure more suited to cyclical data is the amplitude.  We continue 

operating in 2-hour time blocks; however, in this section, for a given day and 2-hour block, we replace 

  
     

 with    to simplify the notation.  The sample variance in each block is calculated as  ̂       

  ∑   
        ̅  .  The sample standard deviation  ̂ is simply the sample square root of the variance.  

While amplitude can be measured in different ways, here we define the maximal amplitude within a 2-

hour block as the maximum absolute value in the block,            .  For this data, we made a 

comparison of the standard deviation and the maximal amplitude and found them to be extremely similar.  

Figure 2.3 is a plot of the maximal amplitude within each 2-hour block plotted against time-of-day across 

time-of-year. 

In this figure, we plot the raw data rather than boxplots, so that we can visually compare the amplitute 

on weekends versus weekdays.  A smooth line is plotted through each panel for weekday/weekend, 

highlighting the mean of the values across the course of the day.  The hour-of-day variables are “jittered”, 

by adding a small amount random noise to avoid overplotting.  There are some very striking features in 

this plot.  First, we confirm our suspicion that the amplitude of the frequency response signal is greater 

during the midnight hours, and decreases in the middle of the day.  Also, we see that the amplitude is 

decreases from one month to the next.  We also see that there are slight differences between weekends 

and weekdays that appear to be significantly different at many points, especially in May. 

These results led us to hypothesize that the amplitude of the frequency regulation signal is higher 

when the load is lower.  To support this, consider how the amplitude is highest during the night-time, 

during the weekends, and during the pre-summer months, which are times when the load is lowest.  To 

investigate this relationship, we obtained hourly load data for PJM and compared the average load during 

each 2-hour period to the corresponding 2-hour maximal amplitude value.  Figure 2.4 shows a plot of the 

frequency regulation amplitude versus the corresponding load calculated at each 2-hour block.  The 

second plot shows each variable on the log scale.  This plot clearly indicates a fairly strong relationship 
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between the amplitude of the frequency regulation signal and the load.  The solid black line overplotted is 

the fitted line according to the relationship described below. 

 

 

Figure 2.3.  Amplitude of 2-Hour Blocks against Time-of-Day across Month-of-Year (differentiated by 

weekend and weekday) 

  

Figure 2.4.  Relationship of Peak-to-Peak Amplitude and Load 
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The log-log linear relationship is indicative of a power law, so that the amplitude has the following 

relationship with load: 

                      . 

This relationship can be very useful in determining how many batteries need to be be plugged in 

given the load level. 

2.3.1 Implication from a Battery Point of View 

The exponential amplitude dependency on the load suggests that, during the day, either fewer vehicle 

resources are needed to meet the regulation requirements (fewer vehicles need to be engaged in V2G 

applications), or if we keep the resource availability constant during the 24-hour day (i.e., same amount of 

vehicles offering up the same service for 24 hours), the individual contribution by each vehicle is less 

during the day than at night.  As a consequence, the amplitude for defining a test or drive-cycle could 

potentially be smaller during the day than at night. 

2.4 Scaling Signals 

Scaling a signal is a useful technique for removing certain trends that may mask subtle patterns in the 

signal.  In preparation for the ensuring cluster analysis, we will apply scaling techniques to create 

comparable 2-hour data segments. 

Furthermore, scaling is an important subject for the implementation of V2G or stationary storage 

applications.  Because of the diversity in the sizes and in the state-of-charge (SOC) of expected 

transportation and stationary batteries, the duty cycle of an individual battery will most likely be scaled to 

match the total power rating and to accommodate the different SOC at the onset of the regulation service. 

2.4.1 Scaling the Mean 

If the frequency regulation signal is biased above or below zero, the battery will have a net discharge 

or charge.  Figure 2.5 shows a plot of a 2-hour frequency regulation signal that is very slightly biased 

negatively (dashed line in first panel represents the mean), along with a plot of what the battery level 

would be (arbitrarily starting at zero) with and without shifting the mean of the signal to zero.  If N 

batteries are plugged in, the effect of the net charge for an individual battery would be decreased by a 

factor of N, as each battery would incur a loss that, in aggregate, is equal to what is plotted.  During the  

2-hour regulation, the battery SOC is calculated to be the integral of the frequency regulation signal times 

a scaling constant.  For this specific case, the battery SOC increases during this 2-hour period. 
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Figure 2.5.  Battery Level from a Frequency Regulation Signal with and without Shifting the Mean 

2.4.2 Scaling the Variance and Amplitude 

A battery attached to the grid should have a set SOC range that it is not allowed to exceed.  The  

bias of the frequency regulation signal determines the net charge/discharge that the battery is subjected  

to, hence its SOC, while the amplitude of the signal determines the power.  In this study, we assumed 

that, within the SOC range investigated, the battery can provide the needed power during regulation.   

