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Body-centered cubic
BEK 
Bullough, Eyre, and Krishan (model)
fcc
 
 
Face-centered cubic
F–P 
Fokker–Plank equation
FP 
Frenkel pair
FP3DM
 
 
Frenkel pair three-dimensional diffusion

model
GB
 
 
Grain boundary
hcp 
 

Hexagonal close-packed
kMC 
Kinetic Monte Carlo
MD 
Molecular dynamics
ME 
Master equation
MFA
 
 
Mean-field approximation
NRT 
Norgett, Robinson, and Torrens

(standard)
PBM
 
 
Production bias model
PD 
Point defect
PKA 
Primary knock-on atom
RDT 
Radiation damage theory
RIS
 
 
Radiation-induced segregation
RT 
Rate theory
SDF 
Size distribution function
SFT
 
 
Stacking-fault tetrahedron
SIA 
Self-interstitial atom
Symbols
 
 

Ca 
Concentration of a-type defects
Da
 
 

Diffusion coefficient for a-type defects
f(ri) 
Size distribution function
Ga 
Production rate of a-type defects by

irradiation
N
 Number density
r
 Mean void radius
R
 Reaction rate
rd
 Dislocation capture radius for an SIA cluster
S
 Void swelling level
L
 Total trap density in one dimension
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Lj
 (201
Partial density of traps of kind j ( j ¼ c;d)
rd
 Dislocation density
t
 Lifetime
1.13.1 Introduction

The study of radiation effects on the structure and
properties of materials started more than a century
ago,1 but gained momentum from the development
of fission reactors in the 1940s. In 1946, Wigner2

pointed out the possibility of a deleterious effect
on material properties at high neutron fluxes, which
was then confirmed experimentally.3 A decade later,
Konobeevsky et al.4 discovered irradiation creep in
fissile metallic uranium, which was then observed
in stainless steel.5 The discovery of void swelling in
neutron-irradiated stainless steels in 1966 by
Cawthorne and Fulton6 demonstrated that radiation
effects severely restrict the lifetime of reactor materials
and that they had to be systematically studied.

The 1950s and early 1960s were very productive
in studying crystalline defects. It was recognized that
atoms in solids migrate via vacancies under thermal-
equilibrium conditions and via vacancies and self-
interstitial atoms (SIAs) under irradiation; also that
the bombardment with energetic particles generates
high concentrations of defects compared to equilib-
rium values, giving rise to radiation-enhanced diffu-
sion. Numerous studies revealed the properties of
point defects (PDs) in various crystals. In particular,
extensive studies of annealing of irradiated samples
resulted in categorizing the so-called ‘recovery
stages’ (e.g., Seeger7), which comprised a solid basis
for understanding microstructure evolution under
irradiation.

Already by this time, which was well before the
discovery of void swelling in 1966, the process of
interaction of various energetic particles with solid
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targets had been understood rather well (e.g., Kinchin
and Pease8 for a review). However, the primary dam-
age produced was wrongly believed to consist of
Frenkel pairs (FPs) only. In addition, it was com-
monly believed that this damage would not have
serious long-term consequences in irradiated materi-
als. The reasoning was correct to a certain extent; as
they are mobile at temperatures of practical interest,
the irradiation-produced vacancies and SIAs should
move and recombine, thus restoring the original crys-
tal structure. Experiments largely confirmed this sce-
nario, most defects did recombine, while only about
1% or an even smaller fraction survived and formed
vacancy and SIA-type loops and other defects. How-
ever small, this fraction had a dramatic impact on the
microstructure of materials, as demonstrated by
Cawthorne and Fulton.6 This discovery initiated
extensive experimental and theoretical studies of
radiation effects in reactor materials which are still
in progress today.

After the discovery of swelling in stainless steels,
it was found to be a general phenomenon in both
pure metals and alloys. It was also found that the
damage accumulation takes place under irradiation
with any particle, provided that the recoil energy is
higher than some displacement threshold value, Ed,
(�30–40 eV in metallic crystals). In addition, the
microstructure of different materials after irradiation
was found to be quite similar, consisting of voids and
dislocation loops. Most surprisingly, it was found
that the microstructure developed under irradiation
with �1MeV electrons, which produces FPs only, is
similar to that formed under irradiation with fast
neutrons or heavy-ions, which produce more compli-
cated primary damage (see Singh et al.1). All this
created an illusion that three-dimensional migrating
(3D) PDs are the main mobile defects under any type
of irradiation, an assumption that is the foundation of
the initial kinetic models based on reaction rate the-
ory (RT). Such models are based on a mean-field
approximation (MFA) of reaction kinetics with the
production of only 3D migrating FPs. For conve-
nience, we will refer to these models as FP produc-
tion 3D diffusion model (FP3DM) and henceforth
this abbreviation will be used. This model was devel-
oped in an attempt to explain the variety of phenom-
ena observed: radiation-induced hardening, creep,
swelling, radiation-induced segregation (RIS), and sec-
ond phase precipitation. A good introduction to this
theory can be found, for example, in the paper by
Sizmann,9 while a comprehensive overview was pro-
duced by Mansur,10 when its development was
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already completed. The theory is rather simple, but
its general methodology can be useful in the further
development of radiation damage theory (RDT). It is
valid for �1MeV electron irradiation and is also a
good introduction to the modern RDT, see Section
1.13.5.

Soon after the discovery of void swelling, a number
of important observations were made, for example,
the void super-lattice formation11–14 and the microm-
eter-scale regions of the enhanced swelling near grain
boundaries (GBs).15 These demonstrated that under
neutron or heavy-ion irradiation, the material micro-
structure evolves differently from that predicted by
the FP3DM. First, the spatial arrangement of irradia-
tion defects voids, dislocations, second phase particles,
etc. is not random. Second, the existence of the
micrometer-scale heterogeneities in the microstruc-
ture does not correlate with the length scales
accounted for in the FP3DM, which are an order of
magnitude smaller. Already, Cawthorne and Fulton6 in
their first publication on the void swelling had
reported a nonrandomness of spatial arrangement of
voids that were associated with second phase precipi-
tate particles. All this indicated that the mechanisms
operating under cascade damage conditions (fast neu-
tron and heavy-ion irradiations) are different from
those assumed in the FP3DM. This evidence was
ignored until the beginning of the 1990s, when the
production bias model (PBM) was put forward
by Woo and Singh.16,17 The initial model has been
changed and developed significantly since then18–28

and explained successfully such phenomena as high
swelling rates at low dislocation density (Section
1.13.6.2.2), grain boundary and grain-size effects in
void swelling, and void lattice formation (Section
1.13.6.2.3). An essential advantage of the PBM over
the FP3DM is the two features of the cascade dam-
age: (1) the production of PD clusters, in addition to
single PDs, directly in displacement cascades, and
(2) the 1D diffusion of the SIA clusters, in addition
to the 3D diffusion of PDs (Section 1.13.3). The
PBM is, thus, a generalization of the FP3DM (and
the idea of intracascade defect clustering intro-
duced in the model by Bullough et al. (BEK29)).
A short overview of the PBM was published about
10 years ago.1 Here, it will be described somewhat
differently, as a result of better understanding of what
is crucial and what is not, see Section 1.13.6.

From a critical point of view, it should be noted
that successful applications of the PBM have been
limited to low irradiation doses (<1 dpa) and pure
metals (e.g., copper). There are two problems that
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prevent it from being used at higher doses. First, the
PBM in its present form1 predicts a saturation of void
size (see, e.g., Trinkaus et al.19 and Barashev and
Golubov30 and Section 1.13.6.3.1). This originates
from the mixture of 1D and 3D diffusion–reaction
kinetics under cascade damage conditions, hence
from the assumption lying at the heart of the model.
In contrast, experiments demonstrate unlimited void
growth at high doses in the majority of materials and
conditions (see, e.g., Singh et al.,31 Garner,32 Garner
et al.,33 and Matsui et al.34). An attempt to resolve
this contradiction was undertaken23,25,27 by including
thermally activated rotations of the SIA-cluster
Burgers vector; but it has been shown25 that this
does not solve the problem. Thus, the PBM in its
present form fails to account for the important and
common observation: the indefinite void growth
under cascade irradiation. The second problem of
the PBM is that it fails to explain the swelling satura-
tion observed in void lattices (see, e.g., Kulchinski
et al.13). In contrast, it predicts even higher swelling
rates in void lattices than in random void arrange-
ments.25 This is because of free channels between
voids along close-packed directions, which are
formed during void ordering and provide escape
routes for 1D migrating SIA clusters to dislocations
and GBs, thus allowing 3D migrating vacancies to be
stored in voids.

Resolving these two problems would make PBM
self-consistent and complete its development. A solu-
tion to the first problem has recently been proposed by
Barashev and Golubov35,36 (see Section 1.13.7). It has
been suggested that one of the basic assumptions
of all current models, including the PBM, that a
random arrangement of immobile defects exists in
the material, is correct at low and incorrect at high
doses. The analysis includes discussion of the role of
RIS and provides a solution to the problem, making
the PBM capable of describing swelling in both pure
metals and alloys at high irradiation doses. The solu-
tion for the second problem of the PBM mentioned
above is the main focus of a forthcoming publication
by Golubov et al.37

Because of limitations of space, we only give a
short guide to the main concepts of both old and
more recent models and the framework within
which radiation effects, such as void swelling, and
hardening and creep, can be rationalized. For the
same reason, the impact of radiation on reactor fuel
materials is not considered here, despite a large body
of relevant experimental data and theoretical results
collected in this area.
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1.13.2 The Rate Theory and Mean
Field Approximation

The RDT is frequently but inappropriately called
‘the rate theory.’ This is due to the misunderstanding
of the role of the transition state theory (TST) or
(chemical reaction) RT (see Laidler and King38 and
Hänggi et al.39 for reviews) in the RDT. The TST is a
seminal scientific contribution of the twentieth cen-
tury. It provides recipes for calculating reaction rates
between individual species of the types which are
ubiquitous in chemistry and physics. It made major
contributions to the fields of chemical kinetics, diffu-
sion in solids, homogeneous nucleation, and electri-
cal transport, to name a few. TST provides a simple
way of formulating reaction rates and gives a unique
insight into how processes occur. It has survived
considerable criticisms and after almost 75 years has
not been replaced by any general treatment compa-
rable in simplicity and accuracy. The RDTuses TST
as a tool for describing reactions involving radiation-
produced defects, but cannot be reduced to it. This is
true for both the mean-field models discussed here,
and the kinetic Monte Carlo (kMC) models that are
also used to simulate radiation effects (see Chapter
1.14, Kinetic Monte Carlo Simulations of Irradia-
tion Effects).

The use of the name RT also created an incorrect
identification of the RDT with the models that
emerged in the very beginning, which assumed the
production of only FPs and 3D migrating PDs to be
the only mobile species, that is, FP3DM. It failed to
appreciate the importance of numerous contradicting
experimental data and, hence, to produce significant
contribution to the understanding of neutron irra-
diation phenomena (see Barashev and Golubov35

and Section 1.13.6). A common perception that the
RDT in general is identical to the FP3DM has devel-
oped over the years. So, the powerful method was
rejected because of the name of the futile model.
This caused serious damage to the development of
RDT during the last 15 years or so. Many research
proposals that included it as an essential part, were
rejected, while simulations, for example, by the kMC
etc. were aimed at substituting the RDT. The simula-
tions can, of course, be useful in obtaining information
on processes on relatively small time and length
scales but cannot replace the RDT in the large-
scale predictions. The RDT and any of its future
developments will necessarily use TST.

An important approximation used in the theory is
the MFA. The idea is to replace all interactions in a
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many-body system with an effective one, thereby
reducing the problem of one-body in an effective
field. The MFA is used in different areas of physics
on all scales: from ab initio to continuum models. In
the RDT, the main objective is to describe diffusion
and interaction between defects in a self-consistent
way. So, the primary damage is produced by irradia-
tion in the form of mobile vacancies, SIAs, SIA clus-
ters, and immobile defects. The latter together with
preexisting dislocations and GBs, and those formed
during irradiation, for example, voids and dislocation
loops of different sizes represent crystal microstruc-
ture and change during irradiation. The complete
problem of microstructure evolution is, thus, too
complex; some approximations are necessary and
the MFA is the most natural option.

It should be emphasized that a particular realiza-
tion of the MFA depends on the problem and it can
be employed even in cases with spatial correlations
between defects. For example, in this way Gösele40

demonstrated that the absorption rates of 3D migrat-
ing vacancies by randomly distributed and ordered
voids are significantly different; and then it was shown
in Barashev et al.25 that the effect is even stronger for
1D diffusing SIA clusters. In some specific cases,
however, when the time and length scales of the prob-
lem permit, numerical approaches such as kMC can
be a natural choice for studying spatial correlations.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

1.13.3 Defect Production

Interaction of energetic particles with a solid target is
a complex process. A detailed description is beyond
the scope of the present paper (Robinson41). However,
the primary damage produced in collision events is the
main input to the RDTand is briefly introduced here.
Energetic particles create primary knock-on (or recoil)
atoms (PKAs) by scattering either incident radiation
(electrons, neutrons, protons) or accelerated ions. Part
of the kinetic energy, EPKA, transmitted to the PKA is
lost to the electron excitation. The remaining energy,
called the damage energy, Td, is dissipated in elastic
collisions between atoms. If theTd exceeds a threshold
displacement energy, Ed, for the target material,
vacancy-interstitial (or Frenkel) pairs are produced.
The total number of displaced atoms is proportional
to the damage energy in a model proposed byNorgett
et al.42 and known as the NRT standard

nð~EÞ ¼ 0:8
EPKAð~EÞ
2Ed

½1�
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The total production rate of displacements per atom
(dpa), GNRT, can be calculated using this equation,
by integrating the flux of projectile particles, ’ðEÞ,
(E is the particle energy), as

GNRT ¼
ð1
0

dE’ðEÞ
ð~Emax

Ed

dsðE; ~EÞ
d~E

nð~EÞd~E ½2�

where sðE; ~EÞ is the cross-section of reactions, in
which an incident particle transfers energy ~E to an
atom and ~E

max
is the maximum transferable energy.

For a head-on collision of a nonrelativistic projectile
of mass m and a target atom of mass M

~E
max ¼ 4Mm

ðM þ mÞ2E ½3a�

while for relativistic electrons,

~E
max ¼ 2me

M

E

mec2
þ 2

� �
E ½3b�

where me is the electron mass and c is the speed
of light.

The NRT model is accepted as an international
standard for quantifying the number of atomic dis-
placements produced under cascade damage condi-
tions. It is based on the theory of isolated binary
collisions and, hence, cannot be used to characterize
the defects formed during the collision phase and
survive at the end of the cool-down phase of cascades.
Description of the latter is considered below.
1.13.3.1 Characterization of
Cascade-Produced Primary Damage

The NRT displacement model is most correct for
irradiation such as 1MeV electrons, which produce
only low-energy recoils and, therefore, the FPs.
At higher recoil energies, the damage is generated
in the form of displacement cascades, which change
both the production rate and the nature of the defects
produced. Over the last two decades, the cascade
process has been investigated extensively by molecu-
lar dynamics (MD) and the relevant phenomenology
is described in Chapter 1.11, Primary Radiation
Damage Formation and recent publications.43,44

For the purpose of this chapter the most important
findings are (see discussion in the Chapter 1.11,
Primary Radiation Damage Formation):

� For energy above �0.5 keV, the displacements are
produced in cascades, which consist of a collision
and recovery or cooling-down stage.
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� A large fraction of defects generated during the
collision stage of a cascade recombine during
the cooling-down stage. The surviving fraction of
defects decreases with increasing PKA energy up
to �10 keV, when it saturates at a value of �30%
of the NRT value, which is similar in several metals
and depends only slightly on the temperature.

� By the end of the cooling-down stage, both
SIA and vacancy clusters can be formed. The frac-
tion of defects in clusters increases when the
PKA energy is increased and is somewhat higher
in face-centered cubic (fcc) copper than in bcc
iron.

� The SIA clusters produced may be either glissile
or sessile. The glissile clusters of large enough size
(e.g., >4 SIAs in iron) migrate 1D along close-
packed crystallographic directions with a very
low activation energy, practically a thermally,
similar to the single crowdion.45,46 The SIA clus-
ters produced in iron are mostly glissile, while in
copper they are both sessile and glissile.

