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ABSTRACT

Vortex breakdown is simulated by a three dimensional

Lagrangian method using vortex filaments. The filaments are

approximated by vortex elements and their velocity is computed

by a Biot-Savart type law of interaction. The numerical cal

culations show the development of an axisymmetric bubble with

a recirculation zone and resemble in many respects the results

obtained in the physical experiments on vortex breakdown.
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Introduction

A vortex breakdown is an abrupt disturbance which occurs in some

flows which have a region of concentrated vorticity. Such flow can be

obtained by sending fluid through a tube and giving it swirl with a set

of vanes at the inlet station. In most experiments the tube is slightly

divergent in the direction of the flow. The region of concentrated

vorticity is located around the axis of the tube and is called the vortex

core. The basic flow is a steady streamwise vortex and outside the

vortex core it is approximately irrotational. For reasons which have not

been completely clarified, a stagnation point followed by a region of

reversed flow may occur on the axis of the vortex. This may be followed

by the loss of the coherent nature of the flow. This sequence of events

is called a vortex breakdown. Changes in the conditions at the inlet

station give different forms of the same phenomenon. Two forms predomi

nate: namely the spiral and the "axisymmetric" bubble. We shall only

discuss the latter case.

In all experiments the vortex breakdown is associated with an adverse

pressure gradient in the vortex core, i.e., the pressure increases in the

direction of the flow. This may be caused by a deceleration of the outer

flow which, for example, may be due to the divergence of the tube. Thus

the occurrence of the vortex breakdown depends on a balance between at

least three parameters, the swirl of the flow, the divergence of the tube,

and the adverse pressure gradient, see Hall (1972).

The phenomenon has been visualized by introducing dye at the center

of the inlet station, see Sarpkaya (1971). One observes that the axial
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filament suddenly expands in a nearly axisYmmetric envelope. The bubble

is closed at the upstream end, while at the rear it is continuously emptied

and refilled from two different azimuthal directions. Physical experiments

by Sarpkaya (1971) and Leibovitch (1978) have shown that the inner part of

the bubble contains one or two recirculation zones which are created by the

vortex rings trapped in the bubble.

Vortex breakdown is important from a practical point of view. It

occurs in combustion problems and in aerodynamical problems. Its occurrence

is desirable in gas turbine combustors, and it helps to dissipate vortices

behind large aircraft.

Vortex breakdown has been the subject of many theoretical and numerical

investigations. Roughly speaking, there are three theories, but none of

them has received general acceptance. An extensive and comparative analysis

has been carried out by Hall (1972) and Leibovitch (1978). In the first

theory, due to Gartshore (1963), Hall (1972), and Mager (1972), vortex break

down is interpreted as corresponding to the failure of the quasi-cylindrical

_approximation~of_the~Na"Rier-=Stokes_equations_._l'he_theor-y-is~ana-logous-t;o'----------

boundary layer theory. In the second theory, due to Ludwig (1970), vortex

breakdown is explained as a consequence of an instability of the flow to hel-

ical disturbances. Our numerical experiments are based on the third theory,

the wave theory, and to the extent that they are successful they do support

it. In the wave theory,vortex breakdown is interpreted as a standing wave.

Following Benjamin (1962), an inviscid flow is called supercritical if waves

can only propagate in the direction of the flow and subcritical if waves can

also propagate in the upstream direction. A flow is called critical if

standing waves are possible. This can be cast in mathematical terms. The
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theory fails if the flow is viscous. On the other hand, according to

Leibovitch (1978), all breakdowns for which velocity data exist are super

critical upstream and subcritical downstream. Our numerical experiments do

not show dependence on this classification. This may be due to the limited

resolution in our technique. We follow Squire (1960) and assume that vortex

breakdown occurs when a perturbation can travel upstream from a downstream

source of disturbance. This is confirmed by Sarpkaya's experiments (1971)

which show that vortex breakdown is sensitive to changes in the downstream

flow conditions. In this paper we simulate the vortex breakdown by using

vortex filaments extending to infinity to represent the vortex core and vor

tex rings to represent the trapped wave in the bubble.