In reality, protocols described in the PHEV Battery Test Manual (plug-in hybrid electric vehicles  

[5]) should be used to estimate maximum power capability during charge and discharge of the battery.  

To scale the amplitde, we scale each 2-hour block to a mean of zero, and then calculate the maximum 

absolute value.  Then, we divide every value in the series by this maximum so the maximum value of the 

series does not exceed positive or negative one. 

Figure 2.6 below illustrates the scaling method described for a 2-hour frequency regulation signal. 

 

 

Figure 2.6.  Example of Scaling a Frequency Regulation Signal 
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This transformed signal will be discussed in Section 2.5 and will be the basis for clustering methods 

described in Section 3. 

2.5 Spectral Properties 

An interesting variance property to investigate for the scaled regulation signal is the variance 

resulting from cyclical behavior at different frequencies.  With                  as the 

fundamental frequencies, we can express the value of the frequency regulation signal through a spectral 

representation as a linear combination of sinusoids at various frequencies: 

       ∑       (     )               

   

   

   

The periodogram is an estimate of the spectral density of a signal and is calculated based on the    

and    coefficients [3].  It provides a measure of the relative strength of cosine-sine pairs at various 

frequencies in the overall behavior of the series.  The periodogram   at frequency    is: 
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The periodogram at    is proportional to the sum of squares of the regression coefficients associated 

with frequency   , and hence is a measure of variability in the data at the given frequency.  The plot 

below shows two scaled 2-hour samples with their corresponding periodogram.  We slightly 

undersampled the data to get periodogram estimates at “nice” frequencies. 

In Figure 2.7, we purposely chose two very different series in terms of periodic variance to highlight 

differences.  The frequency on the x-axis is expressed in terms of cycles per 5 seconds, and values beyond 

frequency of 0.025 are not displayed because of the lack of any interesting data.  In the periodogram 

plots, there are vertical gray lines corresponding to particular frequencies of interest, and the 

corresponding period for each of these frequencies is labeled.  Many 2-hour blocks exhibit behaviors 

more like that of sample 1, with most of the energy due to 7.5-minute periodic behavior. 
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Figure 2.7.  Two Scaled 2-Hour Samples with their Corresponding Periodograms 

We conducted several explorations of the properties of these periodic variances.  We found the 

variance resulting from any given period does not seem to change much across the time-of-day relative to 

the total variance.  One interesting result, however, is related to how the periodogram values, or variance 

at each frequency, changes across the course of the year.  Figure 2.8 plots the periodogram of the scaled 

signal at each frequency (translated to period in the labels) across time. 

Low-frequency behavior is becoming more relatively dominant as time goes on, and periodic 

behavior of 8 minute periodicity and lower is increasing as time goes on. 

Figure 2.8 clearly indicates a dependency of the frequency components of the signal as a function of 

month-of-the-year.  Low-frequency behavior becomes more dominant from March to August, while high-

frequency behavior becomes less important across the same time period. 

2.5.1 Implication from a Battery Point of View 

Low-frequency cycles require more energy (kWh) capacity than do high-frequency cycles.  Put in a 

context of SOC, low-frequency cycles with higher energy requirements cause large cycles across the SOC 

scale of any given battery size.  For transportation batteries, this means higher burden on the remaining 

life of the battery as it may encounter deeper discharge depths of over any given period of time than 

would occur if it was exposed to higher frequency regulation signals.  The statistical implications are that 

there is a propensity for larger discharge depths in the signal in the summer months (July and August) 

than for the spring months (March and April). 
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Figure 2.8.  Boxplots of Periodogram Values vs. Month of Year across each Period 

2.6 Time-Scale Behavior 

Spectral methods, such as the periodogram discussed previously, are useful for understanding 

frequency behavior of time series.  It is also useful to be able to understand how the frequency behavior of 

a series behaves over time.  Spectral methods such as the short-term Fourier transform can be useful, but a 

more effective way to simultaneously view continuous time-scale information is through the continuous 

wavelet transform (CWT).  The CWT is obtained through scaling and translating a mother wavelet,   to 

obtain: 
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where   is the scaling factor and   is the shift parameter.  The mother wavelet must satisfy various 

conditions.  For a function  , the continuous wavelet transform is defined as 

        ∫  
 

  

        
        

where * represents the operation of complex conjugate. 

