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Abstract

EVELOPMENT, demonstration, and validation of the Risk-Informed Safety

Margin Characterization (RISMC) methodology and tools are planned and
performed in the U.S. Department of Energy’s LWR Sustainability Program, with
the objective to support decision-making on extending plant life beyond 60 years.
This report documents current status, results and insights derived from research
and development on architecture and algorithms of a next generation system safety
simulation code, whose goal is to enable characterization of safety margins in nu-
clear power plants.

Architecture, functions, and solution techniques as conceptualized, selected,
and implemented in a 35 code version are described in the report. Progress made
to date including lessons learned from testing the computational framework and
numerical methods on a set of test problems provide a technical basis for assess-
ment and revision of the code architecture and algorithms. Most notably, the
experience suggests that the computational framework and solution algorithms
developed have potential to meet complex requirements of a next-generation sys-
tem code, including simulation accuracy and speed, and developmental scalability.
Substantial challenges remain in modeling and validation needed to enable multi-
physics, multi-scale simulations as required in an advanced system safety code.
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Chapter 1

Introduction

HIS report documents current status of conceptualization, development, test-
Ting, and demonstration of a next-generation system safety simulation code to
support risk-informed safety margin characterization (RISMC code). It builds on
experience and insights gained from R&D performed at INL and collaborating
institutions, both under the LWR Sustainability Program and beyond.

The project has its origin in an initiative started at the Idaho National Labora-
tory (INL) in FY 2009 as laboratory-directed research and development (R&D),
with the goal to establish the methodology and technology for a next-generation
safety simulation tool. In the authors’ minds, the notion of “next generation”
has effectively boiled off to the concept of Risk-Informed Safety Margin Char-
acterization, whose “logo™ is shown in Figure [.1. The idea is to extend from
the deterministic margin into probabilistic loading versus probabilistic capacity,
and in doing so, delineating and capturing uncertainty of all types and origins.
Although in practice, margins is a multi-dimensional notion, the logo conveys,
comprehensively and quite accurately, the drive and the spirit of this project.

Ultimately, the RISMC code must integrate the deterministic/mechanistic me-
thod of system process description with the stochastic/probabilistic method of reli-
ability/risk assessment to provide a complete, consistent and comprehensive char-
acterization of safety margins in a nuclear power plant; see Figure 1.2. In other
words, it enables “virtual plant safety testing”, where changes in plant conditions,
operating procedures, applications of innovative elements (fuels, claddings, mon-
itoring), etc. show their impact on plant safety margins broadly defined.
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1.1 Code functions

Thus, the RISMC code’s basic functions are to compute loading and to compute
capacity on a specified systems, structures, and components (SSCs) at any given
time of the plant life, including during the postulated life extension regime. Tra-
ditionally, “safety margins™ are measured in term of stressors e.g. peak cladding
temperature, which are surrogate criteria for safety '.

N

Load Capacity

=4 Jd=

Vulnerability

Fig. 1.1 : The logo of the RISMC concept, which is designed to bring together
methods of deterministic and probabilistic analysis. The “safety margin” is a
manifestation of integrated uncertainty. The two-ended arrow shows the tradi-
tional deterministic margin. The left arrow reflects the economic drive to achieve
higher power (uprate), higher fuel burnup. The right arrow reflects degradation
due to plant aging. Howver, these trends can be reversed with an effective aging
management program, improved operating procedures, maintenance, and operator
training, among others. The “vulnerability” is scenarios of safety and operabil-
ity concerns. Their early identification, prevention and mitigation constitute the
essence of Risk Assessment and Management.

Stressors come in different categories: mechanical, thermal, irradiation and

! As example of how complex the surrogate metrics can be, we refer to an OECD/NEA
study which exhibits 34 parameters used to represent nuclear fuel’s design, operating, and
safety criteria.One objective of the RISMC research is to suggest a simple and adequate
formulation of safety margins . One of the supporting function of the RISMC code is to
provide comprehensive visualization of the safety margins.
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. Safety Case , Next-Generation Prevention Analysis
Integrated Analysis of A Nlexf-ngergtlll?n
Probabilistically Significant nalysis Capability
Scenarios & Phenomenology
Generation / Quantification of Scenarios Next-Generation Code for Mechanistic
(formerly "Next-Generation PRA") Simulation of Phenomenology
Technology

Inputs CCLLLLED) LEAULECECIELI: SLALLECELIA iy CUCIILELLR L] CRECE O ALY LULELRLLLLL AL LALELEL T

samnanns Experimental Validation: Test, Operational Experience :«++«::- ;

10-GAS0039-003g

sNEEERRERnE,

Fig. 1.2 : A Next Generation System Safety Simulation Software (RISMC code)
as enabling tool for the RISMC-based “safety case”. In here, “Risk-Informed
Safety Case” is a documented body of evidence that provides a convincing and
valid argument that a system is adequately safe for a given application in a given
environment. The “Margins” is RISMC support to Decision Making based on
implications of margins evaluated in a risk-informed paradigm (Figure adapted
from R. Youngblood, “RISMC Framework”, 2010.
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chemical; Figure 1.3. A particular stressor or parameter is considered important
because it represents a challenge to integrity or operability of the SSC under con-
sideration.

Figure 1.3 shows modeling and simulation capabilities that the RISMC code
needs to possess in order to compute the loading. This includes simulation of
physical processes (left cluster) and operating factors (right cluster), and model-
ing of the plant systems which bring the physics and the operation into *“loading”.

Compute Loading ‘
on a targeted SSC

(Maximum) Stressors

Mechanical Thermal Irradiation Chemical
Plant Systems
Engineering S
TSI ' . 1&C
Structural || Fyid Fiow ‘
Mechanics — -
Boaians Operating
goan: Procedures
Chemistry | Heat Transfer
— — _Eqapment_l
‘ Core Reliability
Neutronics | —=
OBer_arBr |

Nuclear Fuel | Fission Product (Human Factor) |

Physical Processes Operational Factors

Fig. 1.3 : The RISMC code’s basic function “Compute Loading™ and related capa-
bilities. The driving physics are abnormal transients and accidents over short time
scale with potential for peak loading.

Similarly, Figure 1.4 shows the capabilities required to compute capacity. It
can be seen that - in addition to simulation capabilities in support of loading com-
putation - capacity computation requires
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e (i) “damage calculation™ capability, which translate stressors into materials
damage, including the synergistic effect of multiple stressors on damage
initiation and growth; and

e (ii) “degradation calculation” capability, which translates the materials dam-
age measures into degradation of structural materials strength, including the
synergistic effect of multiple types of damages on degradation of material
physical / functional properties.

Compute Capacity ‘
on a targeted SSC

Compute S.!r;mlmma' Strength
as Function of Degradation

Damage Structural Thermal Erosion . Embrittle t‘ Flow-Accelerated | | Stress Coms.‘t;r
Mechanisms | Fatigue Fatigue | | Corrosion Corrosfon | Cracking 2
IRyeE | Mechanical [ 1 Thermal | ' Irradiation I [ Chemical
Stressors
Plant Systems |
Engineering T
w_ - | c |
| Structural | | Fluid Flow —_—
Mechanics | - - | “Operating |
g Pt E— __Procedures
B Heat Transter = = —
Chemistry = S | Equipment |
Core ___Reliability
_ Neutronics _ ) SR
; Operator
Nuclear Fuel | | Fission Product (Human Factor)
Physical Processes Operational Factors

Fig. 1.4 : The RISMC code’s basic function “Compute Capacity” and related ca-
pabilities. The driving physics is degradation over decades-long time scale.

It is noted that although the simulation capabilities under “physical process”
and “operating factors™ appear identical for loading computation and capacity
computation functions, the actual emphasis and implementation of these capa-
bilities differ for two functions. It is because the capacity computation function
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is concerned with long (years) time scale of degradation processes, whereas the
loading computation function deals with short (minutes to hours) time scale of
accident processes.

There are circumstances when the two functions largely overlap or tightly cou-
ple.

For example, the loading computation requires the long “aging” result (“plant
health™ capacity) as initial condition for transient analysis. In turn, the capacity
computation for a real plant must also include transient loading analysis to cap-
ture operational, anticipated and abnormal (typically, mild) transients that have
occurred or been postulated to occur during the plant operation *. Such abnor-
mal transients are undesirable with respect to both plant safety and operability,
as they often induce substantial stresses on the plant’s SSC, and some time, these
transients introduce stressors, which are not considered in the “normal aging™ sce-
narios. Such periods of accelerated degradation have potential to physically age
the plant much faster °.

Another example of tight coupling between loading and capacity occurs when
a rapid degradation (capacity erosion) leads to a failure that alters the sequence.
This is the case when a static, pre-calculated notion of capacity (structural strength)
ceases to be valid. It is noted that in such cases the term “capacity” refers to in-
termediate margins, not the ultimate margin (capacity) targeted in the analysis.
When “loading exceeds capacity” situation occurs for a SSC (which is not the
defined search objective) during a transient, it leads to SSC failure. Modeling of
failure, often fast-time-scale thermo-fluid-mechanical coupled processes, pertains
to the domain of *“physical processes™ in Figure 1.3.

2Such analysis belongs to category of multi-scale integration, that involves vastly dif-
ferent time scales, from minutes for transient to years for aging.