The plan of the paper is as follows: In section 2 we present the random

vortex method due to Chorin (1973). In section 3 we extend the vortex method

to three dimensions by using vortex filaments instead of point vortices. The

main problem is the discretization of the filaments which extend to infinity.

The difficulty is overcome by treating the parts of the filaments which are

far from the perturbation as straight lines. Thef~laments-near--the-pe~tu~-----------

bation are approximated by vortex elements. These are moved by the velocity

field which is created by the filaments themselves. The velocity of each vor-

tex element is computed by using a Biot-Savart type law of interaction between

all the elements. To smooth out the velocity field due to nearby vortex

elements, we modify the Biot-Savart law near the singularity. This is accom-

plished by using a cutoff.

In section 4 we use Mager's approximation of the experimentally observed

velocity. profiles to determine the distribution of vorticity at the inlet

station. We approximate the distribution of vorticity by vortex filaments.
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According to Leibovitch (1976), it is unlikely that the viscosity plays a

significant role in the vortex breakdown. Thus w~ consider only the dif-

fusion of vorticity in the radial direction and simulate the effect of the

viscosity by displacing the vortex elements in the radial direction by using

a random walk technique. Finally in section 5 we present the numerical

experiments. These show the development of an axisymmetric bubble with a

recirculation zone and resemble in many respects the pictures of vortex

breakdown in some of the physical experiments due to Sarpkaya (1971).

2. The two-dimensional random vortex method

The vorticity equation for an incompressible, inviscid flow is

(1)

where u = (u,v) is the velocity field, ~= curl u is the vorticity, and

t is the time.

--Sinee-the-f-low·-is-incwmpl"essible,-the-diveI'gence-of-!!-is-equa1-to-zero,---

and u and v can be expressed in terms of the stream function W in the

following way:

v = -W •x
(2)

A flow whose distribution of vorticity is zero everywhere and is K at Zo

is called a potential vortex at z00

in the plane is G(z) = -(2TI)-lloglzl

The Green function for the Laplacian

The stream J

function for a potential vortex at Zo is

(3)
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be the ~nitial distribution of vorticity. We partition the

support of

circulation theorem that the integral

into nonoverlapping blobs B.• It follows from Kelvin's
J

Kj = fB.~OdxdY is constant in time.
J

At time t =0 we approximate the vorticity function ~O by ~ = IjKj o(z-Zj)"

Here Zj = (xj,Yj ) is the center of gravity of Bj , and o(z) is ~he delta

function at the origin. The flow corresponding to ~ consists of a system

of potential vortices. By using equations (2) and (3) we find that the

stream function ~ and the velocity field (u,v) corresponding to ~ are

-l~
~. = (21T) L.K. log(zi-Zj)
~ J J

(4)

X. -x.
~ J

2
r ij

for i=l, ••• ,N. Here u, v and are evaluated at Z.
~

and =

The motion of the point vortices is then described

(5)

for i =1,2, ••• ,N. The velocity field can be arbitrarily large near a

point vortex. As pointed out by Chorin and Bernard (1973), this is unphysi-

cal and leads to instabilities. Therefore we replace the stream function G

for a potential vortex by a smoother function Go' The expressions for the

Vi = -Ij~iKjaxGo' where

This idea is due to Chorin

and

the derivatives of Go are computed at zi - Zj'

-1(1973). His cutoff is Go(r) = (21T) (1 - rIo -logo) for r<o arid
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for r > o. Other cutoffs can be obtained by prescribing a smooth link

at r = 0, and a zero derivative at the origin. For a comparative analysis

and a convergence proof, see Hald and Del Prete (1978).