� The vacancy clusters produced may be either
mobile or immobile vacancy loops, stacking-fault
tetrahedra (SFTs) in fcc metals, or loosely corre-
lated 3D arrays in bcc materials such as iron.

As compared to the FP production, the cascade
damage has the following features.

� The generation rates of single vacancies and
SIAs are not equal: Gv 6¼ Gi and both smaller
than that given by the NRT standard, eqn. [2]:
Gv;Gi <GNRT.

� Mobile species consist of 3D migrating single
vacancies and SIAs, and 1D migrating SIA and
vacancy clusters.

� Sessile vacancy and SIA clusters, which can be
sources/sinks for mobile defects, can be formed.

The rates of PD production in cascades are given by

Gv ¼ GNRTð1� erÞð1� evÞ ½4�

Gi ¼ GNRTð1� erÞð1� eiÞ ½5�
where er is the fraction of defects recombined in
cascades relative to the NRT standard value, and ev
and ei are the fractions of clustered vacancies and
SIAs, respectively.

One also needs to introduce parameters describ-
ing mobile and immobile vacancy and SIA-type
clusters of different size. The production rate of
the clusters containing x defects, GðxÞ, depends on
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cluster type, PKA energy and material, and is
connected with the fractions e asX1

x¼ 2

xGaðxÞ ¼ eaGNRTð1� erÞ ½6�

where a ¼ v; i for the vacancy and SIA-type clusters,
respectively. The total fractions ev and ei of defects in
clusters are given by the sums of those for mobile and
immobile clusters,

ea ¼ esa þ ega ½7�
where the superscripts ‘s’ and ‘g’ indicate sessile and
glissile clusters, respectively. In the mean-size
approximation

Gj
aðxÞ ¼ Gj

ad x � hxjai
� � ½8�

where j ¼ s; g; dðxÞ is the Kronecker delta and hxaj i
is the mean cluster size and

Gj
a ¼ hxjai

�1
GNRTð1� erÞeja ½9�

Also note that although MD simulations46 show that
small vacancy loops can be mobile, this has not been
incorporated into the theory yet and we assume that
they are sessile: egv ¼ 0 and esv ¼ ev.

1.13.3.2 Defect Properties

Single vacancies and other vacancy-type defects,
such as, SFTs and dislocation loops, have been con-
sidered quite extensively since the 1930s because it
was recognized that they define many properties of
solids under equilibrium conditions. Extensive infor-
mation on defect properties was collected before
material behavior in irradiation environments became
a problem of practical importance. Qualitatively
new crystal defects, SIAs and SIA clusters, were
required to describe the phenomena in solids under
irradiation conditions. This has been studied compre-
hensively during the last�40 years. The properties of
these defects and their interaction with other defects
are quite different compared to those of the vacancy-
type. Correspondingly, the crystal behavior under
irradiation is also qualitatively different from that
under equilibrium conditions. The basic properties
of vacancy- and SIA-type defects are summarized
below.

1.13.3.2.1 Point defects

The basic properties of PDs are as follows:

1. Both vacancies and SIAs are highly mobile at tem-
peratures of practical interest, and the diffusion
coefficient of SIAs, Di, is much higher than that
of vacancies, Dv : Di � Dv.
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2. The relaxation volume of an SIA is much larger
than that of a vacancy, resulting in higher interaction
energy with edge dislocations and other defects.

3. Vacancies and SIAs are defects of opposite type,
and their interaction leads tomutual recombination.

4. SIAs, in contrast to vacancies, may exist in
several different configurations providing differ-
ent mechanisms of their migration.

5. PDs of both types are eliminated at fixed sinks,
such as voids and dislocations.

The first property leads to a specific temperature
dependence of the damage accumulation: only limited
number of defects can be accumulated at irradiation
temperature below the recovery stage III, when vacan-
cies are immobile. At higher temperature, when both
PDs are mobile, the defect accumulation is practically
unlimited. The second property is the origin of the
so-called ‘dislocation bias’ (see Section 1.13.5.2) and,
as proposed by Greenwood et al.,47 is the reason for
void swelling. A similar mechanism, but induced by
external stress, was proposed in the so-called ‘SIPA’
(stress-induced preferential absorption) model of
irradiation creep.48–53 The third property provides a
decrease of the number of defects accumulated in a
crystal under irradiation. The last property, which is
quite different compared to that of vacancies leads to
a variety of specific phenomena and will be consid-
ered in the following sections.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1.13.3.2.2 Clusters of point defects

The configuration, thermal stability and mobility of
vacancy, and SIA clusters are of importance for the
kinetics of damage accumulation and are different in
the fcc and bcc metals. In the fcc metals, vacancy
clusters are in the form of either dislocation loops
or SFTs, depending on the stacking-fault energy,
and the fraction of clustered vacancies, ev, is close to
that for the SIAs, ei . In the bcc metals, nascent
vacancy clusters usually form loosely correlated 3D
configurations, and ev is much smaller than ei. Gen-
erally, vacancy clusters are considered to be immo-
bile and thermally unstable above the temperature
corresponding to the recovery stage V.

In contrast to vacancy clusters, the SIA clusters are
mainly in the form of a 2D bundle of crowdions or
small dislocation loops. They are thermally stable
and highly mobile, migrating 1D in the close-packed
crystallographic directions.45 The ability of SIA clus-
ters to move 1D before being trapped or absorbed by a
dislocation, void, etc. leads to entirely different reac-
tion kinetics as compared with that for 3D migrating
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defects, and hence may result in a qualitatively differ-
ent damage accumulation than that in the frameworkof
the FP3DM (see Section 1.13.6).

It should be noted that MD simulations provide
maximum evidence for the high mobility of small SIA
clusters. Numerous experimental data, which also sup-
port this statement, are discussed in this chapter, how-
ever, indirectly. One such fact is that most of the loops
formed during ion irradiations of a thin metallic foil
have Burgers vectors lying in the plane of the foil.54 It
should also be noted that recent in situ experiments55–58

provide interesting information on the behavior of
interstitial loops (>1 nm diameter, that is, large enough
to be observable by transmission electron microscope,
TEM). The loops exhibit relatively lowmobility, which
is strongly influenced by the purity of materials. This is
not in contradiction with the simulation data. The
observed loops have a large cross-section for interaction
with impurity atoms, other crystal imperfections and
other loops: all such interactions would slow down or
even immobilize interstitial loops. Small SIA clusters
produced in cascades consist typically of approximately
ten SIAs and have, thus, much smaller cross-sections
and consequently a longer mean-free path (MFP). The
influence of impurities may, however, be strong on both
the mobility of SIA clusters and, consequently, void
swelling is yet to be included in the theory.
1.13.4 Basic Equations for Damage
Accumulation

Crystal microstructure under irradiation consists
of two qualitatively different defect types: mobile
(single vacancies, SIAs, and SIA and vacancy clus-
ters) and immobile (voids, SIA loops, dislocations,
etc.). The concentration of mobile defects is very
small (�10�10–10�6 per atom), whereas immobile
defects may accumulate an unlimited number of
PDs, gas atoms, etc. The mathematical description
of these defects is, therefore, different. Equations for
mobile defects describe their reactions with immo-
bile defects and are often called the rate (or balance)
equations. The description of immobile defects is
more complicated because it must account for nucle-
ation, growth, and coarsening processes. 
1.13.4.1 Concept of Sink Strength

The mobile defects produced by irradiation are
absorbed by immobile defects, such as voids, disloca-
tions, dislocation loops, andGBs.UsingaMFA, a crystal
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can be treated as an absorbing medium. The absorption
rate of this medium depends on the type of mobile
defect, its concentration and type, and the size and
spatial distribution of immobile defects. A parameter
called ‘sink strength’ is introduced to describe the reac-
tion cross-section and commonly designated as k2v, k

2
i ,

and k2iclðxÞ for vacancies, SIAs, and SIA clusters of size x
(the number of SIAs in a cluster), respectively. The role
of the power ‘2’ in these values is to avoid the use of
square root for the MFPs of diffusing defects between
production until absorption, which are correspond-
ingly k�1v , k�1i , and k�1icl ðxÞ. There are a number of
publications devoted to the derivation of sink
strengths.40,59–61 Here we give a simple but sufficient
introduction to this subject.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.13.4.2 Equations for Mobile Defects

For simplicity, we use the following assumptions:

� The PDs, single vacancies, and SIAs, migrate 3D.
� SIA clusters are glissile and migrate 1D.
� All vacancy clusters, including divacancies, are

immobile.
� The reactions between mobile PDs and clusters

are negligible.
� Immobile defects are distributed randomly over

the volume.

Then, the balance equations for concentrations of
mobile vacancies, Cv, SIAs, Ci, and SIA clusters,
C
g
iclðxÞ, are as follows

dCv

dt
¼ GNRTð1� erÞð1� evÞ þ Gth

v

� k2vDvCv � mRDiCiCv
½10�

dCi

dt
¼ GNRTð1� erÞð1� eiÞ � k2i DiCi

� mRDiCiCv
½11�

dC
g
iclðxÞ
dt

¼ G
g
iclðxÞ � k2iclðxÞDiclC

g
icl;

x ¼ 2; 3; . . . xmax
½12�

where Gth
v is the rate of thermal emission of vacancies

from all immobile defects (dislocations, GBs, voids,
etc.); Dv, Di, and DiclðxÞ are the diffusion coefficients
of vacancies, single SIAs, and SIA clusters, respec-
tively; and mR is the recombination coefficient of
PDs. Since the dependence of the cluster diffusivity,
DiclðxÞ, and sink strengths, k2iclðxÞ, on size x is
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rather weak,45,46 the mean-size approximation for
the SIA clusters may be used, where all clusters are
assumed to be of the size hxgi i. In this case, the set of
eqn [12] is reduced to the following single equation

dC
g
icl

dt
¼ hxgi i�1GNRTð1� erÞegi � k2iclDiclC

g
icl ½13�

where eqn [9] is used for the cluster generation rate.
To solve eqns [10]–[13], one needs the sink strengths
k2v, k

2
i , and k2icl, the rates of vacancy emission from

various immobile defects to calculate Gth
v , and the

recombination constant, mR. The reaction kinetics
of 3D diffusing PDs is presented in Section 1.13.5,
while that of 1D diffusing SIA clusters in Section
1.13.6. In the following section, we consider equa-
tions governing the evolution of immobile defects,
which together with the equations above describe
damage accumulation in solids both under irradiation
and during aging.
1.13.4.3 Equations for Immobile Defects

The immobile defects are those that preexist such as
dislocations and GBs and those formed during irradi-
ation: voids, vacancy- and SIA-type dislocation loops,
SFTs, and second phase precipitates. Usually, the
defects formed under irradiation nucleate, grow, and
coarsen, so that their size changes during irradiation.
Hence, the description of their evolution with time, t,
should include equations for the size distribution func-
tion (SDF), f ðx; tÞ, where x is the cluster size.
1.13.4.3.1 Size distribution function

The measured SDF is usually represented as a func-
tion of defect size, for example, radius, x � R : f ðR; tÞ.
In calculations, it is more convenient to use x-space,
x � x, where x is the number of defects in a cluster:
f ðx; tÞ. The radius of a defect, R, is connected with
the number of PDs, x, it contains as:

4p
3
R3 ¼ xO

pR2b ¼ xO ½14�
for voids and loops, respectively, where O is the
atomic volume and b is the loop Burgers vector. Cor-
respondingly, the SDFs in R- and x-spaces are related
to each other via a simple relationship. Indeed, if small
dx and dR correspond to the same cluster group, the
number density of this cluster group defined by
two functions f ðxÞdx and f ðRÞdR must be equal,
f ðxÞdx ¼ f ðRÞdR, which is just a differential form
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of the equality of corresponding integrals for the total
number density:

N ¼
X1
x¼ 2

f ðxÞ �
ð1

x¼ 2

f ðxÞdx ¼
ð1

R¼ Rmin

f ðRÞdR ½15�

The relationship between the two functions is, thus,

f ðRÞ ¼ f ðxÞdx
dR

½16�
For voids and dislocation loops

fcðRÞ ¼ 36p
O

� �1=3
x2=3fcðxÞ x ¼ 4pR3

3O

��
fLðRÞ ¼ 4pb

O

� �1=2
x1=2fLðxÞ x ¼ pbR2

O

�� ½17�

Note the difference in dimensionality: the units of
f ðxÞ are atom�1 (or m�3), while f ðRÞ is in m�1

atom�1 (or m�4), as can be seen from eqn [15]. Also
note that these two functions have quite different
shapes, see Figure 1, where the SDFof voids obtained
by Stoller et al.62 by numerical integration of the
master equation (ME) (see Sections 1.13.4.3.2 and
1.13.4.4.3) is plotted in both R- and x-spaces.

1.13.4.3.2 Master equation

The kinetic equation for the SDF (or the ME) in the
case considered, when the cluster evolution is driven
by the absorption of PDs, has the following form

@f sðx; tÞ
@t

¼ GsðxÞ þ J ðx � 1; tÞ � Jðx; tÞ; x 	 2 ½18�

where GsðxÞ is the rate of generation of the clusters
by an external source, for example, by displacement
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cascades, and Jðx; tÞ is the flux of the clusters in the
size-space (indexes ‘i’ and ‘v’ in eqn [18] are omitted).
The flux J ðx; tÞ is given by

Jðx; tÞ ¼ Pðx; tÞf ðx; tÞ � Q ðx þ 1; tÞf ðx þ 1; tÞ ½19�
where Pðx; tÞ and Q ðx; tÞ are the rates of absorption
and emission of PDs, respectively. The boundary
conditions for eqn [18] are as follows

f ð1Þ ¼ C

f ðx !1Þ ¼ 0 ½20�
where C is the concentration of mobile PDs.

If any of the PD clusters are mobile, additional
terms have to be added to the right-hand side of eqn
[19] to account for their interaction with immobile
defect which will involve an increment growth or
shrinkage in the size-space by more that unity (see
Section 1.13.6 and Singh et al.22 for details).

The total rates of PD absorption (superscript !)
and emission ( ) are given by

J!tot ¼
X1
x¼2

PðxÞf ðxÞ; J tot ¼
X1
x¼2

Q ðxÞf ðxÞ ½21�

where the superscript arrows denote direction in the
size-space. J!tot and J

 
tot are related to the sink strength

of the clusters, thus providing a link between equa-
tions for mobile and immobile defects. For example,
when voids with the SDF fc(x) and dislocations are
only presented in the crystal and the primary damage
is in the form of FPs, the balance equations are

dCv

dt
¼ GNRTð1� erÞ
� mRDiCiCv þ Zd

vrdDv Cv � Cv0ð Þ� �
� Pcð1Þfcð1; tÞ � Q v

cð2Þfcð2; tÞ
� �
�
Xx¼1
x¼1
ðPcðxÞfcðx; tÞ

� Q v
cðx þ 1Þfcðx þ 1; tÞÞ ½22�

dCi

dt
¼ GNRTð1� erÞ

� mRDiCiCv þ Zd
i rdDiCi

� �
�
Xx¼1
x¼1

Q i
cðx þ 1Þfcðx þ 1; tÞ ½23�

where rd and Zd
i;v are the dislocation density and

its efficiencies for absorbing PDs, mR, is the recom-
bination constant (see Section 1.13.5); the last
two terms in eqn [22] describe the absorption and
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emission of vacancies by voids and the last term in
eqn [23] describes the absorption of SIAs by voids.
The balance equations for dislocation loops and sec-
ondary phase precipitations can be written in a similar
manner. Expressions for the rates Pðx; tÞ;Q ðx; tÞ,
the dislocation capture efficiencies, Zd

i;v, and mR are
derived in Section 1.13.5.

 
 
 
 
 
 
 
 
 
 

 

1.13.4.3.3 Nucleation of point defect clusters

Nucleation of small clusters in supersaturated solu-
tions has been of significant interest to several genera-
tions of scientists. The kinetic model for cluster growth
and the rate of formation of stable droplets in vapor
and second phase precipitation in alloys during aging
was studied extensively. The similarity to the con-
densation process in supersaturated solutions allows
the results obtained to be used in RDT to describe
the formation of defect clusters under irradiation.