3Optimization of resource utilization has been referred to as “heartbeat” analysis,
which accounts for how abnormal events (“fast beats™ affect the life span (e.g. total num-
ber of heartbeats). It is noted that besides negative events with fast heartbeats, there are
positive events e.g. plant maintenance, which are designed to increase the “life-given”
number of heartbeats or slow down the plant’s heartbeats during the normal operation.
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1.2 Highlight of Requirements

In this section, we highlight major requirements, which drive selection of archi-
tecture and algorithms discussed in subsequent Chapters.

1.2.1 Multi-Scale / Multi-Physics Integration

THE set of system and physics models provides the backbone of the RISMC
code. These models are given in the form of algebraic, algebro-differential,
and integro-differential equations(transient 0D models), and partial differential
equations (transient 1D to 3D models). These equations must be solved through
integration in time and space.

In general, processes in nuclear power plants entail multiple physics of mech-
anistic / deterministic (e.g., core neutronics, thermal hydraulics, coolant chem-
istry, structural mechanics) and stochastic / probabilistic (e.g. reliability) nature,
spaning over a broad range of time scales, from fraction of a second to decades,
and length scales, from fraction of a millimeter to tens meters. The later manifest
multi-scale nature of the problems addressed by the RISMC code. Itis noted, how-
ever, that the RISMC method aims at engineering solution, so processes and ef-
fects are modeled at engineering scale. While there exist a number of approaches
to multi-scale modeling and simulation®, the RISMC code adopts universal con-
tinuum mechanics approximation over the engineering-system scales treated by
the code. In other words, the “same-equation” formulation is used in the RISMC
code to provide multi-scale treatment of the physical processes modeled.

A. Multiple Time Scales: “Gap-Tooth” Scheme

Dynamic time step control is instrumental to the computational efficiency needed
to simulate physical processes, which involve periods of slow changes (e.g. aging)
and fast changes (e.g. plant transients). Capability to dynamically control time
step is also essential for the treatment of coupled physical processes with distinc-
tive time scales. The RISMC code applies a so-called “gap-tooth™ treatment, in
which faster-time-scale phenomena are computed in short “tooth™ periods, while

*Multi-scale methods applied to physics problems typically involve different physical
models at different scales, e.g. continuum mechanics coupled with molecular dynamics
or atomistic simulations.
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characteristics derived from the “tooth™ simulation are used (e.g. to determine
source term) in simulations of longer-time-scale processes over a “gap” period
between subsequent “teeth”. In turn, numerical solution obtained in the “gap”
problem provides information needed to dynamically update initial and bound-
ary conditions for the “tooth” problem. The “derived” is underlined to emphasize
two, relatively-independent processes whose interaction occurs at fast time scale
(high-frequency phenomena); see Figure 1.5.

Physics 1

& Fast-time-scale (e.g.
resolved thermal-fluid)
process simulation to

obtain stressors

Fast-time-scale (e.g.
material response)
process simulation to
obtain (degradation) rate

Slow-time-scale (e.g. materials degradation)
process simulation

Physics 2

Fig. 1.5 : The “gap-tooth” scheme.

The “gap-tooth” scheme appears well suited for the treatment of multiple time
scales in the RISMC Use Cases. Example of high-frequency phenomena are ther-
mal stripping and fluid-structure-interactions-induced vibration that govern ther-
mal fatigue and structural fatigue over a long period of plant operation (aging).
The fatigue degradation itself can be calculated by integrating an accumulative
damage process model with large time steps, using the fatigue rate calculated by
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integrating a fine-grain thermal-fluid-structure model in the “tooth™ periods. The
later aims to capture stressors and material response in the SSC area of interest.

Beyond the “gap-tooth” treatment invoked in special cases, the RISMC code is
designed to use a single time stepping for all physics and components, in order to
facilitate engineering analysis and review. The time step is chosen, dynamically,
to accommodate the fastest change in the system.

B. Multiple Length Scales: Domain Decomposition Scheme

Due to the nuclear power plant plant system complexity, for a risk-informed anal-
ysis, the RISMC code necessarily involves lumped-parameter models (0D) for a
large number of SSCs, where higher resolution / higher dimensionality are neither
necessary nor they reduce uncertainty. However, in certain Use Cases, especially
at their later phases, three-dimensional (3D) modeling becomes necessary when
model simplifications and discretization errors are found (or assessed) to domi-
nate accuracy and uncertainty in the computation of key stressors. As a result, the
RISMC code embodies a range of dimensionality of physical models, from 0D to
1D to 3D, in different SSCs.

It should be noted that - while coupling 3D solutions (e.g. CFD code) to 1D
solutions (e.g. RELAPS system thermal-hydraulics code) has been attempted in
the past, the main distinction of the new 0D-1D-3D treatment in the RISMC code
is that the models of different resolution are treated in the same code, i.e. subject
to the same time and space discretization scheme, and solved by the same solution
method. Such an approach aims to eliminate numerical errors brought by coupling
of separate codes, with different discretization schemes and solution algorithms.

In the RISMC code, the 3D treatment can be either relatively isolated and
stand-alone (e.g. structural mechanics of in area of reactor pressure vessel in the
proximity of cold leg connection; or fuel pellet / cladding) or tightly coupled with
adjacent domains with lower dimensionality (e.g. thermal-hydraulics in down-
comer or lower plenum areas of the reactor pressure vessel coupled to 1D models
of piping thermal-hydraulics). Most sensitive to the coupling of domains with var-
ied dimensionality are thermal-hydraulics models due to their hyperbolicity and
dynamic character. For this purpose, the Reconstructed Discontinuous Galerkin
(rDG) method possesses unique features to meet the challenge.
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Expansion y

Characteristics-
Based Matching
Interface

Subdomain [A] with a
Lower Resolution /
Lower Dimensionality
Model

< Contraction
|

Fig. 1.6 : Domain decomposition scheme requires a characteristics-based match-
ing interface treatment and fully implicit nonlinearly coupled solution to ensure
computational stability and effectiveness.

To achieve high robustness and traceability of the simulations, the RISMC
code applies a domain decomposition scheme to handle multi-resolution models.
In fact, in each sub-domain, there may be several models of different dimension-
ality and level of details (resolution). Selection of one over another model - for
a physics within a domain - depends on a number of factors, including projec-
tion of benefits in uncertainty reduction over the added computational expenses in
higher resolution models. Uncertainty reduction as a measure is most useful as it
accounts for

e crrors due to added uncertainty in constitutive relations / parameters re-
quired for closure of higher-resolution models;

e errors due to (in)consistency in the treatment of other physics in the same
subdomain; and

e crrors introduced by deficient treatment of interface (e.g. contraction / ex-
pansion) between adjacent subdomains.
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While there exist a variety of algorithms for multi-scale domain decomposi-
tion treatment, the RISMC code should be designed to solve the coupled models
on different domains simultaneously and implicitly, including their subdomain-
to-subdomain interface contraction / expansion conditions. Such an implicit al-
gorithm ensures the numerical solution stability, particularly important for bridg-
ing different resolutions in adjacent subdomains. Instead of “primitive-variables”
coupling, a characteristics-based interface algorithm should be used to ensure two-
way smooth information flow (waves) between adjacent subdomains” ; see Figure
1.6.

With respect to software implementation, domain decomposition is consistent
with the object-oriented simulation environment required for the system analysis
©. In making their meshing / nodalization decisions, the code users take into ac-
count experience (of various origins), analysis needs (varied at different phases of
application), resource availability and guidelines from the code manual.

C. Multi-Physics Integration

By its design, the RISMC code eventually involves a large number of systems
and physics, far larger than in methods currently used for plant safety analysis
(i.e. thermal hydraulics, core neutronics). The more physics and systems become
involved, the larger the spread of time and length scales of contributing phenom-
ena. The interactions between different physics are further complicated by the
effect of instrumentation and control, SSC reliability and operator actions. Such
complications put severe challenges on multi-physics integration.

e First, and foremost, it reveals the limitations of the traditional approach
which employs “loose coupling” of tools inherited from “divide-and-conquer”
(operator split) era in nuclear reactor engineering.

3The characteristics-based matching (CBM) method developed by Nourgaliev, Dinh
and Theofanous (2004) [NDT04] is an example.

6Adaptive mesh refinement (AMR), and more recently, adaptive model refinement
(AMoR), are attractive concepts that can be used to address computational efficiency in
a problem that involves multiple length scales. These concepts are however still under
development for the types of problems of interest in reactor safety. More importantly,
robustness and traceability are critical requirements for simulations whose results are part
of a safety analysis report and license application submittal. Generation of computable
meshes (nodalization) by the code users prior to simulation also help increase auditability
and interrogability of the simulation results by other analysis tools.
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— Errors introduced by the operator split are shown to be significant in
nonlinear problems; [KMCROS].

— Furthermore, such numerical “biases” can accumulate over time, and
become particularly detrimental for solution of evolutionary problems
like plant aging simulations.

e Secondly, and also directly relevant to “aging”, is the motivation to elimi-
nate stability constraints that limit the time stepping in long transient simu-
lations.

Enter fully implicit tightly coupled solution algorithms for multi-physics sim-
ulations, using so-called Jacobian-Free Newton Krylov (JENK) method; see e.g.
[ KO4]. Most notably, with its “Jacobian-Free” quality, the JENK method allows
new physics be incorporated in the simulation without having to redo a substan-
tial amount of - often impossible - analytical and programming work. The fully
implicit simulation can be achieved (and has been achieved in the RISMC code
developmental version) by using high-order-accurate time discretization schemes,
which are variations of the Runga-Kutta method.