We consider now a viscous flow. The Navier-Stokes equation for an

incompressible viscous flow is

-1
~t ::: - (u - V) ~ + R b.E.., (6)

where R is the Reynolds number. The right-hand side of equation (6) is

the sum of a nonlinear term and a linear diffusion term. To simulate the

effect of the diffusion term we use random walks. We will describe the

method briefly. Consider the heat equation

E..(x,y,t=O) = E..O •

We represent E..O as the sum of E.. i where ~i are point masses at (xi'Yi)

Let b.t be the time step, and let nx.
~

and
n

Yi be the positions at time

t ::: n-b.t. We move the points according to

n+l n
Yi = Yi + n2

where n1 and n2 are Gaussian1y distributed random variables with zero

mean and variance 2-b.t!R. Let n ku ,2 and
i

n,~Vi be the components of the

velocity obtained by solving the.equation of motion for the point vortices

by the midpoint rule. Here the right-hand side of (5) is defined using the

cutoff. By combining the midpoint rule with the random method, we obtain

the following algorithm
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n+l n n ~
xi = x. + tit • u ,2 + nl].

n+l n n ~

Yi = y. + tit • V ,2 + n2 .
].

The vorticity density generated by the motion of the vortices according

to these laws will approximate the solution of (5), see Chorin (1973).

3. The three-dimensional vortex method

Let u and 1 be the velocity field and the distribution of vorticity

for an incompressible flow. Then curl u = 1 and div u = 0. A solution

of these equations is given by

(7)

see Batchelor (1967, p.87). Here G(x) = (47flxl)-1 is the Green function

for the Laplacian in three dimensions. The remaining solutions of the dif-

ferential equations can be obtained by adding a function-of-the-Lot"lll---------

~ = grad ~ to the right-hand side of (1). Here ~~ = 0. Note that the vor-

ticity in (7) depends upon the time t. Our interest is focused on two dis

tributions of vorticity. In the first case I = (O,O,f(x2 +y2)) for Izi

large where f = ° for x
2

+ y2 > 1. In the second case I is the vector

field corresponding to a vortex ring.

We consider now a vorticity distribution which is f on a line C and

zero elsewhere. This is called a vortex filament of strength f. In each

point of the curve the vorticity vector has the same direction as the tangent

to the curve. For such a distribution of vorticity the formula (7) reduces

to the line integral
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[TI J (x - ~') x ~s '

c Ix-~' I
(8)

If the flow is inviscid then the vortex filament is a material line, and its

strength is constant in time. This follows from Helmholtz's theorem and

Kelvin's theorem, see Batchelor (1967, pp. 274 and 273). To discretize the

line integral we choose a sequence of points Pi on the curve. The piece

of filament which lies between two nodes is called a vortex element. We

approximate the right-hand side of equation (8) by

Here we have approximated the vorticity unit vector by the secant. As in

the two-dimensional case, we smooth out the velocity field by replacing the

Green function G by a smoother function Go' The formula for the velocity

u then becomes

.£(P)

In our experiments we use
-1 3 2

Go(r) = (4TIo) [(rio) - 2(r/o) + 2] for

(9)

r < 0

and Go = G for r ~ O. Thus Go is twice continuously differentiable with

respect to r and the first derivative vanishes at the origin.

The physical experiment can be interpreted as a basic flow through the

tube plus a perturbation caused by the vortex breakdown. The vorticity field

corresponding to the basic flow is parallel to the z axis and extends to

infinity. We will assume that far from the perturbation the vortex filaments

are straight lines. We compute the contribution of the perturbed region by
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the formula (9). For the contribution of a half line parallel to the z

axis we use instead the formula

.!!.(P) • (y,-x,O) , (10)

where x, y and z are the coordinates of the point P, and zo is the

end point of the half line. Here cr is the distance from P to the

straight line. Formula (10) can be found by evaluating the integral (8).

If is bounded away from zero then the velocity u tends to zero.

However, the velocity may become unbounded as the point P tends to the

end point of the half line. This possibility does not occur in our experi-

ments because z - Zo is kept different from zero.

4. Simulation of the breakdown

To simulate the physical experiment we use the experimental data on the

velocities at the inlet station. We follow Mager (1972), who approximates

the observed velocity at the inlet station by
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coordinates by

~x = l2V(a-l)(1-r
2
)x/r

2l2V(a-l)(1-r )y/r

Note the smooth transition to the irrotational flow at r = 1. The Reynolds

number for the above problem is R = u r Iv.
00 c Here u is the free stream

00

axial velocity of the fluid, v the viscosity, and r
c

is the radial loca-

tion at which the swirl velocity is largest.