The initial motivation for work in this area
was to derive the nucleation rate of liquid drops.
Farkas63 was first to develop a quantitative theory
for the so-called homogeneous cluster nucleation.
Then, a great number of publications were devoted
to the kinetic nucleation theory, of which the works
by Becker and Döring,64 Zeldovich,65 and Frenkel66

are most important. Although these publications by
no means improved the result of Farkas, their treat-
ment is mathematically more elegant and provided
a proper background for subsequent works in for-
mulating ME and revealing properties of the clus-
ter evolution. A quite comprehensive description
of the nucleation phenomenon was published by
Goodrich.67,68 Detailed discussions of cluster nucle-
ation can also be found in several comprehensive
reviews.69,70 Generalizations of homogeneous cluster
nucleation for the case of irradiation were developed
by Katz and Wiedersich71 and Russell.72 Here we
only give a short introduction to the theory.

For small cluster sizes at high enough tempera-
ture, when the thermal stability of clusters is rela-
tively low, the diffusion of clusters in the size-space
governs the cluster evolution, which is nucleation of
stable clusters. In cases where only FPs are produced
by irradiation, the first term on the right-hand side of
eqn [18] is equal to zero and cluster nucleation, for
example, voids, proceeds via interaction between
mobile vacancies to form divacancies, then between
vacancies and divacancies to form trivacancies, and so
on. By summing eqn [18] from x¼ 2 to1, one finds

dNc

dt
¼ J ðxÞ x¼1j � J nucl

c ½24�
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where Nc ¼
P1
x¼2

f ðxÞ is the total number of clusters.

The nucleation rate in this case, J nucl
c , is equal to the

rate of production of the smallest cluster (divacancies
in the case considered); hence the flux J ðxÞ x¼1j is

the main concern.
When calculating J nucl

c , one can obtain two limit-
ing SDFs that correspond to two different steady-
state solutions of eqn [18]: (1) when the flux
J ðx; tÞ ¼ 0, for which the corresponding SDF is
n(x), and, (2) when it is a constant: J ðx; tÞ ¼ Jc,
with the SDF denoted as g(x). Let us first find n(x).
Using equation PðxÞnðxÞ � Q ðx þ 1Þnðx þ 1; tÞ ¼ 0
and the condition n(1)¼C, one finds that

nðxÞ ¼ C
Yx�1
y¼1

PðyÞ
Q ðy þ 1Þ; x 	 2 ½25�

Using function nðxÞ, the flux J ðx; tÞ can be derived as
follows

J ðx; tÞ ¼ PðxÞnðxÞ f ðxÞ
nðxÞ �

f ðx þ 1Þ
nðx þ 1Þ

� �
½26�

The SDF g(x) corresponding to the constant flux,
J ðx; tÞ ¼ Jc, can be found from eqn [26]:

gðxÞ ¼ JcnðxÞ
X1
y¼x

1

PðyÞnðyÞ ½27�

Using the boundary conditions gð1Þ ¼ nð1Þ ¼ C one
finds that J nucl

c is fully defined by n(x):

J nucl
c ¼ 1P1

x¼1
PðxÞnðxÞ½ ��1

½28�

Generally, nðxÞ has a pronounced minimum at some
critical size, x ¼ xcr, and the main contribution to the
denominator of eqn [28] comes from the clusters with
size around xcr. Expanding nðxÞ in the vicinity of xcr
up to the second derivative and replacing the sum-
mation by the integration, one finds an equation for
J nucl
c , which is equivalent to that for nucleation of

second phase precipitate particles.64,65 Note that eqn
[28] describes the cluster nucleation rate quite accu-
rately even in cases where the nucleation stage coexists
with the growth which leads to a decrease of the
concentration of mobile defects, C . This can be seen
from Figure 2, in which the results of numerical
integration of ME for void nucleation are compared
with that given by eqn [28].73

In the case of low temperature irradiation, when
all vacancy clusters are thermally stable (C ¼ Cv in
the case) and only FPs are produced by irradiation,
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the void nucleation rate, eqn [21], can be calculated
analytically. Indeed, in the case where the binding
energy of a vacancy with voids of all sizes is infinite,
Eb
vðxÞ ¼ 1 (see eqn [75]), it follows from eqn [25]

that the function n(x) is equal to

nðxÞ ¼ Cv

x1=3
DvCv

DiCi

� �x�1
½29�

Substituting eqn [29] in eqn [28], one can easily find
that the nucleation rate, J nucl

c , takes the form

J nucl
c ¼ wCvDvCv

1P1
x¼1

DiCi
DvCv

	 
x�1 ½30�

where w ¼ ð48p2=O2Þ1=3 is a geometrical factor of
the order of 1020m�2 (see Section 1.13.5). The sum
in the dominant eqn [30] is a simple geometrical
progression and therefore it is equal to

X1
x¼1

DiCi

DvCv

� �x�1
¼ 1

1�DiCi=DvCv
� DvCv

DvCv�DiCi
½31�

Substituting eqn [31] to eqn [30], one can finally
obtain the following equation

J nucl
c ¼ wCvðDvCv�DiCiÞ ½32�

Note that the function g(x) in this case takes a
very simple form, g(x)¼Cc/x

1/3, and hence decreases
with increasing cluster size. In contrast, in R-space,
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g(R) (see eqn [16]) increases with increasing cluster
size: gðRÞ ¼ ð36p=OÞ1=3CcR (see also eqns [43] and
[44] in Feder et al.69).

The real time-dependent SDF builds up around
the function g(x) with the steadily increasing size
range (see, e.g., Figure 2 in Feder et al.69). Also note
that homogeneous nucleation is the only case where
an analytic equation for the nucleation rate exists.
In more realistic scenarios, the nucleation is affected
by the presence of impurities and other crystal imper-
fections, and numerical calculations are the only
means of investigation. Such calculations are not
trivial because for practical purposes it is necessary
to consider clusters containing very large numbers
of defects and, hence, a large number of equations.
This can make the direct numerical solution of ME
impractical. As a result several methods have been
developed to obtain an approximate numerical solu-
tion of ME (see Section 1.13.4.4 for details).

The equations formulated in this section govern
the evolution of mobile and immobile defects in
solids under irradiation or aging and provide a frame-
work, which has been used for about 50 years. Appli-
cation of this framework to the models developed to
date is presented in Sections 1.13.5 and 1.13.6.
1.13.4.4 Methods of Solving the
Master Equation

The ME [18] is a continuity equation (with the
source term) for the SDF of defect clusters in a
discreet space of their size. This equation provides
the most accurate description of cluster evolution
in the framework of the mean-field approach describ-
ing all possible stages, that is, nucleation, growth,
and coarsening of the clusters due to reactions with
mobile defects (or solutes) and thermal emission of
these same species. The ME is a set of coupled
differential equations describing evolution of the
clusters of each particular size. It can be used in several
ways. For short times, that is, a small number of cluster
sizes, the set of equations can be solved numerically.74

For longer times the relevant physical processes
require accounting for clusters containing a very
large number of PDs or atoms (�106 in the case of
one-component clusters like voids or dislocation loops
and �1012 in the case of two-component particles
like gas bubbles). Numerical integration of such a
system is feasible on modern computers, but such
calculations are overly time consuming. Two types
of procedures have been developed to deal with this
situation: grouping techniques (see, e.g., Feder et al.,69

 
 
 
 
 

ials (2012), vol. 1, pp. 357-391 
 



368 Radiation Damage Theory

Author's personal copy
 

 
 
 

Wagner and Kampmann,70 and Kiritani75) and differ-
ential equation approximations in continuous space
of sizes (see, e.g., Goodrich67,68, Bondarenko and
Konobeev,76 Ghoniem and Sharafat,77 Stoller
and Odette,78 Hardouin Duparc et al.,79 Wehner and
Wolfer,80Ghoniem,81 and Surh et al.82). The correspon-
dence between discrete microscopic equations and
their continuous limits has been the subject of an
enormous amount of theoretical work. The equations
of thermodynamics, hydrodynamics, and transport
equations, such as the diffusion equation, are all exam-
ples of statistically averaged or continuous limits of
discrete equations for a large number of particles.
The extent to which the two descriptions give equiva-
lent mathematical and physical results has been con-
sidered by Clement and Wood.83 In the following two
sections, we briefly discuss these methods.

1.13.4.4.1 Fokker–Plank equation
In the case where the rates Pðx; tÞ;Q ðx; tÞ are suffi-
ciently smooth, it is reasonable to approximate them by
continuous functions ~Pðx; tÞ; ~Q ðx; tÞ and to replace
the right-hand sides of eqns [18] and [19] by contin-
uous functions of two variables, J ðx; tÞ and f ðx; tÞ.
The Fokker–Plank equation can be obtained from the
ME by expanding the right-hand side of eqn [18] in
Tailor series, omitting derivatives higher than the
second order

@f Sðx; tÞ
@t

¼ GsðxÞ � @

@x
V ðx; tÞf ðx; tÞ½ �

þ @2

@x2
Dðx; tÞf ðx; tÞ½ � ½33�

where

V ðx; tÞ ¼ ~Pðx; tÞ � ~Q ðx; tÞ
DðxÞ ¼ 1

2
~Pðx; tÞ þ ~Q ðx; tÞ� � ½34�

The first term in eqn [33] describes the hydrodynamic-
like flow of clusters, whereas the second term
accounts for their diffusion in the size-space. Note
that for clusters of large enough sizes, when the
cluster evolution is mainly driven by the hydrody-
namic term, the functions ~Pðx; tÞ; ~Q ðx; tÞ are
smooth; hence the ME and F–P equations are equally
accurate. For sufficiently small cluster sizes, when the
diffusion term plays a leading role, eqn [33]) provides
only poor description.67,68,83 As the cluster nucle-
ation normally takes place at the beginning of irradi-
ation, that is, when the clusters are small, the results
obtained using F–P equation are expected to be less
accurate compared to that of ME.
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1.13.4.4.2 Mean-size approximation
In eqn [24], the term with V ðx; tÞ is responsible
for an increase of the mean cluster size, while
the term with DðxÞ is responsible for cluster nucle-
ation and broadening of the SDF. For large mean
cluster size, most of the clusters are stable and
the diffusion term is negligible. This is the case
when the nucleation stage is over, and the cluster
density does not change significantly with time.
A reasonably accurate description of the cluster
evolution is then given in the mean-size approxima-
tion, when fcðx; tÞ ¼ Ncd x � hxðtÞið Þ where dðxÞ is
the Kronecker delta and Nc is the cluster density.
The rate of change of the mean size in this case
can be calculated by omitting the last term in the
right-hand side of eqn [24], multiplying both
sides by x, integrating over x from 0 to infinity,
and taking into account that f ðx ¼ 1; tÞ ¼ 0 and
f ðx ¼ 0; tÞ ¼ 0

dhxi
dt
¼ V hxi; tð Þ ½35�

1.13.4.4.3 Numerical integration of the

kinetics equations

The main idea of the grouping methods for
numerical evaluation of the ME is to replace a
group of equations described by the ME with an
‘averaged’ equation. Such a procedure was proposed
by Kiritani75 for describing the evolution of vacancy
loops during aging of quenched metals. Koiwa84 was
the first to examine the Kiritani method by com-
paring numerical results with the results of an
analytical solution for a simple problem. Serious
disagreement was found between the numerical
and analytical results, raising strong doubts regard-
ing the applicability of the method. The main objec-
tion to the method75 in Koiwa84 is the assumption
used by Kiritani75 that the SDF within a group
does not depend on the size of clusters. However,
Koiwa did not provide an explanation of where the
inaccuracy comes from. The Validity of the Kiritani
method was examined thoroughly by Golubov
et al.85 The general conclusion of the analysis is
that the grouping method proposed by Kiritani is
not accurate. The origin of the error is the approxi-
mation that the SDF within a group is constant
as was predicted by Koiwa.84 Thus, the disagree-
ment found in Koiwa84 is fundamental and cannot
be circumvented. Because it is important for under-
standing the accuracy of the other methods sug-
gested for numerical calculations of cluster evolution,
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the analysis performed in Golubov et al.85 is briefly
highlighted below.

It follows from eqn [18] that the total number of
clusters, NðtÞ ¼P1x¼2 f ðx; tÞ and total number
of defects in the clusters, SðtÞ ¼P1x¼2 xf ðx; tÞ, are
described by the following equations:

@N

@t
¼ J ð1; tÞ ½36�

@S

@t
¼ J ð1; tÞ þ

X1
x¼1

J ðx; tÞ ½37�

where the generation term in eqn [18] is dropped
for simplicity. Equations [36] and [37] are the con-
servation laws which can be satisfied when one uses
a numerical evaluation of the ME. When a group
method is used, the conservation laws can be satisfied
for reactions taking place within each group.69 How-
ever, this is not possible within the approximation
used by Kiritani75 because a single constant can be
used to satisfy only one of the eqns [36] and [37]. To
resolve the issue, Kiritani75 used an ad hoc modifica-
tion of the flux J ðxiÞ; therefore, the final set of
equations for the density of clusters within a group,
Fi , are as follows

dFi
dt
¼ 1

Dxi
½Ji�1 � Ji � ½38�

Ji ¼ 2Dxi
Dxi þ Dxiþ1

PiFi � 2Dxiþ1
Dxi þ Dxiþ1

Qiþ1Fiþ1 ½39�

where Dxi is the width of the ‘i ’ group. Equations
[38] and [39] indeed satisfy both the conservation
laws. However, they do not provide a correct
description of cluster evolution described by the
ME because the flux Ji in eqn [39] depends on the
widths of groups and these widths have no physical
meaning. An example of a comparison of the calcu-
lation results obtained using the Kiritani method
with the analytical and numerical calculations
based on a more precise grouping method is pre-
sented in Figure 3. Note that in the limiting case
where the widths of group are equal, Dxi ¼ Dxiþ 1,
the flux Ji is equal to the original one, J ðx; tÞ. In this
limiting case, eqns [38] and [39] correspond to
those that can be obtained by a summation of the
ME within a group and therefore they provide con-
servation of the total number of clusters, NðtÞ, only.
This limiting case is probably the simplest way to
demonstrate the inaccuracy of the Kiritani method.
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It is worth noting that this comparison also sheds
light on the relative accuracy of other numerical
solutions of the F–P equation such as in Bondarenko
and Konobeev,76 Ghoniem and Sharafat,77 Stoller and
Odette,78 and Hardouin Duparc et al.79

Equations [36] and [37] provide a way of getting
a simple but still reasonably correct grouping
method for numerical integration of the ME. Indeed,
the two conservation laws, eqns [36] and [37], require
two parameters within a group at least. The simplest
approximation of the SDF within a group of clusters
(sizes from xi�1 to xi ¼ xi�1 þ Dxi � 1) can be
achieved using a linear function

fi ðxÞ ¼ Li0ðx � hxiiÞ þ Li1 ½40�
where hxii ¼ xi � 1=2ðDxi � 1Þ is the mean size of
the group. Equations for Li0; L

i
1 are as follows

69

dLi0
dt
¼ 1

Dxi
Jðxi�1Þ � JxðxiÞ½ � ½41�

dLi1
dt
¼

� Dxi �1

2s2i Dxi

 !
Jxðxi�1ÞþJ ðxiÞ�2J hxii�1

2

� �� �
½42�
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where

s2i ¼
1

Dxi

Xxi
k¼xi�1þ1

k2 � 1

Dxi

Xxi
k¼xi�1þ1

k

 !2" #
½43�

is the dispersion of the group. Equations [41] and [42]
describe the evolution of the SDF within the group
approximation. Note that the last term in the brackets
on the right-hand side of eqn [42] follows from the
corresponding term in eqn [38] in Golubov et al.85

when the rates Pðx; tÞ;Q ðx; tÞ are independent from
x within the group. Note also that the factor ‘�1=Dxi ’
is missing in eqn [38] in Golubov et al.85

As can be seen from eqns [41] and [42], in the case
where Dxi ¼ 1, eqns [41] and [42] transform to eqn
[18], that is f ðxiÞ ¼ Li0 and Li1 ¼ 0 in contrast with
Kiritani’s method, where the equation describing
the interface number density of clusters between
ungrouped and grouped ones has a special form
(see, e.g., eqn [21] in Koiwa84). It has to be empha-
sized that this grouping method is the only one
that has demonstrated high accuracy in reprodu-
cing well-known analytical results such as those by
Lifshitz–Slezov–Wagner86,87 (LSW) and Greenwood
and Speight88 describing the asymptotic behavior of
SDF in the case of secondary phase particle evolu-
tion89 and gas bubble evolution90 during aging.