Efficiency of JENK method, however, can deteriorate with the spread of phys-
ical time scales, which increase the problem’s stiffness. The issue can be allevi-
ated via development of advanced algorithms and by addressing the stiffness at
the model formulation level.

e Algorithmically, the JFNK method convergence can be accelerated by using
effective preconditioners. This includes
— Mathematical (e.g. ILU) preconditioners, and
— Consistent physics-based preconditioners; [ MK ROO, MICROL, RWMIEOS,
RMWKO05].

Both types should be pursued.

e Fundamentally, it boils down to having homogenized models, whose time /
length scales are consistent with the spatio-temporal resolution intended in
the RISMC code simulations.

— The “intended” resolution varies over the system domain and differ-
ently in different applications.
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+ In system safety simulations, there is no need, and resources, to
resolve fine-grain fluid motions.

* However, it is important that the simulations capture flow patterns
and other characteristics of importance for safety margins.

* The premise is that the system dynamics and key safety parame-
ters can be predicted with a reasonable accuracy without resolving
the details of boundary layers and small-scale turbulent mixing,
while the under-resolved flow features are effectively modeled
with by subgrid scale closures in appropriately derived coarse-
grain models.

— The above suggests that the homogenization must take into account
parameters of space/time discretization on which numerical solutions
are to be obtained ’.

— Homogenization must consistently treat both the transport terms (PDE
model) and the constitutive relations (closure laws), which supplement
structural / subgrid-scale information °.

In summary, the “Integration” function requires:
System Modeling: To provide a decomposition/assemble-friendly library of SSCs.

Physics Modeling:

e To provide homogenized coarse-grain models with time/length scales con-
sistent with level of spatio-temporal resolution intended in numerical simu-
lations.

e To provide interfaces between models with different resolution and dimen-
sionality.

"Example of achieving such homogenization at a fine scale is Large Eddy Simulation
LES with its Sub-Grid Scale SGS model. Work is underway - by Professor S: Shkoller
team - on developing a coarse-grain model for compressible Navier-Stokes equations and
two-phase flow using the so-called the Lagrangian-Averaged approach. The resulting
governing equations contains the third order terms. Numerical solutions to these equations
necessitate the use of the higher-order methods.

8Modern one-dimensional channel-cross-section-averaged two-fluid model is a case
where this consistency is violated. The closure relations are microphysics-based, being
accurate at single bubble / droplet level; whereas they are used to model an averaged
physics effect in a large control volume.
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Code Architecture: Object-oriented.

Numerical Algorithms:

e Dynamic time step control.

“Gap-tooth” scheme.

Domain decomposition.

— Characteristics-based matching interfaces

Fully implicit nonlinearly coupled solution.
— Preconditioning.
e Reconstructed Discontinuous Galerkin method.

Data Management: Accommodate multiple levels of resolution.

Verification and Validation: Manufactured solutions for multi-physics problems.
Manufactured solutions for multi-scale problems.
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1.2.2 Fluid Flow

ODELING and simulation of fluid flow are an area of critical importance for

the RISMC code’s capability and quality. In fact, the strategy for fluid flow
modeling dominates over the whole implementation plan for the RISMC code de-
velopment, validation and applications.

One apparent reason for this is a well-established view of thermal hydraulics
as the major driver for system safety simulations; and this reason continues to be
valid and applicable, particularly for a majority of use cases, when the RISMC
code gets back to the traditional arena of severe plant transients, DBAs and be-
yond.

The other - new, life-extension-related, - reason for fluid flow to be the criti-
cal element in the RISMC code, already in the early developmental phase, is the
role of fluid flow in determining stressors on risk-significant SSCs”. This risk-
informed” objective requires a tightly coupled thermal-fluid-structural analysis.

For Plant Aging analysis, fluid flow is primarily single-phase and quasi-steady-
state. Two distinct areas of new capability are required to support this analysis.

Area FF-I: Fast-running thermal-fluid flow simulation

e Space-wise, a plant aging analysis must include a large piping network to
enable assessment of their integrity and consequences of their failures.

— This includes plant’s primary coolant system, secondary system, safety
systems, auxiliary systems, etc.

— In some areas e.g. straight duct sections, a large node is sufficient,
while in some other areas e.g. junctions, finer nodalization is required.

e Time-wise, to support simulations of core neutronics and plant system be-
havior over a long period of time, over a number of fuel reload cycles, it is
required that the fluid flow simulation is fast-running, notably not be limited
by the CFL limit as the case in the legacy system thermal hydraulics codes.

9The term risk-significant” used here is meant to go beyond “safety” (e.g., core dam-
age), to include plant operability and plant decision making.
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e Even in one-dimensional formulation, the fluid flow system simulation task
can thus become computationally demanding.

e High-order accurate schemes in both time and space are critical to achieve
computational efficiency.

— This has been demonstrated for compressible Euler and compressible
Navier-Stokes equations models, using Reconstructed Discontinuous
Galerkin methods in the RISMC code 35 version.

Area FF-2: Time- and space-resolved thermal-fluid flow simulation

e Damage growth in structural materials of risk-significant SSCs is driven
by the stressors, including those of thermal and mechanical origins. It is
therefore important that thermal and mechanical stresses on these SSCs are
accurately calculated. This requires high-resolution fluid flow simulations.

— In a plant normal operation, i.e. quasi steady state, materials in VIS
are subject to structural fluctuations and thermal stripping. Persistent
nonuniformity in flow patterns (mixing / stratification) in the down-
comer and lower plenum can lead to material fatigue.

— During a plant transient, such as overcooling transients, large tempera-
ture gradients imposed on already long irradiated and embrittled struc-
tures can accelerate the damage growth. Fluid mixing upstream and in
the vicinity of risk-significant SSCs must be resolved appropriately to
capture the effect on structures.

e Since Direct Numerical Simulations (DNS) and Large-Eddy Simulations
(LES) are not practical for engineering analysis - that involves large di-
mensions, complex geometry, and long transient processes, - the fluid flow
simulation requires subgrid scale (turbulence) models as closure relations
for the conservation-equations (PDE) model.

— This "turbulence modeling” - even limited to regimes and conditions

of interest to UC-1 and UC-2 - requires extensive experimental support

for development and validation'".

10Research to support validation of coarse-grain models in mixing / stratification flow
regimes and transition from force to natural circulation of interest to plant transient analy-
sis is underway at the Utah State University’s Professor B. Smith group. Appendix should
provide additional details on the research plan at USU.
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— Highly desirable Coarse-Grain Models (CGM) need not be able to cap-
ture all flow details, but flow patterns and characteristics that influence
uncertainty in predicting the stressors of interest for the application
(Use Cases). This requires a new approach to fluid flow homogeniza-
tion .

For Plant Transient analysis, fluid flow remains primarily single-phase in a
majority of operational and mild transients. This analysis can be well served by
capability developed for Areas FF-1 and FF-2 above. In addition, capability to
simulate two-phase flow processes need to be considered, as they may emerge in
certain set of plant transients, including those caused by degradation-induced fail-
ures e.g. pipe rupture.

Area FF-3: Consistent two-phase flow simulation

e (Single-phase and two-phase consistency) Two-phase flow must be mod-
eled in a consistent formulation with single-phase flow, both mathematically
and computationally.

— This is to ensure seamless (preferably, unified) platform for fluid flow
over single-phase and two-phase flow regimes.

— This should also eliminate the issue of phase appearance and disap-
pearance in two-phase flow simulations.

— This suggests that high-order accurate schemes in time and space (RDG)
should be extended to solve the two-phase flow equations.

— The two-phase flow equations solution must be verifiable and asso-
ciated numerical uncertainty (discretization errors, solution residuals)
be quantified.

— This requires the two-phase flow equations be hyperbolic (well-posed
models) 2.

Research to develop coarse-grain models in compressible Navier-Stokes equations of
potential interest to UC-1 and UC-2 is underway at the University of California - Davis’s
Professor S. Shkoller group. In their work, the Lagrangian-Averaging concept is applied
to Navier-Stokes equations, leading to Navier-Stokes-Fourier equations. Appendix should
provide additional details on the research plan at UC-Davis.

12This can be achieved for two-fluid six-equations model in a variety of ways, including
option for interfacial pressure term. For more discussion, see e.g. [DNTO2].
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+* Mathematical and computational requirements of consistency can
be met by a two-phase flow mixture model (three equations with
drift flux).

e (Self-consistency) Two-phase flow model should ensure consistency be-
tween transport model (PDE), its constitutive relations (closure laws) and
PDE’s discrete representation.

— This requires homogenization of closure relations that reflect both in-
ternal structures / actions (flow regimes, interface interactions) and
time / length scales of the volume for which the closures provide con-
stitution.

— The so-homogenized two-phase flow models ensure solution conver-
gence, both on PDE part and closure part.

— As an example and important area for applications, choked flow should
be modelled under these constraints, to ensure that the RISMC code
can simulate pipe breaks at any location in the piping network, and
achieve converged solutions with grid refinement.

* Predictive "choked flow” (Mach 1) was realized in the RISMC
code for single-phase flow with RDG scheme.

e (Developmental consistency) Two-phase flow models used in the RISMC
code should be amenable for model improvement, both physically and ex-
perimentally'?.

— Assumptions used to formulate a two-phase flow model and its closure
relations, must represent both the state of knowledge and degree of
ignorance (lack of knowledge).

* Such modeling framework uses the current knowledge / data as
reference points, while providing “placeholders™ for not-existent
data;

* Such placeholders point to data needs, allow sensitivity analysis

to evaluate the new data’s "value of information”, and enable de-
sign of new experiments to maximize their value;

13This requirement is central to the dynamic concept of knowledge management, and
advanced capability such as data assimilation.
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x Newly obtained data can be easily incorporated to reduce uncer-
tainty, and the models are therefore improvable.

