
Nuclear Resonance Fluorescence for
Safeguards Applications

Prepared for:
Materials Protection, Accounting and Control for Transmutation (MPACT)

Fuel Cycle Research and Development
Office of Nuclear Energy

U.S. Department of Energy
Work Package No.: FTLB11MP0212

Prepared by:

B.A. Ludewigt1, B.J. Quiter1, and S.D. Ambers2

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2University of California, Berkeley, CA 94720

February 4, 2011



DISCLAIMER

This document was prepared as an account of work sponsored by the United States Govern-
ment. While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes any legal responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or The Regents of the University of
California.

ACKNOWLEDGMENTS

This work was supported by the MPACT Campaign of the FCRD Program of the Office of
Nuclear Energy, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.



Executive Summary

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external
photon beam leading to the emission of gamma rays with specific energies that are characteristic
of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in
safeguards applications lies in its potential to directly quantify a specific isotope in an assay target.

This report addresses the assessment of NRF-based methods for safeguards applications in the
context of related studies at LBNL, LLNL, and BNL. Our FY10 effort was comprised of three
tasks: the study of the non-resonant scattering background and its simulation with MCNPX,
analysis of our previously performed NRF transmission experiment, and the assessment of NRF
for safeguards applications.

While the recent correction of the treatment of Rayleigh scattering in MCNPX resulted in
much better agreement with some experimental data, the photonuclear processes, which are im-
portant contributors to the elastic scattering background at higher energies, are still not included.
Our analysis showed that calculations based on ENDF form factors as currently implemented in
MCNPX could underestimate the elastic scattering cross section by as much as a factor of ten for
a uranium target at photon energies above 2 MeV. Even larger discrepancies, up to several orders
of magnitude, are possible for lighter elements such as zirconium. It would be desirable to at least
include nuclear Thomson scattering in MCNPX simulations for NRF studies.

The transmission experiment, using a bremsstrahlung beam and a target of comparable thick-
ness to a spent nuclear fuel assembly, demonstrated sensitivity to a 238U content of 1%. However,
the precision was count rate limited. The data obtained in this experiment indicated notch refill
that could change the measured NRF rates by up to 5% for the worst case. A correction based on
MCNPX modeling has been implemented in the analysis.

NRF-based methods were assessed for three potential safeguards applications: the isotopic
assay of spent nuclear fuel (SNF), the measurement of 235U enrichment in UF6 cylinders, and the
determination of 239Pu in mixed oxide (MOX) fuel. Given the small integrated nuclear resonance
cross sections, the main challenge in these application, albeit to a varying degree, lies in accruing
of sufficient counting statistics in an acceptable measurement times for achieving the desired
uncertainties.

Pu isotopic masses in SNF could precisely be determined in transmission measurements using
bremsstrahlung sources, but such measurements would require up to 100’s of hours, a very intense
bremsstrahlung source, and a very large array of fast detectors with high energy resolution. Quasi-
monoenergetic photon sources such as Laser Compton scattering sources could potentially enable
greatly improved performance. As an example, assuming a photon source with a 1 keV energy
spread, an intensity of 6x108 ph/eV/s, and operating continuously or at very high pulse rates,
the measurement time would be on the order of hours using a large detectors array. Shorter
measurement times would require sources with narrower energy spreads and higher intensities.
However, LCS sources of the type under development at LLNL are pulsed at kHz or lower rates
and threshold detectors, such as Cherenkov detectors, are needed that integrate the photon signal
and are not rate-limited. In a best-case scenario, a measurement with 1% statistical uncertainty
could be accomplished with a 108 ph/eV/s photon source and an ideal threshold detector array
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in 10 min. While this indicates promise, neither photon source nor detector technology presently
exists.

The determination of 235U enrichment in UF6 cylinders is less demanding than SNF assay.
The transmission method could be applied to the smaller cylinders up to 12” in diameter. Using
an intense bremsstrahlung beam and a dozen HPGe detectors, a 5% precision measurement of
5% enrichment could be performed in less than 1/2 hour. For larger cylinders, through which
the photon beam cannot be transmitted, the backscattering method could be used to measure
enrichment to a depth of roughly 10 cm. As an example of a fresh fuel assay, we considered the
measurement of 2.5% 239Pu in a MOX fuel pin. Using an intense bremsstrahlung beam and an
array of 24 HPGe detectors in a backscatter arrangement the 239Pu content could be measured
with 5% statistical uncertainties in roughly 3 hours. As in the case of SNF assay, much shorter
measurement times could potentially be achieved with future intense quasi-monoenergetic photon
sources.

Further research is essential to fully assess the NRF technique for safeguards applications and
to develop future systems. To overcome the challenge of accruing sufficient counting statistics, the
development of very intense LCS photon sources with small energy spreads is of utmost interest, as
is the development of very fast, high-resolution γ-ray detectors and efficient threshold detectors. A
high priority for assessing NRF measurements of Pu in SNF is to determine if 240Pu has sufficiently
strong NRF resonances so that this isotope could be measured using available photon sources and
detectors. Also of interest is the expansion of nuclear data for other important actinides including
long-lived Pu isotopes, 233U, and possibly other transuranic isotopes. For accurate NRF-based
measurement more precise and accurate resonance cross sections will be needed for all isotopes of
interest.
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1 Introduction

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external
photon beam leading to the emission of γ rays with specific energies that are characteristic of
the emitting isotope[1, 2]. The promise of NRF as a non-destructive analysis technique (NDA)
in safeguards applications lies in its potential to directly quantify a specific isotope in an assay
target without the need for unfolding the combined responses of several fissile isotopes as often
required by other NDA methods.

The use of NRF for detection of sensitive nuclear materials and other contraband has been
researched in the past[3]. In the safeguards applications considered here one has to go beyond
mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout
this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of
NRF signal strengths are described in Section 2.

Well understood modeling and simulation tools are needed for assessing the potential of NRF
for safeguards and for designing measurement systems. All our simulations were performed with
the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our
initial studies showed that MCNPX grossly underestimated the elastically scattered background
at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected
calculations based on ENDF form factors showed much better agreement with experimental data
for the elastic scattering of photons on an uranium target, the elastic backscatter is still not
rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant
Dipole Resonance scattering), which are expected to play an important role at higher energies, are
not yet included. These missing elastic scattering contributions were studied and their importance
evaluated evaluated against data found in the literature as discussed in Section 3.

A transmission experiment was performed in September 2009 to test and demonstrate the
applicability of the method to the quantitative measurement of an isotope of interest embedded
in a thick target. The experiment, data analysis, and results are described in Section 4.

The broad goal of our NRF studies is to assess the potential of the technique in safeguards
applications. Three examples are analyzed in Section 5: the isotopic assay of spent nuclear fuel
(SNF), the measurement of 235U enrichment in UF6 cylinders, and the determination of 239Pu
in mixed oxide (MOX) fuel. The study of NRF for the assay of SNF assemblies was supported
by the Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy as part
of a large multi-lab/university effort to quantify the plutonium (Pu) mass in spent nuclear fuel
assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. NRF
is one of 14 NDA techniques being researched. The methodology for performing and analyzing
quantitative NRF measurements was developed for determining Pu mass in SNF and is extensively
discussed in this report. The same methodology was applied to the assessment of NRF for the
measurement of 235U enrichment and the determination of 239Pu in MOX fuel. The analysis
centers on determining suitable NRF measurement methods, measurement capabilities that could
be realized with currently available instrumentation, and photon source and detector requirements
for achieving useful NDA capabilities.
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2 Quantitative NRF Measurements

Nuclear resonance fluorescence is the process by which a nucleus absorbs energy in the form of
electromagnetic radiation, is excited to a nuclear state, and then subsequently de-excites to the
ground state by the emission of one or more γ rays. As will be discussed in detail later, the angular
distribution of re-emitted photons is governed by the angular momenta of the states involved in
the process. The energy of the emitted γ rays is slightly below that of the NRF-inducing photons
due to the energy transfered to the nucleus (nuclear recoil).

The energies of the photon that induced the initial excitation, and the energy of the re-emitted
photon(s) are characteristic of the specific state that underwent NRF and therefore, characteristic
of the isotope. Photons produced during de-excitation of an NRF state are referred to herein as
NRF γ rays. Because NRF states are simply excited nuclear states, possible NRF γ-ray energies
range from 10’s of keV up to many MeV. However, for the purpose of using NRF to assay materials,
photons of energy between 1.5 and 4 MeV are most useful.

Both, the elastic and inelastic scattering of photons may contribute to the background. Mea-
surements of NRF γ rays at backwards angles, relative to the interrogating beam direction, yields
backgrounds that are significantly reduced compared to forward angles.

2.1 Nuclear Resonance Fluorescence

In the context of assaying materials, NRF is usually induced by exciting nuclear states with a beam
of photons. The subsequent NRF γ rays are measured using photon detectors such as high-purity
germanium (HPGe) or scintillation detectors. Because NRF states correspond to excited nuclear
levels, the photo-absorption and NRF γ-ray energies identify the nucleus that has undergone NRF,
analogous to passive γ-ray spectroscopy.

If assay geometry and NRF cross section are known, measuring the rate at which NRF occurs
allows the number of atoms of the corresponding isotope to be determined. The rate at which a
nuclide undergoes NRF in thin targets is given by

R =

∫
NΦ(E)σ(E)dE (2.1)

Thicker targets require geometrical corrections due to the fact that the energy-dependent photon
flux, Φ(E) changes as it traverses the target. This will be discussed in Section 2.4.1.1.

The cross section for photo-excitation of a nuclear state is given by the Breit-Wigner distribu-
tion

σ(E) = πg
(~c)2

E2

ΓΓ0

(E − Ec)2 + (Γ/2)2
(2.2)

where Γ is the full-width at half maximum (FWHM) of the state, Γ0 is the partial width of the state
for decay by γ ray emission to the ground state, Ec is the centroid energy of the resonance, and
g is a statistical factor equal to the ratio of the number of spin states available for the excitation
to the number of initial spin states. For NRF events where the initial nuclear state is the ground
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state, it is

g =
2J + 1

2(2J0 + 1)
(2.3)

where J and J0 are the angular momentum quantum numbers of the excited and ground states,
respectively. There are 2J + 1 magnetic substates for a state of angular momentum J , and the
additional factor of 2 in the denominator is due to the fact that the photons inducing excitation
can have two possible helicities.

The probability for de-excitation of a state by a specific mode (i.e. neutron emission, γ-ray
emission, etc.) yielding a lower-energy state can be defined by the state’s partial width for that
mode,

pi =
Γi∑
j

Γj
=

Γi
Γ

(2.4)

where we have used
Γ =

∑
j

Γj (2.5)

implying that the summation over j includes all possible de-excitation modes. Combining equa-
tion 2.2 and 2.4, we note that the cross section for NRF to occur via emission of a single γ ray,
and de-excitation to the ground state is given by

σGS(E) =
Γ0

Γ
σ(E) = πg

(~c)2

E2

Γ2
0

(E − Ec)2 + (Γ/2)2
(2.6)

2.1.1 NRF γ-ray Angular Distributions

NRF is generally considered to only occur between states that differ by 2 or fewer units of angular
momentum. The angular distribution of NRF γ rays, relative to the NRF-inducing radiation
can be described by the same spin algebra that is used to define angular correlations in γ-ray
cascades[5].

The cross section for NRF γ-ray emission at a direction, θ, relative to the incident photon
beam is given by

σ(θ) = W (θ)σ (2.7)

where, W (θ), denotes the angular correlation function. For a more in depth discussion of angular
dependence see reference[2].

239Pu has a spin-1/2 ground state and only transitions that return to the ground state are
considered in this discussion. Transitions of the form 1/2 → 1/2 → 1/2, 1/2 → 3/2 → 1/2,
and 1/2 → 5/2 → 1/2, are all expected to be possible in NRF (∆J ≤ 2). Furthermore, the
multipolarity of the 1/2→ 3/2 excitation may be either dipole or quadrupole (due to vector spin
addition rules), and likewise for the 3/2→ 1/2 de-excitation. The angular distributions predicted
for purely dipole-dipole and purely quadrupole-quadrupole transitions happen to be the same,
but if the excitation occurs via quadrupole and the de-excitation via dipole (or vice-versa) the
expected W (θ) differs significantly. Because the actual intensities of quadrupole versus dipole
transitions (commonly referred to as the mixing ratio, δ) can vary from state to state, any possible
W (θ) distribution combination is allowed.
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The cases of ground-state to ground-state NRF on spin 1/2 nuclei is presented in Figure 2.1.
The red curve indicates a 1/2 → 3/2 → 1/2 transition where both the photon multipolarities
were both either dipole or quadrupole, whereas the green curve indicates a transition where one
photon was dipole, and the other quadrupole. The area between the curves has been shaded gray
to indicate that any possible angular correlation function between these two extremes is physically
possible. Finally, the sequence 1/2 → 5/2 → 1/2 (assuming octupole radiation is negligible) is
only described by quadrupole transitions.

Figure 2.1 The angular correlation functions, W (θ) for NRF between states of initial and final spin 1/2 allowed
by dipole and quadrupole radiation. See text for discussion.

2.1.2 Thermal Motion and Nuclear Recoil

The process of NRF is connected to the environment of the nucleus due to the fact that nuclei,
as part of atoms, are not stationary, but are always in thermal motion. In the case where NRF is
induced on a nucleus that is part of a gaseous molecule, the thermal velocity distribution of the
nuclei leads to the Doppler broadening of the resonances.

The Doppler width of a broadened resonance is commonly refered to as

ΓD ≡ 2
√

2 ln 2∆ = 2.3548∆ (2.8)

with

∆ = E

√
kBT

Mc2
(2.9)

because it describes the FWHM of the energy distribution1. M is the mass of the nucleus, kB is
the Boltzmann constant and T is the absolute temperature of the gas.

1It should be noted that another common definition of the Doppler width is
√

2∆. This definition is not used
in this document.
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The Doppler-broadened Lorentzian profile (DBLP) can be expressed as

σD(E) =

√
πg(~c)2ΓΓ0√

2∆

∫ ∞
0

dE ′
1

(E ′ − Ec)2 + (Γ/2)2

exp(−(E ′ − E)2/2∆2)

E ′ 2
(2.10)

As an illustrative example, Figure 2.2 demonstrates the effect that a Maxwell-Boltzmann energy
distribution can have on the effective resonance shape that an incident photon experiences. This
case describes a 2.175 MeV centroid energy (Ec)

238U resonance with a width, Γ = 54 meV and
that de-excites by photon emission to the ground state 68% of the time (Γ0/Γ = 0.68). The spin
of the ground state is 0, and that of the excited state is assumed to be 1, such that g = 3/2.
This distribution is also broadened due to the motion of the atoms, which have been described by
a Maxwell-Boltzmann velocity distribution for 238U at 300 K: ΓD = 1.78 eV. The corresponding
energy probability distribution was multiplied by

∫
σ(E)dE, and is shown as the green line in

Figure 2.2. Equation 2.10 was numerically integrated for these parameters for an array of incident
photon energies and the resulting effective cross sections are shown as the dots on the red line in
Figure 2.2. This example demonstrates that the width of the effective cross section distribution
will be broader than that of the energy distribution and that of the natural cross section.

Figure 2.2 Effective resonance shape experienced by an incident photon, for the 2175 keV resonance of 238U at
300 K. For this resonance, Γ = 54 meV, Γ0 = 37 meV, and g = 3/2.

Non-amorphous solids are composed of crystalline arrangements of constituent atoms. These
atoms vibrate with thermal energy, which can be described as a phonon.The effects of phonons are
most evident when the nuclear recoil energy is not significantly greater than typical phonon ener-
gies. However, above ∼ 1.5 MeV, the influence of crystalline phonons on the energy distribution
of the nuclei continues to have measurable effects. In particular, the binding energy of the crystal
and the phonon-induced motion causes crystalline atoms to vibrate faster than gaseous atoms at
the same temperature. In the limit that ∆/

√
2 + Γ >> 2kBθ, the effective temperature at which

equation 2.10 should be evaluated[1, 6] is

Teff
T

= 3

(
T

θ

)3 ∫ θ/T

0

t3
(

1

exp(t)− 1
+

1

2

)
dt (2.11)
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where, θ is the Debye temperature of the crystal, which is a physical property of a material that
is related to the theoretical maximum energy a single phonon can carry in the material.

Finally, we consider the influence of momentum conservation on NRF physics. Conservation of
momentum requires that when a nucleus of mass, M absorbs a γ ray of energy, Eγ, and momentum,
Eγ/c, it will recoil with the γ ray’s momentum, which translates to an energy

Erecoil =
E2
γ

2Mc2
(2.12)

For example the 2431 keV resonance of 239Pu corresponds to a recoil energy of 13.2 eV. The
conservation of momentum applies to the re-emission of NRF γ rays as well. Upon resonance
absorption, a nucleus will recoil with energy given by equation 2.12. NRF state lifetimes tend to
be on the order of 10−17 to 10−12 s, implying that the nucleus will re-emit an NRF γ ray before
slowing down to thermal velocities. In the event that the γ ray is emitted in precisely the same
direction as the incident exciting photon, the nucleus would recoil back to its initial velocity. If the
γ ray is emitted in a different direction, the nucleus will again recoil from γ-ray emission and the
resulting NRF γ ray will be lower in energy than the initial photon. Most probably, this energy
difference will be larger than the Doppler-broadened width of the NRF resonance, and thus the
emitted NRF γ ray will no longer be resonant.

2.2 Measurement Methods

In this section the development and use of two methods to measure nuclear resonance fluorescence
rates for non-destructive materials assay studies are discussed. The two assay methods considered
here are termed backscatter and transmission assay. They differ in how photons undergoing NRF
in the assay target are observed. Both methods use a photon source to induce NRF in the target
material. In backscatter assay, a radiation detector is positioned at backwards angles relative to
the incident photon beam trajectory. In transmission assay a detection system down-stream of the
assay target is used to measure the excess attenuation of resonant-energy photons in the target.
Both methods have advantages and disadvantages that will be discussed in the following sections.

2.2.1 Backscatter Method

Schematic drawings of backscatter NRF assay geometries are shown in Figure 2.3. A source of
energetic photons illuminates the target material and one or more radiation detectors measure the
photon flux backscattered from the target. The interogating photons stimulate resonances in the
isotope of interest (IOI), e.g., 239Pu within spent nuclear fuel, which promptly de-excite by nearly
isotropic emission of one or more photons. These NRF γ rays are mixed in with the photon flux
backscattered from the target.

The background, non-resonant photon flux in the backscattered direction relative to the beam
incident upon the target is composed of elastically and non-elastically scattered interrogation
photons and photons from radioactive decays in the target. The detectors used are positioned at
backwards angles where the background photon flux is lowest and the signal-to-background ratio
the highest. They are shielded from the interogation source using large amounts of shielding, such
as lead or tungsten. To limit the count rate seen by the detector due to low energy scattered
photons, 511 keV photons, and the radioactivity of the target, lead shielding, or filters, are placed
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in front of the detectors. Filters may consist of up to ∼200 g/cm2 of high-Z material, depending
on photon beam characteristics and detector count rate limitations. They are application-specific
and will be discussed in specific assay examples in Section 5. As discussed further in Section 2.3.2
better detector energy resolution increases the statistical value of registered NRF counts. Because
of this, high-purity germanium detectors (HPGe) are most commonly used for NRF experiments.

Figure 2.3 Schematic drawing of bremsstrahlung-induced backscatter NRF assay setups. Figure 2.3 a) on the
left, depicts a measurement on a single fuel pin. Figure 2.3 b) on the right shows a possible arrangement for a
measurement on a fuel assembly.

The measurement of NRF γ rays at backward angles suffers from the disadvantage that ra-
dioactivity emitted by the assay target can necessitate thick filters in front of the detectors, which
subsequently reduce the NRF γ-ray detection rate. The NRF signal is also depth dependent and
the method is more sensitive to radiation backscattered from the front of the target rather than
from deeper in the target, resulting in potentially biased results for non-homogeneous targets.
The transmission method described in the following section mitigates these disadvantages at the
expense of a more complicated assay system and the need for stronger interrogating photon beams.

2.2.2 Transmission Method

The concept of an NRF assay using the spectrum transmitted through the target is as follows:
an interrogating beam impinges upon the assay target and the spectrum transmitted through
the target is then incident upon a thin sheet made of the isotope to be assayed or IOI, called
the transmission detector (TD) or witness foil. Resonant-energy photons that impinge upon the
TD may induce NRF. The NRF γ rays emanating from the TD are then detected by radiation
detectors located at backward angles, relative to the incident bremsstrahlung beam. A schematic
diagram of this assay type is shown in Figure 2.4.

The rate at which NRF γ rays are detected is a measure of the areal density of the IOI within
the sensitive volume of the assay target which is defined as the region through which interrogating
photons can penetrate and subsequently reach the TD without scatter. The rate of NRF in the
target and thus the attenuation of resonant energy photons increases with the amount of the IOI
within the target leading to a decrease in the rate of NRF in the TD (or witness foil).

For an ideal transmission measurement, the target thickness should be such that the IOI pref-
erentially attenuates a significant fraction of the penetrating resonant-energy photons. Likewise,
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Figure 2.4 Schematic description of geometry used for transmission assay measurement.

the source of interrogating photons should be sufficiently intense such that the detectors used to
view the TD operate near their rate limit.

For spent fuel, the areal densities of Pu isotopes are generally very low compared to this
ideal case, and the excess attenuation of resonant-energy photons is small. Thus the transmission
measurement is considered for spent fuel assemblies rather than fuel pins. The radioactivity of
the spent fuel is not an impediment in this geometry since the detectors are well shielded.

The term notch refill is used to describe the process by which photons incident upon the assay
geometry down-scatter to the energy of a resonance and subsequently interact in the transmission
detection sheet. The process results in less observed resonant attenuation than would be predicted
by consideration of simple exponential attenuation, and therefore neglect of the notch refill phe-
nomenon could result in NRF transmission measurements that systematically under-predict the
areal density of the measured isotope in the target.

Photon interaction processes that can induce notch refill include incoherent scatter and brems-
strahlung emission from photoelectrons. The rate at which notch refill occurs is dependent upon
the compositions of the assay target and transmission detection sheet, their respective positioning,
the energy and strength of a resonance, and the photon spectrum used for the measurement. For
a more in depth discussion on notch refill see Section 3.3.3.

2.3 Instrumentation

2.3.1 Photon Sources

Two types of photon sources are being considered for NRF safegaurds applications. Bremsstrah-
lung sources are available and can provide intense photon beams. Quasi-monoenergetic photon
sources offer great promise due to possibly very large increases in the signal-to-background ratio
when compared to a bremsstrahlung source. However, quasi-monoenergetic sources are in the
early stages of development and do not yet provide the necessary photon flux to, for example,
precisely measure Pu content in spent fuel.
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Figure 2.5 MCNPX-computed bremsstrahlung photons spectrum for photons leaving within 3.57o of the initial
electron trajectory, for 2.6 MeV electrons normally incident upon 102 µm thick Au foil backed by 1 cm thick Cu.

2.3.1.1 Bremsstrahlung Sources

Bremsstrahlung sources utilize electron accelerators to produce photons in a conversion target.
Newer electron accelerators, such as rhodotrons, have reported currents approaching ∼100 mA[9,
10]. A typical energy spectrum of photons produced by a bremsstrahlung source is shown in
Figure 2.5. Only a small fraction of photons that are produced are at the energies of resonances.
Most photons are produced at lower energies and must be filtered out in order to avoid saturating
the γ-ray detectors.

2.3.1.2 Quasi-monoenergetic Sources

The most advanced quasi-monoenergetic (QM) source type to be considered are laser-Compton
photon sources. When a laser beam is scattered off a beam of relativistic electrons, the photons
are up-shifted in energy to produce photons whose energies are given by[11, 12, 13, 14, 15]:

Eγ =
4γ2EL

1 + (γθ)2 + 4γEL/mec2
(2.13)

where θ is the angle between the electron beam and the up-scattered photon, in radians, EL is the
laser energy, and γ is given by

γ =
1√

1− (ve/c)2
(2.14)

Table 2.1 presents an evaluation of equation 2.13 assuming a Nd:YAG laser is used as the low-
energy photon source. For Nd:YAG laser energies, the electron energy must be adjustable between
335 and 375 MeV to produce photons capable of exciting the known 239Pu resonances. Likewise, if
the laser is frequency-doubled, the electron energy must be adjustable between 240 and 270 MeV.

Presently, the most intense source of QM photons of energies between 2 and 4 MeV is the High
Intensity γ Source (HIΓS), [11]. It is capable of producing approximately 100 - 200 photons/eV/s

9



Table 2.1 Laser Compton photon energies given by equation 2.13.

Ee− γ
EL θ Eγ

(MeV) (eV) (mrad) (keV)
370.3 724.7 1.165 0.0 2431.5
370.3 724.7 1.165 0.2 2381.8
370.2 724.5 1.165 0.0 2430.2
347.6 680.2 1.165 0.0 2143.6
347.6 686.9 1.165 0.2 2104.7
262.2 513.1 2.330 0.0 2431.5
262.2 513.1 2.330 0.2 2406.4
246.1 481.8 2.330 0.0 2143.6
246.1 481.8 2.330 0.2 2125.5

at 2 MeV, with energy spreads ranging from 10 to 100 keV FWHM. HIΓS is primarily a free
electron laser (FEL) based facility for nuclear physics research.

Pulsed lasers can provide much larger photon intensities than FELs and thus produce higher
energetic photon intensities. Using higher repetition rates and better control of electron bunches,
proposed facilities anticipate 1 × 106 photons/eV/s intensities and beam energy spreads as low
as 1 keV. QM photon systems under construction are planned with 120 Hz lasers with 10 ps
pulses[12]. Much higher repetition rates are desired for faster measurements. The possibility to
time-correlate the counting of NRF γ rays with the timing of the source offer the potential for
background suppression and additional measurement improvements.

The importance of very intense photon sources will discussed further in Section 5.