Wavelet methods are useful in that they do a nice job with the trade-off between time and frequency 

resolution, providing more resolution at higher frequencies and less resolution at lower frequencies. 

In Figure 2.9, we plot the continuous wavelet transform using the second derivative Gaussian mother 

wavelet.  The x-axis is time, and the y-axis is period (in minutes).  The two plots correspond to the two 

frequency regulation series shown in Figure 2.7.  Interesting features in these plots include the recurring 

5- and 7.5-minute periodic behavior.  The differences in the two series are clearly shown in the CWT 

plots, with the much stronger lower periodic behavior fot the second series. 

The CWT plots were made for all 175 days and a qualitative comparision was made from one day to 

the next in hope of finding intereting patterns.  Several patterns emerged, although they were not always 

consistent.  One common pattern was an interesting lower frequency behavior happening around 18:00 

(one example of which is the bottom CWT plot in  Figure 2.9). 

Just as in Figure 2.7, Figure 2.9 also indicates that the low-frequency contribution is dominant for the 

18:00 to 20:00 time frame.  This type of behavior was somewhat consistent when looking at the CWT 

plots for all days.  As long as the battery SOC does not breach the design limits, this does not appear to be 

a roadblock to regulation. 

2.7 Within-Hour Variation 

All previous exploratory analysis has been done using computations based on 2-hour blocks of data.  

As a final part of our exploratory analysis, we explore how the mean and variance of the frequency 

regulation signal vary within each hour.  While we do not leverage these results in our current analysis, 

we find the results interesting and feel that they will be of use in future modifications of our methodology. 

To study the within-hour mean behavior of the frequency regulation signal, we wanted to ignore the 

higher frequency behavior, such as 7.5-minute cycles, and focus more on the lower frequency behavior.  

While we have shown that the grand mean for many 2-hour blocks of data varies from zero, we are 

interested in whether that variation from zero is constant or fluctuating.  To investigate this, we applied a 

low-pass loess filter [2] with a moving window span of 17 minutes.  Loess smoothing simply applies a 

local weighted polynomial regression sliding across time, and can be thought of as a low-pass filter.  An 

example of such a filter applied to one hour of data is shown in Figure 2.10, with the loess smooth in 

blue.  This filter highlights the slowly changing mean from positive to negative across the course of the 

hour. 
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Figure 2.9. CWT for Two Different Signals (one from 00:00 to 02:00 and one from 18:00 to 20:00) 
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Figure 2.10. Example of Low-Pass Filter (blue) applied to a 2-Hour Block of Frequency Regulation Data 

We applied this low-pass filter across the entire data set and examined it for characteristic patterns by 

time-of-day. 

To study how the variance changes within each hour, we applied loess smoothing with a 37-minute 

moving window to the squared frequency regulation signal.  This gives an estimate of the variance locally 

in time across the signal. 

Figure 2.11 shows the smoothed local mean (top) and variance (bottom) values overplotted by time of 

day.  The red line represents the average behavior of all the data at each point in time.  Both plots verify 

what we have already seen, namely that the mean is higher during the middle of the day and lower during 

the night hours, and vice-versa for the variance.  However, we get much more information because we see 

what is happening within each hour. 

From 09:00 to 19:00, the mean behavior tends to droop at the beginning and end of each hour.  There 

is very interesting up-down behavior during the midnight hours, and the humps in the middle of the hour 

at 05:00 and 06:00 are also interesting.  There also are some interesting intra-hour dips in the variance 

plot during the off-peak hours. 

What we learn from these plots is very useful in that it shows that there is systematic variation within 

each hour.  Each individual series plotted in black varies considerably around the mean plotted in red, but 

there is a systematic pattern within each hour.  In terms of using this information to help determine drive 

cycles, an initial clustering of low-frequency behavior followed by a study of the remaining signal with 

the low-frequency component removed might be worthy of consideration.  Perhaps this knowledge can 

even be synthesized to generate guidelines for the construction of drive cycles and circumvent the need 

for clustering. 
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Figure 2.11. Low-Frequency Behavior by Hour-of-Day with Mean Behavior in Red
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3.0 Determining Representative Drive Cycles 

The exploratory analysis thus far has given some interesting insights into the behavior of the 

frequency regulation signal.  This information can be used to guide understanding all the possible 

scenarios a battery following the signal can be exposed to.  However, this may not be enough.  For testing 

purposes, batteries need to be run through actual scenarios. 

