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INTRODUCTION 
Micro-scale investigations of the flow and deformation of 

blood and its formed elements have been studied for many 
years. Early in vitro investigations in the rotational viscometers 
or small glass tubes revealed important rheological properties 
such as the reduced blood apparent viscosity, Fahraeus effect 
and Fahraeus-Lindqvist effect [1], exhibiting the 
nonhomogeneous property of blood in microcirculation. We 
have applied Mixture Theory, also known as Theory of 
Interacting Continua, to study and model this property of blood 
[2, 3]. This approach holds great promise for predicting the 
trafficking of RBCs in micro-scale flows (such as the depletion 
layer near the wall), andother unique hemorheological 
phenomena relevant to blood trauma. The blood is assumed to 
be composed of an RBC component modeled as a nonlinear 
fluid, suspended in plasma, modeled as a linearly viscous fluid. 

METHODS 
GOVERNING EQUATIONS 

Assuming no interconversion of mass between the two 
components, conservation of mass for the plasma and the RBCs 
take the form: 
 

பఘభ
ப୲

+ div(ߩଵܞଵ) = 0,     பఘమ
ப୲

+ div(ߩଶܞଶ) = 0    (1,2) 
 
where ଵߩ  and ߩଶ  are the bulk densities of the mixture 
components given by ߩଵ = ௙ߩߛ ଶߩ    , =  ௙ is theߩ ௦, whereߩ߶
density of the pure plasma, ߩ௦ is the density of the pure RBCs, 
 is the volume fraction of the plasma component, and ߶ is ߛ
the volume fraction of the RBC component. For a saturated 
mixture, ߛ = 1 − ߶. 

Let T1 and T2 denote the partial stress tensors. Then, the 
balance of linear momentum equations for the two components 
is given by [4]: 
 

ଵߩ
஽ܞభ
஽௧

= div(܂ଵ) + ଵbଵߩ +  (3)  ۷܎
 

ଶߩ
஽ܞమ
஽௧

= div(܂ଶ) + ଶbଶߩ −  (4)  ۷܎
 
where b represents the body force and fI represents the 
mechanical interaction (local exchange of momentum) between 
two components. 
 
CONSTITUTIVE EQUATIONS 

The plasma is assumed to behave as a linearly viscous 
fluid: 
 

ଵ܂ = 1)݌−] − ߶) + 1)ߣ − ߶)tr ۲ଵ] + 1)ߤ2 − ߶)۲ଵ   (5) 
 
where p is the fluid pressure, ߤ is the viscosity, ۲ଵ  is the 
symmetric part of the velocity gradient of the plasma, and ߣ is 
the second coefficient of viscosity in a compressible fluid.  

The stress tensor for the RBCs is assumed to have the 
structure: 
 

ଶ܂ = ଴۷ߚ +  ଷ۲ଶ      (6)ߚ
 
where ߚ଴and ߚଷ are given by Massoudi and Antaki [5]: 
 

଴ߚ = ଷߚ   ,߶݌− = ߶)ଷ଴ߚ + ߶ଶ)   (7) 
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Shear-thinning effects were incorporated by adopting a 
shear-dependent viscosity for the RBC phase, introduced by 
Yeleswarapu et al [6]: 

 
ଷ଴ߚ = ∞ߤ + ଴ߤ) − (∞ߤ ଵା୪୬ (ଵା఑ఊ̇)

ଵା఑ఊ̇
  (8) 

 
where ̇ߛ = [2tr (۲ଶ

ଶ)]ଵ/ଶ  is the generalized shear rate,ߤ଴  is 
the viscosity under zero shear rate, ߤ∞  is an asymptotic 
viscosity for infinite shear rate, and κ is a material parameter 
describing the character of shear thinning.  

The mechanical interaction force is assumed to be of the 
form (Massoudi [7]): 
 

۷܎ = ߶ଵgradܣ + ଶܞ)(߶)ܨଶܣ −  (ଵܞ
ଷ߶(2tr۲ଵܣ+

ଶ)ିభ
ర۲ଵ(ܞଶ −  ଵ)      (9)ܞ

 
where the terms on the right-hand side of this equation reflect 
the presence of non-uniform concentration distribution 
(diffusion), drag, and slip-shear lift, and the coefficients are the 
same as proposed by Massoudi [7]: 
 

ଶܣ = ଽ
ଶ

ఓ೑

௔మ , ଷܣ = ଷ(଺.ସ଺)
ସగ

ఘ೑
భ/మఓ೑

భ/మ

௔
(߶)ܨ   , = ߶(1 + 6.55߶) (10) 

 
RESULTS 
NUMERICAL SIMULATION OF THE FULLY DEVLOPED 
FLOW 

For numerical simulation, the governing equations are 
made dimensionless to perform a parametric study for a range 
of dimensionless numbers. Let us now consider the pressure 
driven flow of a mixture between two horizontal long flat 
plates, where X is the direction of the flow, and the plates are 
located at Y=-1 and Y=1. If the flow is steady and laminar, the 
velocity profiles and the volume fraction of RBCs can be 
assumed to have the form: 
 

Vଵ = V(Y)܍௫, Vଶ = U(Y)܍௫, ߶ = ߶(Y)    (11) 
 

The equations for balance of mass are automatically 
satisfied. We use the adherence boundary conditions on both 
constituents at each plate. A specified value of a for ߶ is 
prescribed at Y=-1. We assume 
 

U(−1) = U(1) = V(−1) = V(1) = 0, 
 ߶(−1) = a (12) 
 

Figure 1 shows that the velocity profiles of plasma and 
RBC, respectively, for a range of dimensionless parameters. In 
general, the velocity profile of RBCis observed to be less than 
that of plasma, but the velocity profile of RBC approaches that 
of plasma as lift coefficient (C3) increases. It is found that the 
velocity profile of RBC becomes blunter due to increase in C3. 
This bluntness also was found as the value of κ or the volume 
fraction of RBCs increases. In figure 2, RBC volume fraction 
varies nonlinearly from the top wall to the bottom wall due to 

changes in C3, is distributed symmetrically at upper and lower 
plates, and has a peak at the center of the plate due to lift force. 
This result implies that the volume fraction could be 
nonlinearly distributed, but asymmetric if gravity would be the 
same as or greater than an order of the magnitude of lift force. 
 

 
Figure 1: Plots of velocity profiles due to changes in C3. 

 

 
Figure 2: Plots of RBC volume fraction due to changes in C3. 
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