2.3.2 γ-ray Detectors

In order to use NRF to assay a material, the resonantly scattered photons must be observed
against an intense background. Normally, this is best accomplished with high-resolution γ-ray
detectors, but higher count rate capability may outweigh better energy resolution.

Today, high-purity germanium detectors (HPGe) provide the best energy resolution in the 2 -
3 MeV energy range. While micro-calorimeters have achieved better energy resolution, they have
only been successful at measuring low-energy photons (. 200 keV) at very low count rates[16, 17].
Thus in this report, HPGe detectors are considered the base-line detector and other detectors
capable of higher count-rates are compared to HPGe. At 2 MeV, the HPGe energy resolution,
∆E, is approximately 2.5 keV (FWHM). HPGe and other detector types can vary significantly in
size and shape. To generally account for this, we assume that a reference detector will be a 100%
relative efficiency HPGe detector, with a surface area of approximately 50 cm2.

2.3.2.1 Detector Energy Resolution and Statistics

To relate the relative intensities of NRF signals and backgrounds to the precision with which a
measurement may be made, we present a simple statistical model. Suppose the signal of interest
is detected at a rate, S. The background rate, B, is estimated by examining the count rate in
adjacent channels. The total signal rate is, T = S + B. We define the signal-to-background
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Figure 2.6 The relative increase in the fractional uncertainty of a measurement, f(ξ), as a function of the signal-
to-background ratio, ξ, along with the functions (red) that describe f(ξ) as ξ → 0 and ξ → inf.

ratio as S/B = ξ. After a counting period of t, we expect t(S + B) total counts within the
area of interest (presumably where an NRF peak is expected). The total number of counts from
the signal is NS = tS, with fractional uncertainty of ϑ = σS

NS
. Assuming Poisson statistics, the

standard deviation of the expected number of total counts, N , is
√
N , and we have

ϑ =

√
t(T +B)

tS
=

√
S + 2B√
tS

=

√
1 + 2/ξ√
NS

≡ f(ξ)√
NS

(2.15)

The function, f(ξ), that expresses the reduction in statistical quality of a measurement of NS

signal counts varies as f ∼
√

2/ξ for small values of ξ, whereas for large ξ, f → 1. f(ξ) is shown
in Figure 2.6 along with the limiting functions. This observation leads us to conclude that the
NRF count rate must be almost as intense as the background signal rate within the detector’s
energy resolution to obtain counts with reasonable statistical quality.

Background signals due to processes such as elastic and inelastic scattering will vary slowly
for photon sources that are broad in energy resolution compared to those of detectors. Therefore,
using a HPGe detector, it is necessary that the NRF interaction rate to be approximately 1000
(≈ ∆E/ΓD) times the scattering rate of non-resonant photons to accrue NRF count rate statistics
in an efficient manner. This ratio increases proportionally with detector resolution.

As an example, a LaBr3 scintillation detector has a resolution that is about 18 times worse
than a HPGe detector[18]. This implies that the background count rate within the detector’s
resolution will be about 18 times higher than it would be for an HPGe detector, and if ξHPGe = 1,
the statistical value of a LaBr3 count,

f(ξHPGe)/f(ξLaBr3) ≈ 1/3.5 (2.16)

times less than that of an HPGe count. However, LaBr3 can operate at approximately 15 times
higher count rates than HPGe, which may make its use advantageous, especially for transmission
NRF measurements that use a TD .
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Table 2.2 Parameters relevant for Cherenkov detectors of multi-MeV photons

material n Eth (MeV) Eγ (MeV)
water 1.333 0.262 0.262
SiO2 nanotube film 1.05 1.165 1.375
SF6 gas @ 22 atm 1.025 1.817 2.044
SiO2 aerogel 1.025 1.817 2.044
SF6 gas @ 10 atm 1.008 3.553 3.793
SF6 gas @ 1 atm 1.00078 12.41 12.66
air @ 1 atm 1.0003 20.6 20.8

2.3.3 Threshold γ-ray Detectors

The requirement that NRF detectors be capable of very high detection rates leads to investigation
of alternative detector types, such as threshold detectors which only induce signals when incident
particles have sufficient energy, e.g., Cherenkov detectors.[19, 20]

Cherenkov radiation is emitted when a particle such as an electron passes through a medium
with a velocity, ve, that is faster than the speed of light, vhν = c/n or if ve/c > 1/n. This gives a
minimum electron energy of

Eth = m0c
2

(√
1 +

1

n2 − 1
− 1

)
(2.17)

Multi-MeV photons primarily interact by incoherent scattering or pair production. Electrons
are primarily produced by incoherent scatter, yielding a continuum of electron energies up to

Ee =
2E2

γ

mec2+2E2
γ
. As Eγ increases, this value nears Eγ −mec

2/2. With Eγ in the NRF energy range

(1.5 - 3 MeV), the difference between γ-ray energies and the most energetic Compton electrons
is approximately 220 keV. Therefore in order to have some sensitivity for NRF photo-electrons,
a Cherenkov detector must have Eth < Eγ − 220 keV. Table 2.2 lists the index of refraction
of many materials, the threshold energy for electrons to produce Cherenkov radiation, and the
corresponding minimum photon energy that will induce Cherenkov radiation.

Light yields tends to be proportional to the energy of the electron; examples can be found in
Reference [20]. Because higher energy electrons induce larger signals, photons of higher energies
than the resonance energy become particularly important as they contribute disproportionately
to the measured signal, which is problematic especially for backscatter NRF measurements. We
have found, see section 5.1.2, that these detector types would be useful in transmission measure-
ments conducted using quasi-monoenergetic photon sources that are approximately 104 times more
powerful than those currently being proposed.

2.4 Analytical Modeling

In this section the development and use of models to predict expected nuclear resonance fluores-
cence detection rates for non-destructive materials assay studies are discussed. We rely heavily
on the use of analytical modeling to estimate the NRF rates because Monte Carlo simulations of
NRF assays are very computationally intensive and time consuming even on large clusters. The
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MCNPX code is used to simulate background rates and other scattering effects such as notch
refill. We generally assume in our modeling that NRF is detected by a single radiation detector,
and that use of multiple detectors would proportionally increase the calculated count rates. Ad-
vantages and disadvantages of the backscatter and transmission methods will be discussed in the
following sections along with examples of measurements that have been modeled by a combination
of computational and analytical methods.

2.4.1 Backscatter Assay

Schematic drawings of backscatter NRF assay geometries are shown in Figure 2.3. A source of
energetic photons illuminates the target material (considered to be used fuel) and one or more
radiation detectors measure the photon flux backscattered from the target. The photon flux at
the detector, Φ(rd, E), which is proportional to the measured count rate, can be written as

Φ(rd, E) = Φtarget(rd, E) + Φradioactivity(rd, E) + Φbeam(rd, E) (2.18)

where Φtarget(rd, E) is the flux due to interrogating photons that were scattered toward the detector
after interacting in the spent fuel, which includes the contribution due to NRF of constituent
isotopes. Φradioactivity(rd, E) is the photon flux due to radioactive decay of materials within the
interrogation geometry, and Φbeam(rd, E) is due to interrogating beam photons that have reached
the detector without interacting within the target material. Sufficient shielding must be placed
between the bremsstrahlung source and the detectors to keep Φbeam negligible.

2.4.1.1 NRF Count Rates

We consider the contributions to Φtarget(rd, E) due to resonant and non-resonant scattering sep-
arately. Resonant scattering produces NRF signals, whereas non-resonant scattering contributes
to the background.

The rate at which NRF signals due to photons of energy, E, from a location, r, within the
target volume, V , are detected is given by

d2RNRF

dV dE
= NΦ(E, r)σNRF(E)We(θ) exp[−µ(Eγ)ro]

[
ε(Eγ)

Ω(r)

4π
Pf (Eγ)

]
(2.19)

where N is the number density of atoms in the target that undergo NRF with cross section
σNRF(E), Φ(E, r) is the energy-differentiated photon flux at the point r, We(θ) is the effective
angular correlation function (approximately given by equation 2.7), Eγ is the energy of the emitted
NRF γ ray, which interacts within the target material with an attenuation coefficient, µ(Eγ), that
results in a total attenuation of the NRF γ ray of exp[−µ(Eγ)ro], ε(Eγ) is the probability that

the radiation detector measures the full energy of the NRF γ ray, Ω(r)
4π

is the fraction of the solid
angle subtended by the radiation detector from the point where the γ ray is emitted, and Pf (Eγ)
is the probability that the NRF γ ray penetrates through the radiation filter without scatter. The
attenuation of NRF γ rays is only due to non-resonant interactions because the energy of the
emitted γ rays is shifted out of the resonance due to the nuclear recoil.
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Figure 2.7 Schematic drawing of an NRF interrogation of a target slab.

2.4.1.2 Slab Geometry

The simplest geometry to consider is a slab target of thickness, t, irradiated with a uniform
parallel beam of intensity, Φi, that is normally incident upon the slab. This geometry is applied
to the calculation of the transmission detector response. A radiation detector is assumed to be
located sufficiently far from the target that the beam diameter and slab thickness are negligibly
small compared to the detector distance, rd. A schematic rendering of this geometry is shown in
Figure 2.7. Although not indicated, the detector geometry may include a filter that NRF-energy
photons have a probability, Pf (Eγ), to penetrate.

For simplicity, we neglect photon down-scatter. Then Φ(E, r) only varies due to the attenuation
of photons,

Φ(E, x) = Φi exp[−µ(E)x] (2.20)

and µ(E) now contains both resonant and non-resonant contributions,

µ(E) = µnr +NσNRF(E) (2.21)

Considering only photon energies near an NRF resonance, we may neglect the energy-dependence
of the non-resonant attenuation coefficient, µnr. Likewise, the attenuation coefficient for NRF γ
rays, µ(Eγ), is equal to µnr, because the nuclear recoil has made them non-resonant.

The distance the photon must traverse to leave the target is given by ro = x/cos(θ), where θ is
the angle between the interrogating photon trajectory and the direction of the detector’s location.
The detector’s surface area is assumed to be given by A.

Substituting, the rate of detection of full-energy NRF γ rays can be written as

d2RNRF

dxdE
≈ exp [− (µnr[1 + 1/cos(θ)] +NσNRF(E))x]NΦiσNRF(E)We(θ)

AεPfEγ
4πr2

d

(2.22)

We define
α = µnr[1 + 1/ cos(θ)] (2.23)

and µNRF(E) = NσNRF(E) and obtain

dRNRF

dE
=

∫ t

0

d2RNRF

dxdE
dx ≈ 1− exp[−(α + µNRF(E))t]

α + µNRF(E)
NΦiσNRF(E)We(θ)

AεPf (Eγ)

4πr2
d

(2.24)
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If we further approximate that

σNRF(E) ≈


0, if E < EC − ΓD/2;

σCNRF, if EC − ΓD/2 ≤ E ≤ EC + ΓD/2;

0, if E > EC + ΓD/2.

(2.25)

where

σCNRF =

∫
σNRF(E)dE

ΓD
(2.26)

EC is the centroid energy of the resonance, and ΓD is given by equation 2.8. We may integrate
equation 2.24 to obtain

RNRF ≈
1− exp[−(α +NσCNRF)t]

α +NσCNRF

[NΦiσ
C
NRF]

We(θ)AεPf (Eγ)

4πr2
d

(2.27)

Equation 2.27 is arranged such that the expected rate at which NRF γ rays are detected is
divided into contributions due to three phenomena, the first term is due to the effective geometric
attenuation of photons before and after NRF. A more complex derivation of this term for non-
trivial geometries uses a simple finite element integrating routine. The second term, NΦiσ

C
NRF, is

the rate (per unit thickness) at which NRF would occur in the target without any attenuation,
and the final term is due to the probability of detection of NRF γ rays emitted from the target.

Although the constant cross section approximation of equation 2.25 will prove to be very flawed
in analysis of transmission assay, the assumption that the solid angle subtended by the detector is
independent of the interaction location within the target proves to be the largest approximation
in many backscatter NRF assay geometries.

2.4.2 Transmission Assay

2.4.2.1 NRF and Background Signal Rates

Photons penetrating the fuel assmbly undergo attenuation given by

Φ(E) = Φ0(E) exp[−µ(E)x] (2.28)

where x is the thickness of the assembly material the photon penetrates, and µ(E) is the energy-
dependent attenuation coefficient for photons in the assembly material, given by

µ(E) =
∑
ij

Niσij(E) (2.29)

where Ni is the number density of a given isotope, i, and σij(E) is the partial cross section for
a photon interaction event of type j for that isotope (i.e., incoherent scattering, pair production,
NRF, ...). There is also the potential for higher-energy photons to be down-scattered to the energy,
E, resulting in higher photon fluences than indicated by equation 2.28. The phenomenon of notch
refill, where a down-scattered photon becomes resonant in energy is discussed in more detail in
Section 3.3.3. For the case where the energy of an NRF resonance is near the maximum energy
of the interrogating photon spectrum, this occurrence is relatively rare. However, down-scattering
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Figure 2.8 Calculated spectrum of photons leaving a fuel assembly in the direction of a witness foil located 150
cm downstream from the assembly. The incident photon spectrum was 2.6 MeV endpoint energy bremsstrahlung,
similar to that shown in Figure 2.5, except the source collimation was assumed to be 1o .

significantly increases the photon flux for the low-energy portion of the transmitted spectrum,
relative to that predicted by equation 2.28.

We consider non-resonant photon transport through a target composed of UO2, Zr, and small
quantities of other actinides and fission products. The target geometry is a homogenized mixture
of these constituents at 4 g/cm3 density and 21.8 cm square, which is the homogenized equivalent
of a 17 pin by 17 pin (17x17) spent fuel assembly. Expected photon intensities are estimated with
MCNPX simulations, where the effects of resonant absorption are explicitly excluded. Resonant
absorption is calculated separately using the formalisms developed below in this section.

The bremsstrahlung spectrum used in this simulation to irradiate the target is shown in
Figure 2.5. The conversion target is assumed to be 150 cm from the side face of the homoge-
nized fuel assembly target. The geometry is such that the diameter of the un-scattered beam is
21.8 cm at the back plane of the target. The spectrum of photons leaving the target’s back plane
in the direction of the TD is shown in Figure 2.8. The integrated flux is attenuated by a factor of
∼400, however, photons above 2 MeV are only attenuated by a factor of 40− 50.

The transport of the photons through and scattered off the TD are simulated in a next step.
The energy-differentiated photon flux was calculated at a point 100 cm from the TD at an angle
of 120o, relative to the initial beam direction. This photon energy distribution is then taken as
the source spectrum for a final series of simulations in which the shielded detector response is
examined. In these simulations, the thickness of the Pb filter was varied, and for each incident
photon, the energy deposited within the germanium was calculated, resulting in the expected
measured photon spectrum.

The thicknesses of the Pb filters were 1.27, 2.54, 4, 6, and 8 cm for these simulations. Going
from a filter thickness of 1.27 cm to 8 cm, the total count rate in the detector (100% relative
efficiency HPGe) decreases from 4.4× 107 to 1.2× 105 counts per Coulomb of 2.6 MeV electrons
incident upon the bremsstrahlung converter. In general, an HPGe detector should operate at a
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Table 2.3 Effects of the photon filter on the photon spectrum that is calculated to be measured by a 100% relative
efficiency HPGe detector. xf indicates the thickness of the Pb filter. The values corresponding to ‘counts per 2.6
MeV e−’ indicate the total number of expected counts per 2.6 MeV electron incident upon the bremsstrahlung
converter, and from these values, the electron beam intensity resulting in 2 × 104 counts per second, Imax, is
calculated. Values labeled as Iγ/Iγ0 indicate the attenuation of a 2.25 MeV γ ray as it penetrates through the
corresponding filter thickness.

xf counts per Imax
Iγ/Iγ0

(cm) 2.6 MeV e− (mA)

1.27 7.0× 10−12 0.46 0.53

2.54 1.8× 10−12 1.8 0.28

4.0 4.1× 10−13 7.8 0.14

6.0 7.6× 10−14 42 0.051

8.0 1.9× 10−14 170 0.019

maximum of between 2×104 and 8×104 Hz[21]. Using 2×104 as a conservative nominal maximum
count rate, the maximum allowable beam current for a given filter thickness is determined. These
values are summarized in Table 2.3.

Increasing the filter thickness results in more attenuation of the NRF γ rays. This decreases the
probability that a NRF γ ray will deposit its full-energy in the HPGe detector. This attenuation is
estimated with the expression I = IO exp(−µxf ), where µ is the attenuation coefficient (without
coherent scattering) taken from reference[22]. The attenuation due to the filter, Iγ/Iγ0, is also
shown in Table 2.3 for a 2.25 MeV γ ray. Attenuation coefficients are not a strong function of
energy in the range between 2 and 2.5 MeV, and therefore we can consider these values to be fairly
representative of the behavior NRF γ rays that would be induced by a 2.6 MeV endpoint-energy
bremsstrahlung beam.

2.4.2.2 Analytical Considerations

In this section we discuss the analytical model that relates the areal density of the IOI in the
target to the decrease in the intensity of the NRF γ rays measured by radiation detectors in the
transmission geometry. We consider the relative attenuation of photons at, and near, resonant-
energies through materials containing varying amounts of an isotope of interest. As discussed
in Section 2.1.2, the energy-dependent cross section that photons experience while traversing
a material is given to an excellent approximation by the Doppler-broadened Lorentzian profile
(DBLP) described in equation 2.10. The relative probability that a photon at or near resonant-
energy traverses the assay target and then subsequently undergoes NRF in the TD is calculated.
In Section 2.5 the expected NRF probabilities are compared to alternate predictions that would
result if approximate models of the energy-dependent cross section were used.

First, we assert that within a few eV of a resonance, it is valid to approximate all non-resonant
cross sections as constants and this approximation is accurate to a fraction of a percent[22].
Likewise, across the width of a resonance the change in intensity of bremsstrahlung-spectrum
photons may be neglected. With this, the energy-differentiated photon flux, Φi(E), incident upon
the assay target is assumed constant and effects due to non-resonant photon attenuation are
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separated. Neglecting down-scattering, the effective photon flux leaving a target is approximately

Φo(E) ≈ Φi exp[−NσNRF(E)x] exp [−µatomx] (2.30)

where N is the atom density of a Pu isotope (in units of atoms/cm3) in the assembly, x is the
target thickness (that is determined by a ray-tracing algorithm), σNRF(E) is the cross section due
to NRF, and µatom is the attenuation coefficient for photons in the assay target due to non-resonant
processes (assumed to be constant over the energy range of interest).

The rate at which NRF γ rays emitted into backward angles relative to the direction of the
NRF-inducing incident beam are counted and was considered in Section 2.4.1.1 for a slab target.
The only difference here is that the incident photon flux is now Φo(E).

dRNRF

dE
≈ 1− exp[−(α + µNRF(E))tTD]

α + µNRF(E)
NTDΦo(E)σNRF(E)We(θ)

Aε

4πr2
d

(2.31)

where tTD refers to the TD thickness and α is defined in equation 2.23.
Equation 2.31 may be re-written as follows

dRNRF

dE
= λ(E)

[
exp[−NσNRF(E)x]σNRF(E)

] [
NTDΦi exp(−µx)We(θ)

Aε

4πr2
d

]
(2.32)

The first term,

λ(E, tTD) =
1− exp[−(α + µNRF(E))tTD]

α + µNRF(E)
(2.33)

is an effective thickness that a photon experiences as it traverses the slab. If the quantity α +
µNRF(E) is small,

λ(E, tTD) ≈ tTD (2.34)

Indicating that the rate of NRF γ ray detection would be directly proportional to the TD thickness.
However, for geometries containing a thick TD or if larger photon interaction probabilities are
present, the rate at which NRF is induced in the slab is less than NTDσNRFtTD because λ(E) ≤ tTD.

We define the first two terms of equation 2.32 as Λ(E, tTD, Nx),

Λ(E, tTD, Nx) ≡ λ(E)
(

exp[−NσNRF(E)x]σNRF(E)
)

(2.35)

This function contains all the parameters that can significantly vary over an energy range com-
parable to the Doppler-broadened width of an NRF resonance. The energy resolutions of all
commonly used γ-ray detectors are much wider than the width of an NRF resonance. Therefore
energy-dependent variations in Λ will not be directly observed in the detected photon energy spec-
trum and the quantity

∫
Λ(E)dE provides a quantity that is proportional to the rate at which

NRF counts will be measured.
The measured quantity that provides information on the areal density of the IOI in the sensitive

volume of the assay target is the reduced rate of NRF γ-ray counts, relative to those expected
for a comparable assay target with none of the IOI present. This quantity is called the effective
attenuation and is given by

A(tTD, Nx) ≡
∫

Λ(E, tTD, Nx)dE∫
Λ(E, tTD, 0)dE

(2.36)

18



Figure 2.9 The effective attenuation of photons given by equation 2.36 due to 239Pu NRF resonances with tTD = 8
g/cm2. Data for the resonances are shown in Table 3.3 and are from reference [23]. Each resonances is indicated
by its centroid energy in the legend.

The effective attenuation is dependent upon the parameters of the resonance it describes. Effective
attenuation functions are shown for different 239Pu resonances when tTD = 8 g/cm2 in Figure 2.9.
The parameters of the known 239Pu NRF resonances are shown in Table 3.3. Figure 2.9 indicates
that for a target of constant total areal density, but increasing Pu areal density, NRF γ-ray count
rates decrease. The rate at which they decrease is proportional to the width of the resonance. By
observing this reduced rate, the areal density of the Pu isotope is measured.

Λ(E, tTD, Nx) and therefore A(tTD, Nx) are functions of tTD. The thin TD sheet approximation
can result in significant errors (30% of A(tTD, Nx)) when a thick sheet is used to measure targets
with significant resonant attenuation. These effects however, appear predictable and are less severe
when A(tTD, Nx) is nearer unity.

2.5 Approximate NRF Cross Section Models

In the previous section it was implicitly assumed that all resonances take the Doppler-Broadened
Lorentzian Profile (DBLP) given in equation 2.10. However, approximate forms of the DBLP are
often assumed. The NRF data added to MCNPX and ENDF files as described in Section 3.2 uses
one such approximation.

The forms considered for resonance shapes are:

• a Maxwell-Boltzmann profile of equationwith width, ∆, given by equation 2.9;

• a point-wise evaluation of the Maxwell-Boltzmann distribution with linear interpolation
between points. The energies at which the Maxwell-Boltzmann distribution was evaluated
are the centroid energy, EC and EC ± 2 eV and EC ± 4 eV; and

19



Figure 2.10 Model forms of the resonance cross section profile. Width and total cross section values are from the
2209 keV resonance of 238U. Red = Maxwell-Boltzmann, Blue = point-wise, and Black = step function.

• a step increase and decrease as defined in equation 2.25.

The cross section from each model is normalized such that the integrated cross section is the same
as that of the natural cross section. These functional forms with shape parameters due to the
2209 keV resonance of 238U[24] are shown in Figure 2.10.

The differing approximate forms of the cross section profile result in calculated values of
A(tTD, Nx) that may differ by up to 5% for 239Pu isotopic areal density found in spent fuel.
The largest disagreement, results from the use of the constant cross section approximation. Use
of the Maxwell-Boltzmann profile or its point-wise evaluation will generally produce less than
1% errors for 239 areal densities. However, the transmission experiment described in Section 4
involved significantly larger areal densities, and therefore careful consideration of the forms of the
resonances was necessary.

2.6 Measurement Sensitivity

The research reported here aims at determining the feasibility of using NRF for NDA in safegau-
rds. This is discussed explicitly for SNF assay, measurement of uranium enrichment, and MOX
fuel assay in Section 5. The core question is what measurement sensitivity, i.e., precission and ac-
curacy, can potentially be achieved. The many contributing factors that were considered include
interrogating photon source, interrogating photon flux, measurement technique (backscatter vs
transmission), detector filter thickness, detector energy resolution, transmission target thickness,
backscatter angle of the detectors, and measurement time. The challenge for a precise measure-
ment of a small concentration of Pu isotopes in SNF comes from accruing the necessary counting
statistics because the integrated resonance cross sections are relatively small. Using the back-
scatter detection method, the NRF peaks are difficult to precisely measure on the much larger
background. In the transmission technique only a small change in the NRF peak intensity is
observed. In order to achieve practical measurement times, a new generation of high-intensity
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photon sources and efficient detection systems, as discussed in the following sections of the report,
are needed.

2.6.1 Measurement Precision and Counting Statistics

In this section, we relate counting statistics to the measurement precision of the areal density of
the IOI in the sensitive volume. The relationship between statistical uncertainties in the effective
attenuation of resonant photons and the uncertainty of the areal density is derived for cases where
the concentration of the IOI is low such as 239Pu in spent fuel. Finally, a generalization between
the strength of a resonance and the relative statistical uncertainty a measurement of this resonance
would provide is made for low-attenuating assay targets.

Assume there exists a function for each NRF resonance, f(Nx) ≡ C that relates the number
of full-energy NRF γ-ray counts, C, to the areal density of the IOI in the target, Nx. Nx is then
given by

Nx = f−1(C) (2.37)

Likewise, uncertainty in Nx can be written as

σNx =

∣∣∣∣df−1

dC

∣∣∣∣σC (2.38)

Neglecting down-scatter of photons while they penetrate the assay target and the TD, the
expected number of γ-ray counts, C, due to NRF in the TD may be expressed as

C ≡ f(Nx) = ctΦ0 exp(−µatomx)A(Nx)NTDσNRF
Pfε∆Ω

r2
det

(2.39)

where ct is the duration of the measurement and all remaining terms have been defined in preceding
sections. Only A(Nx) in equation 2.39 is dependent upon N , the density of the IOI in the assay
target. We re-express f(Nx) as,

f(Nx) = χA(Nx) (2.40)

where

χ ≡ ctΦ0 exp(−µatomx)NTDσNRF
Pfε∆Ω

r2
det

(2.41)

χ represents the number of NRF γ-ray counts that are expected to be measured from the TD in
the absence of IOI atoms in the assay target.

The function, f(Nx) is therefore directly proportional to A(Nx), the effective attenuation.
Unfortunately, the functional form of A(Nx) is somewhat complex, and it cannot be analytically
differentiated.