The approximations (11) have been obtained after a scaling. Specifi-

cally all lengths have been divided by r c
and the velocities by u. The

velocity depends upon two parameters V and a, both positive. Here V is

the swirl velocity at r = 1. The values of a greater or less than one

yield jet-like or wake-like velocity profiles. In our experiment a = 1, i. e.,

we have uniform axial flow. The distribution of vorticity is

~y = 0 , (12)

--_.._--

for r ~ 1 and zero for r > 1.

In the wave theory the vortex breakdown is interpreted as a standing

wave. In our experiments the flow consists of a basic flow and a perturba-

tion. This is caused by the vortex rings which we use to simulate the stand-

ing wave. The basic flow is a two-dimensional flow which corresponds to the

distribution of vorticity (12), plus a translation. It is therefore natural

first to discretize the problem as a two-dimensional problem and then extend

the discretization to three dimensions.
J

Let ~ = ~ •o z As in section 2, we approximate the vorticity ~O by a

sum of delta functions L.K.O(Z-Z.).
J J J

We partition the unit circle into



-11-

n • area (A
O
)' see Figure 1. At the same time we cut each annulus

blobs B.
J

area (A ) =
n

by dividing it into annuli A ,
n

n=O,l, ..• ,M, such that

into MO slices. This gives a partition into N = (1 + M) • MO blobs. It

is our experience that to simulate the vortex breakdown one needs many

filaments close to the axis. We consider now the straight lines through the

These lines are vortex filaments

To investigate the behavior of the axial filament in the

and parallel to the z axis.

K ••
J

physical experiment we shift all the filaments in AO onto the z axis.

points z.
J

with strength

To compute the contribution of a filament to the velocity of a node, we

divide the cylinder into five regions by the planes z = ±h and z = ±3h.

The parameter h is chosen so large that the perturbation takes place in

the region Izi ~ h. We call this region the main tube. The part of the

filaments between -3h and 3h is discretized with nodes, while the remain-

ing parts are treated as straight lines. The reason for this approach is

that the velocity field due to a half-infinite straight line has a singular-

ity near the end point.

We will now discuss in detail how to calculate· the-contribut-ion-to-the------

velocity at a node Qk in the main tube from a filament D extending to

infinity. Let P. be the nodes on D and denote the first and last node
J

in the main tube by P and P . Let ]..l be the maximum of k-n and
n m

k - m. We compute the contributions from the vortex elements k - ]..l to k +]..l

by using formula (9). The velocity contributions from the remaining parts

of the filament is computed by formula (10).

We mention that to obtain an exact two-dimensional flow the velocity

field should be calculated by always taking the same number of vortex ele-

ments above and below the node. This technique is useful for debugging the
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program. We do not recommend it in general because it is too expensive.

We will now discuss how to compute the effect of the rings. Here is a

very simple method. Assume that the nodes of each ring are in a plane

orthogonal to the axis. In each node the direction of the vorticity is

given by the tangent to the circle orthogonal to the axis having center on

the axis and passing through the node. This method is only accurate at the

beginning. At later times the nodes do not lie in the same plane. A more

sophisticated method is the following: we interpolate the nodes on a ring

by a periodic second-order spline. The direction of the vorticity at a

node is given by the tangent to this curve in space. The method is only

well defined if the number of nodes of each ring is odd. Note that a

similar technique could be used also to compute the vorticity field for the

infinite filaments, but this would increase the cost of the computation.

The distribution of vorticity at later times is given by the positions

of the filaments. We will now discuss how to update the position of the

nodes. The position of a node P in the main tube at time t +!::.t is

obtained by integrating P = ~(P, t) + (0,0,1) by the midpoint rule. Here

u is the velocity computed by adding the contributions from the rings and

the filaments extending to infinity. The vector (0,0,1) is the scaled

free stream axial velocity. The remaining part of the filaments are moved

'as straight lines parallel to the axis. We treat the upstream and down-

strea~m parts differently. The position of the downstream filament is given

by the last node in the main tube. The upstream filament is moved by the

velocity field created by the vorticity at the inlet station.