— Static "flow regime maps” as used in the legacy codes are example
of models which are built on “frozen™ assumptions'* and hence not
amenable for improvement.

* For inclined pipes, the flow regimes are weighted between those
given by the "vertical channel” and "horizontal channel” maps.
As a result, new data from inclined channels are not incorporable
into the model to reduce its uncertainty.

* The same remark applies for developing flow conditions and un-
steady flow conditions.

* The static maps create transitions in state space, rendering irrele-
vant data from experiments which measure time and length scales
of the transitions.

— Examples of improvable models are dynamic flow regimes and dy-
namic constitutive relations which use internal time- and length scales
as parameters. Due to lack of related knowledge, these parameters
must be given over an uncertainty range. As new data emerge, they
help to narrow the range.

— Model parameters which have high sensitivity on solutions of two-
phase problem must be obtainable or inferable from measurements
with high confidence.

+ This is to ensure that such uncertainty in these high-sensitivity
parameters are reducible.

* This also requires a projection of modern diagnostic capabilities,
and a plan to develop advanced instruments to perform the neces-
sary measurements.

The above-listed requirements manifest a formidable challenge in the two-
phase flow modeling area. Other requirements on fluid flow simulation - for both
single- and two-phase cases, such as coupling models of different resolution and
dimensionality and coupling fluid flow model with other physics, are discussed as

These modeling assumptions as a rule are derived from best knowledge of experts at
the time of model formulation. They thus build on past experience and data but discount
the possibility to assimilate new data.
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part of "Multi-Scale, Multi-Physics Integration” function in section 1.2.1.

As the project progresses into a later phase, two-phase boiling flow (and heat
transfer) in the core (including highly nonequilibrium regimes as postdryout and
rewetting) as well as nonequilibrium two-phase flow in some local areas (e.g.
ECCS -RCS junction area) is expected to exhibit itself as a major source of un-
certainty 7. This requires interrogate foundations of two-phase flow modeling,
including evaluating

e the merit of seven-equation two-fluid models, including its potential for un-
certainty reduction;

e the potential of interfacial area transport equation and the maturity of database
to support it, and

e the need to go to multi-field (four-field) models to represent mechanical and
thermal nonequilibrium within liquid and vapor phases (e.g. wall bubbles
vs vapor core; wall film vs droplets).

This analysis suggests a critical need for the Project to consolidate efforts in
two-phase flow and heat transfer areas and establish a modeling framework for
two-phase flow and heat transfer that

e allows various sources of uncertainty be represented and evaluated for their
significance; this include but are not limited to
— dynamic flow regimes (in transient and developing two-phase flow);

— materials / surface / chemistry / irradiation effect on near-wall two-
phase flow behavior (bubble nucleation, film rupture);

— interactions between near-wall / boundary-layer flow and core / bulk
flow;

— multi-dimensional and geometry effects.

S Research is underway in the Oregon State University, Ohio State University and MIT
to (i) quantify uncertainties in two-phase flow and heat transfer models, and (ii) evaluate
capability of modern diagnostics and infrastructure to obtain new data to support model
development, validation and uncertainty reduction. Appendix should provide more details
on teh planned research in these topical areas.
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e serves as platform to integrate results (data, insights, models) from diverse -
and currently diverged - experimental and computational research activities
in this area, and

e cnables obtaining coarse-grain models, which are computationally effective,
while conserving key measures of importance to the applications.



This Page is Intentionally Left Blank



Chapter 2

Software Architecture

HIS Chapter describes the architecture of the RISMC /-2 code. We start with
Toutline of the code design concepts (components, interfaces, structure of the
vector of unknowns and Jacobian matrices), in Section 2.1, followed by the defini-
tion of the code developmental model and brief descriptions of external packages
and their use in the RISMC (-2 code. Organization and contents of this chap-
ter is oriented on advanced users, who intend to understand details of the code
implementation and to contribute to the libraries of components and interfaces.

2.1 Architecture Design

The RISMC (-2 code must be viewed as a library/suite of utilities for performing
nuclear reactor system analysis. The main code driver is implemented as the C++
Class R7_Driver. Figure 2.1 outlines the major ingredients of the code design:

% In the core of the code are the libraries of components and interfaces, Sec-
tions 2.1.1 and 2.1.6.

— Components are designed to represent the components of the modeled
reactor system, such as piping, pumps, elbows, T-junctions, down-
comer, pressurizer, etc. They encapsulate the mathematical and phys-
ical models of the components in their discretized representation. We
will discuss component generic design features in section 2.1.1.

— Interfaces are designed to “glue” components together. All compo-
nents are developed with the capability to be coupled with some other

23
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Library of templates

Fig. 2.1 : On design of the RISMC /-2 code.

ADIC (FSA & Adjoint)

components. Currently, we utilize the commonly used in computa-
tional science “ghost storage™ concept. As such, components do not
know about existence of other components, and operate presuming
that the “ghost storage™ is populated in some manner. Interfaces are
basically the “traffic cops”, which are designed to take certain infor-
mation from one component and pass it to the “ghost storage™ of an-
other, in the appropriate manner. We will discuss interface concepts in
Section 2.1.6.

% Component and Interface Factories are C++ utilities for initializing and
putting components and interfaces together, in the modeled reactor system.

% Computational Engine is a driving force for transient simulations. It in-
cludes initiation of time discretization classes, control of time stepping,
including dynamic time step control and handling of abnormal situations
(crash/disconvergence), restart control, interaction with and re-initialization
of linear and non-linear algebra solvers.

% Linear and Non-Linear Algebra. Currently, the RISMC /-2 code is based
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*

on PETSC suite of data structures and routines, Section 2.3.1. PETSC also
provides the basic linear and non-linear algebra routines (KSP and SNES,
respectively). The details will be discussed in Chapter 3.4.

Material Library. Another important ingredient of the RISMC (-2 code
design is the material library, which includes properties of simple and multi-
phase fluids, solids, and neutron properties of fuels. The detail description
is given in Section 3.6.

Closure Library. Mathematical models for most of the components are
based on homogenized set of governing equations, requiring physical clo-
sure (or constitutive) laws. These closure laws are designed as C++ Classes,
and collected in the Closure Library.

UQ & SA. RISMC -2 code is developed with built-in capabilities for Un-
certainty Quantification (UQ) and Sensitivity Analysis (SA). Currently, our
main support for UQ & SA is coming from the DAKOTA toolkit, Section
234

/0, GUI, code control utilities.

Pre- & Post-processors. Currently, we utilize EXODUS II based data model
(Section 2.3.3) for pre- and post-processing. The EXODUS meshes can be
generated using SNL's CUBIT software (see Section 2.3.6), and the results
can be post-processed (visualized) using LLNL's VISIT toolkit (see Section
2-3:5).

The resulting features for the RISMC /-2 code design are:

Object-oriented (C++).
Parallel (MPICH2).
High-order space discretization (discontinuous finite-element based).

Fully-implicit, L-stable, high-order time discretization (though, explicit time
discretization schemes are also available).

All-speed capabilities.

Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) enabled.
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e State-of-the-art linear algebra (Krylov-based, Jacobian-free Newton-based
algorithms).

e “Born-assessed”, with subversion control, extensive verification and docu-
mentation, 3D visualization, thorough regression testing.

2.1.1 Components

One of the most important concepts in the RISMC (-2 architectural design is
the concept of component. Component is a discrete representation of particular
elements/components in the reactor system, such as pipes, elbows, T-junctions,
pressurizer, pumps, valves, lower plenum, downcomer, control rods, fuel pins,
etc. Snapshot for the hierarchy of currently available component library is shown
in Figure 2.2.

Components are based on certain mathematical and physical models. In terms
of space representation, we have 0D, 1D, 2D and 3D components, Figure 2.3.
Similarly, components can be sorted based on the dominant physics, such as ther-
malhydraulics, neutronics, thermal-structural, control system, etc., see Figure 2.4.

2.1.2 Visualization

Very important concept in designing a component — is its visualization. Regard-
less of the actual component topology, all components should have their three-
dimensional “avatars”, which can be used for post-processing. For example, 1D
pipes are actually rendered in 3D. In the absence of native 3D mesh data structures,
component’s “avatar” can be generated using CUBIT, exporting data structure in
Exodus I format. An example of a simple multi-component reactor system is
shown in Figure 2.5. In this case, OD pressurizer is rendered as a 3D tank, while
0D control rod system is represented as a solid cylindrical tube inserted into the
core.
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2.1.3 Data structures

The main ingredient of the component data structure is the vector of unknowns.
This is the part which is exposed/represented in the global solution vector for the
RISMC /-2 non-linear algebra solver. When developing/designing a particular
component, the main task is to compute the vector of residuals, corresponding to
the component’s vector of unknowns. Similarly to the vector of unknowns, the
local vector of residuals is exposed/represented in the global vector of residuals.
In addition to these two important component’s data concepts, one can have ad-
ditional data, which are necessary for existence and functioning of a component.
Examples of these auxiliary data structures are computational meshes, classes for
space discretization, material properties, closures, I/0 data streaming, etc.