Figure 2.9 shows A(Nx) for 239Pu resonances and a TD thickness of 8 g/cm2 of 239Pu. Stronger
resonances result in functions of A(Nx) with a steeper slope at lower areal densities and then flatten
for higher values of Nx.

To obtain an analytically differentiable function that approximates f−1(C), We consider a fit
to A(Nx) of the form

A(Nx)fit = exp(−αfNx) (2.42)
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Figure 2.11 Fraction deviation between calculated values of A(Nx) and those resulting from the best-fit of the
form shown in equation 2.42.

for the range Nx ≤ 0.5 g/cm2, which is approximately the range of areal densities encountered
for spent fuel assemblies2. Comparisons between fits of this form and A(Nx) are shown for 239Pu
resonances in Figure 2.11. The fit is quite good over the fitted range, but becomes quite poor
for higher Nx. Best-fit values of αf for each 239Pu resonance are shown in Table 3.3 along with
measured resonance parameters from reference[23].

Considering only the cases where Nx ≤ 0.5 g/cm2 and using

f(C) ≈ χ exp(−αNx) (2.43)

we can write

f−1(C) ≈ lnχ− lnC

α
(2.44)

and
df−1

dC
=
−1

Cα
(2.45)

Using equation 2.15, which relates the statistical precision of a γ-ray counting measurement to
the ratio of signal-to-background intensities, ξ, and substituting equation 2.45 into equation 2.38,
we have

σNx =

√
1 + 2/ξ

α
√
C

(2.46)

This relates the precision with which Nx is measured to both counting statistics and the quantity
α, which is the magnitude of the slope of the effective attenuation curve at the corresponding areal
density.

2A fit of the form A(Nx)fit = a1 exp(a2Nx) + a3 exp(a4Nx) provides quite good agreement over a much larger
range of areal densities (≤ 2× 10−6 error fraction for Nx ≤ 30 g/cm2), but it also does not provide an analytical
form for df−1(C)/dC.
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From equation 2.46, we can infer that large resonances will provide the smallest statistical
errors when the IOI areal density in the target is small, as is the case for measuring Pu in
spent fuel assemblies. These models are applied to the evaluation of measurement methods using
bremsstrahlung and quasi-monoenergetic photon sources. In Section 5.1.1.2 the numerical results
presented there demonstrate that counting statistics are a main limitation for NRF measurements.

2.6.2 Importance of Resonance Strength for Transmission Measurements

To illustrate the importance of the resonance strength for providing precise measurements of target
areal densities, we consider a case where Nx is still assumed to be small (i.e. where equation 2.42
remains valid), and compare two hypothetical resonances, a and b. Assume these resonances have
widths, Γa and Γb, respectively, and that Γa > Γb. The relative uncertainties in areal density that
transmission measurements made using resonance a will be reduced by at least

σa
σb
≈
(

Γb
Γa

)1.5−2

(2.47)

relative to an identical measurement using resonance b. This is the combination of three factors.
First, stronger resonances result in proportionally higher NRF count rates, which, reduces the

uncertainty by a factor of
(

Γb
Γa

)1/2

. Also, stronger resonances increase the slope of the effective

attenuation function, α, which result in a relative decrease in uncertainty of approximately
(

Γb
Γa

)
.

Finally, for NRF signals not significantly stronger than background intensity, the term
√

1 + 2/ξ

in equation 2.46 can contribute an additional factor of up to
(

Γb
Γa

)1/2

.

The strong dependence of measurement precision on resonance strength could make it easier to
measure the 240Pu content in spent fuel than the 239Pu areal density. Although the NRF response
of 240Pu has not been measured, NRF cross sections are likely comparable to those of 238U and
thus much higher than 239Pu ones.

2.6.3 Systematic Errors

The systematic errors that may be associated with NRF measurements include the following: Er-
rors in NRF cross sections result in proportionally inaccurate measurements. Notch refill may
reduce the intensity of measured resonant absorption in a transmission measurement, relative to
the predicted by simple analytical models, and will result in systematic errors, without precise
models that account for it. Overlap of other γ ray peaks (other NRF lines or background) can
significantly reduce the precision with which the intensity of a resonance may be measured. The
photon flux that induces NRF must be precisely known. This may be accomplished by system
calibration as long as the beam remains stable. If this method is used, beam instability becomes
an important contributor to systematic error. If the flux is determined by an alternative normal-
izations scheme, such as the 511 keV normalization routine, or by making relative measurements
to other NRF lines, beam stability may be less important, however such routines may result in
separate systematic errors. Similarly, the uncertainty to which the γ-ray detectors are calibrated
will proportionally induce errors for absolute measurements, but relative measurements made on
well-calibrated systems will be less sensitive to absolute knowledge of the γ-ray detection efficiency.
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Similar to beam stability, detector stability becomes very important for calibrated systems. Ra-
diation damage to the fuel pins may lead to deformations and may, thus, result in geometric
differences between a measured assembly and the reference assembly. Although these are likely
to be small, non-negligible systematic errors may result. Likewise, the uncertainty to which non-
resonant attenuation coefficients are known will adversely effect the precision at which geometric
effects may be corrected for in relative and absolute measurement schemes.

Model calculation corrections can be applied to correct for notch refill and possibly peak over-
lap. Improved measurements of NRF cross sections using newer and more intense bremsstrahlung
sources are necessary. Other systematic errors can be addressed and minimized through calibration
which is expected to be necessary for any measurement system.
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3 MCNPX Modeling - Simulation of Non-Resonant

Background

We have used the MCNPX code extensively to study the use of NRF. MCNPX was used to gener-
ate bremsstrahlung spectra, simulate photon transport in both the backscatter and transmission
geometries, test the analytical models derived to compute NRF fluences in Sections 2.4.1 and 2.4.2,
and to test the effect of notch refill.

It became evident in our initial study of NRF for spent fuel assay that MCNPX needed addi-
tional capabilities to become a useful tool for modeling NRF responses and background. Critical to
this effort, we have added existing NRF data to the MCNPX photonuclear data files and are now
able to include NRF physics into MCNPX simulations. During the modeling studies, it was also
recognized that MCNPX does not accurately calculate photon elastic scatter that is the dominant
contributor to the background at backward angles in the NRF energy range. This can be seen
in Figure 3.1 which shows the simulated photon spectrum scattered off a uranium pin (238U with
1% 235U) at a backwards angle of 135o. At photon energies close to the bremsstrahlung end point
energy the photon flux was underestimated by an order of magnitude or more before MCNPX
was modified to properly sample the ENDF libraries when simulating Rayleigh Scattering. The
nuclear Thomson scattering, Delbruck scattering, and Giant Dipole Resonance (GDR) are still ne-
glected by MCNPX. The modification of the photon transport routines used by MCNPX and the
reconstruction of the photo-atomic datafiles used by MCNPX to include extended descriptions of
the form factors for the elastic photon scatter process are described in more detail in Appendix A.
The potentially important photonuclear processes nuclear Thomson scattering , Delbruck scatter-
ing, and Giant Dipole Resonance (GDR) were not included and their potential contributions are
discussed in this section.

3.1 MCNPX Simulations of Photon Scattering

Below we discuss the MCNPX computations of the combination of the photon scattering processes
and the effective scattered spectrum that results.

3.1.0.1 Scattering of Monoenergetic Photons as Simulated by MCNPX

In many regards this section is a continuation and elaboration on work previously done by Hag-
mann and Pruet[67], with the additional inclusion of Rayleigh scattering, which had previously
been omitted due to legacy MCNP coding. Figure 3.2 shows spectra computed by MCNPX, where
monoenergetic photons interact in a 100 µm thick uranium target and are scattered into solid an-
gles defined by an angle relative to the incident photon trajectory. The spectra have 5 general
features;

• A peak in the highest energy bin, corresponding to elastic scattering. As discussed in Ap-
pendix A, the intensity of this peak is due primarily to Rayleigh scattering – as is described
in EPDL97 – and is missing nuclear elastic scattering contributions. The integrated area
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Figure 3.1 The red curve shows the simulated spectrum before implimintation of the Rayleigh scattering patch.
The blue curve shows the simultated spectrum with the patch. The green curve is the Bremsstrahlung source
photon spectrum.

of the elastic scattering peak is very small compared to the remainder of the photon spec-
trum, which illustrates the relative unimportance of the elastic backscattering of photons for
applications less sensitive to backscattered photon spectra than NRF.

• A peak at 511 keV due to annihilation of positrons produced during pair production. The
511 keV photons are emitted isototropically.

• An incoherent photon peak. The energy of this peak is defined by Compton scatter kinemat-

ics. It ranges from near the incident photon energy for small-angle scattering to
(

E
1+2E/mec2

)
in backwards directions.

• x rays resulting from photoabsorption, which extend up to 109 keV for uranium.

• A spectral continuum that is primarily due to bremsstrahlung produced by electron and
positron slowing down in the targets. Energetic electrons and positrons are produced by
pair production, incoherent scattering, and photoelectric absorption.

The bremsstrahlung spectra due to these three electron sources have been included in Figure 3.2.
The similarity of the distributions indicates that the simple model describes the continuum fairly
well. With the exception of the energy range 1.4 - 1.55 MeV, the model provides good agree-
ment with the overall spectrum at higher energies. Between 1.4 and 1.55 MeV, the assumption
that all electrons are forward-directed, along with the neglect of electrons from multiple-scattered
photons is rather inaccurate. At lower energies, many more processes appear to contribute to the
photon spectrum, including multiple scattering of photons and bremsstrahlung from lower-energy
Compton electrons.

From these scattered photon spectra, we can conclude that the most probable processes re-
sulting in backscattered photons are incoherent scattering, pair production, and x ray emission.
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However, the energies of these photons are quite low. MCNPX predicts that backscattered, ener-
getic photons are primarily due to bremsstrahlung from energetic photo-excited electrons, but the
contribution due to Rayleigh scattering is not negligible, and dominates near the initial photon
energy. This implies that the accuracy with which MCNPX calculates bremsstrahlung spectra
is important for predicting backscattered photon spectra and that the omission of other elastic
scattering physics processes may be very problematic for making conclusions based on MCNPX-
predicted spectra.

Figure 3.2 MCNPX-simulated differential cross section for scattering of 1.7 MeV photons from 100
µm thick uranium to the 100o− 110o angular range with electron induced bremsstrahlung spectra
overlain.

3.1.1 Photonuclear Interactions

Here we consider photon interactions with the nucleus that are not included in MCNP but are a
possibly significant contribution to the elastically scattered background. Both, photon scattering
via off-resonant nuclear states and elastic scattering due to the electromagnetic field, are of interest.

Nuclear Thomson and Delbrück scattering are two examples of elastic scattering in the field of
the nucleus. Pair production also involves photons interacting with the nuclear field, except the
resulting particles are leptons instead of photons.

An additional complication is the effects of wave function phase shifts on total elastic scattering
cross sections. For elastic photon scattering, the scattering amplitudes of each mechanism must be
summed before the total scattering cross section is obtained by squaring the summed amplitude.
This can cause interference due to differences in the complex phases of amplitudes resulting from
different scattering mechanisms.

3.1.1.1 Nuclear Thomson Scattering

The typical nuclear Thomson scattering cross section is independent of photon energy and is given
by

σNT (θ) =
r2
e

2

(
Z2me

AMn

)2

(1 + cos2 θ) (3.1)
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Figure 3.3 Ratio of Thomson scattering cross sections for a photon incident upon a nucleus of
charge Zqe and mass AMn to that for a photon incident upon a free electron. The ordinate is the
square of the constants in the parentheses in equation 3.1.

where re is the classical radius of the electron, me is the mass of the electron, θ is the scatter angle,
and A, Z, and Mn are the atomic number, mass number, and average nucleon mass, repectively[61].
Figure 3.3 shows the ratio of the constants in the parentheses in equation 3.1 plotted for every
element. Although the cross section is isotope-specific, in this case each element’s mass was taken
to be the weighted mean mass for a natural isotopic concentration. For man-made elements, the
mass was assumed to be the average of the known isotopes’ masses. Thomson scattering cross
sections for nuclei vary from 3×10−7 to almost 4×10−4 of those of a single electron as Z increases
from 1 to 92. While this seems to indicate that nuclear Thomson scattering would never be of
any significance, it is important to note that for large-angle scattering, the momentum transfer, q,
increases with scattering angle and energy. The form factor decreases dramatically with increasing
q and the Rayleigh scattering cross section is proportional to the square of the form factor.

In Table 3.1, values of q and the corresponding Rayleigh scattering form factors, F (Z, q),
for which the Rayleigh scattering cross section is equal to the nuclear Thomson scattering cross
section, i.e

Z2me

AMn

= F (Z, q) (3.2)

are tabulated. Also tabulated are photon energies through which scattering at indicated angles
yield indicated momentum transfer values.

As indicated in Table 3.1, the energy at which a nuclear Thomson cross section is equal to a
Rayleigh scattering cross section increases with increasing Z. However, with larger scattering an-
gles, the form-factor predictions of σRay(θ) become increasingly inaccurate[48]. Thus, the energies
given in Table 3.1 may be inaccurate, but the general trends remain correct. Furthermore, when
photons of energy 1.5 - 4 MeV are backscattered, nuclear Thomson scattering is always of some
practical importance.
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q E(45o) E(90o) E(135o) E(180o)

element (Å−1) F (Z, q) (MeV) (MeV) (MeV) (MeV)

Carbon 10.4 1.64× 10−3 0.337 0.182 0.140 0.129

Aluminum 19.2 3.34× 10−3 0.622 0.337 0.258 0.238

Iron 33.1 6.64× 10−3 1.07 0.580 0.444 0.410

Cesium 68.1 1.25× 10−2 2.21 1.19 0.914 0.844

Uranium 152.9 1.95× 10−2 4.95 2.68 2.05 1.90

Table 3.1 Elastic scattering momentum transfer, q, and form factors, F (Z, q), (from EPDL97[42])
where σNT (θ) = σRay(θ) for different elements. Also tabulated are photon energies, that result in
the given momentum transfers when scattering occurs at the indicated angles.

3.1.1.2 Delbrück Scattering

Delbrück scattering is the process by which a photon undergoes pair production within the
Coulomb field of a nucleus, and the electron-positron pair promptly annihilates to create an-
other photon whose energy is equal to the initial energy. Whereas Thomson scattering and pair
production are considered to be second-order effects, Delbrück scattering is a fourth-order effect.

The matrix element for Delbrück scattering is given by[49]

Afi =2iα

∫
dr1

∫
dr2 exp[i(k1 · r1 − k2 · r2)] (3.3)

×
∫
dE1

∫
dE2δ(ω − E1 + E2)Tr[ê1G(r1, r2|E2)ê∗2G(r2, r1|E1)]

where Tr signifies the trace of the indicated matrix, êµ = εµγ
µ, γµ are Dirac matrices, and

G(ra, rb|E) are Green’s functions in the Coulomb field. Calculations have exactly evaluated
matrix elements in the limits E � mec

2 and E � mec
2 and by using the Born approximation at

intermediate energies.
Matrix elements have been numerically integrated in the limit that ~ω � mec

2[50]. Result-
ing scattering amplitudes are proportional to (Zα)2, and therefore cross sections are generally
proportional to (Zα)4. Empirical evaluations indicate that the Born-series calculations remain
quite accurate up to a few MeV if Z . 50. At higher Z, stronger fields make the lowest-order
Born approximation inaccurate. Numerical calculations of higher-order terms in the Born series
have only partially been accomplished for very few angles and energies[51],[52], but semi-empirical
Coulomb correction factors have been published[49],[53],[54]. For uranium, these corrections can
be a large fraction of the Delbrück differential scattering cross section, which, in turn can result
in significant changes to the total theoretical elastic scattering cross section.

Figure 3.4 shows the sum of Delbrück scattering amplitudes squared for various photon energies.
These would correspond to the Delbrück cross sections were they directly measurable. However,
the addition of elastic scattering amplitudes from other processes can induce interferences that
cause total scattering cross sections to differ from those predicted by summing cross sections
of individual processes. The cross sections shown were calculated by high-precision numerical
integration of the first-order Born series results[55],[56].
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Figure 3.4 Calculated differential Delbrück scattering cross sections for various photon energies.
The values ignore destructive interferences that reduce the summed cross section. Values are from
references[55] except for the two highest energy curves, which are from[56].

3.1.1.3 Giant Dipole Resonance Scattering

For assay purposes and nuclear safeguards applications, we are concerned with specific excited
states of relatively low energy. However, the primary strength of resonance photon scattering
involves the Giant Dipole Resonance (GDR).

The GDR is described as a collection of excited nuclear states that all express a collective
nuclear motion where all nuclear protons oscillate relative to the neutrons. The large num-
ber of such states effectively yields a broad resonance whose cross section is well-described as
a Lorentzian distribution. For spheroidal nuclei, the energy associated with GDR oscillations
depends on the mode of oscillation, resulting in two broad Lorentzian functions. The centroid
energies of these resonances are approximately given by the following relation, which assumes the
nuclear excitation energy of the GDR is due to increased surface area in a liquid-drop model of
the nucleus[57],[58],[59].

EGDR ≈ 77[MeV]A−1/3 (3.4)

GDR centroid energies are plotted as a function of mass number, A in Figure 3.5 along with the
trend-line from equation 3.4. The trend-line holds well for spherical higher-A nuclei, whereas GDR
centroid energies for spheroidal nuclei bifurcate into two bands. These bands can be explained as
the symmetry breaking of the spheroidal nucleus, where vibrations along the axis of symmetry of
prolate (oblate) spheroids are decreased (increased) in excitation energy relative to a sphere.

The total cross section for photo-excitation of the GDR collection of states, and subsequent
de-excitation is most commonly given by the single- or double-Lorentzian form

σGDR =
n∑
i=1

σi
E2
i Γ

2
i

E2
i Γ

2
i + (E2 − E2

I )
2

(3.5)

where n is the number of Lorentzian modes, 1 for spherical nuclei and 2 for spheroidal nuclei, Γi
is the effective width of the mode, σi is the maximum cross section of the mode, and Ei is the
centroid energy of the mode.
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Figure 3.5 Giant Dipole Resonance Lorentzian distribution centroid energies, Ei, as taken from
the RIPL-2 database (blue)[60]. For deformed nuclei, the GDR is described by two Lorentzian
functions and the centroid energy of the upper Lorentzian is shown in red. The curve corresponds
to a fluid-dynamics theoretical prediction of the centroid energies for spherical nuclei, and is given
by equation 3.4.

The total cross section for photo-excitation of the GDR is then probabilistically subdivided into
partial cross sections for each de-excitation mode that is energetically allowed. Charged particle
emission, although often energetically allowed, does not significantly contribute to cross sections
due to the Coulomb barrier for emission. The GDR centroid energies of all nuclei are greater than
neutron separation energies, and the majority of the GDR cross section is due to neutron emission
and fission, where possible. Neutron emission and fission can be accompanied by γ-ray emission
to return the daughter nucleus or nuclei to their ground states. At lower energies, γ-ray emission
is the most probable de-excitation mode. The large energy range over which the GDR extends
causes the photon interaction cross section to remain non-negligible at these energies.

Figure 3.6 presents cross sections for elastic scattering of 1.5, 2.25, 3, and 5 MeV photons from
GDR Lorentzians described in the RIPL-2 database[60]. GDR resonance profiles are also shown
in Figure 3.7. The neutron-emission thresholds are indicated as the vertical lines.

Two important points arise from Figure 3.7. The first is that by increasing photon energy in
the 1.5 to 4 MeV energy range and above, GDR cross sections increase. Thus, with increasing
NRF lines energies, the photon background due to GDR scattering increases. Secondly, increasing
photon energies yields more (γ,n) reactions as more neutron emission thresholds are exceeded.
Thermal neutron-capture γ rays can be a major source of discrete background for NRF assay of
materials.

3.1.2 Scattering Amplitudes and Cross Sections

To this point, all elastic photon scattering processes have been presented with the assumption
that each may be considered independently of the others. This, however, is not the case. The
amplitudes of all scattering processes that leave the state of the scattering atom unaltered and do
not change the energy of the scattered photon must be summed to yield a total elastic scattering
amplitude. Thus we write
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Figure 3.6 Photon cross sections due to lower-energy tails of GDRs as taken from the RIPL-2
database[60].

Figure 3.7 Giant Dipole Resonance Lorentzian Distributions for various isotopes[60]. The vertical
lines indicate (γ,n) threshold energies, which correspond to dramatically decreased elastic scat-
tering cross sections as the majority of GDR de-excitations begin to occur via neutron emission
.
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Data Reference Quoted Accuracy
Rayleigh Kissel[45] < 5%
Delbrück Falkenberg[55] ≈ 20%
Nuclear Thomson Ericson, Hufner[61] ≈ 1%
GDR RIPL2[60], Berman[62] < 30%

Table 3.2 Sources and accuracy of elastic scattering amplitude data and calculations.

ACoh = ARay + ADel + ANT + AGDR (3.6)

Likewise, scattering amplitudes are often derived assuming a given photon polarization. Thus,
for linearly polarized photons with polarization perpendicular or parallel to the plane of scattering,
A⊥ and A‖, respectively, the total scattering cross section is given by

dσ

dΩ
=

1

2

[
|A⊥|2 + |A‖|2

]
(3.7)

Amplitudes are often tabulated in units of the reduced electron radius, in which case the cross
section would be given by

dσ

dΩ
=
r2
e

2

[
|A⊥|2 + |A‖|2

]
(3.8)

When amplitudes are derived for circularly polarized light, they can be related to linearly
polarized amplitudes by the following expressions

A‖ = A++ + A+− (3.9)

A⊥ = A++ − A+− (3.10)

where A+− and A++ indicate the photon polarization does, or does not change sign, respectively.
Thus for a given set of calculated amplitudes, the total elastic scattering cross section for

unpolarized incident radiation is calculated by summing each complex amplitude for a given po-
larization; squaring the magnitude of the summed amplitudes to yield a cross section for incident
polarized photons; and averaging the cross sections resulting from both polarizations.

Figures 3.8 through 3.11 present real and imaginary parts of calculated complex scattering
amplitudes for elastic scattering of photons incident upon uranium at a scattering angle of 120o due
to the mechanisms discussed previously in this section. Dotted lines indicate that the amplitude
is negative at the corresponding energy. In the phase convention used in the derivations, nuclear
Thomson scattering amplitudes are always purely real, and GDR amplitudes are real below the
(n,γ) threshold energy. The data from these figures come from the references indicated in Table 3.2
and approximate accuracies are also included.

The quoted accuracies come with many caveats. The Rayleigh scattering calculations are
thought to be very accurate, but were only performed for K-shell electrons. Corrections due to
L-shell electrons have indicated that the errors are less than 5%[53], however the errors were
initially estimated for high-Z atoms to be up to 20%[63]. Delbrück scattering amplitudes are
likewise calculated to high precision (< 3%), but only for first-order terms in the Born series.
Higher-order corrections have been estimated to be of the same magnitude as the first-order term
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Figure 3.8 The real portion of elastic scattering amplitudes due to mechanisms of Rayleigh,
Delbrück, nuclear Thomson, and GDR scattering at 120o for photons polarized parallel to the
plane of scattering incident upon 238U, A‖. Dotted lines indicate a negative amplitude.

for high Z and small scattering angles. At higher angles, the higher-order terms, or Coulomb
corrections, appear to be approximately 20%. The nuclear Thomson cross section appears to
be well-understood for spherical nuclei. Second-order corrections due to the polarizability of the
nucleus and its finite size increase quadratically with energy and are approximately 1% at 4.5
MeV. Additional corrections for nuclei of non-zero spin increase linearly with energy but these
corrections are generally small[64]. GDR amplitudes are derived from reported cross sections[62].
For spin-0 ground states, the GDR amplitudes are related by

AGDR
‖ = AGDR

⊥ cos θ (3.11)

With this, we can relate the amplitude to the total cross section by using equation 3.8.

σGDR =

∫
dΩ

dσGDR

dΩ
= 2π

r2
e

2
|A⊥|2

∫ π

0

(1 + cos θ) sin θdθ =
8πr2

e

3
|A⊥|2 (3.12)

Solving for |A⊥|, we find

|A⊥| =

√
3σGDR

8πr2
e

(3.13)

Finally, errors reported for GDR scattering are due to differences between Lorentzian fits of exper-
imental data for photon cross sections in the GDR energy range. These different shapes result in
quite different GDR scattering cross sections at lower energies, however at the energies of interest,
the GDR remains a minor contributor to the total elastic scattering cross section.

The amplitudes shown in Figures 3.8 - 3.11, are summed and squared to obtain contributions to
the total photo-elastic scattering cross section due to each polarization. The real and imaginary
parts of these amplitudes are shown in Figure 3.12 along with their sum, which is the total
differential elastic scattering cross section for 120o scattering of photons incident upon 238U. The
same total differential scattering cross section is also plotted in Figure 3.13, however in this figure,
the sum of the squared amplitudes for each individual elastic scattering process are also shown.
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Figure 3.9 The real portion of elastic scattering amplitudes due to mechanisms of Rayleigh,
Delbrück, nuclear Thomson, and GDR scattering at 120o for photons polarized perpendicular
to the plane of scattering incident upon 238U, A‖. Dotted lines indicate a negative amplitude.

Figure 3.10 The imaginary portion of elastic scattering amplitudes due to mechanisms of Rayleigh,
and Delbrück scattering at 120o for photons polarized parallel to the plane of scattering incident
upon 238U, A‖. Dotted lines indicate a negative amplitude.
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Figure 3.11 The imaginary portion of elastic scattering amplitudes due to mechanisms of Rayleigh,
and Delbrück scattering at 120o for photons polarized perpendicular to the plane of scattering
incident upon 238U, A‖. Dotted lines indicate a negative amplitude.

The effect of coherence is prominent near Eγ = 2 MeV, where the sums of the individual scattering
cross sections are significantly less than the total cross section. Likewise, Figure 3.14 shows the
cross sections of the individual elastic scattering processes and the total differential cross section
for 30o scattering of photons incident upon 238U. In this case, destructive interference results in a
smaller total cross section near 2.5 MeV than would be expected from the individual contributions
of both Delbrück and Rayleigh scattering.