An alternative way of calculating the velocities at the inlet station

is to use the three-dimensional vortex method for the basic flow. Since

.:
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the basic flow consists of a two-dimensional flow plus a translation, it is

sufficient to calculate the velocities in the x and y directions for all

nodes in a plane orthogonal to the z axis. This is equivalent to using a

two-dimensional vortex method with a complicated cutoff.

To take the viscosity into account, we modify the random walk method

for the two-dimensional flow. We assume the vorticity diffuses radially

outward from the axis and neglect the diffusion in the other directions.

Since the flow is approximately two-dimensional far from the perturbation,

we displace all nodes on each filament (randomly) by the same amount.

According to Leibovitch, it is unlikely that viscosity plays a significant

role in the vortex breakdown, and our numerical experiments confirm this.

We remark that the filaments undergo local stretching. If the distance

between two nodes becomes too large, then we introduce a new node. This is

placed at the middle of the of the segment between the two nodes.

Finally, we mention that when a node leaves the downstream end of the

main tube then we introduce a new node upstream. Otherwise the part of the

filament which is approximated by a straight line gets too close to the

perturbation.

5. Numerical experiments

In this section we give the values of the parameters in the actual

experiments. To partition the support of the vorticity at the inlet station

we take M = 5o and M= 22. This gives 115 filaments, but for economical

reasons we take only the 30 filaments closest to the axis. Thus the vortic-

ity vanishes for r> .21. The numerical experiments are not substantially
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changed by adding more filaments. Initially we take 30 nodes on each fila-

ment with 10 nodes in the main tube. Let h = 2/3 and let ex. be the dis-

tance between the nodes at t = O. If the distance between two nodes becomes

larger than 11/8· {Y" we then introduce a new node. Smaller values of this

parameter do not improve the results.

To simulate the standing wave we have used two vortex rings with strength

y = -.5 and radii .13 and.1. At time t = 0 they are located at z = 0 and

z = .03. The value of y has been chosen by experiments. If Iy I < 0.5

then the rings are carried downstream by the flow, whereas the rings travel

upstream if Iyl > .5. Experiments with more than two rings have been unsuc-

cessful because the rings separate in groups.

To calculate the velocity we use the cutoff described in section 3.

After some experimentation we have chosen the cutoff length 0 = .1. How-

ever, for the nodes of the rings we use 0 = .03 when computing the contribu-

tion from the vortex elements of the rings. Otherwise the velocities of the

rings become too small. Finally, we have solved the differential equation by
---~-----

the midpoint rule with ~t = .05 and used the Reynolds number R = 5000.

In Figure 2 we show the evolution of the breakdown up to time T = .45.

We have plotted the z coordinate of the nodes versus the distance \fx2 + y2

to the z axis. The filaments in Figure 2 are initially on 'the same azi-

muthal plane. Since the filaments from other planes give approximately the

same profiles, we have an axis~netric bubble. We observe that the bubble

does not appear suddenly, and the swelling begins with the central filament.

This is in agreement with the experiments by Sarpkaya (1971). Observe that

only some of the filaments go around the vortex ring and that the filaments

closest to the axis have been stretched most at time T = .45. About 28 new



-15-

nodes have been added in the main tube. The kink at the upstream end of the

bubble and the spiraling of this filament around the bubble closely resemble

one of the experiments by Sarpkaya (1971, Figure 5).

According to Leibovitch (1978), there should be two recirculation cells

of opposite vorticity inside the bubble. In our experiments there is only

one recirculation cell. We have been unable to reproduce Leibovitch's result

numerically.

It has been observed by Sarpkaya (1971) that the vortex rings are

inclined. We have not been able to see this, possibly because our partition

of the support of the vorticity at the inlet station is too crude.

The kink at the rear end of the bubble at time t= .45 is interesting.

It resembles the beginning of the tail in Figure 6 of Sarpkaya (1971). Re

reports that during the period of growth there is no tail. We believe that

the resolution of our method is insufficient to reproduce the details of the

tail. Thus the kink might be a numerical artifact.

Finally, we mention that some filaments close to the axis have segments

with negative axial velocity. Wehave indicated these segments~y-m±nus-s±gns~.------
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