The goal of this section is to use unsupervised learning techniques to examine the data and find 

similar patterns that appear repeatedly in the data.  The hope is that a handful of battery drive cycle tests 

will emerge based on this analysis.  Our exploratory analysis cast some doubt on the existence of a small 

set of representative signals as we saw that even low-frequency behavior is quite variable (Section 2.7). 

All our computation work was done using the R statistical environment [11].  Cluster analysis was 

done using the flexclust package [7]. 

3.1 K-Centroids Clustering 

Given a set of feature vectors          , where each observation    is a  -dimensional vector, the 

goal of K-centroids clustering is to partition the   observations into   sets,        .  The goal is to find 

a set of centroids         for which the average distance from each point to the closest centroid is 

minimal. 

The general K-centroids clustering method is as follows: 

 Start with a set of   initial cluster centroids,        .  These are typically   randomly chosen 

observations from the data. 

Assign each point    to the nearest centroid, using a distance metric           , so that observation    

is assigned to cluster set    if it is closer to centroid    than any of the other centroids. 

For all observations in each set   , calculate the new centroid   . 

Repeate steps 2 and 3 until convergence is achieved. 

In our setting, the goal is to see if there are meaningful clusters of the frequency regulation signal.  

The hope is that a good clustering will result in tight clusters of similar behavior, so we can provide 

recommendations for battery drive cycle tests based on these representative signals.  Throughout this 

section, we will continue operating on 2-hour blocks of time as one observation.  Thus, with this data set, 

we have 2100 observations. 

There are many choices for feature vectors and for distance metrics.  The well-known traditional  

K-means algorithm uses Euclidian distance and the mean centroid.  To obtain good clustering, we must 

consider several possibilities with regard to which feature vector and which distance metric we will use. 
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3.1.1 Feature Vectors and Distance Metrics 

The goal of a good feature vector is to express all of the relevant information about an observation 

while having low dimensionality.  The most trivial feature vector in our setting would be the set of 1800 

raw signal values within each 2-hour block.  Other representations we consider here include the discrete 

wavelet representation of the series (discussed in the next section), the periodogram, and a condensed 

version of the periodogram. 

With regard to the distance metric, we stick mostly with Euclidian distance.  When using the 

periodograms as feature vectors, we also consider the earth mover's distance [9], which is useful for 

comparing probability distributions and calculates the cost of turning distribution into the other. 

With these possibilities, the following scenarios were studied: 

  

1. Wavelet coefficients with Euclidian distance  

2. Wavelet coefficients with Euclidian distance calculated independently at each scale  

3. Sum of squared wavelet coefficients at each scale with Euclidian distance  

4. Relative sum of squared wavelet coefficients at each scale  

5. Periodogram with Euclidian distance  

6. Periodogram with earth mover's distance  

7. Condensed periodogram with Euclidian distance  

8. Condensed periodogram with earth mover’s distance.  

3.2 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) of a signal represented by a function      is obtained by 

applying dilations and translations of a mother wavelet      to the function at different scales.  For a 

mother wavelet      defined on      , the translation and dilation is obtained as: 

                      

The wavelet coefficients,     , are calculated as: 

     ∫  
 

- 
               

and can be transformed to obtain the original signal by inverse transform: 

     ∑   
    ∑   

                  

For a discrete sample         of length      for some  , we can compute the     DWT 

coefficients                      .  Here, the   subscript corresponds to a scale level, with     

corresponding to low-frequency.  As   increases, the resolution of the coefficients increases through the 

scaling and dilation of the mother wavelet.  So for a series of length    , a wavelet decomposition 

would consist of coefficients                                        . 

For our 2-hour samples of frequency regulation data, we applied the discrete wavelet transform to 

obtain the wavelet coefficients shown in Figure 3.1.  To apply the DWT, we first subsampled our data 
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down to          observations from 1800. This downscaling did not lead to any significant loss of 

information in the signal.  The y-axis in the plot corresponds to the scale level, and as the scale level 

increases, we get better time resolution.  The y-axis labeling on the right of the plot is a translated scale to 

the corresponding periodicity in minutes.  As can be seen, at high scale levels, the coefficients are very 

small.  These coefficients correspond to very high-frequency behavior in the data—what we can think of 

as noise on top of the signal. 