Data collected from the elastic scattering of 2.754 MeV photons on various isotopes are shown in
Figures 3.15 a) and 3.15 b). These figures contain data and predictions from reference[53] and the
experiments performed are described both there and in references [63],[65], and[66]. The difference
between the data point and the dotted lines has been attributed to the Coulomb correction.
Incomplete integration of the Coulomb correction has moved theoretical elastic scattering cross
sections closer to the measured data. In 1995 it was noted that computational power was limiting
more complete computations[51]. This suggests that current computer technology may be able to
satisfactorily tabulate Coulomb corrections to Delbrück scattering amplitudes for use in photon
transport Monte Carlo codes and elsewhere.

Some insight into the quality of the MCNPX predictions for the scattered background at back-
wards angles can be gained by comparing the MCNPX results to separately calculated Rayleigh
and nuclear Thomson contributions, to data found in the literature, and to our recently measured
backscattered photon spectra for a bremsstrahlung beam on a 238U target. Figure 3.16 compares
calculated elastic scattering contributions for 1.408 MeV photons on uranium. The MCNPX cal-
culation based on ENDF form factors of the angular distribution (blue line) greatly over predicts
the Rayleigh scattering found in RTAB (green line). However, the MCNPX result is in good agree-
ment with the calculated sum of Rayleigh and nuclear Thomson scattering (red line) for scattering
angles above 110o, i.e., for the backwards angles of interest to NRF measurements. Figure 3.17
shows the same comparison at the higher photon energy of 2.754 MeV together with measured
data from Rulhussen et al[54]. The MCNPX calculation using ENDF form factors greatly under
predicts the measured cross sections at backwards angles while still over predicting the Rayleigh
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Figure 3.12 Calculated elastic scattering amplitudes and the total differential scattering cross
section for 120o scattering of photons incident upon 238U. The sources of the plotted values are
discussed in the text

Figure 3.13 Calculated elastic scattering cross sections for individual scattering processes and
the total differential scattering cross section for 120o scattering of photons incident upon 238U.
Individual cross sections are non-physical because they cannot be separately measured from the
total cross section. The sources of the plotted values are discussed in the text.
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Figure 3.14 Same as Figure 3.13 but for 30o scattering.

Figure 3.15 a) Measured and predicted elastic scattering cross sections for 2.754 MeV photons and
scattering angles 30o - 60o incident upon 65Zn, 92Nb, Ce, 141Pr, Nd, Ta, Pb and U. Dashed lines
are theoretical predictions including summed amplitudes of Rayleigh, nuclear Thomson, GDR,
and Delbrück scattering without Coulomb correction terms. The data for this figure are taken
from reference[53].
Figure 3.15 b) Same as Figure 3.15 a) but for scattering angles of 75o - 150o. The data for this
figure are taken from reference[53].
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Figure 3.16 Elastic scattering contributions calculated for 1.408 MeV photons on uranium as a function of the
scatter angle.

contribution. At this higher energy nuclear Thomson scattering, which is not included in the
MCNPX calculations, is the main elastic scattering contribution.

A comparison of MCNPX predictions with a backscattered (120o) photon spectrum that was
measured by us for a bremsstrahlung beam (not a mono-energetic photon beam as in Figures 3.16
and 3.17) on a 238U target is shown in Figure 3.18. The spectrum is equally well reproduced by
the MCNPX calculation with the corrected Rayleigh treatment and by the “old” MCNPX results
to which Rayleigh and nuclear Thomson scattering contributions were added manually. The data
shown in Figures 3.16 and 3.17 suggest that this agreement is likely special for the scattering
angle and energy range of the measurement and that the differences may be much greater for
other scattering angles and photon energies.

Figure 3.19 shows the same comparison as Figure 3.17 but for the elastic scattering off iron
instead of uranium. For the lighter element the nuclear Thomson scattering contribution is orders
of magnitude higher than the Rayleigh contribution at scattering angles larger than 30o and thus,
the MCNPX calculation without the nuclear Thomson contribution under predicts the elastic
scattering by orders of magnitude.

These comparisons indicated that it would be desirable to include nuclear Thomson scattering
in MCNPX simulations for NRF studies. Calculations based on ENDF form factors as currently
implemented in MCNPX could underestimate the elastic scattering cross section by as much as a
factor of ten for an uranium target. Even larger discrepancies may be possible for lighter elements
such as zirconium, which is used in the cladding of fuel pins.

3.2 Addition of Available NRF Resonance Data to ENDF and MCNPX
Datafiles

In order to be able to model the NRF response in MCNPX measured NRF data were added to
the photonuclear evaluated nuclear data files (ENDF) and were converted to ACE files for use
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Figure 3.17 Comparison of elastic scattering contributions with measurement data for 2.754 MeV photons on
uranium.

Figure 3.18 Comparison of the elastic scatter background between MCNPX simulations and experimental data

40



Figure 3.19 Calculated elastic scattering cross sections as a function of scattering angle for 2.754 MeV photons
on uranium.

in MCNPX [25]. To maintain compatibility with existing data processing codes such as NJOY
[26], cross sections for NRF interactions have been added as pointwise data and characteristic
NRF γ rays are added as secondary particles emitted by the reaction. The energy width between
consecutive data points was selected to be a minimum of 2 eV due to ENDF format limitations.
The resonances were Doppler broadened assuming a temperature (T) of 300 K. Similar to the
implementation of NRF cross sections, the energies of emitted NRF γ rays are entered into ENDF
pointwise, and the multiplicity for photon emission is defined for each resonance.

The NRF responses of 235U and 239Pu were measured in 2006 and 2007[23], and the results
from these experiments are presented in Tables 3.4 and 3.3. Several pairs of observed NRF γ rays
were found to have energy differences equal to the excitation energy of low-lying excited states
(7.9 ± 0.002 keV for 239Pu and 46.21 ± 0.01 keV for 235U)[27]. In these cases the sum of the
measured cross sections is shown in the table, and the tabulated value of Γ0/Γ differs from unity.
Subsequent experiments attempting to measure higher-energy NRF resonances in these isotopes
have not yielded new transitions[28, 29].

3.3 MCNPX Simulation Techniques

MCNPX simulations are used in this study for calculating non-resonant scattered backgrounds,
backscatter measurements, notch refilling in a transmission assay, detector responses and resonant
attenuation. How this has been done is described below.

3.3.1 MCNPX Simulation of Backscatter Measurements with Bremsstrahlung

With the addition of NRF data to MCNPX datafiles and the inclusion of elastic photon backscatter
to MCNPX, the code may directly be used to determine expected photon intensities and count
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Table 3.3 239Pu NRF data. The values of
∫
σNRFdE were taken from Reference [23]. Where gΓ0 6= gΓ, two NRF

γ rays were measured at energies that differ by the excitation energy of the first excited state of 239Pu. It has been
assumed that these γ rays correspond to de-excitation of a single NRF state. Values of gΓ0 were calculated from
from equation 2.2. The meaning of αf is explained in the text.

Elevel gΓ gΓ0

∫
σNRFdE αf

(MeV) (meV) (meV) (eV·b) (cm2/g)
2.040 4.3 ± 1.1 4.3 ± 1.1 8 ± 2 0.0081 ± 0.0021
2.144 13.4 ± 2.2 10.2 ± 1.7 17 ± 3 0.0164 ± 0.0027
2.289 5.4 ± 1.4 5.4 ± 1.4 8 ± 2 0.0072 ± 0.0019
2.432 30.8 ± 5.8 14.6 ± 2.8 19 ± 4 0.0160 ± 0.0030
2.454 7.1 ± 2.4 7.1 ± 2.4 9 ± 3 0.0077 ± 0.0026
2.464 6.3 ± 3.2 6.3 ± 3.2 8 ± 4 0.0068 ± 0.0034

Table 3.4 Characteristics of measured NRF states in 235U as reported in reference[23]. Values of gΓ0 were
obtained by application of equation 2.2. States where Γ0/Γ 6= 1 indicate that a γ ray of energy, Eγ = EC − 46.2
keV was observed. These lines are assumed to correspond to de-excitation of the NRF state via emission of a γ ray
populating the low-lying 9/2− excited state of 235U. Values of

∫
σNRF dE shown here are the sum of the reported

values.

Elevel gΓ gΓ0

∫
σNRFdE

(keV) (meV) (meV) (eV·b)
1656.23 ±0.80 1.47 ±0.46 1.47 ±0.46 4.1 ±1.3
1733.60 ±0.22 17.0 ±2.0 14.11 ±1.61 35.9 ±4.1
1815.31 ±0.22 8.79 ±1.06 6.05 ±0.73 14.1 ±1.7
1827.54 ±0.23 2.91 ±0.52 2.91 ±0.52 6.7 ±1.2
1862.31 ±0.20 4.33 ±0.77 4.33 ±0.77 9.6 ±1.7
2003.32 ±0.25 5.07 ±0.89 5.07 ±0.89 9.7 ±1.7
2006.19 ±0.31 2.46 ±0.84 2.46 ±0.84 4.7 ±1.6

Table 3.5 Relevant 238U NRF data. Values of Γ2
0/Γ and Γ1/Γ0 were taken from reference[24] where γ-ray emission

to the first excited state of 238U (Jπ = 2+) at 44.92 keV were also measured. Here, it is assumed that this probability
is 1− Γ0/Γ. The final column is calculated from equation 2.2, it has a fractional uncertainty equal to that of Γ0.

Elevel Γ Γ0

∫
σNRFdE

(MeV) (meV) (meV) (eV·b)
2.176 54.7 ± 2.5 36.0 ± 2.2 87.7 ± 5.2
2.209 54.3 ± 2.8 35.0 ± 2.3 82.7 ± 5.1
2.245 29.0 ± 1.6 19.7 ± 1.4 45.0 ± 3.0
2.295 13.4 ± 1.5 8.4 ± 1.0 14.4 ± 1.4
2.410 26.0 ± 1.7 16.9 ± 1.2 33.6 ± 2.1
2.468 30.2 ± 2.2 20.1 ± 1.6 38.0 ± 2.8
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rates in backscatter NRF measurements.
The primary difficulty in simulating backscattered NRF is that the vast majority of photons

that interact within the assay target produce low-energy or forward-scattered photons. However,
the energetic portion of the backscattered photon spectrum is of most interest. To overcome these
difficulties, variance reduction techniques are used.

First, the time-consuming simulation of bremsstrahlung source spectra is done separately.
Thereafter, the calculated bremsstrahlung spectrum is used as a source term for separate simula-
tions.

A second simulation is conducted with the bremsstrahlung photons incident upon a target in
the backscatter NRF assay geometry. Sampling of the bremsstrahlung photon source spectrum is
biased to preferentially simulate photons of higher energies, with reduced statistical weights. The
photon flux at a hypothetical detector location is then calculated using the next-event estimator
tally (F5) wherein each time a particle interacts in the assay target, the probability for emission of
a particle in the direction of the detector is determined, and a value proportional to this quantity
is added to the flux tally.

In a third simulation, the response of a radiation detector is simulated by impinging the photon
spectrum determined in the second calculation onto a shielded detector geometry. The energy
deposited within the detector volume is tallied, and if necessary, an energy resolution-broadening
routine is applied. These simulations provide the total and NRF count rates that are expected for
a given assay geometry.

3.3.2 MCNPX Simulation of Resonant Attenuation

In addition to determining expected NRF and background signal rates for transmission mea-
surements using bremsstrahlung sources, MCNPX was also used to test the analytical effective
attenuation model. This is done by determining the NRF flux at a detector position when no
resonant absorption occurred in the assay target and comparing that to the NRF flux when the
Pu IOI is present in the target.

NRF peak intensities are calculated using MCNPX for two geometries, one in which the Pu
IOI is present in the fuel assembly, and another in which it is absent. The removal of the IOI
from the assembly results in slight changes in the non-resonant attenuation of photons as they
penetrate the assembly. To correct for this non-resonant attenuation change, the intensity of NRF
peaks is normalized by the intensity of the 511 keV peak which is entirely due to pair production
in the TD , i.e.,

AEpk =
AEpk
AnoPuEpk

AnoPu511

A511

(3.14)

This is analogous to the method described in Section 4.3, and proved satisfactory when experi-
mentally tested. The quantity AEpk , is used in equation 2.36 for the corresponding resonance to
determine the expected areal density of Pu in the target.

Figure 3.20 presents a comparison between analytical effective attenuation values and those
obtained using the analysis method described here to evaluate AEpk . Two analytical curves are
provided. The blue curve is the analytically-expected attenuation due to the 2431 keV 239Pu
resonance, as in equation 2.36. The green curve is the expected attenuation due to the 2431 keV
239Pu resonance if the 5 point evaluation of the Maxwell-Boltzmann cross section is used as the
cross section form (as described in Section 2.5). This curve is shown because the 5 point evaluation
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Figure 3.20 Comparison of analytically-calculated effective attenuation values with that calculated by MCNPX.
The different analytical curves correspond to the expected true form (blue) and that due to the shape of the NRF
data entered into the ACE file used by MCNPX.

profile is used to described resonances in MCNPX (in the ACE data format). The red point with
error bars indicates an effective attenuation value obtained via MCNPX calculations. Although
the MCNXP value overlaps the green curve within the error bars, it is anticipated that the true
value would lay above the curve, due to the effects of notch refill.

3.3.3 Notch Refilling and Transmission Assay Complications

In transmission measurements, the attenuation of resonant-energy photons in the target provides
the signal that relates to areal density of the IOI in the target. This attenuation manifests itself in a
decrease in the flux intensity at the resonance, which is often referred to as a notch. Notch refilling
is the process by which interrogating photons are down-scattered into the notch during transport
through the assay target and TD. The down-scatter of photons results in more resonant-energy
photons leaving the assay target than would be predicted by the model described in Section 2.4.2.2.
In this section, the relative intensity of the notch-refilling effect is considered.

Notch refilling depends not only on the shape of the energy spectrum, but also on the measure-
ment geometry because the down-scattered photons must interact in the TD in order to change
the measured signal. The smaller the solid angle subtended by the TD, the more restricted is the
geometry for notch refilling. Likewise, increasing the number of photons that have more energy
than the excitation energy of a resonance increases the likelihood that some of these photons will
down-scatter into the notch created by resonant absorption.

The processes that result in notch refilling are incoherent scattering and bremsstrahlung emit-
ted from photo-electrons. Both processes predominantly produce down-scattered photons at for-
wards angles. Those photons that are down-scattered into a resonant energy and toward the TD
effectively refill the notch.

To examine this effect, we first consider a Monte Carlo simulation of 2.3 MeV photons incident
upon an assay target. The target consisted of 7 cm thick slab of Pb behind a 4.4 mm thick slab
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Figure 3.21 Calculated spectrum of photons leaving a target of areal density similar to a homogenized fuel
assembly within 4.4o of the initial photon direction. The incident photon energy was 2.3 MeV. The inset shows a
larger view of the energy range of 2.25 - 2.3 MeV. The probability that an incident photon leaves the target without
interacting is 2.1%.

of uranium, which is comparable to the average areal density of a fuel assembly. The energy
spectrum of photons leaving the assay target within 4.4o of the initial direction were calculated.
The selection of 4.4o is representative of the solid angle that would be subtended by a large TD ,
as described in Section 3.3.2. The results of this simulation are shown in Figure 3.21. Full-energy
photons and those that have undergone a single incoherent scatter are the most probable sources
of emitted photons. The photons that undergo a single incoherent scatter produce a continuum
of photons between 2.27 and 2.3 MeV. Pair production and subsequent positron annihilation,
multiple-scattering events, and secondary electron bremsstrahlung produce the events indicated
below the Compton continuum.

A 2.3 MeV initial energy photon undergoing incoherent scattering with θ ≤ 4.4o results in a
scattered photon with energy E ′ ≥ 2.27 MeV. This energy is the lower energy of the Compton
continuum. The probability per 2.3 MeV incident photon for an emitted photon to be down-
scattered into the Compton continuum is approximately 2 × 10−8 per eV. Doppler-broadened
NRF resonances tend to have Γ ≈ 1.5 eV, thus we can assume 3 × 10−8 per eV is a reasonable
probability for down-scattering of 2.3 MeV photons into its Compton continuum for assay targets
of similar areal densities as fuel assemblies.

To consider the potential for refill of a given resonant notch, only photons incident upon the
assay target whose Compton continuum includes the resonance energy are of importance. If the
TD only subtends a polar angle of 4.4o only photons with E −Eres . 35 keV need be considered.
From Figure 2.5, we expect ∼ 2× 108 photons/eV/Coulomb to impinge upon the assay target in
the energy range of 2 - 2.4 MeV. Combining this source photon rate with the notch-refill probability
(∼ 2× 10−8 per eV) and the range of energies of interest, we expect ∼ 1.4× 105 notch refill events
per Coulomb of electrons incident upon the Bremsstrahlung converter. Conversely, if an entire
bremsstrahlung spectrum were transmitted through this target, we would expect in the absence
of resonant attenuation, ∼4.5 ×106 photons/eV/C to be incident upon the TD between 2 and 2.4
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MeV. Thus, photons that arrive at the TD, after down-scattering, represent 2 - 5% of the total
flux in this energy range.

From these estimates, we expect that notch refilling will result in a slight decrease in the slopes
of the effective attenuation curves, A(Nx) (Figure 2.9) compared to those predicted by neglecting
notch refill. This, in turn, would slightly increase the statistical uncertainties estimated in Ta-
ble 5.3 and the surrounding discussion. Nevertheless, notch refilling would change the statistical
uncertainty estimates for a measurement of a Pu isotope in spent fuel significantly less than the
contributions from uncertainties in the measured NRF cross sections. We therefore conclude that
while notch refilling is likely to be an important factor in achieving an absolute areal density mea-
surement with precision near 1%, the NRF cross sections must be known to far better precision
before this level of uncertainty can be reached.

3.3.4 Division of Simulations Into Resonant and Non-resonant Problems

The simulation of NRF measurements that use quasi-monoenergetic photon sources can be treated
differently from bremsstrahlung source simulations because of the narrow range of photon energies
that must be considered. This implies that non-resonant source photons will behave similarly,
regardless of their initial energy. To take advantage of this, two separate simulations are conducted
for assay using quasi-monoenergetic photons, one with source photons of resonant energy, and the
other where the effects of NRF is turned off, which only simulates the transport of non-resonant
photons.

These two simulations may be combined by summing the two spectra, weighted by the relative
number of resonant and non-resonant photons in the source spectrum. This decomposition method
is used throughout Section 5.1.2.
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4 Transmission Nuclear Resonance Fluorescence

Measurements of 238U in Thick Targets

This experiment was supported by the MPACT campaign of the FCR&D program of the Office of
Nuclear Energy (US DOE), the Office of Proliferation Detection (US DOE, NA-221) contributed
to the analysis of the experimental results by supporting the development of analytical and Monte
Carlo modeling tools. The experiment provides validation of the modeling and demonstrates the
transmission measurement method.

4.1 Introduction and Experimental Goals

Transmission nuclear resonance fluorescence measurements were made of 238U in thick targets
consisting of Pb and depleted U with total areal densities near 86 g/cm2 using a bremsstrahlung
source. The target thickness was selected to have an areal density and attenuation properties
similar to a nuclear fuel assembly so that the applicability of the transmission method as a non-
destructive measurement technique for spent nuclear fuel could be tested. In this experiment
Pb was used as a surrogate for the UO2 matrix in spent fuel and the 238U in depleted uranium
(DU) was used as a surrogate for 239Pu or any other minor actinide that would be measured in
spent fuel. The amount of 238U used in the experiment varied from 0 to 8.5% (atom fraction)
and thus represented significantly higher concentrations than those of minor actinides in spent
fuel. These amounts were selected to demonstrate the transmission attenuation effect in a timely
manner using readily available radiation detectors and photon sources. A similar measurement
was made using thinner targets and a quasi-monoenergetic photon source[35]. The experiment
demonstrates the capability of using transmission measurements as a non-destructive technique
to identify and quantify the presence of an isotope in samples with thicknesses comparable to the
average thickness of a nuclear fuel assembly. The experimental data also appear to demonstrate
the process of notch refilling.

4.2 Experimental Setup

The experiment was conducted at the High Voltage Research Laboratory at the Massachusetts
Institute of Technology. Electrons accelerated to 2.60 ±0.03 MeV by a Van de Graaff accelerator
were transported through a beamline, around a 90o bend, and entered the experimental geometry
as shown in Figure 4.1. The converter target consisted of a 102 µm thick Au layer on a 1 cm thick
water-cooled Cu backing. The electron current incident upon the converter was approximately
65 µA throughout the experiment. The bremsstrahlung emitted from the converter target was
shaped by a 20 cm thick Pb collimator. The diameter of the collimator opening was 1 cm on the
bremsstrahlung converter side, and increased to 2.5 cm, for a 3.6o opening from the beam center,
and a maximum angular acceptance of 5o.

Figure 4.1, shows the important components: the bremsstrahlung converter and collimator,
the assay target, the transmission detection sheet, the HPGe detectors and the Pb shielding. The
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Figure 4.1 Schematic view of experimental setup. DU thicknesses have been exaggerated for visibility.

assay target, a combination of DU and Pb, was located directly downstream of the collimator
opening. The areal densities of DU and Pb used in the assay targets are summarized in Table 4.1.
The DU was placed up-stream of the Pb in the beam, setting up the most probable geometry for
notch refill.

The transmission detection sheet was placed 142 cm downstream of the collimator opening and
was not moved throughout the experiment. It consisted of five 20.32 cm x 20.32 cm DU sheets
that were nominally 0.8 mm thick. Each sheet was contained in two plastic bags. The total mass
of the five plates plus the containment bags was measured to be 3341.7 ± 3.3 g, of which 3226.7
± 28 g are attributed to the DU. Behind the DU plates, 82.3 ± 0.5 g of Mn and 185.1 ± 0.8 g of
99.52% enriched 11B were also positioned in the beam to serve as auxiliary flux monitors.

Table 4.1 Assay target compositions. Pb density assumed to be 11.34 g/cm3, DU sheets were assumed to be
99.799% 238U by mass. Uncertainties in DU masses are approximately 1%.

run
ρxDU ρxPb total ρx 238U

(g/cm2) (g/cm2) (g/cm2) atom%
1 0 86.26 86.26 0
2 8.47 79.85 87.86 8.48
3 1.69 85.20 86.80 1.69
4 3.34 83.37 86.54 3.37

48



Table 4.2 γ-ray lines identified in overnight background spectra used to calibrate energy spectra[37].

Eline (keV) Isotope
766.36 234mPa
1001.03 234mPa
1193.77 234mPa
1460.83 40K
1737.73 234mPa
1911.17 234mPa
2204.21 214Bi
2614.49 208Tl

Two pairs of approximately 100% relative efficiency high-purity germanium detectors were po-
sitioned 27 cm from the intersection of the beam center and the transmission detection sheet, at
an angle of 118o relative to the centroid beam direction. Actual detector acceptances were dis-
tributed around the centroid angle with an approximate 10o width. The detectors were contained
in steel housings that were stacked in pairs, resulting in one detector being centered 4.5 cm above
the beam center and the other centered 7 cm below the beam center.

Pb brick walls with minimum thicknesses of 80 cm were constructed to shield the radiation
detectors from the bremsstrahlung converter and assay target. The detectors were also shielded
with 5 cm of Pb in the down-stream direction, 10 cm of Pb below and behind the detectors, 17 cm of
Pb above the detectors, and with a 1.27 cm thick Pb filter facing the transmission detection sheet.
The filter reduces the intensity of low-energy photons emitted from the transmission detection
sheet due to Compton scatter and other processes.

Each target was irradiated for approximately 7 hour measurements. The electron beam cur-
rent was nominally 65 µA for each irradiation. The detectors were operated with Ortec DSPEC
ProTM digital γ-ray spectrometers. The integrated pulse amplitudes were read and stored using
MAESTRO-32 and a personal computer. In this configuration, the ADC rates were approximately
104 counts per second.

4.3 Data Analysis

Spectra were collected during four day-long irradiation shifts and background spectra, with no
electron beam incident upon the bremsstrahlung converter, were collected overnight. The radioac-
tivity of the DU and ambient 40K provided lines for energy-calibrating the detectors. The γ-ray
energies used for energy calibration are shown in Table 4.2. After calibrating the four detectors,
their spectra were re-binned to a common energy grid and summed to provide a single spectrum
for each target. An example of spectral summing is provided in Figure 4.2. After summing,
peaks that were present in spectra taken during irradiations but not in background spectra were
attributed to NRF.

To correct for varying beam intensity and the differing attenuation lengths of the targets, the
rates at which 511 keV γ rays were measured in the detectors were compared. To demonstrate
the accuracy of this normalization, a series of calculations were performed using MCNPX. The
calculations simulated a bremsstrahlung spectrum transported through the four different targets.
The photon spectra that reached the transmission detection sheet after emission from each of the

49



Figure 4.2 Spectra from all four detectors collected during run 1. The lower spectra are from the four different
detectors before summing. Summing of these spectra produce the upper spectrum, which includes labeling to
indicate the source of identified peaks. ‘bkg’ indicates the peak is present in the radioactive background spectrum,
‘238U’ indicates the peak is due to a known 238U NRF resonance, and ‘238U*’ indicates the peak is suspected to be
due to 238U NRF.

assay targets is defined as Φi(E), where the superscript indicates the target used in the run, whose
number is indicated in Table 4.1. Each of these computed spectra were also convolved with the
cross section for pair production in uranium[22] to provide a quantity proportional to the rate at
which pair production occurred in the transmission detection sheet,

Ri
PP =

∫
Φi(E)σPP(E)dE (4.1)

Computed photon spectra, Φi(E), were then normalized by dividing each spectrum by Ri
PP, and

compared. The quantity,

Φi
N(E) =

Φi(E)/Ri
PP

Φ1(E)/R1
PP

(4.2)

is shown in Figure 4.3 for the three targets containing DU. If the simulations indicated that
normalization by measured pair production rates were perfect, the functions, Φi

N(E) would be
unity at all energies. The calculations indicate that below approximately 1.8 MeV, normalizing
spectra incident upon the transmission detection sheet by the intensity of pair production would
result in large errors. However, the normalization needs only to be accurate in the range of the
NRF resonances: 2.1 - 2.5 MeV. In this range the calculations indicate that by using the measured
511 keV peak to normalize the intensity of photons reaching the transmission detection sheet after
penetrating through differing targets, should incur less than a 1.5% systematic error. The error
bars in Figure 4.3 indicate the uncertainty of the MCNPX calculation, and do not include the
systematic error due to the linear, rather than logarithmic, interpolation of atomic scattering
functions that is performed in MCNPX[38]. The saw-tooth shape of the inset in Figure 4.3 can
be attributed to these interpolation errors, and therefore the actual systematic error due to this
normalization technique may be closer to 0.5%.
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Figure 4.3 Calculated values of ΦiN (E), given by Equation 4.2 for the measurement of the targets containing DU,
i=2, 3 and 4.