A different approach for calculating the evolution
of the defect cluster SDF is based on the use of the
F–P equation. Note that the use of eqn [33] as an
approximate method for treating cluster evolution
is not new, for the work initiated by Becker and
Döring64 has been brought into its modern form by
Frenkel.66 An advantage of the F–P equation over the
ME is based on the possibility of using the differential
equation methods developed for the case of continu-
ous space. Quite comprehensive applications of the
analytical methods to solve the F–P have been done
by Clement and Wood.83 It has been shown83 that
convenient analytical solutions of the F–P equation
cannot be obtained for the interesting practical cases.
Thus, several methods have been suggested for an
approximate numerical solution for it. The simplest
method is based on discretization of the F–P equa-
tion76–79 that transforms it to a set of equations for the
clusters of specific sizes similar to the ME; in both
the cases the matrix of coefficients of the equation set
is trigonal. This method is convenient for numerical
calculations and allows calculating cluster evolution
up to very large cluster sizes (e.g., Ghoniem81). How-
ever, this method is not accurate because it is
identical to the approach used by Kiritani75 in
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which SDF was approximated by a constant within
a group. Thus, all the objections to Kiritani’s method
discussed above are valid for this method as well. Also
note that the method has a logic problem. Indeed a
chain of mathematical transformations, namely ME
to F–P and F–P to discretized F–P, results in a set
of equations of the same type, which can be obtained
by simple summation of ME within a group. More-
over, the last equation is more accurate compared
to the discretized F–P because it is a reduced form
of the ME.

Another approach for numerical integration of the
F–P equation was suggested by Wehner and Wolfer
(see Wehner and Wolfer80). The method allows cal-
culating cluster evolution on the basis of a numerical
path-integral solution of the F–P equation which
provides an exact solution in the limiting case where
the time step of integration approaches zero. For a
finite time step, the method provides an approximate
solution with an accuracy that has not been verified.
Moreover, there was an error in the calculation
presented in Wehner andWolfer80,91 and so the accu-
racy of the method remains unclear. A modification
of this method according to which the evolution of
large clusters is calculated by employing a Langevin
Monte Carlo scheme instead of the path integral was
suggested by Surh et al.82 The accuracy of this method
has not been verified as an error was also made in
obtaining the results presented in Surh et al.82,91

The momentum method for the solution of
the F–P equation used by Ghoniem81 (see also
Clement and Wood83) is quite complicated and may
provide only an approximate solution. So far, none
of the methods suggested for numerical evaluation of
the F–P equation has been developed and verified to
a sufficient degree to allow effective and accurate
calculations of defect cluster evolution during irradi-
ation in the practical range of doses and temperatures.
1.13.5 Early Radiation Damage
Theory Model

The chemical reaction RT was used very early to
model the damage accumulation under irradiation
(Brailsford and Bullough92 and Wiedersich93). The
main assumptions were as follows: (1) the incident
irradiation produces isolated FPs, that is, single SIAs
and vacancies in equal numbers, (2) both SIAs and
vacancies migrate 3D, and (3) the efficiencies of the
SIAs and vacancy absorption by different sinks are
different because of the differences in the strength of
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the corresponding PD-sink elastic interactions. Thus,
the preferential absorption of SIAs by dislocations
(i.e., the dislocation bias) is the only driving force
for microstructural evolution in this model, which is
a variant of the FP3DM. It should be emphasized
that, in the framework of the FP3DM, no distinction
is made between different types of irradiation:
�1MeV electrons, fission neutrons, and heavy-ions.
It was believed that the initial damage is produced in
the form of FPs in all these cases. Now we under-
stand the mechanisms operating under different
conditions much better and make clear distinction
between electron and neutron/heavy-ion irradiations
(see Singh et al.,1,22 Garner et al.,33 Barashev and
Golubov,35 and references therein for some recent
advances in the development of the so-called PBM).
However, the FP3DM is the simplest model for dam-
age production and it correctly describes 1MeVelec-
tron irradiation. It is therefore useful to consider
it first. The more comprehensive PBM includes the
FP3DM as its limiting case.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1.13.5.1 Reaction Kinetics of
Three-Dimensionally Migrating Defects

In the case considered, eqns [10]–[12] for mobile
defects are reduced to the following form

dCv

dt
¼ GNRT þ Gth

v � k2vDvCv � mRDiCiCv

dCi

dt
¼ GNRT � k2i DiCi � mRDiCiCv ½44�

In order to predict the evolution of mobile PDs and
their impact on immobile defects, one needs to know
the sink strength of different defects for vacancies
and SIAs and the rate of their mutual recombination.
The reaction kinetics of 3D migrating defects is con-
sidered to be of the second order because the rate
equations contain terms with defect concentrations to
the second power.40 An important property of such
kinetics is that the leading term in the sink strength of
any individual defect depends on the characteristics
of this defect only. Thus,

k2a ¼
XN
j¼1

k2aj ½45�

where a ¼ v; i and N is the total number of sinks per
unit volume. For example, the total sink strength of
an ensemble of voids of the same radius, R, is equal
to k2a ¼ Nk2aðRÞ. The individual sink strength such
as a void or a dislocation loop may be obtained
from a solution to the PD diffusion equation. In the
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following section, we present examples of such a
treatment based on the so-called lossy-medium
approximation.61

1.13.5.1.1 Sink strength of voids

Consider 3D diffusion of mobile defects near a
spherical cavity of radius R, which is embedded in
a lossy-medium of the sink strength k2:

G � k2DðC � CeqÞ � rJ ¼ 0 ½46�
where Ceq is the thermal-equilibrium concentration
of mobile defects and the defect flux is

J ¼ �D rC þ C

kBT
rU

� �
½47�

Here, D is the diffusion coefficient, U is the interac-
tion energy of the defect with the void, kB is the
Boltzmann constant, and T the absolute temperature.
The boundary conditions for the defect concentra-
tion, C, at the void surface and at infinity are

CðRÞ ¼ Ceq ½48�

C1 ¼ Ceq þ G

k2D
½49�

Equation [49] follows from eqn [46] and the require-
ment that the gradients vanish at large distances.
Here, all other sinks in the system, voids, dislocations,
etc. are considered in the MFA and contribute to
the total sink strength k2. This procedure is self-
consistent.

The interaction energy of a defect with the void in
eqn [47] is small and usually neglected. The solution
of eqn [46] for a void located at the origin of the
coordinate system, r=0, is then

CðrÞ ¼ Ceq þ ðC1 � CeqÞ 1� R

r
exp �k r � Rð Þ½ �

� �
½50�

The total defect flux, I , through the void surface
S ¼ 4pR2 is given by

I ¼ �SJ ðRÞ ¼ k2CðRÞDðC1 � CeqÞ ½51�
where the void sink strength is

k2CðRÞ ¼ 4pRð1þ kRÞ ½52�
The sink strength of all voids in the system is
obtained by integrating over the SDF, f ðRÞ:

k2C ¼
ð
dRk2CðRÞf Rð Þ ¼ 4phRiNC 1þ k

hR2i
hRi

� �
½53�

where NC ¼
Ð
dRf ðRÞ is the void number density,

hRi is the void mean radius and hR2i is the mean
radius squared. Typically, k2 � 1014m�2, that is,
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k�1 � 100 nm, while the void radii are much smaller,
so that one can omit the term proportional to the
radius squared:

k2C ¼ 4phRiNC ½54�
Equation [52] is derived by neglecting the interaction
between the void and mobile defect. There is a differ-
ence between the interaction of SIAs and vacancies
with voids due to differences in the corresponding
dilatation volumes. As a result, the void capture radius
for an SIA is slightly larger than that for a vacancy
(see, e.g., Golubov and Minashin94). However, this
difference is usually negligible compared to that for
an edge dislocation, which is described below.

1.13.5.1.2 Sink strength of dislocations

An equation for the dislocation sink strength can be
derived the same way as for voids. In this case, eqn
[46] is solved in a cylindrical coordinate system and
the interaction between PDs and dislocation is signif-
icant and not omitted. For an elastically isotropic
crystal and PDs in the form of spherical inclusions,
the interaction energy has the form95

Uðr ; yÞ ¼ �A sin y
r

½55�

where

A ¼ mb
3p

1þ n
1� n

DO ½56�

m is the shear modulus, n the Poisson ratio and DO
the dilatation volume of the PD under consideration.
The solution of eqn [35] in this case was obtained
by Ham95 but is not reproduced here because of
its complexity. It has been shown that a reasonably
accurate approximation is obtained by treating the
dislocation as an absorbing cylinder with radius
Rd ¼ Aeg=4kBT , where g ¼ 0:5772 is Euler’s con-
stant.95 The solution is then given by

CðrÞ ¼ G

Dk2
1� K0ðkrÞ

K0ðkRdÞ
 �

½57�

where K0ðxÞ is the modified Bessel function of zero
order. Using eqns [47] and [57], one obtains the total
flux of PDs to a dislocation and the dislocation sink
strength as

I ¼ �2pRdrdDJ ðRdÞ ¼ k2dDðC1 � CeqÞ ½58�

k2d ¼ rdZ
d

Zd ¼ 2p
lnð1=kRdÞ ½59�
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where rd is the dislocation density and Zd the cap-
ture efficiency. The capture efficiencies for vacancies
and SIAs, Zd

v and Zd
i , are different because of the

difference in their dilatation volumes (see eqn [56])

Zd
a ¼

2p
lnð1=kRadÞ

½60�

where a ¼ v; i and

Rad ¼
mb
3p

1þ n
1� n

eg

4kBT

� �
DOa ½61�

The dilatation volume of SIAs is larger than that of
vacancies, hence RiD > RvD and the absorption rate
of dislocations is higher for SIAs: Zd

i > Zd
v . This is

the reason for void swelling, which is shown below in
Section 1.13.5.2.1. A more detailed analysis of the
sink strengths of dislocations and voids for 3D diffus-
ing PDs can be found in a recent paper by Wolfer.96

1.13.5.1.3 Sink strengths of other defects

The sink strengths of other defects can be obtained in
a similar way. For dislocation loops of a toroidal
shape97

k2Lðv;iÞ ¼ 2pRLZ
v;i
L

Z
v;i
L ¼

2p

lnð8RL=r v;icoreÞ
½62�

where RL and r v;icore are the loop radius and the effec-
tive core radii for absorption of vacancies and SIAs,
respectively. Similar to dislocations, the capture effi-
ciency for SIAs is larger than that of vacancies,
Zi
L > Zv

L, for loops.
For a spherical GB of radius RG (see, e.g., Singh

et al.98)

k2GB ¼
1

R2G

3x2ðxcothx� 1Þ
x2 � 3ðxcothx� 1Þ ½63�

where x ¼ kRG. In the limiting case of x
 1, that is,
when the GB is the main sink in the system,

k2GB ¼
15

R2G
½64�

For the surfaces of a thin foil of thickness L (see eqn
[7] in Golubov99)

k2foil ¼
k2

kL=2cothðkL=2Þ � 1
½65�

In the limiting case of kL
 1, that is, when the foil
surfaces are the main sinks,

k2foil ¼
12

L2
½66�
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1.13.5.1.4 Recombination constant
Equation [35] can be used to obtain the rate of
recombination reactions between vacancies and
SIAs. In a coordinate system where the vacancy is
immobile, the SIAs migrate with the diffusion coeffi-
cient Di þ Dv and, hence, the total recombination
rate is

R ¼ 4preff ðDi þ DvÞCinv � mRDiCiCv ½67�
where nv ¼ Cv=O and the fact that Di � Dv at
any temperature is used. In this equation, reff is the
effective capture radius of a vacancy, defining an
effective volume where recombination occurs spon-
taneously (athermally). The recombination constant,
mR, in eqn [67] is, hence, equal to

mR �
4preff
O

½68�
MD calculations show that a region around a
vacancy, where such a spontaneous recombination
takes place, consists of �100 lattice sites.100,101 From
4pr 3eff=3 ¼ 100O, one finds that reff is approximately
two lattice parameters, hence mR � 1021m�2.

1.13.5.1.5 Dissociation rate

Dissociation of vacancies from voids and other
defects is an important process, which significantly
affects their evolution under irradiation and during
aging. Similar to the absorption rate eqn [54], it has
been shown that the dissociation rate is proportional
to the void radius. Such a result can readily be
obtained by using the so-called detailed balance con-
dition. However, as the evaporation takes place from
the void surface, the frequency of emission events is
proportional to the radius squared. In the following
lines, we clarify why the dissociation rate is propor-
tional to the void radius and elucidate how diffusion
operates in this case.

Consider a void of radius R, which emits
ndiss ¼ t�1diss vacancies per second per surface site in
a spherical coordinate system. Vacancies migrate 3D
with the diffusion coefficient Dv ¼ a2=6t, where a is
the vacancy jump distance and t is the mean time
delay before a jump. The diffusion equation for the
vacancy concentration Cv is

r2Cv ¼ 0 ½69�
To calculate the number of vacancies emitted from
the void and reach some distance R1 from the void
surface, we use absorbing boundary conditions at this
distance

CvðR1Þ ¼ 0 ½70�
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An additional boundary condition must specify the
vacancy–void interaction. Assuming that vacancies
are absorbed by the void, which is a realistic scenario,
the vacancy concentration at one jump distance a

from the surface can be written as

CvðRþ aÞ
t

¼ ndiss þ CvðRþ 2aÞ
2t

½71�
The left-hand side of the equation describes the fre-
quency with which vacancies leave the site. The first
term on the right-hand side accounts for the produc-
tion of vacancies due to evaporation from the void.
The last term on the right-hand side accounts for
vacancies coming to this site from sites further way
from the void surface. After representing the latter
term using a Taylor series, in the limit of R� a,
the boundary condition, eqn [71], assumes the follow-
ing form

CvðRÞ ¼ 2tndiss þ arCvðRÞ ½72�
Using this condition and eqns [69] and [70], one finds
the vacancy concentration, CvðrÞ, is equal to

CvðrÞ ¼ 2tndiss
r�1 � ðR1Þ�1
R�1 � ðR1Þ�1 ½73�

It can readily be estimated using the last two equations
that the gradient of concentration in eqn [72] is smal-
ler than the other terms by a factor of a=r0 and does
not contribute to eqn [73]. This means that most
vacancies emitted from the void return to it. As a
result, the equilibrium condition for the concentration
near the void surface is defined by the equality of the
frequency of evaporation and the frequency of jumps
back to the surface and is not affected by the flux of
vacancies away from the surface. The vacancy equilib-
rium concentration at the void surface is readily
obtained from eqn [73] as Ceq

v ðRÞ ¼ CvðRÞ ¼ 2tndiss.
The total number of vacancies passing through a

spherical surface of radius R and area S ¼ 4pR2 per
unit time, that is, the rate of vacancy emission from
the void, is equal to

J em
v ¼ �

SDv

O
rCvðrÞ r¼Rj

¼ DvC
eq
v

O
4pR

1� R=R1
� DvC

eq
v

O
4pR ½74�

There are three points to be made. First, eqn [73]
becomes independent of the distance r from the
surface, when r � R. Thus, vacancies reaching this
distance are effectively independent of their origin
and can be counted as dissociated from the void.
Second, despite the fact that the total vacancy
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emission frequency is proportional to the void sur-
face area, the total vacancy flux far away from the
surface is proportional to the void radius. This is a
well-known result of the reaction–diffusion theory40

considering the void capture efficiency. Third, as can
be seen from eqn [74], significant deviation from the
proportionality to the void radius occurs at distances
of the order of the void radius.

As discussed above, most emitted vacancies return
to the void. The fraction of vacancies which do not
return is equal to the ratio of the frequency defined
by eqn [63] and the total frequency of vacancy emis-
sion � 4pR2ndiss=a2. It is thus equal to a=R. The same
result can be demonstrated considering another,
although unrealistic, scenario in which vacancies are
reflected by the voids.102 We also note that the first
nonvanishing correction to the proportionality of the
vacancy flux to the void radius is positive and pro-
portional to the void radius squared, see eqn [74],
where Rð1� R=R1Þ�1 � Rþ R2=R1. The same
result was obtained previously by Gösele40 when con-
sidering void capture efficiency. Thus, with increasing
volume fraction more and more vacancies become
absorbed at other voids and the proportionality to the
void radius squared would be restored. The first cor-
rection term just shows the right tendency.