 

 

Figure 3.1.  Discrete Wavelet Transform for a 2-Hour Period of Frequency Regulation Data 

To greatly reduce the dimensionality of the series, we can eliminate these high-frequency coefficients 

altogether.  We keep only the 63 coefficients at scale 5 and above (delineated by the dashed line in Figure 

3.1).  The condensed set of coefficients represents a smoothed version of the series that still retains the 

salient features. A plot of the inverse DWT of the thresholded coefficients compared to the original series 

is shown in Figure 3.2.  For more on the DWT and thresholding methods, see [10]. 
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Figure 3.2.  Original Frequency Regulation Data with Inverse DWT of Threshold Coefficients 

The DWT has given us a useful feature vector for the series in that it reduces the dimensionality of 

our feature space and also in that it provides measures of activity at different time and frequency scales. 

This appears to be a reasonably good approximation to the original signal. The actual peak power is at 

times 30 percent higher than the approximated power using the inverse DWT coefficients (for example, 

the first peak after 00:30), with the actual power remaining above the approximated power for about 3 

minutes. It should be noted that the peak power is needed for only a few seconds.  Hence, to appropriately 

determine the amount of energy storage needed, the desired surge power (few seconds) needs to be scaled 

up by 30 percent, while 15 percent higher power needs to be delivered over a 1.5-minute window.  

Because PHEV batteries typically have a P/E ratio in the range of 10 to 20, this does not appear to be a 

major roadblock.  The additional power could impose incremental stress on the batteries or require more 

batteries to be available for regulation.  With adequate thermal management, thermal stresses on batteries 

can be minimized. 

While this analysis has assumed that the internal resistance of the batteries is not a function of SOC, 

in actuality, the battery internal resistance increases with decreases in SOC.  Also, the rate at which 

charge can be absorbed decreases with increases in SOC.  The PHEV battery test protocol [5] provides 

some information on estimating available power from the battery SOC for both charge and discharge. 

Incorporation of this approach would appear to accentuate the importance of the pulse power in Figure 

3.2 in order to appropriately determine the minimum number of batteries that need to be available for 

regulation. 

3.3 Wavelet Coefficients by Scale 

We also considered clustering based on the total energy at each scale for each sample, using the 

absolute contribution and relative contribution of the energy at each scale.  Let                     

      denote the collection of coefficients at each scale.  Then we can calculate the absolute 

contribution to the total energy at each scale as: 

         
   

giving us a total of   features.  Likewise, we can compute the relative contribution of each scale on the 

total as: 
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This normalizes by total energy so that comparisons from one sample to another are not dependent on 

total energy being different for a given sample.  This approach was studied in [1] where they were 

clustering similar daily load patterns. 

3.4 Periodogram Features 

Another feature vector we investigated is the periodogram, which is discussed in Section 2.5.  The 

idea of using the periodogram is similar to that of the wavelet coefficients by scale, in that we are 

aggregating over time and looking at contributions to the total energy at each periodicity.  The 

periodogram values were normalized on the average periodogram over the whole data set.  Also, to 

reduce dimensionality, we studied a condensed version of the periodogram in which frequencies close to 

each other are merged.  This reduction was done in hope of getting more interpretable results. 

3.5 Choosing the Number of Clusters 

There is a great deal of literature that focuses on choosing the number of clusters.  One way is to look 

at a plot of the within cluster sum of square for various values of  .  As the correct choice is approached, 

the sum of squares should have been reduced significantly by reaching   and then taper off slowly 

thereafter.  Figure 3.3 shows the within cluster sum of squares for each scenario.  None of the plots shows 

any “sweet spot,” and we wonder if there are simply too many patterns to get a good clustering with small 

  values. 

Another useful metric for evaluating the number of clusters is the shadow value (similar to the 

silhouette value) [8].  The shadow value is a measure of how separated the clusters are and is defined for 

a given point as twice the distance to the closest centroid divided by the sum of distances to the closest 

and second-closest centroids.  If the shadow values of a point is close to zero, the point is close to its 

cluster centroid.  If the shadow value is close to 1, it is almost equidistant to the two centroids.  Thus, a 

cluster that is well separated from all other clusters should have many points with small shadow values.  

We do not include a plot of shadow values here for each cluster, but all scenarios tested had shadow 

values close to one, which is not a good indication. 
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Figure 3.3.  Cluster Sums of Squares for Different Choices of K 
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3.6 Evaluating Cluster Results 

In the interest of space, we only present results for the clustering approach that we deemed to have the 

most interesting results.  We report on Scenario 1, which used 63 wavelet coefficients as the feature 

vector for each sample.  We visualized some of the results using the flexclust R package [7]. 

Figure 3.4 shows an image plot of the centroids projected into two dimensions using principal 

component analysis, with the labels corresponding to each cluster centroid.  This helps see how well 

clusters are separated. 