The normalization technique also automatically accounts for differing non-resonant attenuation
of photons in the assay targets due to varying compositions and systematic uncertainties that may
arise due to errors in electron beam integration. This is because neither of these quantities is
directly used in the analysis. Instead, the intensity of the measured 511 keV photopeak provides
a measured quantity that is proportional to the intensity of 2 - 2.5 MeV photons that reach
the transmission detection foil, and that the total systematic error may be up to 1.5%. Given
that statistical uncertainties described in Table 4.3 are between 6.7 and 28%, the addition of a
systematic error of this magnitude will have little effect on the overall conclusions.

238U NRF peaks identified in runs 2 - 4 were fit, integrated, and compared to corresponding
peak intensities from run 1. The comparison of peak intensities is expressed as

Ai
Epk

=
AiEpk
A1
Epk

A1
511

Ai511

(4.3)

where Ai
Epk

is the relative intensity of the peak at E = Epk for run i, relative to run 1. AiEpk
corresponds to the fit area of that peak. Each resonance yielded two observable peaks, due to
de-excitation of the NRF level directly to the ground level, and also due to de-excitation via the
first-excited state. The two values of Ai

Epk
for each level were averaged, resulting in a single value

of Ai
level for each NRF level, measured in each of runs 2 - 4. These values are shown in the last

columns of Table 4.3.

4.4 Areal Density Measurement

The areal density of an isotope in an irradiated target is related to the attenuation of resonant
energy photons, as observed by a reduction in the rate that radiation detectors measure NRF
γ rays emitted from the transmission detection sheet. For each 238U resonance, a function was
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Table 4.3 Predicted and measured values of Ailevel with statistical errors. The levels at 2467 and 2080 keV have
not been previously reported and therefore no prediction of Ailevel was made. Predicted values of Ailevel are obtained
from evaluation of Equation 4.4 using the values of Γ and Γ0 reported in Heil et al. and that Cnotch = 1, column
C uses values of Γ and Γ0 from ENSDF, columns B and D use the same values as A and C, respectively, but use
the best-estimate of Cnotch shown in Figure 4.4.

Elevel predicted attenuation measured
(keV) A B C D uncertainty attenuation

ru
n

1

2175.6 0.54 0.57 0.55 0.58 ±0.018 0.58 ±0.05
2208.2 0.55 0.58 0.57 0.59 ±0.019 0.62 ±0.06
2246.7 0.71 0.73 0.72 0.74 ±0.016 0.72 ±0.09
2293.8 0.87 0.87 0.87 0.88 ±0.014 0.94 ±0.16
2409.7 0.78 0.80 0.79 0.80 ±0.013 0.84 ±0.16
2467.4 0.76 0.78 0.77 0.79 ±0.016 0.65 ±0.18
2080.0 0.87 ±0.15
2287.4 0.67 ±0.27

ru
n

2

2175.6 0.88 0.89 0.88 0.89 ±0.006 0.92 ±0.06
2208.2 0.88 0.89 0.89 0.90 ±0.006 0.93 ±0.07
2246.7 0.93 0.94 0.94 0.94 ±0.004 0.84 ±0.09
2293.8 0.97 0.97 0.97 0.97 ±0.003 0.99 ±0.16
2409.7 0.95 0.95 0.95 0.96 ±0.003 1.00 ±0.16
2467.4 0.95 0.95 0.95 0.95 ±0.004 1.02 ±0.21
2080.0 0.99 ±0.18
2287.4 0.75 ±0.27

ru
n

3

2175.6 0.77 0.79 0.78 0.79 ±0.011 0.82 ±0.06
2208.2 0.78 0.80 0.79 0.81 ±0.011 0.80 ±0.07
2246.7 0.87 0.88 0.88 0.89 ±0.008 0.89 ±0.10
2293.8 0.94 0.95 0.95 0.95 ±0.006 0.84 ±0.15
2409.7 0.91 0.91 0.91 0.92 ±0.006 1.00 ±0.17
2467.4 0.90 0.90 0.90 0.91 ±0.007 1.04 ±0.22
2080.0 0.90 ±0.16
2287.4 0.59 ±0.37

χ2 6.84 4.79 5.72 4.34
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derived that relates the rate at which NRF γ rays are emitted from the transmission detection
sheet to the areal density of 238U in the assay target. This function, for a target containing the
measured isotope at an areal density, ρx, is given by

Amodel(ρ) = Cnotch

∫
λ(tTD, E) exp[−σD(E)ρx]σD(E)dE∫

λ(tTD, E)σD(E)dE
(4.4)

where λ(tTD, E) is the effective thickness a photon of energy, E, traverses in a transmission detec-
tion sheet having a thickness, tTD, and atom density, NTD, given by

λ(tTD, E) =
1− exp[−(α +NTDσD(E))tTD]

α +NTDσD(E)
(4.5)

and α = µnr[1+1/ cos(θ)] and θ ≈ 62o for the experimental geometry. µnr contains the attenuation
coefficients for all non-resonant photon scattering events, and has been retrieved from the XCOM
database[22]. The quantity, Cnotch, accounts for notch refill.

For targets as thick as a fuel assembly notch refill can impact the measurement and needs to be
taken into account. The term notch refill is used to describe the process by which photons incident
upon the assay geometry down-scatter to the energy of a resonance and subsequently interact in
the transmission detection sheet. The process results in less observed resonant attenuation than
would be predicted by consideration of simple exponential attenuation, and therefore neglect of
the notch refill phenomenon would result in NRF transmission measurements that systematically
under-predict the areal density of the measured isotope in the target.

The processes that result in notch refill are readily computed using Monte Carlo radiation
transport computer codes such as MCNPX[4]. Comparing MCNPX calculations with models that
exclude notch refill gives an estimate of the notch refill intensity.

Transmission experiments have previously neglected notch refilling because target areal den-
sities were generally significantly smaller[1, 35, 36]. Thinner target thicknesses are better for
measurement of resonant state parameters, but the targets used in this experiment were intended
to be representative of nuclear fuel assemblies. These thicker targets cause notch refill to be no
longer negligible, and the positioning of DU and Pb in the targets was further selected to max-
imize the notch refill effect by placement of the Pb, which induced scatter but no absorption,
downstream of the absorbing DU.

To obtain values of Cnotch, simulations of the experimental geometry were conducted using
MCNPX and the new NRF data library[39] to obtain A(ρ). These values were compared to
analytical evaluations of Amodel/Cnotch, giving Cnotch. Values of Cnotch are shown in Figure 4.4 for
the 2176, 2209 and 2245 keV 238U resonances. The notch refill process is most intense for stronger
and lower-energy resonances, and is more important for thicker targets. As seen in Figure 4.4, the
effect of notch refill is estimated not to exceed 5% for this experiment.

Columns A - D in Table 4.3 present calculated values of Amodel(ρ) for four different treatments
of Equation 4.4. Values in columns A and B assume that the resonance parameters as reported by
Heil et al. are correct[24], whereas the values in columns C and D were obtained using the resonance
parameters described in ENSDF. Columns A and C assume that Cnotch = 1, and columns B and D
use the estimates of Cnotch shown in Figure 4.4. The χ2 values shown in the last row of Table 4.3 are
determined by comparing the 18 measured Ai

level values to those predicted in columns A - D. Only

53



Figure 4.4 Estimated intensities of notch refilling for three 238U resonances indicated by their centroid energy.

the statistical uncertainties of each measurement was used to calculate the reported χ2 values1.
Use of the notch-refill correction and the ENSDF evaluation of the resonance parameters (column
D) provided the best agreement between data and prediction and therefore this treatment is used
to determinate 238U areal densities in the targets as measured by transmission NRF. The predicted
attenuation values shown in column B, using the Heil et al. interpretation of the resonance data
with the notch refill correction, demonstrates better agreement to the data than either predicted
attenuation that omitted the notch refill correction.

Using the values, Cnotch(ρ) shown in Figure 4.4 and the resonance parameters from ENSDF,
Equation 4.4 is evaluated and values of Amodel(ρ) corresponding to values in column D of Table 4.3
are shown in Figure 4.5. The dotted lines indicate errors due to the uncertainty of Γ0 from the
previous measurement of the 238U resonances.

For each measured value of Ai
level shown in Table 4.3, Amodel(ρ) was inverted to obtain an areal

density of 238U that would produce the corresponding attenuation. These values were combined
for the six known resonances by calculating the weighted average of each estimated areal density.
The weighted averages are shown in Table 4.4 with experimental statistical errors and systematic
errors due to uncertainties in the strengths of the 238U resonances.

4.5 Conclusion

The determination of 238U areal densities ranging between 1.7 and 8.5 g/cm2 in an approximately
86 g/cm2 target by observation of attenuation of resonant-energy photons has been accomplished.
While previous transmission measurements using quasi-monoenergetic photon sources have indi-
cated null results for the observation of notch refill[35], the data obtained in this experiment, using
thick targets and a bremsstrahlung beam have exhibited a trend indicative of notch refill that could

1Inclusion of the statistical uncertainties reported by Heil et al. into the χ2 calculation does not significantly
alter the results.
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Figure 4.5 Predicted values of Amodel(ρ) for three strongest 238U resonances measured. Dotted lines indicate ±1σ
errors due to uncertainty in the strengths of the resonances from the Heil et al. measurement.

Table 4.4 Values of the measured areal density of 238U obtained by analysis of NRF peaks, and by direct mea-
surement of the mass and area of the 238U plates used in the assay target. The first errors listed for the NRF
measurement are 1σ errors due to counting statistics in this experiment. The second stated errors are due to the
uncertainties in values of Γ0 extracted from Heil et al.

Run NRF-measured ρx direct ρx

(g/cm2) (g/cm2)

2 8.14 ± 0.98
0.99 ± 0.49 8.47

3 1.37 ±0.68 ± 0.08 1.69

4 3.12 ± 0.73
0.76 ± 0.15 3.34
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increase the measured NRF rate by up to 5% for large resonances and the target containing the
most 238U. A correction based on the MCNPX modeling has been implemented in the analysis
producing the areal densities measured by transmission NRF. Without the notch refill correction,
the data tend to under-predict the areal density of 238U in the target by approximately twice the
standard deviation estimated by Poisson counting statistics.

The 238U resonance parameters reported by Heil et al. tend to result in under-predicted 238U
areal densities, primarily due to the 2176 and 2209 keV resonances, which were found to be
slightly smaller than reported. This could also be due to a slightly larger notch refill correction
than indicated by our modeling.

To within statistical uncertainties, the measurement agrees with models used to describe res-
onant attenuation and subsequent measurement of fluorescence emitted from the transmission
detector. However, the results indicate the difficulty of using transmission nuclear resonance flu-
orescence to precisely measure small quantities of an isotope in an assay target. Rates at which
statistics accrue in a transmission measurement are strongly dependent on the strengths of the
resonances used for the measurement. Measurements of NRF in 235U and 239Pu have indicated
their resonances are smaller than those examined here. This indicates that a transmission NRF
measurement that is useful for nuclear safeguards applications would require orders of magnitude
more intense photon sources than the 65 µA bremsstrahlung beam used in this experiment. While
higher current electron accelerators are commercially available[9], required photon count rates
pose difficult challenges for the γ ray detection system.
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5 Application of NRF Methods to Safeguards

As described in the previous sections, NRF-based methods provide the potential capability to
directly measure the amount of a specific isotope in a material and to perform an isotopic assay.
Such a capability can, in principal, be employed across the spectrum of safeguards activities
including the assay of spent/used nuclear fuel (SNF), the characterization of reprocessed/fresh or
MOX fuel, enrichment measurements in UF6 containers, and the monitoring of waste and effluent
streams. The measurement challenges vary widely. SNF assay is perhaps the most demanding but
also the most important application. The challenge for NRF methods lies in the measurement of
low concentrations of Pu isotopes and other minor actinides with relatively high accuracies of a
few percent or less against a high background from the radioactive decay of fission products. In
enrichment measurements on the other hand, the radioactive background is rather low and the
concentrations of the IOI can be rather high, but the cylinders can be thick and hard to penetrate.

In this section we analyze three examples of NRF measurements, spent fuel assay, determina-
tion of enrichment in UF6 containers, and measurement of 239Pu in MOX fuel, and discuss potential
capabilities and limitations of NRF measurement systems. Based on modeling and MCNPX sim-
ulations, NRF detection rates are estimated for backscatter and transmission methods assuming
both, the use of currently available technology, i.e., bremsstrahlung photon sources, and of quasi-
monoenergetic (QM) photon sources that are currently in an early stage of development. The
results are generally expressed in terms of measurement times for a single radiation detector as-
suming that the use of multiple detectors (a detector array) would proportionally increase the
calculated count rates.

5.1 Spent Nuclear Fuel Assay

The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a
multi-lab/university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies
and to detect the diversion of pins with non-destructive assay (NDA) methods. Nuclear Resonance
Fluorescence (NRF) has been investigated by us as one of 14 NDA techniques included in the study.
The results are summarized in this section.

Pu Content in Spent Fuel

In reference[7], Phillips presents calculations of the concentrations of Pu isotopes in spent fuel as
a function of fuel burn-up. These values were calculated using the computer code CINDER[8] and
are shown in Figure 5.1. Phillips indicates that Pu concentrations are expected to be accurate to
± 10% when the reactor spectrum is well-known, and up to ± 25%, if only the type of reactor is
known. Because the Pu concentrations are a function of the reactor type, the Pu concentration
values are used to estimate a region of relevant target areal densities. For a typical 15x15 fuel
assembly, the average areal densities of 239Pu and 240Pu traversed by photons normally incident
upon the side of an assembly are Nx ≈ 0.25 g/cm2 and ≈ 0.15 g/cm2, respectively.

These concentrations are used as reference values throughout the predictive modeling that is
described in Sections 5.1.1 - 5.1.2.
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Figure 5.1 Example of computed Pu concentrations in spent fuel as a function of LWR reactor burn-up[7]. The
figure is reproduced from this reference. The ordinate is percentage of Pu atoms to the initial uranium atoms
present in the fuel.

5.1.1 Measurements Using Bremsstrahlung

The use of currently available intense bremsstrahlung sources for SNF assay is examined in this
section. Possible NRF measurements with quasi-monoenergetic photon sources that may become
available in the future are analyzed in Section 5.1.2.

5.1.1.1 Backscatter Measurement of Spent Fuel Pins

The geometry for a backscatter measurement on a fuel pin is schematically shown in Figure 2.3.
The pin was assumed to be a 10 mm diameter UO2 cylinder.

Backscattered Background

Photons reaching the radiation detectors that are not due to NRF are considered background.
These events may be due to scatter of the interrogating photon beam or radioactive decay in the
material to be assayed. Understanding and quantifying this background is important to determine
signal-to-noise ratios and detector count rate limitations.

The physical processes that result in photons being emitted at backwards angles relative to
the incident photon direction are incoherent scatter, coherent scatter, pair production, and brems-
strahlung emission from photoelectrons. Incoherent scatter produces only low-energy backscat-
tered photons and pair production results in 511 keV photons in all directions. Coherent scattering,
on the other hand, produces energetic photons, that are predominantly forward-directed, but also
result in some energetic backscattered radiation. Similarly, multi-step processes such as multiple
incoherent scattering events or bremsstrahlung emission from energetic photoelectrons can result
in energetic backscattered radiation.

The background for the case studied here was simulated in MCNPX. The interrogating radi-
ation was generated with 2.6 MeV electrons incident upon a 102 µm Au foil on a 1 cm thick Cu

58



Figure 5.2 Calculated backscattered photon flux for assay of a 5 mm diameter cylinder of spent BWR elements
at a detection position 100 cm from the target, at 135o relative to initial electron beam direction. The flux is
normalized per mC of 2.6 MeV electrons incident upon bremsstrahlung converter.

backing, (see Figure 2.5). The resulting bremsstrahlung was collimated to 1o half-angle and used
to irradiate the UO2 cylinder 30 cm downstream. The backscattered fluence, shown in Figure 5.2,
was calculated 100 cm from the target in a viewing window located at an angle of 135o relative to
the direction of the electron beam.

The energy-integrated fluence for the spectrum shown in Figure 5.2 is approximately 1.6× 105

photons/cm2/mC. With the front surface area of a large HPGe detector of ∼50 cm2, the detector
count rate would be too high with a bremsstrahlung source of reasonable intensity and therefore
thick filters (e.g. 7.5 mm of Pb) must be used to reduce the flux of low-energy photons.

The expected background photon flux is shown in Figure 5.2 and the resulting values at reso-
nant energies are tabulated as Rbkg in Table 5.1. The total intensity is given by integrating the
energy-differentiated spectrum over all energies. This results in 4.6×102 counts/mC. Using a 25
mA electron beam to produce the bremsstrahlung beam would then result in approximately 104

background counts/s in the counting geometry. Adding the simulated counting rate due to the
radioactivity of the spent fuel of 104 counts/s, yields a total count rate of ∼ 2× 104 counts/s.

NRF Count Rates from Backscatter Assay of Spent Fuel Pin

The NRF rates were calculated using the analytical model for the case of 0.4% of actinide mass,
239Pu, in the SNF pin. The detector response was modeled in MCNPX for a filter thickness of
xf = 7.5 cm.

Resulting expected count rates of NRF γ rays from 239Pu are tabulated in Table 5.1. The
values are reported in units of counts/mC, indicating that rates are proportional to the intensity
of the electron beam that generates the bremsstrahlung beam. For the background continuum,
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Table 5.1 Expected rates at which 239Pu NRF γ rays (RNRF), non-resonantly backscattered interrogation photons
(Rbkg), and photons emitted via radioactive decay spent fuel that has cooled for 11 years (Rfuel), are detected at
energies corresponding to 239Pu resonance γ rays. The detector was assumed to be a 100% relative efficiency HPGe
shielded behind 7.5 cm lead, with assumed energy resolution of 3 keV, 100 cm from the center of the fuel pin at an
angle of 135o , relative to the initial electron beam direction. Values in the last row represent total rates expected
over the entire spectrum.

Centroid
∫
σNRF dE RNRF Rbkg Rfuel

Energy (keV) (b·eV) (1/mC) (1/mC) (1/s)

2040.3 8 2.5×10−5 4.2×10−3 9×10−3

2135.0 4 1.1 ×10−5 2.4×10−3 8×10−3

2143.6 13 3.3×10−5 2.2×10−3 8×10−3

2289.0 8 1.6×10−5 6.9×10−3 6×10−3

2423.5 10 1.4×10−5 2.3×10−4 5×10−3

2431.7 9 1.2×10−5 2.2×10−4 5×10−3

2454.4 9 1.1×10−5 1.8×10−4 4×10−3

2464.6 8 9.6×10−6 1.6×10−4 3×10−3

total 1.3×10−4 4.6×102 1×104

the energy-differentiated photon flux is multiplied by the detector’s energy resolution, which is
assumed to be 3 keV. The expected uncertainties in the rate at which NRF γ rays would be counted
are primarily due to experimental uncertainties in the measured strengths of the NRF resonances.
These values are up to 33% for the smaller resonances. Likewise, effects due to detector dead-time
will proportionally decrease all rates listed in Table 5.1.

Referring to the results shown in Table 5.1, we observe that a beam current of ∼200 mA would
be necessary for the intensity of NRF γ rays from the 2143 keV 239Pu resonance to be equal to
the intensity from the radioactivity of spent fuel, 11 years after reactor discharge. With this beam
intensity in mind, we now consider the intensity of non-resonantly backscattered photons, which
also scales with the intensity of the interrogating beam.

The significantly larger intensity of the non-resonantly scattered photons and the radioactive
decay photons, relative to the NRF γ rays, causes the measurement of backscattered NRF γ rays
needed to determine spent fuel content to be difficult. Since longer cooling times can reduce the
photon intensity due to radioactive decay in spent fuel, the fundamental limit is defined by the
fact that the intensity of NRF γ rays, relative to those non-resonantly scattered, is fixed and small.
This indicates that very large numbers of photon counts would be required to precisely measure
the quantity of 239Pu in spent fuel. Data from multiple resonances should be combined to improve
statistics.

Measurement durations necessary to obtain 5% uncertainties, in units of the product of number
of HPGe detectors and time are tabulated in Table 5.2 for several beam intensities. The third
column indicates the relative efficiency for a measurement with the stated beam current. The
stronger the current, the less significant is the radioactive background. However, in the assumed
configuration, currents above 45 mA will begin to induce problematic count rates in an HPGe
detector.

The stated measurement times are for a single fuel pin. The measurement times for an exterior
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Table 5.2 Measurement durations in units of number of 100% relative efficiency HPGe detectors·time necessary to
obtain 5% statistical uncertainty in 239Pu concentrations in a single spent fuel pin for various beam intensities. Also
shown are the relative efficiencies of the measurement, which indicates the relative importance of the radioactive
background, compared to the beam-on signal.

Ie 5% Rel.

(mA) (det·day) Meas. Eff.

0.10 6.6×107 0.11

1.0 8.0×104 0.31

10 1.8×103 0.65

45 225 0.86

100 88 0.93

row fuel pin of an assembly would be quite similar if a detector were collimated to only view the
irradiated portion of the pin. Fuel pins located in deeper rows in an assembly accrue statistics
at slower rates due to self shielding by other pins. We therefore conclude that determination of
239Pu concentration in spent fuel via measurement of backscattered bremsstrahlung-induced NRF
γ rays is not practical to pursue.

The signal-to-noise ratio, ξ, in the backscatter measurements are well into the small ξ regime,
wherein statistical uncertainty in backscatter NRF-measured concentrations scale as σ ∝ 1/

√
Nξ.

This implies the following:

• Detectors that operate at higher (lower) count rates may proportionally increase (decrease)
N for a given measurement duration and therefore decrease (increase) σ by 1/

√
N ;

• Detectors with better (worse) resolution proportionally increase (decrease) ξ for a given
measurement and therefore decrease (increase) σ for a given measurement duration by 1/

√
ξ;

• Measurement of a material with larger (smaller) NRF resonances produces proportionally
larger (smaller) values of N and ξ, thereby proportionally decreasing (increasing) σ for a
given measurement.

5.1.1.2 Transmission NRF Assay of Spent Fuel Assemblies with a Bremsstrahlung
Source

The concept of performing a transmission measurement to determine Pu content in spent fuel was
presented in Section 2.2.2. The method has the following advantages compared to a backscatter
measurement:

• the positioning of radiation detectors makes it possible to shield them from radioactivity
emitted from the spent fuel;

• measured NRF γ rays have significantly improved signal strengths, relative to the non-
resonant photon scatter background; and

• neglecting the small effects of notch refill, the measurement has uniform sensitivity through-
out the volume of the irradiated portion of the fuel assembly.
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Table 5.3 Expected effective attenuation values, A, signal-to-background ratios of the NRF γ rays, ξ, numbers of
counted NRF γ rays due to 239Pu resonances, C, and statistical relative uncertainties, σNx, for a simulated assay
of 239Pu in a spent fuel assembly. The assay assumes a 24-hour measurement of a fuel assembly containing 0.25
g/cm2 239Pu and that the bremsstrahlung source induces 2× 104 counts per second in each HPGe detector. An *
indicates that the corresponding NRF γ ray is due to de-excitation of the NRF state to the first-excited state of
239Pu.

Elevel A ξ
xf = 6 cm

(MeV) C σNx (%)

2.040 0.998 0.87 5.1× 106 39.6

2.144∗ 0.996 0.59 2.3× 106 33.8

2.144 0.996 1.91 7.5× 106 12.8

2.289 0.998 1.91 3.7× 106 41.4

2.432∗ 0.996 2.44 3.3× 106 18.5

2.432 0.996 2.72 3.0× 106 19.0

2.454 0.998 2.60 2.8× 106 41.3

2.464 0.998 2.34 2.4× 106 51.6

total 3.0× 107 8.3

Transmission methods also generally allow for stronger photon sources than those used in a back-
scatter measurement. Assuming intense CW electron sources such as a Rhodotron are used to
generate bremsstrahlung, the transmission measurement of entire fuel assemblies is more effective
than that of a single fuel pin.

Using the modeling described in Section 3 the effectiveness of a transmission measurement of
Pu areal densities in spent fuel is examined.

In a transmission assay, the rate at which a particular resonance undergoes NRF in the TD is
proportional to the product of the integrated cross section of that resonance, A(Nx) and the photon
intensity incident upon the TD at the resonance centroid energy. Using Table 3.3 and assuming
the incident photon spectrum given in Figure 2.8, we estimate relative count rates for each of the
239Pu resonances, and use equation 2.46 to estimate the expected experimental uncertainty in a
239Pu areal density measurement. An example is given in Table 5.3. The example assume that
four hundred 100% relative efficiency HPGe detectors are located behind lead filters of thickness
xf = 6 and positioned 100 cm from a 4 mm thick TD. The maximum total photon interaction
rate in the HPGe detectors is conservatively assumed to be 2 × 104/s. In this geometry, 1/3 of
the total available backward solid angle is subtended by the detectors.

The uncertainties expected from a 24 hour measurement using a 42 mA beam are listed for
each resonance. An estimate of the total uncertainty of the areal density of 239Pu is determined
from a weighted mean of the measured areal densities from each resonance and, based solely on
counting statistics, is given in the last row of Table 5.3. Systematic errors are not included since
counting statistics is the major challenge with existing technology.