Another very important concept in the RISMC (-2 design is the “ghost stor-
age”. When the component is being developed, it is presumed to be “autonomous”,
that is it does not know about possible existence of other components. The “ghost
storage” is a data structure necessary for component’s independent functionality.
In other words, it is presumed that the “ghost storage” is always appropriately
filled-in from outside (in fact, this is the task of “interfaces”, see Section 2.1.6).
The “ghost storage” is component-specific, and organized in such a way, so the
component’s residual vector can be computed seamlessly, without the knowledge
of data structures outside of the component.

2.1.4 Orderings

It is important to understand the ordering conventions used for the component’s
solution/residual vectors and their relative place in the global solution vector/resi-
dual. To understand these, one must look at it in the light of the RISMC /-2 global
non-linear solver. While details of the used here JFNK solution procedure are
revealed in Chapter 3.4, the main piece of the global solution vector non-linear
update is captured by the following equation:

= F 4 (1) (s (7)) @.1)

"

'

Linear stage

where X* is a global solution vector at a non-linear iteration a, rés is the corre-
sponding global residual vector, and J” is a Jacobian matrix. The ordering of un-
knowns is very important for efficient treatment at the linear stage, corresponding
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Fig. 2.5 : An example of multi-component system in RISMC -2 code. 32 components
are shown in different colors.
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to the matrix inversion of the Jacobian matrix (generally, treated “matrix-free™).
[t is necessary to keep the Jacobian matrix structured, so that effective Krylov
preconditioning techniques can be applied (see Chapter 3.5).

For that purpose, at the component initiation stage, we tag local (component’s)
solution vector on “internal” and *“global” elements/unknowns. This can be ex-
plained in terms of elements of the Jacobian matrix as follows.

Each (;;) element of the Jacobian matrix represents coupling/dependence of the
(iyn unknown to the (jym unknown. We define the (;)« unknown of a component
as internal, if .,]]:'J_ = () for all js (unknowns) which belong to other components.
In other words, the (;:» unknown is linearly coupled to unknowns of its compo-
nent only, and linearly independent of unknowns from outside of the component'.
Correspondingly, all component’s unknowns which linearly-dependent on the so-
lution in another components are called global.

Next, we distinguish three kinds of orderings in the RISMC /-2 code:
1. RISMC /-2 ordering,

2. PETSc ordering, and

3. Local component’s ordering.

RISMC (-2 ordering and its parallel structure is explained in Figure 2.6. Sup-
pose we have in total _N_unknowns unknowns. The RISMC -2 ordering is
started from zero, numbering first internal unknowns, on the component-by-compo-
nent basis, finishing at tot_num_internal_unkns-1. This piece of the global
solution vector is parallelized, distributing component data between available CPUs
(see Parallelization strategy below). Next, we continue ordering, starting from
_tot_num_internal_unkns, and numbering all global unknowns, on the com-
ponent-by-component basis, finishing at N_unknowns-1. This piece of the global
solution vector is shown in red in Figure 2.6, and it is placed on the “master” CPU-
0.

As a result of this solution vector ordering and parallelization, the Jacobian
matrix is structured as conceptualized in Figure 2.6. There is a block-diagonal
part, with each block representing the Jacobian sub-matrix, describing linear cou-
pling of unknowns inside each component. In general, each sub-matrix is not nec-
essary full, but it can be structured in some convenient way, facilitating effective

'In terms of “ghost storage” defined above, computation of the (iyth residual elements
does not involve data from the “ghost storage”.
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physics-based preconditioning on the component-by-component basis, see Chap-
ter 3.5. The red part of the Jacobian matrix represents the component coupling
part. Desirably, the block-diagonal part is significantly larger than the compo-
nent coupling part. If the physics-based preconditioning strategy were chosen,
the component coupling part (lower-right corner block in Figure 2.6) would be
directly solved. Thus, the smaller the red lower-right corner block is, the more
efficient the general solution strategy ought to be.

PETSc ordering. We base our solution/residual data structures on the PETSC
(see Section 2.3.1). PETSc ordering is different from our RISMC /-2 ordering,
as explained in Figure 2.7. The PETSc global solution vector is distributed be-
tween CPUs. We keep track of both global PETSc unknown ordering (from 0 to
N_unknowns-1), and local PETSc unknown ordering (from 0 to _sd->_N_un-
knowns_perCPU [p]-1, for each p'" CPU)’. Mapping from PETSc to RISMC
-2 ordering and back is implemented using PETSc’s “Application ordering” con-
cept, .sd->ao of the PETSc type A0.

Important Array p2R7[] Array_p2cpu|] Array_p2Loc|]
pointersin the % 1 8% =N
Class Component: i
‘I -
gl L gLl

Polnting to 3| whiencPy 3| Socmcry

! u': n;wns v unknown S unknown

iy otaenng belongsto ordering

H .' knowns- 1 . l N unknowns- |

Ghostveclor
Ghostveclor

Fig. 2.8 : On the local component ordering of unknowns in the RISMC -2 code.

Local component’s ordering. When developing a new component, it is very use-
ful to understand the following local component’s ordering and mapping arrays,
Figure 2.8:

e _N_unknowns is a total number of unknowns in the component.

2Class _sd is of type R7sdata, containing all relevant solution data information.
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_p2R7[] is the array, pointing from the local component’s unknown order-
ing (set from O to N_unknowns-1) to the RISMC (-2 ordering.

_p2cpul] is the array, pointing to which CPU the unknown belongs to.

_p2Loc[] is the array, pointing to local PETSc unknown ordering (see Fig-
ure 2.7).

2.1.5 Parallelization strategy

We use component-based partitioning strategy, that is the CPUs are initially dis-
tributed between components, based on the size of the local component’s unknown
vector, ignoring the actual graph structure of the global Jacobian matrix and solu-
tion vector. There is some way the user can affect the partitioning, by specifying
the following input parameters (or these can be hard-coded) in the component’s
auxiliary data structure:

_lcpu: set to true if this is a 1-CPU component. This is generally for
components which you do not want to partition for the sake of simplicity.

_lcpu.no_share: If I-CPU component, specify if you want to share CPU
with other components (set to true). This is generally for components
which you do not want to partition, and which are rather “heavy-weight” in
terms of computing residual vectors, preconditioning and memory.

_live_onmaster: setto true ifitis 1-CPU component which you want
to “live” on the master CPU-0. This is generally for components which
are very “light-weight”, something like OD components — very cheap in
computation and small memory-wise.

With this, the parallelization is implemented in the following manner:

2

“Master” CPU-0 is reserved for the Schur-complement part of the solution
vector.

All the rest CPUs are split between components based on the size of the
component’s solution vector and the following partitioning rules:

(a) If the component is multi-CPU (its _1cpu=false), it is assigned
with some CPUs.
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(b) If the component is 1-CPU (its _1cpu=true) and declared *“share™
(L1cpu_no_share=false), itdoes not “straddle” over a few CPUs,
but it can share CPUs with other 1-CPU components.

(¢c) If the componentis 1-CPU (its _1cpu=t rue) and declared “no share”
(_L1cpu_no_share=true), it “owns” a CPU without share with other
components.

Each multi-CPU component on the other hand should have it’s own parti-
tioning strategy/algorithm. For example, for 2D/3D components, one can utilize
PARMETIS package (Section 2.3.2), for effective data partitioning inside a com-
ponent.

In general, parallelization of the RISMC /3-2 code is cost-effective when there
are some very “heavy-weight” (3D) components, and when the block-diagonal
part of the Jacobian matrix significantly larger than the component-coupling part,
see Figure 2.6.

2.1.6 Interfaces

Fig. 2.9 : On the concept of interfaces.
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The concept of component’s interface is of great importance for understand-
ing RISMC (-2 architecture. It is closely related to the concept of component’s
autonomous functionality, contributing to the code development scalability and
general design flexibility in building a RISMC -2 model for specific reactor sys-
tem.

The foundation of the component library is based on the ability to develop and
test (verify/validate) a component independently (autonomously) of other compo-
nents. For this purpose, we use a concept of “ghost storage”. “Ghost storage”
is a component-specific data structure, which is not explicitly represented in the
global solution/residual vectors, but which is rather created/populated for the pur-
pose of component independent functionality. It is the task of interfaces to prop-
erly “populate” component’s “ghost storage”. Thus, the primary design purpose
of interfaces is to be able access data in components and transfer data in appro-
priate manner from one component data structure to another component “ghost
storage”, serving a role of “traffic cops”, see Figure 2.9.

Each component might have multiple interfaces. An interface might connect
several components. In the case of 1-component interface, it serves the role of
boundary condition.

Interfaces are created wusing Interface Factory — a C++ Class
InterfaceFactory, designed to automatically identify component connec-
tivity and construct/initialize appropriate interface, adding it to the list of inter-
faces.

Design of a particular interface is rather difficult task, requiring not only in-
timate knowledge of underlying mathematics/physics and “ghost storage” for all
relevant components, but also the knowledge of how the components interact and
integrate into the global solution vectors/procedures. Therefore, only very experi-
enced code developers are assumed the task of creating interfaces.

To understand the function of interfaces, we need to understand how the calls
to interfaces are incorporated throughout RISMC (-2 solution algorithms. The
building block for RISMC /-2 solution algorithm and the cornerstone for under-
standing interface machinery is the call for computation of residual vectors. It is
invoked from the code’s non-linear solvers in implicit algorithms, as well as at the
time update of explicit algorithms.