 

 

Figure 3.4.  Image Plot of Cluster Segments Overlaid by Neighborhood Graph of Wavelet Coefficient 

Clustering 

 From Figure 3.4, we see that clusters such as 6, and 15, and 19 are far from each other.  We 

plotted wavelet coefficients corresponding to these three clusters to get an indication of how these three 

clusters differ.  Figure 3.5 shows this plot. 
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Figure 3.5.  Boxplot of Coefficients within Clusters 6, 15, and 19 

The x-axis of Figure 3.5 corresponds to each wavelet coefficient, ranging from low frequency to high 

frequency.  The panel labeling indicates the cluster number and the percentage of observations in that 

cluster.  As can be seen, it is mainly the very-low-frequency components that are driving the separation 

into different clusters.  This indicates further reason to first investigate the lower frequency patterns, as 

done in Section 2.6, and then look for patterns in the remaining higher frequency part of the signal. 

A useful way to visualize the clusters is to show each series in each cluster with the centroid 

overplotted.  Figure 3.6 shows this approach, with the red line representing the centroid.  This plot also 

confrims the fact that mainly the low-frequency behavior dominates the differentiation between clusters. 
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Figure 3.6.  All Series in Each of the 30 Cluster Signals Overplotted 
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The overall directonality of the signal appears to be different for cluster 1 and cluster 7 in Figure 3.6, 

with the regulation going from negative to positive in cluster 1 and from positive to negative in cluster 7.  

From Figure 3.7, it is seen that cluster 1 events occur mostly at 20:00 from March 14 to April 18, with the 

cluster occuring from 12:00 to 16:00 from May 9 to August 1.   

Cluster 10 shows a representative low-frequency duty cycle.  This candidate would perform a larger 

1-hour discharge-charge cycle superimposed by a higher-frequency cycling.  The net energy charged and 

discharged for the 2-hour duration would be approximately zero.  However, the depth of discharge for 

each half cycle is quite high; thus, the battery cycle life would be directly impacted.  This would mean 

that the starting and ending SOC would be identical.  This particular testing cycle candidate would lend 

itself to be repeated multiple times without any further charge corrections. 

The other key point is that cluster 17 is power intensive, with the power oscillating with a period of 8 

minutes.  While cluster 1 has a dominant low-frequency behavior with a period of 60 minutes.  By 

determining the actual power scale for these clusters, one can develop a boundary condidtion for energy- 

and power-related strains the PHEV batteries will be subjected to during the course of a year.  The energy 

related-strain would be the imposition of sequentially lower or higher SOC at the end of each hour for 

cluster 1 or cluster 7.  The power-related strain would be the imposition of discharge pulses at a low SOC 

and charge pulses at a high SOC, especially at low ambient temperatures. 

Figure 3.7 shows the clustering results by time-of-day and across time-of-year.  The purpose of this 

figure is to highlight whether observations within clusters tend to occur at the same time-of-day or time-

of-year.  Each panel corresponds to a cluster, and if a colored box is present, this means that there is an 

observation in that cluster that occurred on that day at that time.  The different colors aid in distinguishing 

between time-of-day.  Certain clusters, such as cluster 10, have behavior restricted to only the midnight 

hours.  Based on our analysis in Section 2.6, this is actually not surprising in that we saw that there are 

distinct within-hour behaviors at these hours. 

As discussed earlier, the net charge and net discharge patterns can be readily addressed by adjusting 

the battery SOC to levels that would prevent the SOC from crossing the lower and upper limits of 20 and 

80 percent, respectively. 

It should be noted that this analysis does not account for the fact that the charging rate for lithium-ion 

batteries has restrictions.  However, it can be assumed that this restriction applies for long-term 

continuous charging, while pulses at the 20C rate for a few seconds can be sustained.  Charging rate 

should be limited to low rates (<1C) at low temperatures (<4ºC).  Assuming that most of the batteries will 

be stored in garages and assuming that garage temperatures are generally above 4ºC, it is safe to assume 

that battery temperatures would be >4ºC during regulation service. 

The effect of the duty cycle on battery life can be estimated from readily available curves that relate 

battery cycle life to depth of discharge.  Data on battery calendar life can be used to further estimate the 

state of health (SOH) of a battery as it ages.  A further consideration of the thermal stresses that batteries 

are subjected to during pulse charging/discharging would provide additional information on battery SOH 

during operation.  A comprehensive tool that estimates battery SOH by combining the effects of its drive 

cycle with the duty cycle during regulation needs to be developed. 
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Figure 3.7. Time-of-Day Plot 
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3.7 Choosing a Representative Signal 

A major finding from the exploratory and cluster analysis is that, although there are many systematic 

properties of the frequency regulation signal, there are still many distinct patterns in the data with no clear 

emergence on a few representative patterns.  Given the existing data set, this outcome necessatates the use 

of other corroborating information or insights from a battery-testing perspective that will reduce the set of 

potential patterns to a managable number. 