Other Pu isotopes of interest in spent fuel are 240Pu and 242Pu while the NRF responses
have not been measured yet, nuclides with even numbers of neutrons and protons generally have
stronger NRF resonances than those with at least one unpaired nucleon such as 239Pu1. With this

1See for example, references[30],[31], and[32]
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Table 5.4 Summarizing the effects on maximum beam current, Ie, and the resulting fractional areal density
statistical uncertainties, σNx, when a LaBr3 detector array is used instead of HPGe. The * indicates that 240Pu
resonances are unknown and that known 238U resonances were used for this calculation instead.

HPGe LaBr3

σE 1.3 (keV) 23 (keV)

Ċmax 2× 104/s 3× 105/s

xf 4 cm 6 cm 4 cm 6 cm

Ie (mA) 7.8 42 117 630
239Pu σNx (%) 11.4 8.3 9.3 6.53

240Pu∗ σNx (%) 1.4 0.98 1.0 0.54

in mind, we estimate the accuracy to which a measurement of the 240Pu content in a spent fuel
assembly might be obtained. Assuming that the 238U NRF state characteristics shown in Table 3.5
are representative of the 240Pu resonances, we can calculate the total statistical uncertainty for
the 238U resonances assuming an areal density in spent fuel of 0.15 g/cm2.

The assumed strong resonances could reduce measurement times by a factor of 70 compared to
239Pu. A 24 hour measurement could achieve 1% precision, or a 5% precision measurement could
be done in 1 hour.

Measurement of Pu in Spent Fuel using Alternative Detector Types

Whereas NRF γ rays measured in backscatter measurements were determined to be significantly
weaker than background photon intensities within any known detector’s resolution, this is not
the case for a transmission measurement. Because of this, worsening detector resolution does
not reduce the precision of the measurement by 1/

√
ξ, but rather produces a more complicated

and less severe effect. Conversely, detectors that can operate at higher count rates would allow
significantly stronger beams and/or thinner filters. We explicitly consider the use of LaBr3, which
can easily tolerate ∼15 times higher count rates than HPGe detectors, and evaluate two cases
with 4 cm and 6 cm thick filters, respectively. The expected uncertainties for a 24 hr transmission
measurement using 400 LaBr3 detectors of similar size to 100% relative efficiency HPGe detectors
were calculated. The beam intensities, Ie, corresponding to the given detector count rates and the
resulting fractional areal density statistical uncertainties, σNx for these geometries are presented
in Table 5.4.

These results indicate that lower-resolution detectors capable of significantly higher count rates
may be capable of providing 20% - 40% lower statistical error (higher precision) but for the price
of a needed 10-fold increase in electron beam current. Better precision transmission measurements
of Pu in spent fuel, so long as bremsstrahlung beam intensity may be increased such that detectors
are rate-limited.

From the examples presented in this section, we draw the following conclusions:

• backscatter measurements of 239Pu concentration in SNF is not practical, and it is unlikely
that 240Pu would have sufficiently strong NRF resonances to make backscatter measurements
of 240Pu practical;
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• transmission measurements of 239Pu concentration with bremsstrahlung would be even more
time-consuming, requiring ∼ 2× 104 detector·days to obtain 1% counting statistics;

• if 240Pu resonances are as large as those in 238U, transmission measurements of 240Pu con-
centration to 1% uncertainty would still take ∼200 detector·days, which is possible even if
not practical.

• Measurements with a statistical uncertainty of several percent would only take 1/10 of the
time and reduce measurement time and/or the size of the detector array accordingly.

64



5.1.2 Spent Fuel Assay Using Quasi-monoenergetic Photon Sources

The ideal photon source for an NRF measurement would be a monoenergetic beam that excites
a particular resonance of interest and generates a minimal scattered photon background. Quasi-
monoenergetic (QM) photon sources that produce a narrow source photon energy distribution
based on the Compton up-scattering of laser light are under development to produce intense
photon beams with 1 - 10 keV energy width. This source type is briefly described in Section 2.3.1.

In the analysis of NRF systems using QM sources it is mostly assumed that the source delivers
a continuous beam. However, laser Compton sources are pulsed in nature. If the pulse rate of
a hypothetical source is sufficiently high, it may be considered approximately continuous. Lower
frequency sources require more detailed consideration, and would best be combined with threshold
(Cherenkov) detectors as discussed below.

5.1.2.1 Backscatter Measurement with Quasi-monoenergetic Photons

Analogous to Section 5.1.1.1, we consider here the possibility of directly measuring the rate at
which Pu in spent fuel undergoes NRF when irradiated with a QM photon source. To study this
measurement scenario, we divide the calculation into four parts:

• Backscatter of resonant-energy photons;

• Backscatter of non-resonant photons;

• Radioactive background due to spent fuel activity; and

• Detector response.

Backscattered Photon Spectra

We assume a QM beam that is uniform in intensity over an 8 eV range and sufficiently narrow to
be considered incident upon only a single row of fuel pins in an assembly. The mean energy of the
beam was taken to be the centroid energy of the 2431 keV 239Pu resonance. Likewise, we assume
HPGe detectors are collimated and positioned to view only a single fuel pin within the irradiated
row of fuel pins. To simulate this, the probability of photons interacting within fuel pins that are
outside of the collimator viewing angle were explicitly excluded from directly contributing to the
calculated photon flux. A schematic of the geometry simulated in MCNPX is shown in Figure 5.3.
The portions of the fuel lattice that are differently colored indicate regions within which photons
interacting are considered to directly contribute to the calculated flux.

The resonantly and non-resonantly backscattered photon fluences were calculated with iden-
tical MCNPX runs, except NRF datafiles were excluded from the non-resonant photon scatter
calculations. The photon source is assumed to be non-diverging, normally incident upon the fuel
assembly, centered at the row of pins adjacent to the center row (which has several void locations),
and uniformly distributed throughout a 6.3 mm radius circle.

Two tallies were performed, each giving the expected photon fluence at a hypothetical detector
location. Both locations were 100 cm from the row of fuel pins that were irradiated, at an angle of
125o from the initial beam trajectory. One tally simulated a detector collimated to view the 3rd
fuel pin in the row of irradiated fuel, and the second simulated a detector collimated to view the
13th fuel pin. The spectra calculated at each detector position are shown in Figures 5.4 and 5.5,
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Figure 5.3 Geometry simulated in MCNPX to determine energy-dependent flux of backscattered QM photons
incident upon a spent fuel assembly.

where the blue lines indicate the spectrum resulting when NRF physics is included, and the red
when NRF is excluded. The reason that a full energy peak remains when NRF is disabled is due
to the fact that non-resonant elastic scatter (NRES) is still possible. The cross section for NRES
is significantly smaller than that for NRF, however all isotopes in the spent fuel are capable of
undergoing NRES, whereas presumably, only the 239Pu at 0.4wt.% undergoes NRF at this energy.
At full energy, the calculated intensities of NRF γ rays divided by the intensities calculated without
NRF is 7.2 for both pins. This value is roughly the maximum possible signal-to-background ratio,
ξmax, that a QM backscatter measurement of the 2431 keV 239Pu resonance could attain. However,
most QM photon sources are at least 100 times broader in energy, resulting in signficantly worse
ξ. For σS > ∆Edet, realistic signal-to-background ratios, ξ, using QM photons are determined by
the detector resolution. The ratio can be estimated as

ξreal ≈
ξMonoeE∆Esrc

∆Edet

≈ 1

50
(5.1)

for these simulations, in which ∆Esrc = 8eV and ∆Edet = 3 keV HPGe detector. The ramifications
of poor signal-to-background will be discussed below.

Values describing the total calculated spectra for these runs are given in Table 5.5. The column
labeled ΦES is the intensity of the full-energy peak in the simulation that excluded NRF physics,
ΦNRF is the sum of photons that are expected to be due to NRF, ΦNRF = Φ(E = 2431) + Φ(E =
2423) − ΦES. The fraction of the total flux that is due to photons of energy 511 keV or less is
quite large. This implies that if necessary, absorbers could be placed between the fuel assembly

66



Figure 5.4 MCNPX-computed spectrum due to backscatter of monoenergetic photons at resonant (blue) and a
nearby non-resonant (red) energies incident upon a single row of a spent fuel assembly. These spectra correspond
to the labeling ‘F5’ in Figure 5.3.(3rd pin)

Figure 5.5 MCNPX-computed spectrum due to backscatter of monoenergetic photons at resonant (blue) and a
nearby non-resonant (red) energies incident upon a single row of a spent fuel assembly. These spectra correspond
to the labeling ‘F15’ in Figure 5.3. (13th pin)
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Table 5.5 Parameters describing average spectra due to a single monoenergetic photon incident upon a spent fuel
assembly with resonant energy that are backscattered towards detectors that are collimated to view the 3rd and

13th row of pins, respectively. Φ(E<511)
ΦT

and Φ(E=511)
ΦT

indicate the fraction of the total calculated flux that are due
to photons with energies less than, and equal to 511 keV, respectively. ΦNRF is the expected flux of NRF γ rays
per source photon, ΦES is the expected flux due to non-resonant elastic scatter of source-energy photons, and ΦT
is the expected total flux of photons due to monoenergetic, monodirectional photons normally incident upon a 1
cm diameter portion of a fuel assembly.

tally Φ(E<511)
ΦT

Φ(E=511)
ΦT

ΦNRF ΦES ΦT

pin (1/cm2/ph) (1/cm2/ph) (1/cm2/ph)

3 0.44 0.33 3.1×10−10 2.4×10−11 7.83×10−8

13 0.80 0.05 2.7×10−12 2.0×10−13 7.96×10−9

and photon detectors to reduce the low-energy photon count rate and therefore the total count
rate of a detector.

Neglecting the contribution to the background count rate due to radioactive decay of spent
fuel, we may use the values in Table 5.5 to determine the best-case counting parameters necessary
to make a measurement of 239Pu content in spent fuel using backscattered NRF γ rays. For
simplicity, we assume that photons will be detected with a 100% relative efficiency HPGe detector
of surface area, Adet = 50 cm2. To make a 1% measurement, we would normally require 104 NRF
counts. However, due to the very poor signal intensity, relative to background (ξ = 1/50), we
estimate using equation 2.15 that CNRF = 105 NRF counts are necessary. Given that NRF γ rays
have a full-energy deposition probability for the detector, εNRF = 0.2, we would need

Nres =
CNRF

εNRFAdetΦNRF

= 3.22× 1013 (5.2)

photons within ±4 eV of the resonance centroid energy to make this measurement on a fuel pin
in the third layer with a single HPGe detector. Likewise, a 1% measurement of a pin in the 13th
row of fuel would require 3.70× 1015 photons within ±4 eV of the resonance centroid energy. For
example a proposed (LLNL[14]) QM photon source is to generate 106 photons/eV/s. With this
source, a 1% measurement of the 3rd row of fuel pins would require 4 × 106s of active detectors,
or approximately 1200 detector·hours.

For beams with realistic energy bandwidth detector count rate limitations are important. A
summary of the constraining parameters of such a system is shown in Table 5.6 for various source
widths and HPGe detectors (assuming 3 keV resolution and a maximum count rate of 2× 104Hz).

Revisiting the possible use of the proposed (LLNL) quasi-monoenergetic photon source, and
assuming σS ≈ 2, 500 eV, we observe that approximately 63 detector·days would be necessary
to perform the 1% meaurement, indicating this measurement would be possible to conduct in 1
day using a 63-HPGe detector array. Likewise, more intense photon sources (in terms of total
number of photons on target per second) would generally saturate unshielded HPGe detectors,
which would necessitate the use of a filter, which is discussed below in the context of filtering
spent fuel radioactivity.
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Table 5.6 Backscatter measurement parameters for 1% measurment of 239Pu in spent fuel assembly for third row
of pins, neglecting fuel radioactivity. HPGe detectors have been assumed to have 3 keV resolution and to operate
at 2× 104Hz.

σS ΦNRF
NT
NNRF ξ

CNRF CT tmeas intensity

(keV) (1/cm2/ph) counts counts (det·day) (1/eV/s)

0.1 1.0× 10−11 0.42 2.4× 104 9.5× 108 0.55 2.0× 107

1 1.0× 10−12 0.042 7.0× 104 2.8× 1010 15.6 2.0× 106

2.5 4.0× 10−13 0.017 1.1× 105 1.1× 1011 63 8.2× 105

3 3.3× 10−13 0.014 1.2× 105 1.4× 1011 82 6.8× 105

10 1.0× 10−13 0.014 1.2× 105 4.7× 1011 274 2.0× 105

100 1.0× 10−14 0.014 1.2× 105 4.7× 1012 2740 2.0× 104

Table 5.7 Backscatter measurement parameters for 1% measurment of 239Pu in spent fuel assembly for third row
of pins, when 3 inch Pb filter is present. HPGe detectors have been assumed to have 3 keV resolution and to
operate at 104Hz due to beam photons and 104Hz due to radioactive decay in spent fuel.

σS ΦNRF
NT
NNRF ξ

CNRF CT tmeas intensity

(keV) (1/cm2/ph) counts counts (det·day) (1/eV/s)

0.1 1.0× 10−11 0.42 2.4× 104 9.5× 108 0.07 6.1× 109

1 1.0× 10−12 0.042 7.0× 104 2.8× 1010 2.1 2.0× 108

2.5 4.0× 10−13 0.017 1.1× 105 1.1× 1011 8.4 2.4× 108

3 3.3× 10−13 0.014 1.2× 105 1.4× 1011 11 2.0× 108

10 1.0× 10−13 0.014 1.2× 105 4.7× 1011 37 6.1× 107

100 1.0× 10−14 0.014 1.2× 105 4.7× 1012 366 6.1× 106

Impact of Spent Fuel Radioactivity on Backscatter Measurement

The assay geometry depicted in Figure 5.3 is quite similar to that considered in Section 5.1.1.1. In
this section, it was determined that approximately 7.5 - 10 cm of Pb would need to be placed in the
collimator opening between an HPGe detector and the portion of the interrogated fuel assembly
that is within the line of sight. 7.5 cm of Pb will attenuate 2431 keV photons by a factor of 40, and
the total count rate due to scattered interrogating photons by a factor of 600. With this filter, we
re-present the measurement parameters in Table 5.7. For sources with a broader energy width, the
signal-to-background ratios are not significantly changed and measurement times actually decrease
due to filtering of the low-energy portion of the backscattered spectrum. However, the necessary
source intensity to achieve the tabulated rates are increased by a factor of approximately 40.

The expected count rate of background photons that a 100% relative efficiency detector in this
geometry, located behind 7.5 cm of Pb, measures is approximately 104/s. The previously referred
to proposed QM photon source, producing 106 photons/eV/s on target, would now induce ∼30
counts per second in a reference detector and 6× 10−4 NRF counts/s. Therefore the assumption
in the preceeding section that detector count rates are satuarated due to counting of interrogating
source photons would require significantly more intense photon beam, as indicated in Table 5.7.
The expected count rate of radioactive decay photons contributing background at 2431 keV would
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Figure 5.6 Relative intensities of photon fluxes due to scattering of resonant (blue) and non-resonant (red)
interrogating source photons compared with the intensity of background photons (green).

contribute a count rate of 3 × 10−3counts/3keV/s. This would further decrease the signal-to-
background ratio, ξ, for the NRF signal (from 0.017 to 0.015) for proposed sources, but would
have very little effect on ξ for very intense sources. The time that a 1% measurement would take
using the LLNL-proposed source would then increase by a factor of 43 from 50 detector·days to
2.2×103 detector·days.

Use of Threshold Detectors

Radiation detectors that are only sensitive to photons above a threshold energy do not necessarily
significantly improve the prospect of making a measurement of 239Pu content in spent fuel via a
backscatter measurement unless the detector can also resolve the energy of detected photons, or
can be used with a pulsed QM photon source to reduce the background rates through time-gating.

Without time gating, the issue of background can be illustrated by comparing the photon
spectra shown in Figure 5.4 with a simulated spectrum of the emitted γ-ray spectrum from the
radioactivity in a SNF assembly as is shown in Figure 5.6.

Threshold detectors effectively integrate the photon flux above some minimum energy Emin,
possibly with a response function. The most optimistic threshold detector response model would
be that of a step function and Emin = 2.4 MeV. In this case, the NRF signal would represent just
1.8 × 10−4 of the measured signal, implying that statistics would accrue about 100 times slower
than if the threshold detector primarily measured NRF signals, with most of the signal coming
from the radioactive background and the non-resonant source photons.

However, if the QM photon source is pulsed, like the QM sources described in Section 2.3.1
with 10 ps bunches at f = 120 Hz, detectors that measure single photons will be limited to
very low acquisition rates. Conversely, integrating threshold-type detectors could be configured
to measure an integrated signal only during the beam pulse. Assuming a time resolution σt of
1 ns, the measured intensity of radioactive background photons would be reduced by a factor of
σt× f = 1.2× 10−7. In this case, systems with threshold detectors and pulsed QM photon sources
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would measure a negligible radioactive background and would thus be able to measure spent fuel.
Depending on the sharpness of the threshold that could be implemented, the signal-to-background
ratios could reach those indicated for σS ≤ 3 keV in Table 5.6. QM sources with a wider energy
spread would result in proportionally smaller values of ξ.

Conclusions for Backscatter Measurements Using Quasi-monoenergetic Sources

The best-case scenario for using NRF to measure Pu content in spent fuel is to use a truly
monoenergetic photon source of arbitrary intensity and a detector with good energy resolution
that is not count rate-limited. In this case, the NRF signal due to the strongest 239Pu resonances
is approximately 10 times background (for 3 keV energy resolution detectors), and measurement of
104 NRF counts would provide ∼1% counting statistics. In the geometry in which the detector-TD
distance was 100 cm, as described in Section 5.1.2.1, this would require 8×1011 source photons for
a single 100% relative efficiency detector to measure the third row of pins. More detectors would
proportionally reduce the necessary number of source photons, i.e., an array of 100 such detectors
would require 8× 109 source photons.

This ideal scenario is unrealistic in three ways: energy-resolving detectors are incapable of
measuring arbitrary count rates and photon sources can neither be arbitrarily intense, nor truly
monoenergetic. The problem of detector rate limitations becomes foremost because it limits source
beam intensities and necessitates shielding from the spent fuel radioactivity, which causes more
source photons to be required to obtain the same number of NRF counts. Photon sources with
broader energy distributions reduce the signal-to-background ratio, requiring longer counting times
to obtain the same statistics.

If the QM source is pulsed, energy-resolving detectors may operate at average rates that are
significantly lower than the nominal rate limit, resulting in increased counting times. Threshold
detectors are not rate limited, and could be gated to reject radioactive background photons between
photon source pulses. This could result in significant improvements for backscatter measurements
using very intense QM sources. A best-case scenario would be the use of a ∼ 108 photons/eV/s,
σS = 2.5 keV source inducing NRF that is measured by an ideal Cherenkov detector array.
With ξ = 0.017, this measurement would take 12 hours using a single detector with a 50 cm2

area and an efficiency comparable to the full-energy efficiency of HPGe (∼20%). An array of
80 such detectors could then accomplish a measurement with 1% statistical uncertainty in 10
minutes. While this indicates the promise of NRF, neither the detectors nor the photon source
presently exist. Construction of demonstration QM sources of 106 photons/eV/s intensity have
been proposed, and aerogel Cherenkov materials could potentially produce acceptible threshold
characteristics[33, 34].

In summary, we observe the following for backscatter measurements:

• Increasing the QM source intensity from the proposed LLNL design to 2×108 ph/eV/s would
proportionally reduce the necessary count time. Above this intensity, detector count rates
would become the limiting factor and increased source intensities would require additional
filter thicknesses to reduce count rates;

• Narrower than 2.5 keV bandwidth beams would represent an improvement in ξ and could
potentially produce up to a factor of 8 decrease in measurement time;
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• Broader bandwidth beams would not necessarily worsen the system performance, but would
reduce the allowable increase in beam intensity before which additional filter thickness would
be necessary, thus leading to longer measurement times;

• Improved detector energy resolution (over the 3 keV FWHM resolution assumed here) would
result in proportionally better values of ξ, and proportionally shorter measurement times
(until ∼5 eV resolution is achieved);

• Worsened detector energy resolution results in proportionally longer measurement times
until separate peaks cannot be resolved;

• Detectors capable of higher measurement rates proportionally decrease counting times and
reduces necessary filter thickness, which further reduces counting times but also reduces the
allowable increase in beam intensity or width;

• Measurements with gated threshold detectors and a pulsed photon source would largely be
insensitive to the radioactive background and would thus be suitable for backscatter assay.

5.1.2.2 Transmission Measurements Using Quasi-monoenergetic Sources

Because the transmission measurements rely on a transmission detector, the radiation detectors
are not directly exposed to the large photon intensity due to radioactive decay in the used fuel
assembly. Therefore we are able to consider the transmission measurement of a fuel assembly with-
out directly considering the influence of the radioactive background. Analogous to Section 5.1.2.1,
we divide the problem of measuring used fuel into several independent calculations:

1. Transport of resonant-energy photons;

2. Transport of non-resonant photons; and

3. Detector response.

The transport of resonant and non-resonant photons were simulated in MCNPX in two assay
geometries, both of which use monodirectional, monoenergetic photons to irradiate fuel in a 17x17
fuel assembly. In one geometry, the photon source is normally incident upon a full row (17 pins)
adjacent to the center of the fuel assembly (labeled ‘A’ in Figure 5.7). In the other geometry, the
photon beam is assumed incident upon the assembly at an angle, 33o from normal. The red lines
in Figure 5.7 represent the trajectories of the source photons through a fuel assembly for these two
source geometries. The thicknesses of material through which the simulated photons penetrate as
they traverse the fuel (assuming no interaction) are given in Table 5.8.

Beyond the fuel assembly, a TD is placed in the trajectory of the interrogating photon beam.
For these simulations, the TD was assumed to be a 1 cm thick plate of pure 239Pu with a 10 cm
diameter. In a real system the diameter of the TD would be as small as the transmitted beam and
considerably thinner than 1 cm. Finally, the photon flux, resulting from backscattered photons
emitted from the TD is determined at a position 100 cm along a ray leaving the center of the TD
at a 120o angle, relative to the initial photon beam trajectory.

Spectra calculated for geometry B, using MCNPX and the modified photonuclear data files are
shown in Figure 5.8. Table 5.9 presents parameters describing the spectra shown in Figure 5.8, as
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Figure 5.7 Schematic describing the source photon trajectories for the two different geometries of monoenergetic
transmission measurements considered. The red lines indicate rays describing the trajectory of the source photons
for the two geometries, labeled ‘A’ and ‘B’.

Table 5.8 Thicknesses of materials traversed by rays depicting monodirectional source trajectories in two source
geometries.

Source UO2 Zr Clad

Geometry (cm) (cm)

A 13.940 2.210

B 7.654 2.700
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Figure 5.8 MCNPX-computed spectra due to a transmission measurement of a fuel assembly containing no 239Pu
using monoenergetic photons at resonant (blue) and a nearby non-resonant (red) energies incident upon a spent
fuel assembly as indicated by Geometry B in Figure 5.7.

well as those spectra that result from a photon beam incident as depicted in geometry ‘A’. Similar
to the simulation of the backscatter method, the intensities in Table 5.9 may be scaled to the
intensities of resonant and non-resonant source photons and summed to determine the expected
spectrum due to a given QM photon source distribution.

Computed Photon Spectra using Quasi-monoenergetic Sources

A series of simulations were conducted using Gaussian beam source energy profiles centered on
the 2.431 MeV 239Pu resonance, the irradiation geometry labeled ‘A’ in Figure 5.7, and with 239Pu
content of 0% and 3.62wt.%. Using these simulations, the analytical attenuation model can be
tested against MCNPX, the NRF signal intensity can be compared to the calculated background
intensity, and the expected rates at which NRF and non-NRF γ rays would be measured can be
determined.

The intensity of the 2431 keV NRF γ ray compared to background was determined in two ways;
for photon source distributions wider than the tally energy bin width, a Gaussian distribution was
fit to the calculated peak due to non-resonant elastic scatter of source photons. For narrower source
distributions, MCNPX calculations were also performed where the NRF process was turned off.
Comparing spectra for identical runs with and without NRF indicates the relative intensity of
the NRF γ rays, relative to the non-resonant elastic scatter. Figure 5.9 presents the calculated
relative intensity of NRF γ rays at 2431 keV, relative to the calculated intensity of non-resonantly
scattered photons that would be incident upon a detector.

As expected, the intensity of NRF γ rays, relative to background increases when a larger
fraction of the source photons are resonant-energy, as occurs with a narrower source. This effect
becomes most pronounced when the width of the beam becomes less than the assumed detector
resolution, at which point reducing σS produces a smaller elastic scatter contribution. Using
equation 2.15, we observe that the number of NRF counts needed to make a measurement of a
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Table 5.9 Parameters describing average spectra due to a single monoenergetic photon with E = 2431 keV incident
upon a spent fuel assembly that penetrate the fuel assembly, impinge upon the TD , and are backscattered toward a
detector located 100 cm from the TD at an angle of 120o, relative to the initial beam direction. The energies of the
monoenergetic photons were either considered to be that of the centroid energy of the 2431 keV 239Pu resonance,
or sufficiently distant from this energy that the resonance would have no impact on the transport of the photons.