1.13.5.1.6 Void growth rate

The concentration of vacancies in equilibrium with a
void of radius R, Ceq

v ðRÞ, which enters eqn [74], can be
obtained by considering the free energy of a crystal
with a void and a solution of vacancies. Let x be the
number of vacancies taken from a solution of vacan-
cies to make a spherical void of a radius
R ¼ ð3xO=4pÞ1=3. The associated free energy change
is given by

DF ¼ � 4pR3

3O

� �
mv þ 4pg~R2 ½75�

where mv ¼ kBT ln Cv=C
th
v

� �
is the chemical poten-

tial of a vacancy (Cth
v is the equilibrium concentration

in a perfect crystal) and g~is the void surface energy.
By differentiating this equation with respect to radius
and equating the result to zero, one can find the
equilibrium vacancy concentration, which is given by

Ceq
v ðRÞ ¼ Cth

v exp
2Og~
RkBT

� �
½76�

Absorption and emission of PDs change a void vol-
ume on the basis of the flux of PDs dDV=dt ¼
4pR2ðdR=dtÞ ¼ ðJv � Ji � J em

v Þ. With the aid of
eqns [51], [52], [74] and keeping the leading term
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proportional to R only and [76], the growth rate of a
void due to absorption of vacancies and SIAs and
vacancy emission can be written as

dR

dt
¼ 1

R
DvCv � DiCi � DvC

th
v exp

2Og~
RkBT

� � �
½77�

Neglecting the entropy factor for simplicity, one
can find that Cth

v ¼ expð�Ef
v=kBT Þ, where Ef

v is the
vacancy formation energy. The last term in the
square brackets on the right-hand side of eqn [66]
can be then represented in the following form

DvC
th
v exp

2Og~
RkBT

� �
� Dv exp � Eb

RkBT

� �
½78�

where

Eb ¼ Ef
v �

2Og~
R

½79�
is a well-known equation for the binding energy of a
vacancy with a void that is valid for large enough
radius. For voids of small sizes, the value Eb has to be
calculated by using ab initio or MD methods.

Equation [77] is used in calculations of void
swelling. Note that the vacancy and SIA fluxes,
the first and second terms, enter this equation sym-
metrically and this is because of the neglect of the
difference in the interactions of SIAs and vacancies
with voids. Also, when the sum of the second and
third terms in the right-hand side of this equation is
larger than the first term, the voids shrink. Such a
shrinking takes place during annealing of preirra-
diated samples or, in some cases, during irradiation,
if the irradiation conditions are changed. However, in
the majority of cases, voids grow under irradiation
because dislocations interact more strongly with SIAs
than vacancies.
1.13.5.1.7 Dislocation loop growth rate

The concentration of vacancies, ðCeq
v Þvl;il, in equilib-

rium with the dislocation loop of radius R of vacancy
(subscript ‘vl’) and SIA (subscript ‘il’) type can be
obtained in the same way as in the previous subsec-
tion (e.g., Bullough et al.29)

ðCeq
v Þvl;il ¼ Cth

v exp �
ðgsf þ EelÞb2

kBT

� �
½80�

where gsf ; Eel; and b are the stacking-fault energy,
the interaction energy of PDs with dislocation and
the dislocation Burgers vector, respectively. The ‘þ’
and ‘�’ in the exponent correspond to the cases
of vacancy and SIA loops, respectively. In the case
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when both PDs are considered as spherical dilation
centers, the interaction energy Eel is given by

Eel ¼ mb2

4pð1� nÞðRþ bÞln
Rþ b

b

� �
½81�

where m and n are the shear modulus and Poisson
ratio, respectively. Hence, the growth rates of vacancy
and SIA loops are

dRvl
dt
¼ 1

b


Zv
LDvCv � Zi

LDiCi

�Zv
LDvC

th
v exp

ðgsf þ EelÞb2
kBT

� ��
dRil
dt
¼ 1

b


Zi
LDiCi � Zv

LDvCv

þZv
LDvC

th
v exp �

ðgsf þ EelÞb2
kBT

� ��
½82�

1.13.5.1.8 The rates P(x) and Q(x)

Equations [54] and [62] for the sink strengths of
voids and dislocation loops for mobile PDs permit
the calculation of rates P(x) and Q(x), which deter-
mine the cluster evolution described by the ME
(see Section 1.13.4.3.2). For example, the total rate
of absorption of vacancies by voids is equal to k2cDvCv

(see eqns [10] and [45]). The same quantity is given

by
P1
x¼2

PcðxÞfcðxÞ. By equating these two rates one

obtains

DvCvk
2
c ¼

X1
x¼2

PcðxÞfcðxÞ ½83�

Taking into account eqns [14] and [54], the following
expression for the rate PcðxÞ can readily be obtained

PcðxÞ ¼ wcx
1=3DvCv ½84�

where

wc ¼ 48p2

O2

� �1=3
½85�

The rate Qc(x), which consists of two terms, the SIA
absorption and vacancy emission rates, can be
obtained the same way

QcðxÞ ¼ wcx
1=3 DiCi þ Dvexp

�Eb
vðxÞ

kBT

� � �
½86�

For dislocation loops of SIA type, the rates Pil(x) and
Qil(x) take the following form

PilðxÞ ¼ wlx
1=2 Zi

LDiCi þ Zv
LDvexp

�Eb
ilðxÞ

kBT

� � �
QilðxÞ ¼ wlx

1=2Zv
LDvCv ½87�
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where

wl ¼ 4p
Ob

� �1=2

Eb
ilðxÞ ¼ Ef

v þ ðgsf þ EelðxÞÞb2 ½88�

For vacancy loops, the rates Pvl(x) and Qvl(x) are
given by

PvlðxÞ ¼ wlx
1=2Zi

LDvCv

QvlðxÞ ¼ wlx
1=2 Zi

LDiCi þZv
LDv exp

�Eb
vlðxÞ

kBT

� � �
½89�

where

Eb
ilðxÞ ¼ Ef

v � gsf þ EelðRÞ½ �b2 ½90�

The equations given above have been obtained by
neglecting mutual recombination between vacancies
and SIAs. Accounting for recombination makes the
diffusion equations for the concentrations of PDs
nonlinear, an approximate solution for which has
been obtained using a linearization procedure.103

The correction is, however, insignificant for condi-
tions of practical importance.
1.13.5.2 Damage Accumulation

Damage accumulation in pure metals during irradi-
ation primarily takes place in the formation and
evolution of vacancy and SIA-type defects. At tem-
peratures higher than recovery stage III, which is
the main interest for practical purposes, vacancy
clusters normally take the form of voids that result
in the change of a volume, that is, swelling. Owing
to limitations of space, in the following section we
focus only on a description of void evolution.
1.13.5.2.1 Void swelling

The solution obtained from eqns [44] depends on
the irradiation temperature. Temperatures below
recovery stage II will not be considered here. At
temperatures smaller than that corresponding to
the recovery stage III, when vacancies are immobile
and the interstitials are mobile, the concentration
of vacancies will build up. At some irradiation
dose, the vacancy concentration will become high
enough that mutual recombination of PDs may
become the dominant mechanism of the defect loss,
thus controlling defect accumulation. In this case,
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the dose dependence of PD concentrations can be
calculated analytically104

DiCiðtÞ ¼ GNRT

2mR

� �1=2 ðt
0

k2ðtÞdt
2
4

3
5�1=2

DvCvðtÞ ¼ GNRT

2mR

� �1=2 ðt
0

k2ðtÞ
ðt
0

k2ðt1Þdt1

2
4

3
5�1=2dt ½91�

Because the sink strength, k2ðtÞ, changes very slowly
(the vacancy-type defects shrink and SIA-type defects
grow because of the SIA absorption), it follows from
eqn [91] that

DiCiðtÞ / ðGNRTtÞ�1=2

DvCvðtÞ / ðGNRTtÞ1=2 ½92�
At temperatures higher than that corresponding to
recovery stage III, both vacancies and SIAs aremobile.
Hence, after a certain time of irradiation, called the
‘transient period’, their concentrations reach a steady
state. A comprehensive analysis of the time (irradia-
tion dose) dependence of PD concentrations for
different sink strength can be found in Sizmann.9

The dose dependence of PD concentrations and
void swelling obtained by the numerical integration
of ME73 is presented in Figure 4. As can be seen,
the vacancy supersaturation, ðDvCv � DiCiÞ=DvC

eq
v ,

becomes positive when the PD concentrations reach
steady state and this gives rise to void growth. Also,
note that in the transient regime only divacancies are
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formed. In the following discussion we concentrate
on the irradiation doses beyond the transient period,
which are of more practical interest.

If only voids and edge dislocations are present in
the system, and mutual recombination and thermal
emission of vacancies from voids and dislocations
are both negligible, the balance equations for the
concentrations of vacancies and SIAs, Cv and Ci,
are given by

G � k2cDvCv � Zd
vrdDvCv ¼ 0

G � k2cDiCi � Zd
i rdDiCi ¼ 0 ½93�

The defect concentrations, Cv and Ci, are then

Cv ¼ G

Dvðk2c þ Zd
vrdÞ

Ci ¼ G

Diðk2c þ Zd
vrdÞ

½94�

Hence, taking into account that Zd
v � Zd

i ,

DvCv � DiCi ¼ G

k2c þ Zd
vrd

½95�

The swelling rate is equal to the net (excess) flux of
vacancies to voids:

dS

df
¼ k2c DvCv�DiCi½ �

¼ Bd
k2cZ

d
vrd

ðk2c þZd
vrdÞðk2c þZd

i rdÞ
� Bd

k2cZ
d
vrd

ðk2c þZd
vrdÞ2 ½96�

where S ¼ ð4p=3ÞNchrci3and f ¼ Gt are the total
volume of voids and the irradiation dose in dpa,
respectively; and Bd is the dislocation bias factor

Bd ¼ Zd
i � Zd

v

Zd
v

½97�

The maximum value of the ratio in the right-hand
side of eqn [96] is 1/4, when the sink strengths of
voids and dislocation are equal to each other,
k2c ¼ Zd

vrd. Thus the maximum swelling rate is

dS

df

� �
max

¼ Bd

4
½98�

It is easy to show that the swelling rate described by
eqn [96] depends only weakly on the variation of
the sink strength of voids and dislocations: a differ-
ence of an order of magnitude results in a decrease of
the swelling rate by a factor of 3 only.

To obtain the steady-state swelling rates of �1%
per NRT dpa, which are observed in high-swelling
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fcc materials, one would need the bias factor to be
about several percent. Data on swelling in electron-
irradiated metals resulted in Bd � 2� 4% for the
fcc copper24,105,106 (data reported by Glowinski107

were used in Konobeev and Golubov106), �2% for
pure Fe–Cr–Ni alloys,108 and orders of magnitude
lower values for bcc metals (e.g., swelling data for
molybdenum109). Because the electron irradiation
produces FPs, it is reasonable to accept these values
as estimates of the dislocation bias.

Note that the first attempt to determine Bd by
solving the diffusion equations with a drift term deter-
mined by the elasticity theory for PD–dislocation
interaction as described in Section 1.13.5 showed
that the bias is significantly larger than the empirical
estimate above. Several works have been devoted to
such calculations,96,110–113 which predicted much
higher Bd values, for example, �15% for the bcc iron
and �30% for the fcc copper. With these bias factors,
the maximum swelling rates based on Bd=4 should be
equal to about 4% and 8% per dpa but such values
have never been observed. An attempt to resolve this
discrepancy can be found in a recent publication.114

Surprisingly, the steady-state swelling rate of �1%
per NRT dpa has been found in neutron- (and ion-)
irradiated materials, for example, in various stainless
steels, even though the primary damage in these cases
is known to be very different and the void swelling
should be described in the framework of the PBM,
which gives a rather different description of the process.
An explanation of this is proposed in Section 1.13.6.

1.13.5.2.2 Effect of recombination on swelling

Mutual annihilation of PDs happens either by direct
interaction between single vacancies and SIAs in the
matrix or within a certain type of neutral sink which
we call ‘saturable.’ The fluxes of vacancies and SIAs
to them are equal. An example of such sinks is
vacancy loops, which were considered in the frame-
work of the BEK model29 and PBM,22 that is, in the
case where the vacancy clusters are generated in
cascades. The BEK model is not discussed further
in the present work because it does not correspond to
any realistic situation in solids under irradiation;
vacancy clustering in cascades is always accompanied
with the SIA clustering, which is accounted for in the
framework of the PBM but not in the BEK model.

The balance equations in the case considered are
as follows

G� mRDiCiCv � k2NDiCi � k2cDvCv �ZdvrdDvCv ¼ 0

G� mRDiCiCv � k2NDiCi � k2cDiCi �Zdi rdDiCi ¼ 0 ½99�
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where k2N is the strength of neutral sinks. Note
that absorption rate of both vacancies and SIAs in
eqn [99] is described by the same quantity, k2NDiCi,
which reflects neutrality of this sink with respect to
vacancies and SIAs.115,116

The defect concentrations and swelling rate are

DvCv � DiCi ¼ G

k2c þ Zd
vrd

1

1þ fR

1

1þ fN

dS

df
¼ Bd

k2cZ
d
vrd

k2c þ Zd
vrd

� �2 1

1þ fR

1

1þ fN
½100�

where

fR ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4mRG

ðk2c þ Zd
vrd þ k2NÞ2Dv

s
� 1

" #

fN ¼ k2N
k2c þ Zd

vrd
½101�

In the absence of an effect on the sink structure,
mutual recombination reactions are important at low
temperature, when the vacancy diffusion is slow, and
for high defect production rates, when the vacancy
concentration is sufficiently high to provide higher
sink strength for SIAs than that of existing extended
defects. This can be expressed mathematically by an
inequality fR 	 1 or more explicitly as a temperature
boundary kBT < Em

v =ln½2Dv0ðk2c þZd
vrdþ k2NÞ2=mRG�

where Dv0 is the preexponential factor in the vacancy
diffusion coefficient and Em

v is the effective activation
energy for the vacancy migration. In practice, this
situation is unlikely to occur because the radiation-
induced sink strength rapidly increases at low tem-
peratures. In this case recombination at sinks is of
greater importance.

One of the important aspects that recombination
reactions introduce to microstructural evolution is
the appearance of a temperature dependence; at low
temperatures, an increase of the swelling rate with
increasing temperature is predicted, which is also
observed experimentally in the fcc-type materials.
The question of whether it was possible to explain
the experimental reduction of swelling rate with
decreasing temperature by recombination was
addressed.29 It was found that the observed tempera-
ture effect on swelling rate was much stronger than
predicted by recombination alone.