In a nutshell, before any actual computation of the given residual vector rés
using a given solution vector X, we call all interfaces in the interface array
_InterfaceArray (possibly, in a multi-stage manner), and asking to perform
“traffic cop” tasks, taking some appropriate data from X and stuffing it into the
appropriate “ghost storage”. Meta-code for typical interface action is given below:



38 CHAPTER 2. ARCHITECTURE

std::vector<Interface «>::iterator i.iterator;

Apply pre-control functions:

for (iiterator=_
{Interf

rray-»end () ; idterator++)
X,0,time);}

for (iiterato
{Interface «int

ay->end() ;i_iterator++)

«.Apply component/system control actions...

Apply post-control functions:

InterfaceArray->end() ;i iterator++)
rt.Control (X,0,time); }

for({iiterator

rfaceArray->end () ;i iterator++)

{Interface «i ol (X,0,time) ;}
Ask interfaces to populate “ghost storage™:
for({i_iterator=_InterfaceArray->begin();i_iterator!=_InterfaceArray->end();i_iterator++)

{Interface sinterface = +i_iterator; interface->Start GhstPopulation(X,0,time);}
for (int stage=0;stage<num.stages;stage++) -{

for{idterator=_InterfaceArray->begin();idterator!=_InterfaceArray->end();iiterator++)
{Interface sinterface = +i_iterator; interface->5Stage GhstPopulation(stage, X,0,time);}

}

for({i-iterator=_InterfaceArray->begin();i-iterator!=_InterfaceArray->end();i-iterator++)
{Interface sinterface = +i_iterator; interface->Stop.GhstPopulation(X,0,time);}

In the above meta-code, interfaces performed three functions: 1) do every-
thing necessary preparing to invoke the control system components; 2) do every-
thing necessary after the control system has been applied; and 3) populate “ghost
storage”, in num_stages manner. Multi-stage ghost population is introduced to
increase flexibility of the interfaces to deal with their possibly numerous compo-
nents.

2.2 Development model

The projected code development model is sketched in Figure 2.10. We visual-
ize 2.5 layers of the code development. At the bottom is the core group of INL
researchers (software engineers, computer scientists, nuclear engineers) develop-
ing and testing the crucial components of the code infrastructure and user support
group. One of the main task is to advance the math and computer science behind
the RISMC /-2 computational analysis vehicle, providing component, material
and closure templates and specializing component interfaces for the outside user
and code development community. The second layer is the outside community
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Fig. 2.10 : On the RISMC -2 code development model.

of advanced code users/developers. This group of people with advanced knowl-
edge of the code infrastructure should be able to develop application-specific
components out of available component templates. The development activity in-
volves adding closure laws, writing/modifying (“specializing”) computation of
non-linear residuals, component-wise preconditioning strategy and developing
new material properties (if needed), using material templates. This group should
provide the major feedback to the infrastructure developing group at the bottom,
in terms of bug reports and requests for additional templates and specializing
component interfaces. The final “half-layer™ of the users/developers is less ad-
vanced code testing and application community. In terms of developments, the
main contribution of this group is to add application-specific closures, using tem-
plates available through the development by the “advanced” users group.

2.3 External packages

There are a number of external packages used in RISMC /-2 , for code function-
ality, pre/post-processing and documentation. The most important packages are
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described below.

2.3.1 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSC) [BBG 01,
BEE04] 1s a suite of data structures and routines, developed at the Mathematics
and Computer Science Division of Argonne National Laboratory (ANL). PETSC

provides the building blocks for the implementation of large-scale application
codes written in Fortran, C and C++. It also provides many of the mechanisms
needed within parallel application codes, such as parallel matrix and vector as-
sembly routines. The library is organized hierarchically, enabling the level of ab-
straction that is most appropriate for a particular problem. By using techniques of
object-oriented programming, PETSC provides enormous flexibility for its users.

In the RISMC -2, PETSC is incorporated on three levels:

1. Architecture. We use PETSC as a foundation for our data structures, in
particular, for vectors, matrices and distributing parallel data.

2. Nonlinear solver. PETSC’s nonlinear solver package SNES is one of the
main options for implementation of JFNK.

3. Linear solver. PETSC’s linear solver package KSP is available for devel-
oping preconditioners, on both component- and global-solution levels.

2.3.2 ParMeTiS

a variety of algorithms for partitioning and repartitioning unstructured graphs and
for computing fill-reducing orderings of sparse matrices. PARMETIS is par-
ticularly suited for parallel numerical simulations involving large unstructured
meshes. In this type of computation, PARMETIS dramatically reduces the time
spent in communication by computing mesh decompositions such that the number
of interface elements are minimized.

The algorithms in PARMETIS are based on the multilevel partitioning and
fill-reducing ordering algorithms that are implemented in the widely-used serial
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package METIS [KK9%]. PARMETIS provides the following additional func-
tionalities and routines, that are especially suited for parallel computations and
large-scale simulations:

e Partition unstructured graphs and meshes.

e Partition graphs that correspond to adaptively refined meshes. Partition
graphs for multi-phase and multi-physics simulations.

e Improve the quality of existing partitions.
e Compute fill-reducing orderings for sparse direct factorizations.
e Construct the dual graphs of meshes.

In the RISMC (-2 , PARMETIS is used through the PETSC (it is a part of
the PETSC installation package). PARMETIS is used to partition both global-
component-level (coarse-grain) graphs, as well as for partitioning in-component
data structures.

2.3.3 Exodus II

EXODUS II is a model developed in Sandia National Laboratory (SNL) to store
and retrieve data for finite element analyses. It is used for preprocessing (prob-
lem definition), postprocessing (results visualization), as well as code to code data
transfer. An EXODUS II data file is a random access, machine independent, bi-
nary file that is written and read via C, C++, or Fortran library routines which
comprise the Application Programming Interface (API). In RISMC -2 , EXO-
DUS Il is used for post- and pre-processing computational results.

2.3.4 Dakota

The DAKOTA (Design Analysis Kit for Optimization and
Terascale Applications) toolkit provides a flexible, extensible
interface between analysis codes and iterative systems analy-
sis methods. It is developed at Sandia National Laboratory
(SNL). DAKOTA contains algorithms for optimization with
gradient and nongradient-based methods; uncertainty quantifi-
cation with sampling, reliability, stochastic expansion, and epistemic methods; pa-
rameter estimation with nonlinear least squares methods; and sensitivity/variance
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analysis with design of experiments and parameter study methods. These capa-
bilities may be used on their own or as components within advanced strategies
such as hybrid optimization, surrogate-based optimization, mixed integer non-
linear programming, or optimization under uncertainty. By employing object-
oriented design to implement abstractions of the key components required for it-
erative systems analyses, the DAKOTA toolkit provides a flexible and extensible
problem-solving environment for design and performance analysis of computa-
tional models on high performance computers.

2.3.5 VisIT

The VISIT is a free interactive parallel visualization
and graphical analysis tool for viewing scientific data
on Unix and PC platforms. It is developed at Lawrence
Livermore National Laboratory (LLNL). Users can
quickly generate visualizations from their data, animate them through time, ma-
nipulate them, and save the resulting images for presentations. VISIT contains
a rich set of visualization features so that you can view your data in a variety of
ways. It can be used to visualize scalar and vector fields defined on two- and
three-dimensional (2D and 3D) structured and unstructured meshes. VISIT was
designed to handle very large data set sizes in the terascale range and yet can also
handle small data sets in the kilobyte range.

RISMC /-2 code generates outputs for visualization of simulation frames,
which are compatible with VISIT. To read RISMC /3-2 ’s visualization files into
the VIsIT, open the files under

/RESULT.X/*.visit

2.3.6 Cubit

The CUBIT is a full-featured software toolkit for robust gen-
eration of two- and three-dimensional finite element meshes
(grids) and geometry preparation. Its main goal is to reduce the
time to generate meshes, particularly large hex meshes of com-
plicated, interlocking assemblies. It is a solid-modeler based
preprocessor that meshes volumes and surfaces for finite ele-
ment analysis. Mesh generation algorithms include quadrilateral and triangular
paving, 2D and 3D mapping, hex sweeping and multi-sweeping, tet meshing, and
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various special purpose primitives. CUBIT contains many algorithms for con-
trolling and automating much of the meshing process, such as automatic scheme
selection, interval matching, sweep grouping and sweep verification, and also in-
cludes state-of-the-art smoothing algorithms.

2.3.7 Doxygen (documentation)

The DOXYGEN is a documentation system
for C++, C, Java, Objective-C, Python, IDL M
(Corba and Microsoft flavors), Fortran, VHDL,
PHP, C#, and to some extent D, developed by Dimitri van Heesch [vHY7].

In the RISMC -2 , DOXYGEN 1is used to generate an online documentation
browser (in HTML) and/or an off-line reference manual (in IXTgX) from a set of

documented source files. HTML documentation is compiled by executing
> doxme
in the command shell. To view documentation, open
file: //PATH/doc/html/index.html

in your browser, where PATH is the path to your RISMC -2 installation.

To build full documentation (HTML, I£TgX and including this manual), exe-
cute
> ./build._doc

in the command shell.
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2.4 Input and Output

HIS section discusses technical content of Input and Output (I/0) of the RISMC
Software.