The geometry of the incident photon beam, relative to the assembly is depicted in Figure 5.7. Φ(E≤511)
ΦT

indicates
the fraction of the total calculated flux that are due to photons with energies ≤ 511 keV. ΦNRF is the expected
flux of NRF γ rays per source photon, ΦES is the expected flux due to non-resonant elastic scatter of source-energy
photons, and ΦT is the expected total flux of photons due to monoenergetic, monodirectional photons normally
incident upon a 1 cm diameter portion of a fuel assembly.

beam Φ(E≤511)
ΦT

ΦNRF ΦES ΦT

geometry (1/cm2/ph) (1/cm2/ph) (1/cm2/ph)

Ares 0.41 3.6×10−9 7.0×10−13 8.2×10−9

Anr 0.88 0 7.0×10−13 3.3×10−9

Bres 0.37 1.5×10−8 2.7×10−12 3.3×10−8

Bnr 0.87 0 2.7×10−12 1.2×10−8

Figure 5.9 Calculated ratios of 2.431 MeV NRF γ-ray flux at a detector location, relative to background flux (ξ)
within a 3 keV energy bin. Statistical errors are less than 2%.
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Table 5.10 Transmission measurement parameters necessary to perform 1% measurment of 239Pu in spent fuel
assembly in Geometry ‘A’, where ρPu = 0.72g/cm2, assuming HPGe detectors operate at 2× 104Hz.

σS ΦσS
NRF ΦσS

T ξ
NRF tmeas intensity

(keV) (1/cm2/ph) (1/cm2/ph) counts (det·day) (1/eV/s)
0.1 3.14×10−11 3.34×10−9 22.4 8.21×107 25.3 3.98×108

0.3 1.05×10−11 3.31×10−9 7.47 9.55×107 87.6 1.34×108

1 3.14×10−12 3.30×10−9 2.59 1.34×108 407 4.02×107

2 1.57×10−12 3.30×10−9 2.05 1.49×108 907 2.01×107

3 1.05×10−12 3.30×10−9 1.95 1.53×108 1.4×103 1.34×107

5 6.27×10−13 3.30×10−9 1.90 1.55×108 2.4×103 8.06×106

10 3.14×10−13 3.30×10−9 1.88 1.56×108 4.7×103 4.03×106

20 1.57×10−13 3.30×10−9 1.87 1.56×108 9.5×103 2.01×106

given precision is twice as many for a σS = 20 keV source than for a σS = 100 eV source.

Using HPGe Detectors

Using equation 2.46 and the exponential constant, α that relates areal densities to the effective
resonant attenuation, (=0.016 g/cm2 from Table 3.3 for the 2.431 MeV resonance), we can derive
an expression for the necessary number of counts, CNRF, to measure an areal density, ρPu, of 239Pu
in spent fuel to a precision given by the fraction uncertainty, ε/ρPu,:

CNRF =
1 + 2/ξ

[αρPu(ε/ρPu)]2
(5.3)

and can calculate transmission measurement parameters. For example, for ε/ρPu = 1% and
ρPu =0.72 g/cm2, a total of 8.2 × 107 NRF counts are required for a 100 eV wide source. This
increases 1.6× 108 NRF counts for sources wider than the detector resolution. In order for HPGe
detectors to count scattered beam photons at a rate of 2×104/s, the photon source would need to
provide 1011 photons/s on target, corresponding to beam intensities ranging from 4×108 to 2×106

/eV/s for 100 eV to 20 keV wide sources. These and many more parameters are summarized in
Table 5.10 for Geometry ‘A’, and Table 5.11 for Geometry ‘B’

The values shown in Tables 5.10 and 5.11 assume that the photon source intensity has the
brightness stated in the last column. For larger peak brightness photon sources, thin filters could
be used to reduce overall count rates without significantly reducing NRF count rates. For photon
sources with lower brightness than those stated, the detection time fractionally increases. The
detection times shown also assume a 1% precision measurement of 239Pu, less precise measurements
reduce the counting time by the square of the fractional decrease.

Tables 5.10 and 5.11 illustrate the difficulty of performing a precise transmission measurement
on 239Pu. The primary problems are that 239Pu resonances are weak and the sources required are
extremely intense. The LLNL-proposed QM source brightness of 106 photons/s/eV with a width
of a few keV would enable 1% measurments over 104 detector·days.

If 240Pu has an 80 eV·b resonance, which is possible as discussed earlier, the measurement time
for this isotope would be a factor of 25 - 50 less than for 239Pu. For example, using a LLNL-
proposed type beam would allow a 3% 240Pu measurement in one day with a 30 HPGe detector
array.
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Table 5.11 Transmission measurement parameters necessary to perform 1% measurment of 239Pu in spent fuel
assembly in Geometry ‘B’, where ρPu = 0.40g/cm2, assuming HPGe detectors operate at 2× 104Hz.

σS ΦσS
NRF ΦσS

T ξ
NRF tmeas intensity

(keV) (1/cm2/ph) (1/cm2/ph) counts (det·day) (1/eV/s)
0.1 1.34×10−10 1.22×10−8 24.8 2.64×108 69 1.09×108

0.3 4.47×10−11 1.21×10−8 8.28 3.03×108 237 3.68×107

1 1.34×10−11 1.20×10−8 2.87 4.15×108 1.08×103 1.11×107

2 6.70×10−12 1.20×10−8 2.27 4.59×108 2.38×103 5.54×106

3 4.47×10−12 1.20×10−8 2.16 4.70×108 3.65×103 3.69×106

5 2.68×10−12 1.20×10−8 2.11 4.76×108 6.17×103 2.22×106

10 1.34×10−12 1.20×10−8 2.08 4.79×108 1.24×104 1.11×106

20 6.70×10−13 1.20×10−8 2.08 4.79×108 2.48×104 5.54×105

Table 5.12 Comparing transmission measurement times for 229Pu with detector arrays comprised of LaBr3 and
HPGe detectors for different source widths, σS .

HPGe LaBr3

σS Detection tmeas tmeas improvement
(keV) Geometry (det·day) (det·day)
0.1 A 25 1.7 15
1.0 A 4.1×102 29 14.1
10 A 4.7×103 1.5×102 3.1
100 A 4.7×104 7.4×103 1.6
0.1 B 69 4.6 15
1.0 B 1.1×103 76 14.1
10 B 1.2×104 3.8×103 3.3
100 B 1.2×105 7.7×104 1.6

High-resolution Scintillator Detectors

Detectors capable of operating at higher count rates generally have worse energy resolution. How-
ever, when the width of the photon source is narrower than the energy resolution of the detector,
detector resolution is not important. Given that LaBr3 detectors can operate at approximately 15
times the rate of HPGe detectors, increased photon beam intensities (relative to those indicated in
Tables 5.10 and 5.11) can produce lower counting times. For beams with a narrow energy spread,
the counting time reduction is directly proportional to the the beam intensity increase, whereas
the improvement decreases with wider energy spread. Table 5.12 summarizes the times that a 1%
measurement would take using a LaBr3 detector array versus a HPGe array. The LaBr3 detection
times assume that the photon source is 15 times as intense as that stated in the previous tables
for the HPGe detector array.

Regardless of the detection geometry, faster detectors produce significant improvement for very
intense, narrow-band photon sources. Likewise, if photon beam intensities are not above those
stated in Tables 5.10 and 5.11, faster detectors are not advantageous. However, if a photon beam
could be made to produce 6× 109 photons/eV/s on target, an array of one hundred 100% relative
efficiency LaBr3 detectors could perform a 1% measurement of 239Pu in spent fuel in about 25
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Table 5.13 Parameters for measuring 239Pu in spent fuel assembly to 1% precision using QM photons with a
beam brightness of 1011/eV/s and a threshold detector of comparable volume to a 100% relative efficiency HPGe
detector.

σS ξ
NRF tmeas Ċ

(keV) counts (det·hr) (1/s)
0.1 22.4 8.2×107 4.8 4.9×103

0.5 4.48 1.1×108 6.4 5.8×103

1 2.24 2.4×108 8.4 6.8×103

2.5 0.896 2.4×108 14 1.0×104

10 0.22 7.5×108 44 2.6×104

50 0.045 3.4×109 202 1.1×105

100 0.024 6.8×109 400 2.2×105

minutes (1.7 detector·days/100 detectors). Such an array would correspond to subtending 7% of
the backwards solid angle (or 0.43 steradians).

Threshold Detectors

Detectors that are only sensitive to photons above an energy threshold are useful for a transmission
measurement if the intensity of source photons can be increased by a factor of over 100, compared
to those that are presently proposed and a factor of 105 over those under construction. This is
because the processes of transmission through an assembly and subsequent backscatter in the TD
sufficiently reduces the intensity of beam photons that reach energy-resolving detectors such that
the detectors are not count rate limited.

Using Table 5.9, we observe that approximately 1/2 of the photon flux due to resonant energy,
monoenergetic photons is due to NRF. As shown in Figure 5.8, above 2 MeV, the majority of the
beam-induced backscattered flux is due to NRF and elastic scatter of beam photons. We may
therefore consider the intensity of NRF γ rays, relative to elastic scatter photons as an estimate
of the value of ξ that threshold detectors would experience. These values are shown in Table 5.13,
as are the number of NRF counts that would be necessary to obtain 1% statistics. This number
would increase, relative to those for HPGe detectors, however, given that threshold detectors could
perform in current mode, extremely bright beams could be used. Also indicated in Table 5.13 are
the times (in detector·hours) and resulting count rates, Ċ, due to elastic scatter and NRF of source
photons that would be detected assuming 10% of incident photons induce the threshold response,
and that the beam brightness incident upon the fuel assembly is 1011/eV/s.

Extremely intense QM photon sources, coupled with one or more threshold type detectors
could provide 1% precision measurement of 239Pu in very short times. The use of narrower band
sources is more important when using a threshold detector because of the inability to determine
detected photon energies.

5.2 Measurement of 235U Enrichment in UF6 Cylinders

NRF-based methods that directly measure the areal density of a specific isotope in a target can
potentially be applied to the determination of 235U enrichment in UF6 cylinders. The challenges
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Table 5.14 Specifications of UF6 cylinder filling and geometry from Reference[68].

nom. min. max. U max. vol. of fill
model diam. cyl. vol. enrich. UF6 wt. sol. UF6 fr.,

(in) mat. (L) (wt. %) (kg) (L) f
1S 1.5 Nickel 0.15 100 0.45 0.0882 0.59
2S 3.5 Nickel 0.74 100 2.22 0.4353 0.59
5A 5 Monel 8.04 100 24.95 4.892 0.61
8A 8 Monel 37.35 12.5 115.67 22.68 0.61
12B 12 Monel 67.4 5 208.7 40.92 0.61
30B 30 Steel 736 5 2277 446.5 0.61
48X 48 Steel 3084 4.5 9539 1870 0.61
48Y 48 Steel 4041 4.5 12501 2451 0.61

48HX 48 Steel 3964 1 12261 2404 0.61

Figure 5.10 Filling profiles for UF6 cylinders. x represents the fraction of the UF6 that adheres to
the walls before gravitational filling causes the remainder to fill the bottom of the cylinder.

in this application are different from that of SNF assay in that the concentration of the isotope
to be measured is generally much higher and the radioactivity much lower. The applicability of
both, backscatter and transmission methods, is analyzed.

UF6 is created as a stable uranium gas in enrichment processes and stored in metal cylinders.
The phase diagram of UF6 has a triple point is at 0.15 MPa and 64.02 oC. At and below this
temperature, the liquid phase of UF6 is unstable, therefore in most conditions, UF6 cylinders
will contain primarily solid UF6 and nearly void, vapor filled space. UF6 cylinders are filled
by allowing warm, low-pressure UF6 gas to cool and condense within evacuated cylinders. The
size of the cylinder dictates the allowable maximum U enrichment as listed in Table 5.14. The
temperature of UF6 gas and cylinder during cylinder filling can strongly influence the profile of
UF6 within the cylinder. Cold cylinders increase the likelihood that the entirety of the UF6 gas will
uniformly desublimate onto the exterior of the cylinder, producing a UF6 annulus[69]. Conversely,
warm cylinders allow gravity to pull the condensing UF6 toward the bottom of the cylinder. A
representative series of filling profiles are shown in Figure 5.10.

First, the resonant, and non-resonant attenuation of photons penetrating through various UF6

cylinder types were considered. The attenuation coefficient for 1734 keV photons, corresponding
to the energy of the largest known 235U resonance, is 0.04889 cm2/g, or 0.249 cm−1 for normal
density solid UF6. The expected intensities of 1734 keV photons after transmission through
varying thickness of UF6 are shown in Figure 5.11, with the maximum possible areal densities
for cylinders indicated. This figure indicates that a transmission measurement may be made on
thinner cylinders, but that the non-resonant attenuation limits the thickness through which a
transmission measurement can be made and thus limits the applicability for the thicker cylinders.

The excess attenuation for resonant-energy photons for a transmission measurement through
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Figure 5.11 Non-resonant attenuation of 1734 keV photons incident upon varying thicknesses of
solid UF6. The points indicate the maximum UF6 areal density for various cylinder types.

the center of cylinder is shown in Figure 5.12 as a function of U enrichment. Also indicated are
the maximum allowed U enrichments for each cylinder type. The figure indicates that the excess
attenuation of resonant-energy photons, as observed by a transmission-type measurement, would
be significant for all of the cylinder types considered. The 235U areal density can be determined
from the measured attenuation of photons due to NRF in the same way as the Pu content in spent
fuel.

5.2.1 Transmission Measurement Example

Employing the techniques and modeling tools developed for the study of spent fuel assay, a trans-
mission measurement of a 12” cylinder was investigated as a sample case. The irradiation of
the cylinder with a bremsstrahlung beam with an endpoint energy of 2 MeV was simulated in
MCNPX. The photon beam was emitted from a converter located 25 cm from the cylinder center
and collimated to 5o as schematically shown in Figure 5.13. The 235U transmission detection sheet
was positioned 100 cm downstream of the cylinder. The flux of photons from resonant, elastic,
and inelastic interactions in the transmission detection sheet was tallied at a distance of 50 cm
from the sheet at a scattering angle of 135o. The calculated energy-dependent flux distribution
was subsequently filtered by the shielded detector response model to determine total and NRF
photon count rates. The detector response was calculated for a 100% relative efficiency HPGe
detector for various filter thicknesses, unshielded, 1/2” of Pb, and 1” of Pb. The resulting rates
normalized to the bremsstrahlung-inducing electron beam current are summarized in Table 5.15.

The maximum beam intensities that could be used for such a measurement are limited by
the detector count rate capability and thus dependent on the total integrated photon count rates
listed in the bottom row of Table 5.15. Using a 1/2” Pb filter, a 1 Ampere electron beam incident
upon the bremsstrahlung converter would induce 8.6×104 counts per second, which is too high for
HPGe detectors. Using the conservatively assumed maximum HPGe detector rate of 2×104 counts

80



Figure 5.12 Resonant attenuation of 1734 keV photons incident upon the maximum thicknesses of
solid UF6 for various 235U enrichments. The points indicate the maximum allowed UF6 enrichments
for various cylinder types.

Figure 5.13 Schematic geometry for transmission measurement of 12” UF6 cylinder.
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Table 5.15 Simulated photon fluxes and count rates in a shielded HPGe detector for a transmission
measurement of a 12” UF6 cylinder.

Pb filter thickness 0 1/2” 1”
energy flux counts counts counts
(MeV) (1/cm2/C) (1/C) (1/C) (1/C)
1.656 4.51×10−1 5.63 2.86 1.42
1.733 1.21 1.51×101 7.57 3.81
1.769 4.74×10−3 5.92×10−2 2.94×10−2 1.48×10−2

1.815 1.31×10−1 1.64 7.99×10−1 4.09×10−1

1.828 4.48×10−1 5.60 2.73 1.40
1.862 6.62×10−1 8.28 4.01 2.05
total 1.65×105 8.25×106 8.58×104 1.83×104

Table 5.16 Beam currents and measurement times for enrichment (5%) measurements with 5%
precision.

detector filter e− beam measurement
type thickness int. (mA) duration (det·hr)

HPGe 0 2.4 152
LaBr3 0 36 74
HPGe 1/2” 233 3.3
LaBr3 1/2” 3500 1.5

per second, one estimates that a 230 mA beam would be acceptable from a detector perspective,
likewise a 2.5 mA and 1.1 A beam would produce 2 × 104 counts per second in HPGe detectors
behind no filter and a 1” filter, respectively. Bremsstrahlung beams created by 1 ampere electron
beams are not readily available, and their production presents considerable technical challenges.
We therefore assume that for this irradiation type, filters thinner than 1” are most practical.

We can estimate the necessary number of NRF counts required to make a measurement of
a given precision based on the relationship between the uncertainty due to counting statistics
and the uncertainty in the amount of 235U in a cylinder. This number depends on the detector
resolution and the strengths of the resonances and totals approximately 50,000 NRF counts for a
5% measurement using HPGe detectors, or 400,000 counts if lower-resolution LaBr3 detectors are
used. Electron beam currents and filter thicknesses for operation at the maximum detector count
rate are listed in Table 5.16 together with the estimated duration of a 5%precision measurement.
The measurement times indicate that an arrangment using a dozen HPGe detectors shielded by
1/2” of Pb could acheive a 5% statistical uncertainty measurement of the enrichment in a 12” UF6

cylinder in 16 minutes.

5.2.2 Backscatter Measurement Simulation

Two backscatter measurement scenarios were investigated. One was that of a 5” diameter UF6

cylinder filled with 100% enriched UF6, and the other one was that of a 48” diameter cylinder
filled with 1% enriched UF6. The simulated measurement geometry for the 5” cylinder is shown
in Figure 5.14.
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Figure 5.14 Schematic geometry for backscatter measurement of 5” UF6 cylinder. The intersection
of the collimator hole views and the beam are indicated.

The backwards hemisphere is filled with shielding that only allows photons through three bore
holes. Each collimator hole is centered on a point 2 cm below the midline of the cylinder at the
horizontal center of the cylinder. The photon beam reaches the UF6 cylinder through a 4.4 cm
diameter bore hole. The photon detectors positioned at ±45o behind 1 cm diameter collimator
holes at a distance of 50 cm from the cylinder.

The photon beam was simulated as a bremsstrahlung spectrum with a 2 MeV endpoint energy
and a 5o opening angle. The simulation results indicate that a measurement of the 235U content in
a 5” cylinder with 2% statistical uncertainty could be performed with one HPGe detector in one
hour. Using multiple detectors could proportionally reduce the time necessary to make such mea-
surements, indicating that very precise measurement of the 235U fraction in small, highly-enriched
cylinders could be acheived using intense bremsstrahlung sources and dedicated geometries in less
than 15 minutes.

The simulated geometry for the measurement of the 48” diameter cylinder is shown in Figure 5.15.
An ideal collimator with a 3.2 cm diameter opening for the bremsstrahlung beam and 6 bore holes
for the detection of the scattered photons covers the backward hemisphere. Each collimator hole is
centered on a point 10 cm below the vertical center of the cylinder. The 1 cm diameter collimator
holes are at ±45o relative to the beam, with pairs centered 48, 50 and 52 cm upstream of the
horizontal center of the cylinder as seen in Figure 5.15.

The photon source in this simulation was positioned 80 cm from the center of the cylinder,
emitting bremsstrahlung photons with an endpoint energy of 2 MeV into the forward 5o. The
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Figure 5.15 Schematic geometry for backscatter measurement of 48” UF6 cylinder. The intersection
of the four of the six collimator hole views and the beam are indicated.

photon fluences were tallied at a distance of 200 cm from the intersection of the collimator hole
cylinder and the beam center. A schematic of this geometry is shown in Figure 5.15.

The precise measurement of the uranium enrichment at the 1% level in a very large, 48”
diameter cylinder is considerably harder and more time consuming than the measurement of the
enrichment in a small cylinder as discussed above. Due to the low enrichment the signal-to-
background ratio is reduced by a factor of about 100. This increases the statistical uncertainty
with which the NRF peaks are measured by a factor of about 5 - 10 compared to pure 235UF6. The
count rates are very depth dependent. For example, increasing the depth of the volume viewed by
the gamma detectors from 9 to 13 cm decreases the photon flux seen by the detectors by about
a factor of 20. In addition, larger distances between source target and detector result in further
reduction in NRF (and total) count rates. In the described geometry with a half-inch thick Pb filter
in front of the detector a very intense bremsstrahlung beam, generated by up to 1.6 A electron
beams, could be used without saturating a 100% relative efficiency HPGe detector. Assuming
such beam were used (and neglecting the practical difficulties of producing it) a measurement
with 5% statistical uncertainty could be made in 20 detector hours. While such a measurement
does not appear to be very practical, it could be improved and optimized by locating the detectors
nearer to the UF6 cylinder and by interrogating the UF6 at a shallower depth. Still, it appears
possible to use bremsstrahlung induced NRF to measure the 235U content in UF6 cylinders with
1% enrichment. Using HPGe detector arrays one could potentially make precise measurements in
less than one hour.

5.3 Pu Measurements in MOX Fuels

Another potential application of NRF-based methods is the NDA of fresh fuel, i.e., the measure-
ment of Pu and other actinides in fuel produced in a reprocessing facility or of the Pu content in
mixed oxide or MOX fuel. Here we present the results of a series of simulations, similar to those
performed for the study of SNF assay, as described in Section 5.1, in which a MOX fuel pin was
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Figure 5.16 a), calculated backscattered photon flux for assay of a 5 mm diameter MOX cylinder at a position
60 cm from the target, at 135o relative to initial electron beam direction. The flux is normalized per Coulomb of
2.6 MeV electrons incident upon the bremsstrahlung converter.
Figure 5.16 b), same as Figure 5.16 a), except with NRF energy region expanded. Most NRF peaks are due to
NRF of 238U. Two (smaller) 239Pu NRF peaks are indicated.

irradiated with 2.6 MeV endpoint-energy bremsstrahlung beam. The composition of the fuel pin
was assumed to be MO2, where 95% of the M atoms were 238U, 2.5% were 239Pu, and 2.5% were
other Pu isotopes whose NRF responses are unknown, and were not considered in this simulation.
However, 240Pu and 242Pu could have significantly larger cross sections than 239Pu and thus are
of interest. The measurement geometry was similar to the one shown in Figure 2.3 a) with the
bremsstrahlung converter located 60 cm from the center of the fuel pin. The detector was also
positioned 60 cm from the fuel pin center, at an angle of 135o relative to the beam trajectory. The
calculated photon spectrum backscattered from the MOX fuel pin that would be incident upon a
shielded detector is shown in Figures 5.16 a) and 5.16 b). The spectrum shows numerous NRF
lines; however, the majority of these lines are due to NRF of 238U. In the expanded spectrum in
Figure 5.16 b), the two largest NRF peaks due to 239Pu NRF are visible and indicated.

The spectrum in Figure 5.16 a) was input into detector response models to determine the
total and NRF count rates per electron incident upon the bremsstrahlung converter for differ-
ent filter thicknesses. Assuming that a detector operates at 20 kHz, the total count rates are
converted into beam intensities, which are then used to scale the NRF count rates. Table 5.17
presents bremsstrahlung-inducing beam currents, NRF count rates for two resonances, and times
(in detector·hours) necessary to obtain 5% and 1% (25 times longer than 5% measurement as
dictated by counting statistics) statistical uncertainties.

For systems using bremsstrahlung sources to measure 239Pu in MOX, intense beams and mul-
tiple detectors placed behind thick Pb filters could achieve 5% statistical uncertainties using NRF
in 3 hours if twenty four 100% relative efficiency HPGe detector were used and the MOX fuel pin
were irradiated with a 250mA bremsstrahlung beam.

Future intense quasi-monoenergetic photon sources could potentially lead to much shorter mea-
surement times. Due to the lower non-resonant photon flux, detection count rate limitations are
encountered at accordingly higher NRF rates, as discussed for SNF measurements, or completely
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Table 5.17 Bremsstrahlung-inducing beam intensities, I, NRF count rates for two 239Pu resonances, RNRF, and
detection times, t, necessary to obtain 1% and 5% statistical uncertainty in 239Pu content in MOX fuel using 2.6
MeV endpoint-energy bremsstrahlung.

RNRF (1/s) t (det·hr)

xf (cm) I (µA) 2143 keV 2431 keV 5% 1%

0 2.46 1.28×10−5 5.02×10−6 1.80×105 4.50×106

1.27 208 5.83×10−4 2.32×10−4 3.98×103 9.95×104

2.54 1.0×103 1.49×10−3 6.04×10−4 1.55×103 3.87×104

5 1.85×104 8.02×10−3 3.35×10−3 2.84×102 7.10×103

7.5 2.48×105 3.05×10−2 1.32×10−2 7.34×101 1.84×103

overcome if a suitable threshold detector can be developed. In conclusion, NRF-based methods
could provide unique NDA measurement capabilities, but new powerful photon sources and gamma
detectors would be needed.
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6 Conclusions

The feasibility of applying NRF-based methods to nuclear safeguards has been investigated using
analytical modeling and radiation transport simulations. We have employed the radiation trans-
port code MCNPX for the modeling of the scattered, non-resonant background, the notch refilling
in transmission measurements, and the full simulation of NRF measurements.

In our early studies we had found that MCNPX underestimated the non-resonant elastic scat-
tering at backwards angles by orders of magnitude, mainly due to a flawed treatment of Rayleigh
scattering in the code. The correction of this shortcoming by upgrading the form factors resulted
in much better agreement with some experimental data, although the photonuclear processes,
nuclear Thomson, Delbr uck, and giant dipole scatter, which are important contributors to the
elastic scattering background at higher energies, were not taken into account. Our analysis showed
that for the elastic scattering of photons with energies around 2 MeV on uranium, the use of the
upgraded form factors in MCNPX overestimates the Rayleigh scattering and leads to a chance
agreement with experimental data. For higher photon energies and for low Z targets the disagree-
ments can be large due to the missing photonuclear scattering. It would be desirable to at least
include nuclear Thomson scattering in MCNPX simulations for NRF studies. Calculations based
on ENDF form factors, as currently implemented in MCNPX could underestimate the elastic scat-
tering cross section by as much as a factor of ten for a uranium target at higher photon energies.
Even larger discrepancies, up to several orders of magnitude, are possible for lighter elements such
as zirconium.