The impact of neutral sinks on swelling rate is
significant when they represent the dominant sink
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in the system: k2N � k2c þ Zd
vrd. The swelling rate in

the case is given by

dS

df
¼ Bd

k2cZ
d
vrd

ðk2c þ Zd
vrdÞðk2c þ Zd

vrd þ k2NÞ

� Bd
k2cZ

d
vrd

ðk2c þ Zd
vrdÞk2N ½102�

Such a situation may occur, for example, at low
enough temperature, when the thermal stability of
vacancy loops and SFTs becomes high enough, lead-
ing to their accumulation up to extremely high con-
centrations. Another possibility is when a high density
(about 1024m�3) of second phase particles exists, as
in the oxide dispersion strengthened (ODS) steels.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.13.5.2.3 Effect of immobilization of

vacancies by impurities

The diffusion coefficient of vacancies is an important
parameter for microstructural evolution, for it deter-
mines the rate of mutual recombination of PDs.
Migrating vacancies can also meet solute or impurity
atoms and form immobile complexes, which can then
dissociate. In quasi-equilibrium, when the rates of
complex formation and dissociation events are equal
to each other:

znþC0vC
0
s ¼ n�Cvs ½103�

Here, Cvs and Cs are the concentrations of com-
plexes and solute atoms, respectively, C0s and C0v
are the concentrations of free (unpaired) solute
atoms and vacancies, respectively, nþ and n� are the
frequencies of complex formation and dissociation
events, respectively, and z is a geometrical factor,
which is of the order of the coordination number
for complexes with a short-range (first-nearest neigh-
bor) interaction and unity for long-range interac-
tions. The binding energy of the complex, Eb

vs, is
defined from n�=nþ ¼ expðbEb

vsÞ. The solute con-
centration is generally much higher than that of
vacancies, hence

C0s � Cs

C0v ¼ Cv � Cvs ½104�
Substituting these into eqn [103], one obtains

Cvs ¼ aCvCs expðbEb
vsÞ

1þ aCs expðbEb
vsÞ

½105�

The total vacancy concentration is, therefore,

Cv ¼ C0v þ Cvs ¼ C0v 1þ aCsexp bEb
vs

� �� � ½106�
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The effective diffusion coefficient of vacancies may
be defined as

Deff
v ¼

Dv

1þ aCs expðbEb
vsÞ

� Dv0

aCs
exp �bðEm

v þ Eb
vsÞ

� � ½107�

While the vacancy concentration is approximately
equal to

Cv � C0vaCsexp bEb
vs

� � ½108�
The vacancy flux is, thus, equal to that in the absence
of impurities,

Deff
v Cv ¼ DvC

0
v ½109�

which is supported by the measurements of the
self-diffusion energy, which is almost independent
of the presence of impurities. The main conclusion
is that the total vacancy flux does not depend on the
presence of impurity atoms. However, impurity
trapping may affect the recombination rate and
hence Cv may be increased.
1.13.5.3 Inherent Problems of the Frenkel
Pair, 3-D Diffusion Model

Many observations contradict the FP3DM. These
include the void lattice formation11–14 and higher
swelling rates near GBs than in the grain interior in
the following cases: high-purity copper and alumi-
num irradiated with fission neutrons or 600MeV
protons (see original references in reviews117,118);
aluminum irradiated with 225MeV electrons119 and
neutron-irradiated nickel120 and stainless steel.121

Furthermore, the swelling rate at very low dislocation
density in copper is higher,122–124 and the depen-
dence of the swelling rate on the densities of voids
and dislocations is different,125 than predicted by
the FP3DM. It gradually became clear that some-
thing important was missing in the theory. There was
evidence that this missing part could not be the
effect of solute and impurity atoms or the crystal
structure. Indeed, austenitic steels of significantly
different compositions and swelling incubation peri-
ods exhibit similar steady-state swelling rates of�1%
per NRT dpa.32,33 And, although generally the bcc
materials show remarkable resistance to swelling,31,33

the alloy V–5% Fe showed the highest swelling rate
of �2% per dpa: 90% at 30 dpa.34

As outlined in Section 1.13.3.1, the primary dam-
age production under neutron and ion irradiations is
more complicated; in addition to PDs, both vacancy
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and SIA clusters are produced in the displacement
cascades. This is the reason the FP3DM predictions
fail to explain microstructure evolution in solids
under cascade damage conditions. In fact, it has
been shown that it is the clustering of SIAs rather
than vacancies that dominates the damage accumu-
lation behavior under such conditions. The PBM
proposed in the early 1990s and developed during
the next 10 years (see Section 1.13.1) essentially
resolved many of the issues; the phenomena men-
tioned have been properly understood and described.
This model is described in the next section.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1.13.6 Production Bias Model

The continuous production of SIA clusters in dis-
placement cascades is a key process, which makes
microstructure evolution under cascade conditions
qualitatively different from that during FP producing
1MeVelectron irradiation. In this case, eqns [10]–[12]
should be used for the concentration of mobile
defects. The equations for isolated PDs have been
considered in detail in the previous section. In order
to analyze damage accumulation under cascade
irradiation, one needs to define the sink strengths
of various defects for the SIA mobile clusters in
eqn [12]. We give examples of such calculations for
the case when cluster migrates 1D rather than 3D in
the following section.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.13.6.1 Reaction Kinetics of
One-Dimensionally Migrating Defects

The 1D migration of the SIA clusters along their
Burgers vector direction results in features that dis-
tinguish their reaction kinetics from 3D diffusing
defects. These were first noticed in and theoreti-
cally analyzed for annealing experiments (Lomer
and Cottrell,126 Frank et al.,127 Gösele and Frank,128

Gösele and Seeger,129 and Gösele40) and, then, under
irradiation (Trinkaus et al.19,20 and Borodin130). In
this section, we consider the reaction kinetics of
1D migrating clusters with immobile sinks and
follow the procedure employed in Barashev et al.25

Detailed information about the diffusion process
of a 1D migrating particle is given by the function
uðt ; x; xÞ, which is known as Furth’s formula for first
passages and has the following probabilistic signifi-
cance.131 In a diffusion process starting at the point
x > 0, the probability that the particle reaches the
origin before reaching the point x > x in the time
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interval t1 < t < t2 is given by the integral over this
interval. For particles undergoing random walk, this
function is found to be equal to

uðt ; x; xÞ ¼ 2p
X1
i¼1

i exp
�i2p2D1Dt

x2

 �
sin

ipx
x

� �
½110�

where D1D is the diffusion coefficient. Using this
function, one can write the probability for a particle
to survive until time t , that is, not to be absorbed by
the barriers placed at the origin and at the point x, as

�ðt ;x;xÞ ¼
ð1
t

dt 0 uðt 0;x;xÞþ uðt 0;x� x;xÞ� �

¼ 4

p

X1
i¼1

exp �ð2i� 1Þ2p2D1Dt=x
2

� �
2i� 1

sin
pxð2i� 1Þ

x

� �
½111�

The expected duration of the particle motion until its
absorption is given by:

truinðx; xÞ ¼
ð1
0

�ðt ; x; xÞdt ¼ xðx � xÞ
2D1D

½112�

Equation [112] is the classical result of the ‘gambler’s
ruin’ problem considered by Feller.131

1.13.6.1.1 Lifetime of a cluster

In order to obtain the lifetime of 1D migrating
clusters, one should average truinðx; xÞ over all possi-
ble distances between sinks and initial positions of
the clusters, that is, over x and x. For this purpose, the
corresponding probability density distribution,
’ðx; xÞ, is required.

Let us assume that all sinks are distributed ran-
domly throughout the volume and introduce the 1D
density of traps (sinks), L, that is, the number of traps
per unit length. In this case, ’ðx; xÞ can be repre-
sented as a product of the probability density for a
cluster to find itself between two sinks separated
by a distance x, L2x expð�LxÞ, and the probability
density to find a cluster at a distance x from one of
these sinks, 1=x :

’ðx;xÞ ¼ L2expð�LxÞ;0< x <1;0< x< x ½113�
With this distribution, the cluster lifetime, t1D, and
the mean-free path to sinks, l, are:

t1D ¼ htruinðx; xÞix;x ¼ 1=2D1DL2 ½114�

l ¼ hxix;x ¼ 1=L ½115�
where the brackets denote averaging: hix;x ¼Ð1
0

dx
Ðx
0

dx’ðx; xÞ
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1.13.6.1.2 Reaction rate
It follows from eqn [114] that the reaction rate
between 1D migrating clusters and immobile sinks
(e.g., Borodin130) is given by:

R1D ¼ 2L2D1DC ¼ 2

l2
D1DC ½116�

This equation defines the total reaction rate as a
function of L, determined by the concentration and
geometry of sinks. If there are different sinks in the
system, L is a sum of corresponding contributions Lj

from traps of type j. In a crystal containing disloca-
tions and voids only,

L ¼ Ld þ Lc ½117�
where subscripts ‘d’ and ‘c’ stand for dislocations and
voids, respectively. These partial trap densities are
found below.

Consider voids of a particular radius ri randomly
distributed over the volume. Without loss of general-
ity, the capture radius of a void for a cluster is
assumed here to be equal to its geometrical radius,
that is, rci ¼ ri . A void of radius ri is available to react
with mobile clusters that lie in a cylinder of this
radius around the cluster path. Hence, the partial
1D density of voids of any particular radius, Lci ,
and the total 1D void density, Lc, are given by

Lci ¼ pr 2ci f ðriÞ ½118�

Lc ¼
X
i

Lci ¼ pr 2cNc ½119�

where f ðriÞ is the SDF of voids (
P
i

f ðriÞ ¼ Nc is the

total void number density) and r 2c is the mean square

of the void capture radius. For dislocations

Ld ¼ prdr�d ½120�
where r�d is the dislocation density defined as the

mean number of dislocation lines intersecting a unit
area (surface density) and rd is the corresponding
capture radius. This can be shown in the following
way. The mean number of dislocation lines intersect-
ing the cylinder of unit length and radius rd around
the cluster path equals the area of the cylinder sur-
face, 2prd, times the dislocation density divided
by 2. (The factor 2 arises because each dislocation
intersects the cylinder twice.) It should be noted
that the dislocation sink strength for 3D diffusing
defects is usually expressed through the dislocation
density, rd, defined as the total length of dislocation
lines per unit volume of crystal (volume density).
The relationship between r�d and rd depends on the

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comprehensive Nuclear Mater
distribution of the dislocation line directions. For a
completely random arrangement, the volume density
is twice the surface density, rd � 2r�d (see, e.g.,

Nabarro132). In this case, eqn [120] is the same as
found by Trinkaus et al.19,20

Substituting eqns [117]–[120] into eqn [116], the
total reaction rate of the clusters in a crystal contain-
ing random distribution of voids and dislocations is
found to be130:

R1D ¼ 2
prdrd
2
þ pr 2cNc

	 
2
D1DC ½121�

For the case, in which immobile vacancy and SIA
clusters are also taken into account, the sink strength
for 1D diffusing SIA clusters, k2g, is equal to

k2g ¼ 2
prdrd
2
þ pr 2cNc þ svclNvcl þ siclNicl

	 
2
½122�

where svcl and sicl are the interaction cross-sections
and Nvcl and Nicl the number densities of the sessile
vacancy and SIA clusters, respectively. svcl and sicl
are proportional to the product of the loop circum-
ference and the corresponding capture radius similar
to rd for dislocations.
1.13.6.1.3 Partial reaction rates

A detailed description of the microstructure evolu-
tion requires the partial reaction rates, Rj, of the
clusters with each particular sink, for example, dis-
locations or voids of various sizes.22 According to the
definition of the parametersLj andL, the ratioLj =L
is the probability for a trap to be of type j. Hence, the
partial reaction rates are

Rj ¼ Lj

L

� �
R ½123�

A similar relation between total and partial reaction
rates was used in Gösele and Frank.128 Using eqn
[116], one can write the partial reaction rate of clus-
ters with sinks of type j

Rj ¼ 2LjLD1DC ¼ 2

llj
D1DC ½124�

where lj ¼ 1=Lj is the mean distance between a
cluster and a sink of type j in 1D, cf. eqn [116].
Thus, the partial reaction rate of a specific type of
sink depends on the density of that sink and also
on the density of all other sinks. This correlation
between sinks is characteristic of pure 1D diffusion–
reaction kinetics in contrast to 3D diffusion where
the leading term of the sink strength of any defect is
not correlated with others (see eqn [54]).
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1.13.6.1.4 Reaction rate for SIAs changing
their Burgers vector

It has been suggested that deviations of the SIA
cluster diffusion from pure 1D mode may signifi-
cantly alter their interaction rate with stable sinks.23

These deviations could have different reasons, such
as thermally activated changes of the Burgers vector
of glissile SIA clusters, as observed in MD simulation
studies for clusters of two and three SIAs. The reac-
tion rate in the case has been calculated previ-
ously25,27; here we present the main result only.

If tch is the mean time delay before Burgers vector
change and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D1Dtch
p

is the corresponding MFP,
then the reaction rate can be approximated by the
following function25:

R � l2

2l2
1þ 1þ 8l2

l2

� �1=2
" #

C

tch
½125�

which gives the correct value in the limiting case
of pure 1D diffusion, when tch !1, and a correct
description of increasing reaction rate with decreasing
tch. The analysis is valid for values of l larger than the
mean void and dislocation capture radii, and overesti-
mates reaction rates in the limiting case of 3D diffu-
sion, see paragraph 6 in Barashev et al.25 for details.
Similar functional form of the reaction rate is obtained
byemploying an embedding procedure,27 which gives a
correct description over the entire range of l in the case
when voids are the dominant sinks in the system.

1.13.6.1.5 The rate P(x) for 1D diffusing

self-interstitial atom clusters

In the case where 1D migrating SIA clusters are
generated during irradiation in addition to PDs,
the ME has to account for their interaction with
the immobile defects. In the simplest case where the
mean-size approximation is used for the clusters,

G
g
iclðxÞ ¼ Ggdðx � xgÞ, the ME for the defects such

as voids or vacancy and SIA loops takes a form22

@f sðx; tÞ=@t ¼ GsðxÞ þ J ðx � 1; tÞ
� Jðx; tÞ � P1DðxÞf sðxÞ
� P1Dðx  xgÞf sðx  xgÞ; x 	 2 ½126�

where P1DðxÞ is the rate of glissile loop absorption
by the defects. The � and  in eqn [126] are used
to distinguish between vacancy-type defects (voids
and vacancy loops/SFT) and SIA type because
capture of SIA glissile clusters leads to a decrease
in the size in the former case and an increase in
the latter one.
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The rate P1DðxÞ depends on the type of immobile
defects. In the case of voids, their interaction with the
SIA clusters is weak and therefore the cross-sections
may be approximated by the corresponding geomet-
rical factor equal to pR2vNv. The rate P1DðxÞ in this
case is given by (see eqn [11c] in Singh et al.22)

P1DðxÞ ¼ 2
3
ffiffiffi
p
p
4

� �2=3LDgCg

O1=3
x2=3 ½127�

where L ¼
ffiffiffiffiffiffiffiffiffi
k2g=2

q
. Note that the factor 2 in eqn

[127] was missing in Singh et al.22

In the case of dislocation loops, the situation is
more complicated as the cross-section is defined by
long-range elastic interaction. A fully quantitative
evaluation is rather difficult because of the compli-
cated spatial dependence of elastic interactions, in
particular, for elastically anisotropic media. For
loops of small size, the effective trapping radii turn
out to be large compared with the geometrical radii
of the loops and hence the ‘infinitesimal loop approx-
imation’ may be applied. It is shown (see Trinkaus
et al.20) that in this case the cross-section is propor-
tional to ðxxgÞ1=3 thus the rate P1DðxÞ is equal to

P1DðxÞ ¼ 2:25p�

O1=3

xgTm

T

� �2=3
LDgCgx

2=3 ½128�

where T and Tm are temperature and melting tem-
perature, the multiplier � is a correction factor which
is introduced because eqn [4] in Trinkaus et al.20 was
obtained using some approximations of the elastically
isotropic effective medium and, consequently, it can
be considered as a qualitative estimate of the cross-
section rather than a quantitative description. The
factor � is of order unity and was introduced as a
fitting parameter. Since sessile SIA and vacancy clus-
ters have different structures (loops in the case of the
SIA clusters and frequently SFTs in the case of
vacancy clusters), the multiplier � and, consequently,
the appropriate cross-sections may be slightly differ-
ent. Also note that mO ¼ kBTm has been used in
Trinkaus et al.20 as an estimate on a homologous basis.

In the case of large size dislocation loops, the
cross-section of their interaction with the SIA glissile
clusters can be calculated in a way similar to that of
edge dislocations. Namely, it is proportional to the
product of the length of dislocation line, that is, 2pRl,
and the capture radius, bl. The rate P1DðxÞ in that
case is given by

P1DðxÞ ¼ 4

ffiffiffiffiffiffi
p
Ob

r
b1LDgCgx

1=2 ½129�
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Note that in the more general case where differ-
ent sizes of the SIA glissile clusters are taken
into account, the last term on the right side of
eqn [126] has to be replaced with the sumPy¼xmax

g

y¼xmin
g

P1Dðx  yÞf ðx  yÞ.

1.13.6.1.6 Swelling rate

By omitting the recombination term, eqns [10]–[12]
for mobile defects can be rewritten as

dCv
dt
¼GvþGvc�DvCvðk2c þZdvrdþZiclv k2iclþZvclv k2vclÞ

dCi
dt
¼Gi�DiCiðk2c þZvcli rdþZicli k2iclþZvcli k2vclÞ

dC
g
icl

dt
¼G

g
i
�2DgCg

prdrd
2
þpr2c NcþsvcNvclþsicNicl

� �2
½130�

It has been shown that, under conditions in which
swelling is observed, the vacancy and SIA clusters
produced by cascades reach steady-state size distri-
butions at relatively small doses.22 This is because
vacancy clusters have far lower thermal stability than
voids. The growth of sessile SIA clusters is restricted
on account of the high vacancy supersaturation,
which builds up due to rapid 1D diffusion of mobile
SIA clusters to sinks. Consequently, at relatively low
doses, the SDF of the sessile SIA clusters achieves
steady state. After reaching steady state, both types of
sessile clusters start to serve as recombination centers
for PDs and glissile SIA clusters. Analytical expres-
sions for the steady-state SDFs of vacancy and SIA
clusters can be found (see eqns [23] and [24] in Singh
et al.22) and the corresponding sink strengths of the
clusters at the steady state are given by (eqn [25] in
the same reference)

k2vcl ¼
EsvGv

Dvexp �Evcl=kBTð Þ k2c þZdvrd
� �� Egi Gv

k2c þZdvrd
� �

1� 1

xs
vcl

 !
½131�

k2icl ¼
Esi
Egi

k2c þ Zd
i rd

� �
1� 1

xsicl

 !
½132�

where Evcl is an effective binding energy of vacancies
with the vacancy clusters and xsvcl;icl are the mean size
of the vacancy and SIA glissile clusters (see eqn [8]).