Input: Input data needed to operate the RISMC code vary with the Use Cases
as well as the stage, in which the Use Case is being implemented. As the RISMC
code evolves, and the Use Cases enter maturation phases, the input becomes more
encompassing. In general, the following categories of input are sought:

e General specification of the system configuration to be analyzed,

— A set of SSCs that constitute the system;

* Identify each SSC in the RISMC code’s database for the SSC’s
type, function(s), operational characteristics, reliability and fail-
ure modes;

%+ Describe each SSC’s interface to other SSCs;

— Assumptions about interfacing SSCs (whose behavior is not modeled
/ simulated);

e Geometrical characteristics of the modeled SSCs rendered in three-dimen-
sional arrangement;

e Material and fluid characteristics of the modeled SSCs;
e Initial conditions; initialization parameters;
e Nodalization parameters and meshing;

e Numerical integration control parameters (solution algorithms; time step
control; convergence criteria);

e Model control parameters (types of models when model selection is re-
quired);

e Uncertainty range for a set of scenario, algorithmic and modeling parame-
ters (selected for study);

e Simulation control parameters (including simulation modes e.g. calibration,
probabilistic loading; serach);
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e Simulation execution monitoring parameters;
e Output parameters and output control parameters.

Output: In practice, specification of the RISMC code output also varies with
different Use Cases and User Classes. In general, the following categories of
output are sought:

e Input information, including mesh, model / solution choices, etc.;

e Numerical solution control parameters (e.g. time step, residuals, models
used);

e System dynamics parameters, €.g. component-average variables;

e Dynamic transient / accident progression trees (identifying times and modes
of major events);

e Dynamic 1D profiles (of the plant system);
e Dynamic 3D fiels (e.g. temperature, velocity, strain);
e On-line processing results (e.g. safety margins; correlation coefficients).

The main challenge for the Output is to balance between

e (a) a massive amount of data (particularly, three-dimensional field parame-
ters) generated by transient simulations and combinatorial explosion of sce-
narios; therefore requiring effective ways to process and collapse the data,

— by scenario aggregation;
— by large-time-step output discretization;

— by coarse-mesh / component-wide characterization (e.g. representing
component-average parameters).

¢ (b) a potential loss of information due to the coarsened / aggregated storage,
which is not recoverable in the post-processing step.

Thus, an intelligent Output requires developing and embedding “on-line”” data
processing algorithms with the numerical solution that analyze a set of pre-defined
control parameters, to identify scenario or process peculiarities (typically, fast-
time-scale events) so to enable a “dynamic printing-time-step control” for data
output (printing to files).
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Chapter 3

Solution Techniques

3.1 Governing Equations
WE are concerned with the solution of the general class of PDEs (ODEs),

expressed in the following form

gl= =% (?2’+j’)+7€ 3.1)

L.

TR

where U, H.J = —DVU and R are the vectors of variables, hyperbolic flux,
diffusion flux and local reaction rate, respectively, and D are the diffusion coeffi-
cients. These types of PDE describe numerous physical problems, including high-
and low-speed fluid dynamics, combustion, radiation/neutron diffusion and trans-
port, thermo-structural mechanics, to name but a few. In nuclear reactor safety,
these type of equations are relevant for analysis of nuclear reactor transients, in-
volving natural convection of coolant (in passive safety systems) and coupling
of fluid dynamics/thermal hydraulics with neutronics, structural mechanics and

coolant chemistry. When V (?:{ - j) = 0, eq.(3.1) reduces to ODEs, which

can describe many 0D components in RISMC -2 , such as tanks, point-kinetics
neutronics, some elements of control system, etc.

3.1.1 Non-Dimensional Forms

The following basic scaling parameters (pressure, density and temperature and

length scale) are used:
(Po: poy Ty, L)

47
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Length scale is set always set to L = 1. These scaling parameters are defined as

[Scaling]
PRE scale = ... .
DEN.scale = .. |in the file “INPUT/ConfigR7.inp".
TEM_scale = ...

I

Scaling can be turn off by setting all the above parameters to 1. Scaling of
different physics in RISMC -2 is defined below.

3.1.2 Thermal-Hydraulics: Acoustic Scaling

In the case of 1D single-phase fluid,

. P . m 0
U=|m|;: H=| m*/p+P |; T= T
E u(E+ P) ut + K0, T

{3.2)

R=| R, +pj-&
RE + ”'}'.'-f_f' §

where p, u, m = pu, P, E = p (.* + %), T = nd.u, T, n, K, g, Eare den-
sity, velocity, momentum, pressure, total energy, viscous stress, temperature, dy-
namic viscosity, thermal conductivity, gravity vector and channel’s unit normal
vector, respectively. R , R, and R, are source (reaction) terms for mass, mo-
mentum and total energy, correspondingly. Internal energy is defined as 1 =
i +C,(T'=T.,), where C,, i, and T, are specific heat and reference in-
ternal energy and temperature, respectively.

For this set of equations, state variables are scaled as':

.-():.'aﬁm P:PRr 'M:'&V %5 T:T’I‘U
E=EP. i=ih R
= 0r U ?'P_(.’ C' o C" P Ty’ h=h Ty a ~ To (3.3)
n=fLp, %‘ = 110, % - Qzﬂﬁ - gn—?
23 iR i
L=L, t=t o - By

'Note that L = 1.
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3.2 Time Discretization

HIS chapter describes time discretization of eq.(3.1). Explicit time schemes
Tare summarized in Section 3.2.1. Implicit schemes are described in Section
3.2.2. The hierarchical tree of the time discretization Class TDiscr is shown in
Figure 3.1.

TIMED:TDIsct

TIMED ERS TIMED IRK,
| TIMED:FEuler TIMED:Heun | | TIMEC:RK3TVD | | TIMED:EDF | | TIMED:CN | TIMED ESDIRK |
|
TIMED:BOFZ | | TIMED:BEuler | |TIMED:ESDIRK3 | TIMED:ESDIRK4 | | TIMED-ESDIRKS

Fig. 3.1 : Hierarchical tree of the Class TDiscr.

3.2.1 Explicit schemes (Class ERK)

For general time integration of the system eq.(3.1), a number of Strong-Stability-
Preserving (SSP) explicit time discretization methods are available [(i0105]. The
Total Variation Diminishing (TVD) Runge-Kutta methods of Shu and Osher [5089]
(a subclass of SSP) are particularly suited for this purpose. In addition to the
simplicity of the Runge-Kutta methods, they are specially designed for time in-
tegration of hyperbolic conservation laws in a way that does not create spurious
oscillation in the solution. The explicit Runge-Kutta schemes implemented in R
code are given by

First-order Forward Euler (Class FEuler):

d =a” + a8 () (3.4)

Second-order Heun (Class Heun):

L—{*m :am n At-g(ﬂ{"}) s _ tt"m
4™ =9I + 4 (@ + At -8 (%))
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Third-order RK-TVD (Class RK3TVD):

Z/-{'m :Z}M +At-§(b7‘"") fm - t{u+l:
(“+2)

U? =3 +1 (zf('“’ + At S’(z]‘”)) b =i
L}'(wn _ %z}(n} n % (L?{zn 4 At.g(&'m))

(3.6)

where Af is a time step.

The third order 7VD method is generally recommended, since it has the great-
est accuracy and the largest time step stability region of the 7VD schemes. Due
to its large stability region (which includes a segment of purely imaginary linear
growth rates), for a sufficiently small time step, it is guaranteed to be linearly
stable for the wide range of problems. In contrast, the first and the second order
methods both require some spatial diffusion terms in order to be stable. Without
that, no matter how small the time step is, they may be mildly unstable. For this
reason, they should not be used unless there is substantial spatial diffusion in the
problem [ MIDOYE]

3.2.2 Implicit schemes (Class IRK)

An implicit time discretization of Eq.(3.1) can be written as

<1k

“Hn k =4 =2
7 M”JrAtEah_S(u”), S
= . (3.7)
de = ad™ "+ pU™ + At (bgs (u"") +3b,8 (u"‘l))
r=1

where s is the total number of implicit Runge-Kutta (IRK) stages, while a,, and
b, are the stage and the main scheme weights, respectively. We dropped all
sub/superscripts associated with spatial discretization, for brevity. Superscripts
“[xI” denote the stages of IRK iteration.

Class BEuler. Inthecaseofa =0, =1,s=1,b, =0and b, = 1, Eq.(3.7)
reduces to the first-order Backward Euler (BE,) discretization.
At At At

o A2 [ — 1 _
Class BDF2. In the case of a = A AGAL) B =% ACFAL 0 S

1, b, = 0 and b, = 1, Eq.(3.7) reduces to the second-order Backward
Difference (BDF,) discretization.

n—1
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Class CN. In the case of & = 0, = 1, s = 1,b, = S and b, = 1, it is the
second-order Crank-Nicholson (CN») scheme.

Class ESDIRK; 5. A family of high-order IRK schemes recently developed by
Carpenter etal. [BCVIKOZ, CKB " 05] is particularly useful for multiphysics
problems, since these schemes not only do not amplify any left-half-plane-
(LHP)-scaled eigenvalues (A-stability), but also provide a complete damp-
ing of all eigenvalues including those at the limit ||z — oo|| (L-stability).
These IRK schemes are prescribed by b, = 0 and the Butcher tableau of the
following form:

0 0 0 0 0 0
G, ay 8 0 0 0
Cs az Q3 v 0 0
S E T T (338)
1 b, b, b, . b(g_” v
b, b, b, b.. ., 7
b, b, b, b(s—l) bm

where ¢, denotes the point in time of the 7*'-stage, " + ¢, At. Note that the
first stage is explicit, and the diagonal elements for all stages » > 1 are the
same, a,, = v, which is why this family is called “Explicit, Singly Diagonal
Implicit Runge-Kutta” (ESDIRK) in the literature. Note that the p'"-order
ESDIRK,, schemes allow to compute (p — 1)"™-order solution, as

Z/?[N_‘—l] _ z/},’[u] + Af‘ i Brg (z’z[r]) (3.9)
r=1

The coefficients for ESDIRK, , . are summarized below.