 To narrow down the number of drive cycles, we applied perspectives accounted for battery SOH..  

There are three disctinct patterns out of the 30 clusters that would impose fundamentally different testing 

regimes for batteries.  These patterns are described below: 

1. Curves with directionality and sign of the signal changing from positive to negative or vice versa.  

Cluster 1 is an example of positive directionality 

2. Low-frequency signal.  Cluster 10 shows a representative duty cycle.  This candidate would 

perform a larger 1-hour discharge/charge cycle superimposed by higher-frequency cycling.  The 

net energy charged and discharged for the 2-hour duration would be approximately zero.  This 

would mean that the starting and ending SOC would be identical.  This particular testing cycle 

candidate would lend itself to be repeated multiple times without any further charge corrections. 

3. High-frequency signals superimposed on each other and curves with signals that oscillate 

symmetrically around zero.  This case is quite straightforward and ideal for batteries.  Cluster 17 

shows a representative duty cycle with these characteristics.  The net energy exchange also is 

approximately zero.  However, different from the low-frequency signal is that the variation in the 

SOC domain is much less than for the low-frequency cycle.  The high-frequency cycle stresses 

the battery more as a power provider with less energy capacity required.  
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4.0 Conclusions and Future Work 

This analysis explored methods for characterizing the time series of regulation signals with the 

objective of developing characteristic cycles for batteries used as regulation providers.  We used 

exploratory analysis and cluster analysis based on wavelet coefficients to identify distinctive signals.  We 

feel that the results from this work will be useful in follow-up studies of battery stress tests. 

4.1 Exploratory analysis results 

 The spectral analysis revealed patterns in the regulation signal with distinct periodicities in the 1-

hour, 30-minute, and 7.5-minute cycles.  We believe the periodicities reflect the specific PJM market 

design. 

 Observed differences as a function of time-of-day are summarized below: 

 Mean value of regulation.  There is a propensity for the mean of the regulation signal to be slightly 

biased above zero during the middle of the day (06:01 to 18:00) and slightly biased below zero in the 

night hours (18:01 to 06:00).  This propensity has important implications to batteries in that, unless 

otherwise compensated, on average there would be a net charging of a battery plugged in during the 

night and, conversely, a net discharging during the day.  Net charging during the night for plug-in 

electric vehicles can be accommodated easily without any compensation, but net discharging during 

the day will need to be compensated so the vehicle battery can be recharged for the next drive. 

 Amplitude of regulation cycling.  The amplitude swing (i.e., the minimum-maximum spread) of the 

cycles in the regulation signal has a propensity to be higher during the night and lower during the day.  

In fact, we found that a significant relationship exists between the system load level and the amplitude 

of the regulation signal.  Under low-load conditions, the amplitude of regulation grows exponentially 

compared to the amplitude at high-load conditions.  This means that, during the day, either fewer 

vehicle resources are necessary to meet the regulation requirements or, if the resource availability is 

held constant during the 24-hour day (i.e., the same number of vehicles offer the same service for  

24 hours), the individual contribution by each vehicle is less during the day than at night.  As a 

consequence, the amplitude for defining the performance test or drive cycle potentially could be 

smaller during the day than at night. 

Similarly, we found seasonal differences that would scale with the month of the year.  Exploring the 

range of low-frequency (1-hour cycles) to high-frequency (7.5-minute cycle) signals across all seasons 

indicates that the lower frequency component in the regulation signal increases in significance from the 

winter to summer months.  The mid-range (30-minute cycles) remains constant across the month studies, 

while the lower frequency components (7-minute cycles) slightly decrease their contribution to the overall 

signal for the period from March through August.  Low-frequency cycles require more energy capacity 

than do high-frequency cycles.  Low-frequency cycles with higher energy requirements cause large cycles 

across the SOC scale for any given battery size.  For transportation batteries, this means higher burden on 

the remaining life of the battery as it may encounter deeper depths of discharge over any given period of 

time than would occur if it were exposed to higher frequency regulation signals. 
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4.2 Cluster Analysis 

The statistical clustering approach used in this study reflected the large diversity in patterns of the 

regulation signal and resulted in rather large number of clusters to characterize the entire data set.  As a 

consequence, the prospect of finding a small number of representative cycles using the clustering 

approach does not seem to be promising.  Additional information grounded in an understanding of battery 

testing procedures must inform the selection process. 