It should be noted that the SDF of sessile intersti-
tial clusters, the sink strength of which is described
by eqn [132], is limited by the maximum size of
the clusters produced in displacement cascades (see
Figure 2 in Singh et al.22). This is because the clusters
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produced are reduced in size due to the high vacancy
supersaturation. Fluctuations in the defect arrival to
the clusters produce a tail in the SDF extending
beyond the maximum size formed in cascades. The
tail is characterized by very small concentrations and
cannot describe the observed nucleation and growth
of SIA clusters and the consequent formation of the
dislocation network (see, e.g., Garner32 and Garner
et al.33). The most probable reason for this failure is
that the cluster–cluster interaction leading to their
coalescence is neglected in the current theoretical
framework.

Sessile interstitial clusters are produced in cas-
cades at rates comparable to those of PDs. The evo-
lution of concentrations of mobile species (PDs and
glissile clusters) in this case may be described by
nonstationary equations because of the very fast evo-
lution of the sessile cluster population. High vacancy
supersaturation will drive the evolution of the sessile
SIA clusters toward quasisaturation state, beyond
which the steady-state equations for the mobile spe-
cies become valid. Similar steady state for vacancy
clusters will be achieved because of the thermal
instability of the clusters.22

Gv ¼ DvCvðk2c þ Zd
vrdÞ þ DvCvZ

icl
v k2icl

þ DiCiZ
vcl
v k2vcl þ DgCgLxgsiclNicl ½133�

Gi ¼ DiCiðk2c þ Zd
i rdÞ þ DvCvZ

icl
v k2icl

þ DiCiZ
vcl
v k2vcl � 2DgCgLxgsiclNicl ½134�

G
g
i ¼ 2DgCg

prdrd
2
þ pr2cNc þ svcNvcl þ sicNicl

� �2
½135�

In the framework of PBM, the balance equations for
PDs depend on the concentration of glissile clusters
and, thus, are very different from those in the
FP3DM.

The vacancy supersaturation is obtained from the
difference between DvCv and DiCi as given by eqns
[133] and [134]

DvCv �DiCi

¼ Bd
Zd
vrd

k2c þ Zd
i rd

DvCv

þ egi G
NRTð1� erÞ
k2c þ Zd

vrd
1� svclNvcl þ siclNicl

Lg

� �
½136�

where Lg ¼
ffiffiffiffiffiffiffiffiffi
k2g=2

q
¼ prdrd=2þ pr 2cNc þ svclNvclþ

siclNicl. The first and the second terms on the
right-hand side of eqn [136] correspond to the actions
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of the dislocation bias and the production bias,
respectively. As can be seen, the first term depends
on the vacancy concentration, and hence on the total
sink strength of all defects including PD clusters. The
second term also depends on the sink strength of all
defects but differently, and describes the distribution
of excess of vacancies between voids and dislocations,
and their recombination at PD clusters.

In the PBM, the swelling rate is given by

dS

dt
¼ k2cðDvCv � DiCiÞ � 2DgCgxgLgpr 2cNc ½137�

and, with the aid of eqn [136], can be represented as
follows

dS

df
¼ ð1� erÞ Bd

k2cZ
d
vrd

ðk2c þZdvrÞðk2c þZdvrdþZiclv k2
icl
þZvclv k2

vcl
Þ

8<
:

þeg
i

k2c

k2c þZdvrd
1� svclNvclþ siclNicl

Lg

 !
� pr2cNc

Lg

" #9=
;
½138�

where f ¼ GNRTt is the NRT irradiation dose. The
first term in the brackets on the right-hand side
of eqn [138] corresponds to the influence of the
dislocation bias and the second one to the production
bias. The factor ð1� erÞ describes intracascade
recombination of defects, which is a function of the
recoil energy and may reduce the rate of defect
production by up to an order of magnitude that can
be compared to the NRT value: ð1� erÞ ! 0:1 at
high PKA energy (see Section 1.13.3). As indicated
by this equation, the swelling rate is a complicated
function of dislocation density, dislocation bias factor,
and the densities and sizes of voids and PD clusters.
It also demonstrates the dependence of the swelling
rate on the recoil energy, determined by egi , which
increases with increasing PKA energy up to about
10–20 keV. The main predictions of the PBM are dis-
cussed below.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.13.6.2 Main Predictions of Production
Bias Model

As can be seen from eqn [138], the action and con-
sequences of the two biases, the dislocation and
production ones, is quite different. As shown in
Section 1.13.5, the dislocation bias depends only
slightly on the microstructure and predicts indefinite
void growth. In contrast, the production bias can be
positive or negative, depending on the microstruc-
ture. The reason for this is in negative terms in eqn
[138]. The first term decreases the action of the
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production bias due to recombination of the SIA
clusters at sessile vacancy and SIA clusters, while
the second one arises from the capture of SIA clusters
by voids. The latter term may become equal to zero
or even negative, hence the combination of the two
bias factors does not necessarily lead to a higher
swelling rate, as shown in Barashev and Golubov.35

1.13.6.2.1 High swelling rate at low

dislocation density
As shown in Section 1.13.5, in the framework of
FP3DM, the swelling rate depends on the dislocation
density and becomes small for a low dislocation den-
sity, dS=df � Bdrd=k

2
c ! 0 at rd ! 0 (see eqn [96]).

Thus, it was a common belief that the swelling rate in
well-annealed metals has to be low at small doses,
that is, when the dislocation density increase can be
neglected. Under neutron irradiation, the effect of
dislocation bias on swelling is even smaller because

of intracascade recombination: ðdS=dfÞFPP3Dneutr ¼
ðdS=dfÞFPP3Delectr ð1� erÞ 
 ðdS=dfÞFPP3Delectr . It has been

found experimentally, however, that the void swelling
rate in fully annealed pure copper irradiated with
fission neutrons up to about 10�2 dpa (see Singh
and Foreman18) is of �1% per dpa, which is similar
to the maximum swelling rate found in materials at
high enough irradiation doses. This observation was
one of those that prompted the development of the
PBM. The production bias term in eqn [138] allows
the understanding of these observations. Indeed,
at low doses of irradiation, the void size is small,
and therefore, the void cross-section for the inter-
action with the SIA glissile clusters is small

(pr 2cNc=Lg 
 1). As a result, the last term in the pro-

duction bias term is negligible and thus the swelling
rate is driven by the production bias:

dS

df

� �
max

� ð1� erÞegi
k2c

k2c þ Zd
vrd

½139�

As in the case Zd
vrd 
 k2c , the swelling rate is deter-

mined by the cascade parameters dS=df �
ð1� erÞegi k2c=ðk2c þ Zd

vrdÞ � ð1� erÞegi . It has been

shown22,24 that a good agreement with observations is
achieved with the following parameters: 1� er ¼ 0:1

and egi ¼ 0:2, which are in good agreement with the

results of MD simulations of cascades.
It is worth emphasizing that the value ð1� erÞegi

determines the maximum swelling rate, which can be
produced by the production bias. Indeed, assuming
that for some reason (see Section 1.13.7) there is no
interaction of the mobile SIA clusters with voids and
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sessile vacancy and SIA clusters, the swelling rate is
given by dS=df � 1=2ð1� erÞegi where the sink
strength ratio, k2c=ðk2c þ Zd

vrdÞ, is taken to be equal
to 1/2, as frequently observed in experiments. Taking
into account the magnitude of the cascade para-
meters er and egi estimated in Golubov et al.24 and
neglecting the dislocation bias term in eqn [138], one
may conclude that the maximum swelling rate under
fast neutron irradiation may reach about 1% per dpa.
As pointed out in Section 1.13.5, in the case of
FP production, that is, in the FP3DM, the maximum
swelling rate is also �1% per dpa. This coincidence
is one of the reasons why an illusion that the FP3DM
model is capable of describing damage accumula-
tion in structural and fuel materials in fission and
future fusion reactors has survived despite the fact
that nearly 20 years have passed since the PBM was
introduced.

Note that the production bias provides a way to
understand another experimental observation,
namely, that the swelling rate in some materials
decreases with increasing irradiation dose (see, e.g.,
Figure 5 in Golubov et al.24). Such a decrease is
predicted by eqn [138], as the negative term of the
production bias, pr 2cNc=Lg, increases with an
increase in the void size. As the first term in the
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Figure 5 Experimentally measured133 and calculated24

levels of void swelling in pure copper after irradiation with

2.5MeV electrons, 3MeV protons, and fission neutrons.

The calculations were performed in the framework of the
FP3DM for the electron irradiation and using the production

bias model as formulated in Singh et al.22 for irradiations

with protons and fission neutrons. From Golubov et al.24
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production bias is proportional to the void radius
and the second to the radius squared, the swelling
rate may finally achieve saturation at a mean void
radius equal to Rmax � 2prd.

19,30,35

Finally, the cascade production of the SIA clusters
may strongly affect damage accumulation. As can be
seen from eqn [132], the steady-state sink strength of
the sessile SIA clusters is inversely proportional to
the fraction of SIAs produced in cascades in the form
of mobile SIA clusters, thus k2icl !1 when egi ! 0.
This limiting case was considered by Singh and
Foreman18 to test the validity of the original frame-
work of the PBM,16,17 where all the SIA clusters
produced by cascades were assumed to be immobile
(hereafter this case of egi ¼ 0 is called the Singh–

Foreman catastrophe). If for some reasons this case is
realized, void swelling and the damage accumulation
in general would be suppressed for the density of
SIA clusters, hence, their sink strength would reach
a very high value by a relatively low irradiation
dose, f
 1dpa, (see Singh and Foreman18). Thus,
irradiation with high-energy particles, such as fast
neutrons, provides a mechanism for suppressing
damage accumulation, which may operate if the SIA
clusters are immobilized. In alloys, the interaction
with impurity atoms may provide such an immobili-
zation. The so-called ‘incubation period’ of swelling
observed in stainless steels under neutron irradia-
tion for up to several tens of dpa (Garner32,33)
might be due to the Singh–Foreman catastrophe.

A possible scenario of this may be as follows: during
the incubation period, the material is purified by
RIS mainly on SIA clusters because of their high
density. At high enough doses, that is, after the incu-
bation period, the material becomes clean enough
to provide the recovery of the mobility of small SIA
clusters created in cascades that triggered on the
production bias mechanism. As a result, the high
number density of SIA clusters decreases via the
absorption of the excess of vacancies, restoring con-
ditions for damage accumulation.

1.13.6.2.2 Recoil-energy effect
The recoil energy enters the PBM through the cas-
cade parameters er and egi (see eqn [138]). Direct
experimental evaluation of the recoil energy effect
on void swelling was made by Singh et al.,133 who
compared the microstructure of annealed copper
irradiated with 2.5MeV electrons, 3MeV protons,
and fission neutrons at �520K. For all irradiations,
the damage rate was �10�8 dpa s�1. The average
recoil energies in those irradiations were estimated133
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to be about 0.05, 1, and 60 keV for electron, proton,
and neutron irradiations, respectively, thus, produc-
ing the primary damage in the form of FPs (elec-
trons), small cascades (protons), and well-developed
cascades (neutrons). The cascade efficiency, 1� er,
hence, the real damage rate, was highest for electron
irradiation (no cascades, the efficiency is equal to
unity) and minimal for neutron irradiation (�0.1,
see Section 1.13.3). If dislocation bias is the mecha-
nism responsible for swelling, the swelling rate is
proportional to the damage rate and therefore must
be highest after electron and lowest after neutron
irradiation. However, just the opposite was found;
the swelling level after neutron irradiation was �50
times higher than after electron irradiation, with the
value for proton irradiation falling in between (see
Figure 5). These results represent direct experimen-
tal confirmation that damage accumulation under
cascade damage conditions is governed by mechan-
isms that are entirely different from those under FP
production.

The results obtained in this study can be under-
stood as follows. Under electron irradiation, only the
first term on the right-hand side of eqn [138] oper-
ates, as egi ¼ 0. The swelling rate is low in this case
because of the low dislocation density, as discussed in
Section 1.13.6.2.1. Under cascade damage condi-
tions, the damage rate is smaller because of the low
cascade efficiency. In this case egi 6¼ 0 and the second
term on the right-hand side of eqn [138] plays the
main role, which is evident from the theoretical
treatment of the experiment carried out in the fol-
lowing section.24

1.13.6.2.3 GB effects and void ordering
As shown in the previous section, several striking
observations of the damage accumulation observed
in metals under cascade damage conditions can be
rationalized in the framework of the PBM. This
became possible because of the recognition of the
importance of 1D diffusion of SIA clusters, which
are continuously produced in cascades. The reaction
kinetics in this case are a mixture of those for 1D and
3D migrating defects. Here, we emphasize that 1D
transport is the origin of some phenomena, which are
not observed in solids under FP irradiation.

One such phenomenon is the enhanced swelling
observed near GBs. It is well known that GBs may
have significant effect on void swelling. For example,
zones denuded of voids are commonly observed adja-
cent to GBs in electron-, ion-, and neutron-irradiated
materials.134–137 Experimental observations on the
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effect of grain size on void concentration and swelling
in pure austenitic stainless steels irradiated with
1MeV electrons were also reported.138,139 In these
experiments both void concentration and swelling
were found to decrease with decreasing grain size.
Theoretical calculations are in good agreement with
the grain-size dependence of void concentration and
swelling measured experimentally in austenitic stain-
less steel irradiated with 1MeV electrons.139,140

However, there is a qualitative difference between
grain-size dependences of void swelling for electron
irradiation and that for higher recoil energies. In
particular, in the latter case, in the region adjacent
to the void-denuded zone, void swelling is found to
be substantially enhanced.134,136,141–147 Furthermore,
in neutron-irradiation experiments on high-purity
aluminum, the swelling in the grain interior increases
strongly with decreasing grain size.144 This is oppo-
site to the observations under 1MeV electron irradi-
ation139 and to the predictions of a model based on
the dislocation bias.140

An important feature of the enhanced swelling
near GBs under cascade irradiation is its large length
scale. The width of this enhanced-swelling zone is of
the order of several micrometers, whereas the mean
distance between voids is of the order of 100 nm.
Thus, the length scale is more than an order of
magnitude longer than the mean distance between
voids. The MFP of 3D diffusing vacancies and single
SIAs is given by

L3D ¼
ffiffiffiffi
2

k2

r
¼

ffiffiffi
2
p

Zdrd þ 4prcNc

� ��1=2 ½140�

and is of the order of the mean distance between
defects. Hence, 3D diffusing defects cannot explain
the length scale observed. In contrast, the MFP of 1D
diffusing SIA clusters is given by

L1D ¼
ffiffiffiffi
2

k2g

s
¼ prdrd

2
þ pr 2cNc

	 
�1
½141�

and is of the order of several micrometers, hence,
exactly as required for explanation of the GB effect
(see Figure 6). A possible explanation for the obser-
vations would be as follows. The SIA clusters pro-
duced in the vicinity of a GB, in the region of the
size � L1D, are absorbed by it, while 3D migrating
vacancies give rise to swelling rates higher than that
in the grain interior. The impact of the GB on the
concentration of 1D diffusing SIA clusters can be
understood by using local sink strength, that is, the
sink strength that depends on the distance of a local
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area to the GB, l. It has been shown22 that the
local sink strength in a grain of radius RGB is given by

k2gðRGB; lÞ ¼ 2
prdrd
2
þ pr2cNc þ 1

lð2RGB � lÞð Þ1=2

 !2

½142�

As can be seen from eqn [142], the sink strength has a
minimum at the center of the grain, that is, at l¼ RGB,
and increases to infinity near the GB, when l ! 0.