We completed the analysis of our transmission experiment that measured 238U areal densities
ranging between 1.7 and 8.5 g/cm2 in an approximately 86 g/cm2 thick Pb target by observation
of the attenuation of resonant-energy photons. The data obtained in this experiment, using
targets of comparable thickness to an SNF assembly and a bremsstrahlung beam, have exhibited
a trend indicative of notch refill that could increase the measured NRF rate by up to 5% for large
resonances and the target containing the most 238U. A correction based on MCNPX modeling
has been implemented in the analysis producing the areal densities measured by transmission
NRF. To within statistical uncertainties, the measurement agrees with the modeling used to
describe resonant attenuation and subsequent measurement of NRF photons emitted from the
transmission detector. The experiment demonstrated that a 238U content of 1% could be measured.
However, the precision was count rate limited indicating the challenge for using transmission
nuclear resonance fluorescence to precisely measure small quantities of an isotope in an assay
target.

Utilizing the developed modeling capabilities, we studied and evaluated NRF-based methods
for three safeguards applications: the isotopic assay of spent nuclear fuel (SNF), the measurement
of 235U enrichment in UF6 cylinders, and the determination of 239Pu in mixed oxide (MOX) fuel.
Particularly challenging is the determination of Pu content in SNF. Backscattering measurements
face three main difficulties that severely limit this approach: a small signal-to-background ratio
for the low Pu concentrations in SNF, a large background from the radioactivity of the SNF,
and a strong dependence of the intensity of the NRF signal on depth. The transmission method
provides two important advantages: the detectors can be shielded from γ-rays emitted from the
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fission products in the SNF, and the measurement sensitivity is independent of depth. Given the
low concentrations of the Pu isotopes in SNF and the small integrated nuclear resonance cross
sections, the main challenge in achieving the goal of a few percent measurement uncertainties lies
in accruing of sufficient counting statistics in an acceptable measurement time.

Using bremsstrahlung sources, transmission measurements are possible but sufficiently precise
measurements of Pu isotopes in SNF would require 10’s to 100’s of hours, a very intense brems-
strahlung source, and a very large array of fast detectors with high energy resolution. Quasi-
monoenergetic photon sources such as Laser Compton scattering sources could potentially lead to
greatly improved performance. Due to the narrow energy spread, the flux of lower-energy pho-
tons scattered into the detectors is dramatically reduced, compared to bremsstrahlung sources
thus lessening detector count rate limitations. For example, assuming a photon source with a
1 keV energy spread, an intensity of 6 × 108 ph/eV/s, and operating continuously or at MHz
pulse rates, the measurement time would be on the order of hours using a large detectors array.
Shorter measurement times would require sources with narrower energy spreads and higher in-
tensities. However, LCS sources of the type under development at LLNL are pulsed at kHz or
lower rates and threshold detectors, such as Cherenkov detectors, that can integrate the signal
instead of detecting single photons are needed. Interestingly, such threshold detectors could also
make backscatter measurements with a high-intensity, pulsed photon source possible. Because
the detectors could be gated and made insensitive in between short, sub-nanosecond pulses, the
background from the radioactivity of the SNF seen by the detectors would be reduced by many
orders of magnitude. In a best-case scenario, a measurement with 1% statistical uncertainty could
be accomplished with a 108 ph/eV/s photon source and an ideal threshold detector array in 10
min. While this indicates promise, neither photon source nor detector technology presently exists.

For the measurement of 235U enrichment in UF6 cylinders, the transmission method can be
applied to the cylinders up to 12” in diameter. Using an intense bremsstrahlung beam and a dozen
HPGe detectors, a 5% precision measurement of 5% enrichment could be performed in less than
half an hour. For larger cylinders, through which the photon beam cannot be transmitted, the
enrichment can be determined to a depth of roughly 10 cm in backscattering measurements. Our
results indicate that 1% enrichment could likely be measured with a 5% statistical uncertainty in
less than one hour. Another potential application of the NRF technique is the determination of
Pu and other actinides in fresh fuel. As an example we considered the measurement of 2.5% 239Pu
in a MOX fuel pin. Using an intense bremsstrahlung beam and an array of 24 HPGe detectors in a
backscatter arrangement the 239Pu content could be measured with 5% statistical uncertainties in
roughly 3 hours. As in the case of SNF assay, much shorter measurement times could potentially
be achieved with future intense quasi-monoenergetic photon sources.

The concepts for applying NRF to quantitative measurements in safeguards have been es-
tablished and the framework and tools for designing and analyzing specific methods have been
developed. Further research is essential to fully assess the technique and to develop future mea-
surement systems.

Future Work

A high priority for assessing NRF measurements of Pu in SNF is to determine if 240Pu has suf-
ficiently strong NRF resonances so that this isotope could be measured using available photon
sources and detectors. As an even mass number isotope, 240Pu likely has significantly larger reso-
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nances than 239Pu, which could result in measurement sensitivities that are more than ten times
higher. Determination of 240Pu content may be useful to constrain other SNF measurements. Also,
since 240Pu content increases with total burn-up, measuring a lower than expected 240Pu concen-
tration in SNF could indicate weapons-grade Pu breeding. Similar efforts to improve nuclear data
for other isotopes that may prove important for safeguarding future nuclear fuel cycles are also of
interest. The list of important actinides includes other long-lived Pu isotopes, Th isotopes, 233U,
and possibly other transuranics. For any isotope, the accuracy to which an NRF-based measure-
ment may be made will be limited by the accuracy and precision to which the resonance strength
is known. Therefore, more precise measurements of resonance cross sections should be pursued
for all isotopes.

Along with nuclear data improvements, the ability to model NRF measurements should be
further strengthened. The non-resonant elastic scatter of photons is treated very approximately
by ENDF, and as a result, it is not well modeled by most Monte Carlo radiation transport codes
(MCNPX included). Spent fuel measurements with the required sensitivity and accuracy most
likely require quasi-monoenergetic photon sources with intensities that are at least two orders of
magnitude higher than those currently being designed or proposed. Thus, the development of
narrow-band, very intense LCS photon sources is of utmost interest, as is the development of very
fast, high-resolution γ-ray detectors and efficient threshold detectors. Future applications of NRF
methods may be in large, fixed installation such as a reprocessing plant and in advanced fuel cycles
where increased concentrations of minor transuranics may present increased difficulties for other
NDA techniques.
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Appendix



A Rayleigh Scattering in MCNP

A.1 Introduction

Documentation of the MCNP series of codes has claimed for years to accurately represent the data
present in evaluated nuclear data files [25],[4],[40],[41]. The photo-atomic data in the ENDF/B-
VI format are based on the evaluated photon data library (EPDL97)[42]. However, the work
supporting this report observed that the sections of code describing the form factor evaluation
of coherent and incoherent scattering had not been updated since their precursor code, MCP,
was written in 1973[43]. This legacy code results in significant inaccuracies in photon spectra
computed by MCNPX when simulating geometries that are typical of NRF experiments[44].

MCNP treats all coherent scattering as Rayleigh scattering of unpolarized photons and follows
the form factor approximation for the Rayleigh cross section:

σRay(θ) = σTh(θ) [F (q, Z)]2 (A.1)

where F (q, Z) is a tabulated form factor value, and σTh(θ) is the Thomson scatter cross section,

given by σTh(θ) = r2e
2

(1 + cos2 θ). Here, r2
e is the classical electron radius, 2.818 fm, and θ is the

angle between the scattered and incident photon.
Data libraries used in MCNP are created by the code NJOY, which reads ENDF tabulations

of atomic form factors and converts them into the ACE format used in MCNP[26]. Atomic form
factor values are tabulated for a given Z and momentum transfer between the scattered photon and
the atomic electron, q. The units of q should be units of momentum, however q has traditionally
been tabulated in reduced wave number, which has units of inverse length1.

The derivation and use of momentum transfer values in MCNP has been poorly documented.
MCP and MCNP user manuals describes q in units of cm−1,[41],[43] however the data tabulated
in MCNPX are in units of Å−1[45].

The legacy problems in elastic scatter come from the fact that MCNP has historically had a
fixed array of q-values for which coherent scattering form factors, C(Z, q) are defined. Despite the
fact that the EPDL97 (and ENDF) now tabulates form factors for q up to 1011Å−1, q in MCNP
was restricted to q ≤ 6 Å−1 and coherent scattering form factors for q > 6 were assumed to be
0. Table A.1 demonstrates the maximum coherent scattering angles, θmax, that were allowed by
this restriction. Figure A.1 helps to explain why this short-coming had gone un-noticed by many
MCNP users2. In it, the fraction of the Rayleigh scattering cross section that is due to scattering

1The conversion between momentum transfer, ~k sin(θ/2), and reduced wave number is accomplished by dividing

by Plank’s constant, h, inserting c
c
mec

2

mec2
, equating, E = ~ck and, sin(θ/2) =

√
1−cos θ

2 . Evaluating the constants:

q =
c

hc

mec
2

mec2
2~k sin(θ/2) =

E

mec2
2mec

2

√
2hc

√
1− cos θ = 29.1445[Å−1]

E

mec2

√
1− cos θ

2This short-coming was independently observed by Lodwick and Spitz when they compared in vivo x-ray fluo-
rescence measurements of lead in bone to MCNP calculations[46]
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Table A.1 Maximum coherent scattering angles allowed in the MCNP codes.

E (keV) Angle
74.4 180o

105 90o

194 45o

853 10o

1733 4.9o

2423 3.5o

Figure A.1 Fraction of Rayleigh scattering cross section that corresponds to a reduced momentum transfer value,
q ≥ 6 Å−1.

above θmax is plotted versus photon energy for various elements, i.e.

f =

∫ qmax

q=6[Å−1]
σRay(θ)dΩ∫ qmax

q=0
σRay(θ)dΩ

(A.2)

where qmax = 29.1445[Å−1] E
mec2

√
2. The omission is most significant in high-Z materials, and

is most important when photon energies exceed approximately 100 keV. As will be described,
this omission is only important when coherently-scattered photons can be distinguished from
incoherently-scattered and annihilation photons. The distinction is most obvious when backscat-
tering of multi-MeV photons from high-Z materials is considered, and this is precisely what is
done in experiments designed to measure NRF.

Modification of the MCNPX source code and the NJOY data processing code are described in
Section A.4. These modifications enable MCNPX to simulate Rayleigh scattering for all problems.

To test that modifications of the MCNPX code and datafiles were successful, two pairs of
simulations were conducted comparing elastic scattering rates before and after implementation of
the modifications. For each pair a pencil beam of monoenergetic 1.7 MeV photons was normally
impinged upon a 1 cm radius by 100 mm depth cylindrical target of either uranium or iron.
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Photons emitted from the target were tallied as they crossed a spherical surface of 10 cm radius,
centered at the center of the target cylinder. The direction of the emitted photons relative to the
direction of the incident beam were tallied in 1o angular bins up to 10o, and then in 5o bins. The
energy of the emitted photons were also tallied, with photons within 860 eV of the initial energy
being considered elastically scattered. This bin width was selected to ensure that incoherently
scattered photons are not tallied into the elastic bin for scattering angles greater than 1o. The
effective elastic scattering cross section was then calculated by the relation

dσES

dΩ
≈ NF1

∆Ω

M

NAρx
(A.3)

where NF1 is the number of photons in the elastic tally bin, ∆Ω is the solid angle subtended by
the angular bin, M is the molar mass of the target material, NA is Avagadro’s number, and ρx is
the areal density of the target.

Figures A.2 and A.3 present the simulated angle-differentiated cross sections for elastic scatter-
ing of 1.7 MeV photons before (red) and after (black) the implementation of the extended Rayleigh
scattering cross section library. The EPDL97 cross section for elastic scattering is also shown in
green in both figures. The cross sections resulting from simulations that include the new form
factor arrays closely follow the EPDL97 values. For the red histogram, non-zero values calculated
for scattering into angles above the critical angle of 5.2o are due to the relatively improbable
combination of photoelectric absorption followed by bremsstrahlung emission. This process yields
photons in the elastic bin, and would yield an even smaller (nominally) elastic scattering proba-
bility were the highest energy bin made narrower. Regardless, the five (uranium) and seven (iron)
decade decreases in effective elastic scattering cross section between the 3o − 4o and 6o − 7o bins
indicate effects of the non-physical cutoff that had been implemented in MCNP. That the effective
cross section was calculated to be 30% (uranium) and 8.5% (iron) lower after implementation of
the extended library for the range 1o − 5o is explained by the fact that photons probabilistically
sampled to undergo coherent scattering had been constrained to the forward 5.2o, whereas now
all angles are physically allowed. The amount by which MCNPX had overpredicted the Rayleigh
scattering cross section is exactly the inverse of the fractions shown in Figure A.1 for 1.7 MeV
photons. Thus, as another result of the truncated form factor arrays, MCNP had previously been
overestimating elastic scattering of photons in forwards directions, and this effect was most severe
for high photon energies and high-Z materials.

A.2 Form Factor Sampling Methodology

This section describes the method used in MCNPX to sample the coherent scatter cross section.
This method defines the integrated form factors, which must also be included in the ACE files
that provide the photo-atomic data for MCNP.

Suppose we want to sample a probability density function (PDF), P (y), defined in the interval
a ≤ y ≤ b, and related to another known PDF, Q(y) by the following

P (y) = C0F (y)Q(y) (A.4)

where C0 is a constant, C0 > 1 and F (y) is a function with range 0 ≤ F (y) ≤ 1.
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Figure A.2 MCNPX-simulated differential cross section for scattering of 1.7 MeV photons within 860 eV of initial
energy from 100 µm thick uranium with EPDL Rayleigh scattering cross section overlaid.

A.2.1 Sampling a Simple PDF

First we must define what is meant by ‘sampling a PDF’. Assume the PDF, Q(y), is a normalized
and integratable function in some interval,∫ b

a

Q(y) = 1 (A.5)

Sampling of Q(y) is accomplished by using a random number, 0 ≤ r ≤ 1, to select a value, ysample,
between a and b with a probability proportional to the value of the PDF.

The cumulative (or integrated) distribution function (CDF) for Q(y) is defined as,

Q(y′) =

∫ y′

a

Q(y)dy (A.6)

Therefore Q(a) = 0 and Q(b) = 1. By inverting the function Q(y′), we have a function with a
domain of [0,1]. Using the random number, r1, we obtain

ysample = Q−1(r1) (A.7)

which is a value of y, sampled from the PDF Q(y). Clearly, this only works for PDFs than can
be integrated, and whose integral can be inverted.

A.2.2 Rejection-Sampling Method

Sampling of equation A.4 is accomplished by use of the rejection-sampling method. First, Q(y)
is sampled. The value of y is accepted, with a probability of F (y), by using a second random
number, r2 to check that

r2 < F (y) (A.8)
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Figure A.3 MCNPX-simulated differential cross section for scattering of 1.7 MeV photons within 860 eV of
initial energy from 100 : µm thick iron with EPDL Rayleigh scattering cross section overlaid The large statistical
uncertainty at high angles is due to the rarity of the events.

The probability of not accepting a sampled value for y is given by

Preject = 1−
∫ b

a

F (y)Q(y)dy (A.9)

When y is rejected, we sample another value of Q(y) and again check with a new random number
against equation A.8, potentially allowing an infinite number of samplings.

To prove that this will give an appropriate sampling of P (y), first note that

1 =

∫ b

a

P (y)dy =

∫ b

a

C0F (y)Q(y)dy (A.10)

so ∫ b

a

F (y)Q(y)dy = C−1
0 (A.11)

The probability of k rejections is then

Pk = (1− C−1
0 )k (A.12)

and the probability of accepting the k + 1-th iteration is

(1− 1/C0)kF (y) (A.13)

Using
∞∑
k=0

(1− 1/C0)k = C0 (A.14)

we see that if an infinite number of iterations is allowed, the PDF for sampling y is given by

C0F (y)Q(y) = P (y) (A.15)
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A.3 Sampling Rayleigh Scattering Cross Sections

The angle of Rayleigh scattering is sampled in MCNPX by the rejection - sampling method. In
this formulation, the independent variable, y, is given by, q2, the square of the momentum transfer
of the scattering event, which for a given photon energy is

q = Kα
√

1− µ (A.16)

where K = 29.1445 Å−1, α = E/mec
2, and µ = cos(θ).

The Rayleigh scattering cross section is given by

σRay(θ) = σTh(θ) [F (q, Z)]2 (A.17)

where the Thomson scattering cross section is given by

σTh(θ) =
r2
e

2
(1 + cos2 θ) =

r2
e

2
(1 + µ2) (A.18)

The PDF for scattering into the angle, µ, is given by

p(µ) =
σRay(Z, α, µ)∫
σRay(Z, α, µ)dµ

(A.19)

The PDF for a given squared-momentum transfer is given by

P (q2)d(q2) = p(µ)

∣∣∣∣ dµd(q2)

∣∣∣∣ d(q2) (A.20)

Solving equation A.16 for µ and differentiating, we have

dµ

d(q2)
=
−1

Kα2
(A.21)

Substituting, equations A.17, A.18, A.21, and A.19 into equation A.20, we obtain the expres-
sion for the angular scattering PDF

P (q2) =
r2
e

(Kα)2

1 + µ2

2

[F (q, Z)]2∫
σRay(Z, α, µ)dµ

(A.22)

In MCNPX, equation A.22 is re-expressed by multiplying numerator and denominator by pairs

of Z2 and
∫ q2max

0
[F (Z, q2)]2d(q2) to obtain

P (q2) =

[
r2
eZ

2
∫ q2max

0
Z−2[F (Z, q2)]2d(q2)

(Kα)2
∫
σRay(Z, α, µ)dµ

][
1 + µ2

2

][
[F (q, Z)]2Z−2∫ q2max

0
[F (Z, q2)]2Z−2d(q2)

]
(A.23)

This cumbersome expression is actually written in the form of equation A.4, where the expression
in the first brackets

C0 =
r2
eZ

2
∫ q2max

0
Z−2[F (Z, q2)]2d(q2)

(Kα)2
∫
σRay(Z, α, µ)dµ

(A.24)
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is, in fact, a constant. The integral,
∫
σRay(Z, µ)dµ, is the total Rayleigh scattering cross section

and the other integral is obtained through interpolation between tabulated integrated form factor
values. The expression in the second brackets of equation A.23 is

F (y) =
1 + µ2

2
(A.25)

which is a function with range, [0,1]. The third brackets contain,

Q(y) =
[F (q, Z)]2Z−2∫ q2max

0
[F (Z, q2)]2Z−2d(q2)

(A.26)

which is the PDF for selecting a squared momentum transfer, where again, the tabulated integrated
form factor is used.

A.3.1 Integrated Form Factors

The quantity, ∫ q2max

0

Z−2[F (Z, q2)]2d(q2) (A.27)

is the integrated form factor. It is numerically integrated in NJOY and values are tabulated for
corresponding values of q2. The ENDF form factor tabulation specifies that ln[F (Z, q2)] shall be
linearly interpolated with ln[q2]. Thus the integrated form is tabulated as∫ q2

0

Z−2[F (Z, q2)]2d(q2) ≈ exp

(∑
i

ln[Z−2[Fi(Z, q
2
i )]

2]∆[ln(q2
i )]

)
(A.28)

The interpolation scheme is slightly more complicated in that ln(0) is undefined, and the first
momentum transfer entry, q1 = 0. Such problems are fixed in NJOY by the use of linear integration
as necessary. Likewise, the ENDF creators were aware of this, and correspondingly recommend
linear interpolation in such cases.

A.4 Description of MCNPX Patch ‘Rayleigh Fix’

The modification described here successfully allowed MCNPX to simulate Rayleigh scattering
properly, but it has been superseded by the modifications described in reference[38], which use the
same logic, but also dynamically allocate variables such that the data used in MCNPX is identical
to that in the EPDL97 libraries.

A description of the sampling method used to determine the scatter angle of a photon that
underwent Rayleigh scattering is described in Section A.2. MCNP uses tabulated values of C(Z, q2)
for each element, Z, and for fixed array of a momentum transfer values, q. The length of these
tabulations was defined by the variable, mcoh= 55 words. Two arrays whose contents are defined
during MCNPX initialization, vco and wco contained the corresponding values of q and q2,
respectively. The maximum value in vco was q = 6 Å−1. The EPDL97 contains values of
F (Z, q) for q ≤ 1011 Å−1. To enable MCNPX to simulate Rayleigh scattering at all possible
angles for energies of interest, new arrays of length mcohe = 77 words were also defined in
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MCNPX initialization. They contained the original 55 values of q and q2, as well as 22 additional
values, increasing quickly to q = 104 Å−1. These arrays were named vcoe and wcoe. The only
additional changes necessary to the MCNPX code was a logical check of the length of the form
factor arrays (part of the jxs array). If the new form factor array had a length of mcohe, the
code would perform the exact same logic for sampling the coherent scatter PDF as is done in the
un-modified code, except that the form factor array and integrated form factor arrays would be
defined according to q and q2 values of vcoe and wcoe, respectively.

The PERL scripting of the MCNPX patch follows:

*/ ----------------------------------------------------- GLOBAL1_zc.F

*ident 05p ( File: src/mcnpx/mcnpf/GLOBAL1_zc.F )

*i,mgp5e.24

integer(kindi), parameter :: mcohe = 77

*/ ----------------------------------------------------- GLOBAL2_vv.F

*ident 05p ( File: src/mcnpx/mcnpf/GLOBAL2_vv.F )

*i,mgt.330

real(kindr) :: vcoe(mcohe) = (/

& 0.,.01,.02,.03,.04,.05,.06,.08,.1,.12,.15,.18,.2,.25,

& .3,.35,.4,.45,.5,.55,.6,.7,.8,.9,1.,1.1,1.2,1.3,1.4,1.5,1.6,

& 1.7,1.8,1.9,2.,2.2,2.4,2.6,2.8,3.,3.2,3.4,3.6,3.8,4.,4.2,4.4,

& 4.6,4.8,5.,5.2,5.4,5.6,5.8,6.,6.5,7.,7.5,8.,9.,10.,11.,12.,

& 14.,16.,18.,20.,25.,30.,40.,50.,75.,100.,500.,1000.,5000.,

& 10000. /)

*i,mgt.339

real(kindr) :: wcoe(mcohe) = (/

& 0.,.0001,.0004,.0009,.0016,.0025,.0036,.0064,.01,

& .0144,.0225,.0324,.04,.0625,.09,.1225,.16,.2025,.25,.3025,.36,

& .49,.64,.81,1.,1.21,1.44,1.69,1.96,2.25,2.56,2.89,3.24,3.61,

& 4.,4.84,5.76,6.76,7.84,9.,10.24,11.56,12.96,14.44,16.,17.64,

& 19.36,21.16,23.04,25.,27.04,29.16,31.36,33.64,36.,42.25,49.,

& 56.25,64.,81.,100.,121.,144.,196.,256.,324.,400.,625.,900.,

& 1600.,2500.,5625.,10000.,250000.,1000000.,

& 25000000.,100000000. /)

*/ --------------------------------------------------------- colidp.F

*ident 05p ( File: src/mcnpx/mcnpf/colidp.F )

*i,cp.137

if ((jxs(4,iex)-jxs(3,iex))/2.eq.mcoh) then

*i,cp.153

else

if(t5.lt.wcoe(mcohe))go to 191

t7=xss(jxs(3,iex)+mcohe-1)

go to 221

191 do 201 i=2,mcohe

201 if(t5.lt.wcoe(i))go to 211

211 t3=(t5-wcoe(i))/(wcoe(i-1)-wcoe(i))

ib=jxs(3,iex)+i-1
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t7=xss(ib)+t3*(xss(ib-1)-xss(ib))

221 t3=t7*rang()

ib=jxs(3,iex)-1

do 231 i=2,mcohe

231 if(t3.lt.xss(ib+i))go to 241

241 t3=(t3-xss(ib+i))/(xss(ib+i-1)-xss(ib+i))

cs=1.-2.*(wcoe(i)+t3*(wcoe(i-1)-wcoe(i)))/t5

t3=1.+cs**2

if(t3.le.2.*rang())go to 221

end if

*/ -------------------------------------------------------- calcps.F

*ident 05p ( File: src/mcnpx/mcnpf/calcps.F )

*i,ct.96

if ((jxs(4,iex)-jxs(3,iex))/2.eq.mcoh) then

*i,ct4b.10

else

if(t3.ge.vcoe(mcohe))go to 600

do 131 i=2,mcohe

131 if(t3.lt.vcoe(i))go to 141

141 ib=jxs(3,iex)+mcohe+i-1

psc=(.2494351/(tpd(2)-tpd(1)))*(1.+cs**2)*(xss(ib)+(xss(ib-1)-

& xss(ib))*(t3-vcoe(i))/(vcoe(i-1)-vcoe(i)))**2

end if

The data processing code, NJOY, must also be modified in order to create data files that
contain form factor and integrated form factor arrays that reflect the MCNPX changes. This
process was quite simple. The array vco in MCNPX corresponds to an array vc in the ACER
routine of NJOY. This array is modified, and subsequent assumptions of the length of vc by the
following NJOY patch, created to modify NJOY259:

*ident upBQ05p

*d acer.14675

dimension vi(21),vc(77)

*d acer.14687

& 5.0d0,5.2d0,5.4d0,5.6d0,5.8d0,6.0d0,6.5d0,7.0d0,7.5d0,8.0d0,

& 9.d0,10.d0,11.d0,12.d0,14.d0,16.d0,18.d0,20.d0,25.d0,30.d0,

& 40.d0,50.d0,75.d0,100.d0,500.d0,1000.d0,5000.d0,10000.d0/

*d acer.14785

jflo=jcoh+154

*d acer.14801

do i=1,77

*d acer.14804

xss(jcoh+76+i)=s

*d acer.14814

do i=1,77

*d acer.15084
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write(nsyso,’(1x,1p,6e14.4)’) (xss(jcoh-1+i),i=1,77)

*d acer.15088

write(nsyso,’(1x,1p,6e14.4)’) (xss(jcoh+76+i),i=1,77)

*d acer.15142

n=21+2*77

Unfortunately, NJOY259 appears to have a bug that causes the program to crash in a latter
section in which formatted x-ray fluorescence data tables are produced. These tables are supposed
to follow the form factor array portion of the ACE file. To bypass this problem, each new ACE
file, containing additional form factor data, that was produced by the modified NJOY259 code was
combined with properly formatted x-ray data tables in the previously distributed ACE files. This
resulted in properly functioning data files that appropriately represent the Rayleigh scattering
evaluated data present in the EPDL97.
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