The results distinguished clusters of similar behavior based on dominant low-frequency cycles  

(i.e., 30-minute to 1-hour cycles).  Cycles in the same cluster have similar time-of-day properties, 

indicating that similar patterns occur in many cases at the same time of the day. 

The regulation signals revealed system behaviors of PJM’s market structure.  The 1-hour cycle 

components of the regulation signal is a clear reflection of hourly markets causing a rearrangement of 

generators participating in the day-ahead hourly energy market.  The dependency of the regulation signal 

on the frequency and timing of market clearings suggests that the results are strictly valid for the current 

PJM wholesale markets.  As PJM’s market design changes, it is very likely that the key oscillatory 

content will change as well.  With the general trend in the competitive wholesale market to clear in 

shorter and shorter time periods, there could be a propensity for regulation signals to increase the shorter 

cycles.  Furthermore, the integration of an increasing capacity of intermittent wind and solar resources 

will very likely introduce new dynamics to the regulation requirements caused by the varying output of 

the wind and solar installations.  How the growing wind and solar capacity may influence the regulation 

signal is unclear.  Weather phenomena and the diversity of the wind and solar insolation across a 

balancing area will impact the regulation signal.  Furthermore, the change in the generation inertia by the 

growing wind and solar generation resources also may influence the dynamics of the power system and, 

in turn, impact the regulation signal. 

4.3 Recommendations for Selection of V2G Drive Cycles 

 From the cluster analysis, it is clear that some clusters are dominated by high frequency (a period of 

10 minutes), while other clusters are dominated by low frequency (a period of 60 minutes).  These can 

easily establish an upper boundary condition on the power- and energy-related strain the battery is 

subjected to during regulation throughout the year. 

 Despite the large diversity of low- and high-frequency characteristics across the time scale in the PJM 

data set, we do offer some recommendations for the selection of potential candidates for testing cycles 

that are informed by battery experts.  The recommendations are based on both the findings of the cluster 

analysis and are further informed by an understanding of battery degradation mechanisms and battery 

performance testing.  Across the diversity of 30 distinct clusters, a set of duty cycles from three particular 

clusters are recommended as potential candidates for future standards development.  These three clusters 

are summarized below: 

1. Curves with directionality and sign of the signal changing from positive to negative or vice versa.  

Cluster 1 is an example of positive directionality.  Further studies will focus on the number of 

back-to-back clusters with the same directional trend to estimate the ability of the batteries to 
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keep their SOCs within the desired range, and the ability of the batteries to provide the desired 

power for the required amount of time. 

2. Low-frequency signal.  Cluster 10 shows a representative duty cycle.  This candidate would 

perform a larger 1-hour discharge/charge cycle superimposed by higher-frequency cycling.  The 

net energy charged and discharged for the 2-hour duration would be approximately zero.  This 

would mean that the starting and ending SOC would be identical.  This particular testing cycle 

candidate would lend itself to be repeated multiple times without any further charge corrections. 

3. High-frequency signals superimposed on each other and curves with signals that oscillate 

symmetrically around zero.  This case is quite straightforward and ideal for batteries.  Cluster 17 

shows a representative duty cycle with these characteristics.  The net energy exchange also is 

approximately zero. 

 A preliminary conclusion of this work is that, by appropriate energy management, a single protocol 

can be developed for performance testing of PHEV batteries by simulating their drive cycle and 

frequency regulation. 

4.4 Next Steps Toward Standardizing V2G Drive Cycles 

 This analysis is the first of several steps toward standardizing V2G drive cycles or battery testing 

cycles.  The next step is to perform a similar exploratory analysis with regulation data sets from other 

regions of the United States to explore potential regional differences that reflect different market designs, 

system responses, and system characteristics.  After these regional studies, the results can be discussed 

from a national perspective to identify a set of characteristics that are sufficiently representative for the 

U.S. grid. 

 It is anticipated that the statitistical analyses will provide the necessary bachground information to 

formulate a set of test procedure proposals.  With continuing support for this analysis, it is reasonable to 

expect statistical analysis for the entire United States can be completed toward the end of the FY 2012, 

with standards discussions possibly commencing in the fall and winter of 2012.  The appropriate 

standards body could be the Institute of Electrical and Electronics Engineer (IEEE). 
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