The so-called grain-size effect, an increase of
the swelling rate in the grain interior in grains of
relatively small sizes (less than about 5 mm) with
decreasing grain size, has the same origin as the
GB effect discussed above. The swelling rate at the
center of a grain may increase with decreasing grain
size, when the grain size becomes comparable with
the MFP of 1D diffusing SIA clusters and the zones
of enhanced swelling of the opposite sides of GBs
overlap. The swelling in the center of a grain as a
function of grain size is presented in Figure 7.26 For
comparison purposes, the values of the local void
swelling (see Table 3 in Singh et al.26) determined
in the grain interiors by TEM are also shown. The
PBM predicts a decrease of swelling with increasing
grain size for grain radii bigger than 5 mm, which
is in accordance with the experimental results.
Note that the swelling values calculated by the
FP3DM (broken curve in Figure 7) are magnified
by a factor of 10.

Another striking phenomenon observed in metals
under cascade damage conditions is the formation
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of void lattices. It was first reported in 1971 by
Evans148 in molybdenum under nitrogen ion irradi-
ation, by Kulchinski et al.149 in nickel under sele-
nium ion bombardment, and by Wiffen150 in
molybdenum, niobium, and tantalum under neutron
irradiation. Since then it has been observed in bcc
tungsten, fcc Al, hcp Mg, and some alloys.151–155

Jäger and Trinkaus156 reviewed the characteristics
of defect ordering and analyzed the theories pro-
posed at that time, including those based on the
elastic interaction between voids and phase instabil-
ity theory. They concluded that in cubic metals, the
void ordering is due to the 1D diffusion of SIA
clusters along close-packed crystallographic direc-
tions (first proposed by Foreman157). Two features
of void ordering support this conclusion. First, the
symmetry and crystallographic orientation of a void
lattice are always the same as those of the host
lattice. Second, the void lattices are formed under
neutron and heavy-ion but not electron irradiation.
This conclusion is also supported by theoretical
analysis performed in Hähner and Frank158 and
Barashev and Golubov.159
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1.13.6.3 Limitations of Production
Bias Model

Successful applications of the PBM have been limited
to low irradiation doses (<1 dpa) and pure metals (e.g.,
copper). There are two apparent problems preventing
the general application of the model at higher doses.

1.13.6.3.1 Swelling saturation at random

void arrangement

The PBM predicts a saturation of void size.30 This
originates from the mixture of 1D and 3D diffusion–
reaction kinetics under cascade damage conditions,
the assumption lying at the heart of the model. More
specifically, it stems from the fact that the interaction
cross-section with a void is proportional to the void
radius, R, for 3D migrating vacancies and to R2 for 1D
diffusing SIA clusters. As a result, above some critical
radius, the latter becomes higher than the former and
the net vacancy flux to such voids is negative. In
contrast, experiments demonstrate indefinite void
growth in the majority of materials and conditions.31–
34 An attempt to resolve this contradiction was under-
taken by including thermally activated rotations of the
SIA-cluster Burgers vector23,25,27; but it has been
shown by Barashev et al.25 that this is not a solution.
Thus, the PBM fails to account for this important and
common observation, that is, the indefinite void growth
under cascade irradiation. Away of resolving this issue
is discussed in Section 1.13.7.

1.13.6.3.2 Absence of void growth in
void lattice

Another problem of the PBM is that it fails to explain
swelling saturation at rather low swelling levels
(approximately several percent) observed in void lat-
tices. In fact, it even predicts an increase in the
swelling rate when a random void arrangement is
changed to that of a lattice.25 This is because the free
channels between voids along close-packed directions,
which are formed during void ordering, provide
escape routes for 1Dmigrating SIA clusters to disloca-
tions and GBs, thereby allowing 3D migrating vacan-
cies to be stored in voids. A possible explanation of
the problem is discussed in a forthcoming paper by
Golubov et al.37

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Edge dislocation 

Figure 9 Same as in Figure 8 but for a void in the
compression side of edge dislocation. From Barashev, A. V.;

Golubov, S. I. Philos. Mag. 2009, 89, 2833–2860.

 
 
 
 
 

1.13.7 Prospects for the Future

As discussed in the previous section, the PBM
changed the concept of RDT by recognizing
that qualitatively different mechanisms operate in
Comprehensive Nuclear Mater
materials when the initial damage is in the form of
only FPs and under neutron irradiation, when ther-
mally stable glissile SIA clusters are continuously
produced in cascades. The successful applications of
the PBM have been limited to low irradiation doses
(<1 dpa) and pure metals (e.g., Cu). Furthermore,
it predicts the saturation of void size with increas-
ing irradiation dose. Thus, it fails to account for
the most important observation under neutron or
heavy-ion irradiation: continuous increase in void
swelling.

The observed continuous void growth may be
explained by the development of spatial correlations
between voids and other lattice defects. Such as, precipi-
tates and dislocations, that shadow voids from the
SIA clusters (see Figures 8–10). It has been argued
that this must be the case and the very absence of
a void lattice (i.e., a particular case of spatial correla-
tion, which is between voids) must be an indication
that spatial correlations with other defects prevail.35
ials (2012), vol. 1, pp. 357-391 
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Figure 10 Dependence of swelling on irradiation dose

calculated using eqn [143] for Nc ¼ 1022m�3, rm ¼ 5 nm,
egi ¼ 0:2, esurv ¼ 0:1 and different values of the

correlation-screening factor of voids, �c. The curve with full

squares has been calculated for correlations developing

with irradiation dose, when �c ¼ 1 in the beginning and
�c ¼ 0 by 10dpa and higher dose. From Barashev, A. V.;

Golubov, S. I. Philos. Mag. 2009, 89, 2833–2860.
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To account for this effect, a new parameter, �c, has
been introduced, called the ‘correlation-screening factor,’
which is equal to unity in the absence of shadowing
effects and zero when voids are screened completely
from the SIA clusters. The swelling rate is then
given by

dS

df
¼ egi 1� �c

r

rm

� �
F ½143�

where F is a proportionality coefficient, which is a
function of all parameters involved.35 Experimental
evidence on the association of large voids with vari-
ous precipitates (G, �, Laves, etc.)120,160–162 and the
compression side of edge dislocations163,164 has been
available for a long time. More recent evidence can
be attributed to Portnykh et al.165 who studied the
microstructure of 20% cold-worked 16Cr–15Ni–
2Mo–2Mn austenitic steel irradiated up to �100 dpa
in a BN-600 fast reactor in the temperature range
from 410 to 600 �C. TEM studies revealed voids
of three types: a-type associated with dislocations,
b-type associated with G-phase precipitates and c-type

distributed homogeneously. The c-type voids were
the smallest and made practically no contribution to
swelling, while the a-type voids were the largest.
Such spatial correlations must be a common feature
under cascade irradiation.

As discussed in Barashev and Golubov,35 the
experimental data on void swelling can be fit by eqn
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[143] with an appropriate choice of the dependence
of �c on the irradiation dose (see Figure 10). At high
doses, the voids must be completely shielded from
the SIA clusters: �c¼ 0, and the steady-state swelling
rate of �1% per dpa observed in austenitic steels33

can be interpreted as being equal to about half of the
production bias, that is, the fraction of SIAs produced
as 1D mobile clusters:

dS

dfNRT
� 1

2
esurve

g
i ½144�

where esurv � ð1� erÞ � 0:1 is the survival fraction
of defects in displacement cascade. The weak depen-
dence on steel composition observed is probably
because the final defect structure is defined by early
stages of cascades, when the energies involved are
much higher than the binding energies of defects
with solute atoms. The observed correlation of the
incubation period prior to swelling with the forma-
tion of a dislocation network may be connected with
an increase of the volume for the nucleation and
growth of voids in which voids are screened from
the SIA clusters. Higher dislocation density also cor-
responds to a smaller dislocation climb rate, which
might be essential for preserving void-dislocation
correlations.

Another distinguishing feature of neutron irradia-
tion is transmutation of atoms, which transform even pure
metals into alloys with increasing irradiation dose. The
atmospheres of solute (or transmuted) elements near
voids may repel SIA clusters and, hence, assist or even
solely explain the unlimited void growth. It was shown
(see, e.g., Golubov,166 Golubov et al.,167 and references
therein) that RIS can provide an additional mecha-
nism of preferential absorption of mobile defects
even in the framework of FP3DM, causing a ‘segre-
gation’ bias, which must be different for immobile
defects (e.g., voids) and mobile defects, such as dis-
locations. In the PBM, the interaction of the mobile
SIA clusters with different defects may even be more
important. Solute atoms may also decrease the mobil-
ity of SIA clusters, thereby increasing the recombi-
nation rate with migrating vacancies. In the case of
very high binding energy of SIA clusters with impu-
rity atoms, the ‘Singh–Foreman catastrophe’18 discussed
in Section 1.13.6.2.1 may occur.

Thus, two additional features beyond those already
in the PBM distinguish the microstructure evolution
under neutron compared to electron irradiation at
high enough doses: transmutation of atoms and devel-
opment of spatial correlations. A fully predictive
theory must account for these effects.
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The development of a predictive theory requires
revisiting all its essential elements: nucleation,
growth, movement of voids, and other lattice defects
in the presence of spatial correlations, etc. Carefully
planned experiments spanning different tempera-
tures, defect production rates, etc., must be a central
part of these future studies. Development of the
RIS theory for accounting for the SIA clusters is
necessary for understanding the sensitivity of micro-
structure to material composition. Generally, the
challenge is to create a theory, where the mean-field

approach in its conventional form is abandoned, a task not
attempted before.
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40. Gösele, U. Prog. React. Kinet. 1984, 13, 63–161.
41. Robinson, M. T. J. Nucl. Mater. 1994, 216, 1–28.
42. Norgett, M. J.; Robinson, M. T.; Torrens, I. M. Nucl. Eng.

Des. 1975, 33, 50–54.
43. Bacon, D. J.; Osetsky, Yu. N.; Stoller, R. E.;

Voskoboinikov, R. E. J. Nucl. Mater. 2003, 323, 152–162.
44. Calder, A. F.; Bacon, D. J.; Barashev, A. V.; Osetsky, Yu.

N. Philos. Mag. 2010, 90, 863–884.
45. Osetsky, Yu. N.; Bacon, D. J.; Serra, A.; Singh, B. N.;

Golubov, S. I. Philos. Mag. 2003, 83, 61–91.
46. Osetsky, Yu. N.; Bacon, D. J.; Serra, A. Philos. Mag. Lett.

1999, 79, 273–282.
47. Greenwood, G. W.; Foreman, A. J. E.; Rimmer, D. E.

J. Nucl. Mater. 1959, 1, 305–324.
48. Heald, P. T.; Speight, M. V. Philos. Mag. 1974, 29,

1075–1080.
49. Wolfer, W. G.; Ashkin, M. J. Appl. Phys. 1976, 47,

791–800.
50. Bullough, R.; Willis, J. R. Philos. Mag. 1975, 31, 855–861.
51. Mansur, L. K. Philos. Mag. A 1979, 39, 497–506.
52. Woo, C. H. J. Nucl. Mater. 1984, 120, 55–64.
53. Woo, C. H. J. Nucl. Mater. 1995, 225, 8–14.
54. English, C. A.; Jenkins, M. L. Philos. Mag. 2010, 90,

821–843.
55. Arakawa, K.; Ono, K.; Isshiki, M.; Mimura, K.;

Uchikoshi, M.; Mori, H. Science 2007, 318, 956–959.
56. Satoh, Y.; Matsui, H. Philos. Mag. 2009, 89, 1489–1504.
57. Jenkins, M. L.; Yao, Z.; Hernández-Mayoral, M.;

Kirk, M. A. J. Nucl. Mater. 2009, 389, 197–202.
58. Hiroaki, A.; Naoto, S.; Tadayasu, T. Mater. Trans. 2005,

46, 433–439.
59. Brailsford, A. D.; Bullough, R.; Hayns, M. R. J. Nucl.

Mater. 1976, 60, 246–256.
60. Brailsford, A. D. J. Nucl. Mater. 1976, 60, 257–278.
61. Brailsford, A. D.; Bullough, R. Philos. Trans. R. Soc. Lond.

A 1981, 302, 87–137.
62. Stoller, R. E.; Golubov, S. I.; Becquart, C. S.; Domain, C.

J. Nucl. Mater. 2008, 382, 77–90.
63. Farkas, L. Z. Phys. Chem. Leipzig A 1927, 125, 236–242.
64. Becker, R.; Döring, W. Ann. Phys. Leipzig 1935, 24,

719–752.
65. Zeldovich, J. B. J. Exp. Theor. Phys. 1943, 12,

525–538.
66. Frenkel, J. Kinetic Theory of Liquids; Oxford University

Press: New York, 1946.
67. Goodrich, F. G. Proc. R. Soc. Lond. A 1964, 277,

155–166.
68. Goodrich, F. G. Proc. R. Soc. Lond. A 1964, 277,

167–182.
69. Feder, J.; Russell, K. C.; Lothe, J.; Pound, G. M. Adv.

Phys. 1966, 15, 111–178.
70. Wagner, R.; Kampmann, R. In Materials Science and

Technology, A Comprehensive Treatment; Cahn, R. W.,
Haasen, P., Kramer, E. J., Eds.; VCH: Weinheim, 1991;
Vol. 10 B, Part II, pp 213–302.

71. Katz, J. L.; Wiedersich, H. J. Chem. Phys. 1971, 55,
1414–1434.

72. Russell, K. C. Acta Metall. 1971, 19, 753–758.
73. Golubov, S. I.; Ovcharenko, A. M. Unpublished.
74. Hayns, M. R. J. Nucl. Mater. 1975, 56, 267–274.
75. Kiritani, M. J. Phys. Soc. Jpn. 1973, 56, 95–107.
76. Bondarenko, A. I.; Konobeev, Yu. V. Phys. Status Solidi A

1976, 34, 195–205.
77. Ghoniem, N. M.; Sharafat, S. J. Nucl. Mater. 1980, 92,

121–135.
78. Stoller, R. E.; Robert Odette, G. In 13th International

Symposium on Radiation Induced Changes in
Microstructure; Garner, F. A., Packan, N. H., Kumar, A.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comprehensive Nuclear Mater
S., Eds.; ASTM: Philadelphia, PA, 1987; ASTM STP 955,
Part I, pp 371–392.

79. Hardouin Duparc, A.; Moingeon, C.; Smetniansky-de-
Grande, N.; Barbu, A. J. Nucl. Mater. 2002, 302,
143–155.

80. Wehner, M. F.; Wolfer, W. G. Phys. Rev. A 1985, 52,
189–205.

81. Ghoniem, N. M. Phys. Rev. B 1989, 39, 11810–11819.
82. Surh, M. P.; Sturgeon, J. B.; Wolfer, W. G. J. Nucl. Mater.

2004, 325, 44–52.
83. Clement, C. F.; Wood, M. H. Proc. R. Soc. Lond. A 1979,

368, 521–546.
84. Koiwa, M. J. Phys. Soc. Jpn. 1974, 37, 1532.
85. Golubov, S. I.; Ovcharenko, A. M.; Barashev, A. V.;

Singh, B. N. Philos. Mag. A 2001, 81, 643–658.
86. Lifshitz, I. M.; Slezov, V. V. J. Phys. Chem. Solids 1961,

19, 35–50.
87. Wagner, C. Z. Elektrochem. 1961, 65, 581–611.
88. Greenwood, G. W.; Speight, M. V. J. Nucl. Mater. 1963,

10, 140–144.
89. Ovcharenko, A. M.; Golubov, S. I.; Woo, C. H.; Huang, H.

Comput. Phys. Commun. 2003, 152, 208–226.
90. Golubov, S. I.; Stoller, R. E.; Zinkle, S. J.;

Ovcharenko, A. M. J. Nucl. Mater. 2007, 361, 149–159.
91. Surh, M. P.; Sturgeon, J. B.; Wolfer, W. G. J. Nucl. Mater.

2004, 325, 44; J. Nucl. Mater. 2004, 328, 107; J. Nucl.
Mater. 2004, 336, 217; J. Nucl. Mater. 2005, 341,
235–236.

92. Brailsford, A. D.; Bullough, R. J. Nucl. Mater. 1972, 44,
121–135.

93. Wiedersich, H. Radiat. Eff. 1972, 12, 11–125.
94. Golubov, S. I.; Minashin, A. M. Phys. Met. Metall. 1983,

56, 41–46.
95. Ham, F. S. J. Appl. Phys. 1959, 30, 915–926.
96. Wolfer, W. G. Comput. Aided Mater. Des. 2007, 14,

403–417.
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