52 CHAPTER 3. NUMERICS
ESDIRK
0 0 0 0 0
1767732205903 1767732205903 1767732205903 U U
2027836641118 4055673282236 4055673282236
3 2746238789719 640167445237 1767732205903 0
5 10658868560708 6845629431997 4055673282236
(3.10)
1 1471266399579 4482444167858 11266239266428 1767732205903
TE40856788654 TH29755066697 11593286722821 4055673282236
1471266399579 4482444167858 11266239266428 1767732205903
b _
v‘ TE40856788654 TH29755066697 11593286722821 4055673282236
N 2756265671327 10771552573575 9247580265047 2193209047091
b _
L 12835208489170 22201958757719 10645013368117 5459859503100
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ESDIRK,
0 0 0 0 0 0 0
1 1 1
5 i i 0 0 0 0
83 8611 1743 1
250 62500 31250 1 0 0 0
31 5012029 __ 654441 174375 1 0 0
50 34652500 2922500 388108 4
(3.11)
17 15267082809 71443401 730878875 2285395 1 0
20 | 155376265600 120774400 002184768 83070912 4
1 82889 0 15625 69875 2260 1
524802 83664 102672 3211 4
b 82889 0 15625 69875 2260 1
r 524892 83664 102672 8211 4
B 4586570599 0 178811875 814220225 3700637 61727
- 29645900160 045068544 1159782012 11503932 225020
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ESDIRK;
0 0 0 0 0
41 41 41
100 200 200 0 0
2035347310677 41 —567603406766 41 0
11292855782101 400 11931857230679 200
1426016391358 683785636431 0 — 110385047103 41
T196633302097 9252920307686 1367015193373 200
92 3016520224154 0 J0586259806659 —22760509404356 B
100 10081342136671 12414158314087 11113319521817
24 218866479029 0 638256894668 — 1179710474555
100 1489978393911 5436446318841 5321154724896
3 1020004230633 0 25762820946817 2161375909145
5 5715676835656 25263940353407 755907335909
1 —872700587467 0 0 22348218063261
9133579230613 9555858737531
b —872700587467 0 0 22348218063261
r 9133579230613 0555858737531
(3.12)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B= 41
. 0 0 0
—60928119172 41 0 0
H2023461067671 200
—211217309593 —4269925059573 41 0
5846859502534 7827059040749 200
—1143369518992 —39379526789629 32727T382324388 41
141816002931 19018526304540 42900044865799 200
—1143369518992 —39379526789629 F2T2TIH2324388 41
L 8141816002931 19018526304540 42900044865799 200 4
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3.2.3 Input options

Time discretization is defined in the file

INPUT/ConfigR7.1inp”

The following options are currently available:

[TimeDiscr|
° time discr = .. | time discretization scheme:

I

(0) Backward Euler, class BEuler.

(1) Crank-Nicholson, class CN.

(2) BDF2, class BDF 2.

(3) ESDIRK3, class ESDIRK3.

(4) ESDIRK4, class ESDIRKA4.
(11) Forward Euler, class FEuler.
(12) Heun, class Heun.

(13) RK3-TVD, class RK3TVD.

[TimeDiscr| . ;
® | steady.state=.. |, option to switch to steady-state:

I

(0) Always transient (Default).
(1) At the last step, switch to steady-state.
(2) Always steady-state.

In computations, switching to steady-state means ignoring transient terms
in residual evaluations’.

[TimeDiscr]

timeBEG = ... |, . . . -
® vimemnp — |- starting and ending time of the transient.

I

2If a component solves for % — &, and S is not a function of ¢/, linear algebra will
break.
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[TimeDiscr] . )
° NtstepsMAX = ... |} maximum number of time steps.
0

[TimeDiscr| ) )
] dt_strategy = ... |, Strategy (name of the Class) for time stepping, see Sec-
[

tion 3.2.4.

[TimeDiscr|
° check steady state = true/false [ If true, check whether the steady-state
I

1s achieved (activated only for implicit time discretizations, Classes of the

IRK family).
[TimeDiscr]
check_steady_statelLl = true/ false
. check steady_statel2 = true/ false || If check_steady_state=true, use
check_steady.stateLl = true/ false
[

L,-, L,-or L_-norms of steady-state residuals for check of steady-state.

At the end of each time step, steady-state residuals for each so-
lution variable are scaled by maxima of these residuals (traced
during a whole transient). If the scaled £, < tol_, for the last n_,
time steps, the simulation is declared to reach steady-state.

[TimeDiscr|
2 steady_state tol =— tol,. [: Tolerance for steady-state.
I

[TimeDiscr| ; '
e | nunstepstosatisfy=—n, [ The number of time steps to satisfy steady-
I

state conditions, before stopping.

3.2.4 Dynamic time step strategies

There are a number of time stepping algorithms available in the RISMC (-2 , all
summarized in Figure 3.2. A particular time stepping strategy is chosen by setting

[TimeDiscr]
dt_strategy = ...

f

in the file
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| TIMED: . dynamic_ct

3
| | |

TIMED:CFL_based | | TIMED:CFL_const | | TIMED:dtcomst | | TIMED:dt legacy | | TIMED:otvaX_based |

I

TIMED::CFL_dt_dtMAX

Fig. 3.2 : Hierarchical tree of the Class dynamic_dt.

INPUT/ConfigR7.inp”
Input settings for each of the time stepping algorithms are specified in file

INPUT/dt.inp”

Dynamic time estimate

Dynamic time can be estimated using asymptotic analysis of the time update.
Expanding to the third-order:

()
Lm

(k) (m) () k) .
U™ U™ = |+ =t |l
N co—— —

Total change

{m)

h e g (3.13)

Gradient, &

g ——(tm ; 'm)-é)ﬂu‘"” +0 (At*)

p- -

W
Curvature, €

{(m=n41)

att , the time gradient and curvature terms are

1 1 -
r.\m+ ) '2+r.1("+ ) A+ —-A

+ (n+1) - (n+1)
6 = At oU =

_{rr.+1)( _{n+l))
o 14
(aV)’ (3.14)
€ . At 6) ufn+1} . G(?H—HQ-P A
— 2 1t “_(-n+l} (]+a(n+1})

(m)

where o™ = Fm A" = (L{Wr” - ?A’M) and A” = (?A’M HZ/{{"'_”).

lf(ru—l) L]
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The next time update of the variable can be estimated as

A = " (a-"’“*)' ¢ (3.15)

Scaling eq.(3.15) with

(r) (n=1) - 7
] |?/{ | ? ‘Z/{ |) ]'t ZI/{() s Escaling (3'16)
1 otherwise

as

At ﬂ(n+2}g+ (Q_(n+2})2£
U U

0 0

(3.17)

eq.(3.17) gives an estimate of o' which results in the new time change of
variable & which is less or equal to the specified “safety” parameter o. Solving
eq.(3.17) for o™ gives dynamic time estimate:

At, =a ALY (3.18)

“dyn

We actually use the following algorithm:

if f'% <e, then " =5
else if E}':—I <&, then a™? = |Zh (3.19)
otherwise The smallest positive root of eq.(3.17)

The above-described scheme for dynamic time estimate is defined by setting

[dynamic_time]
sch dyn time = 2

[

in the file
INPUT/dt.inp”

The other necessary input parameters defined in this file are:

[dynamic_time| .
® [] dyntmsfty = ... | safety factor o in eq.(3.19).
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[dynamic_time|
® . avratiolP = ... | safety factor 3 in eq.(3.19).

[dynamic_time|

° epssCdyntn=... |: threshold for scaling in dynamic time estimate, €_,. .
0 ‘

in eq.(3.16).

[dynamic_time] . - o .
] epsDRdyn_tn = ... |: threshold for mode of derivatives in dynamic time esti-
[

mate, €, in eq.(3.19).

Class dt_const

Constant time stepping is defined by setting

[TimeDiscr]
dt_strategy = dt_const

I

in the file
INPUT/ConfigR7.inp”
Time step is specified in the file
INPUT/dt .inp”

as

|[constant_dt]
dto =....

I

Class CFL_const

Using the fastest normal-mode time scale, one can dynamically change At of the
simulation as

AtCFL - CFL ! Tfast,vxl‘, (3 ’20)

where the CFL is an input Courant limit, and the normal-mode times scales are
discussed in the description of each component.

This time stepping is defined by setting
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[TimeDiscr|
dt_strategy = CFL_const

(0

in the file
INPUT/ConfigR7.inp”
CFL is specified in the file

INPUT/dt.inp”

as
[constant_CFL|
CFLO = ...
(0
Class CFL based
The new time step can be chosen as
At
i;mj_l!_ if jVHme ste < j\rlnit
AL~ o 321
‘CFL_based 1) ( ? )
min (max (min (Atd_\fn'.‘AtCFL ),AtCFL . ),ﬁAt(M ) otherwise
where At is computed from egs.(3.18) and (3.19), while At and At .

max

are defined by eq.(3.20).

This time stepping is defined by setting

[TimeDiser]
dt_strategy = CFL_based

(

in the file
INPUT/ConfigR7.inp”
There are three input parameters for this strategy, defined in the file
INPUT/dt.inp”

as
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[CFL_based|
® . crLo=.. | CFL_, incomputing At.., .
|CFL_based|
. i crlnax = ... 1 CFL,  incomputing At .
[dynamic_time]
® ' nsteps.start = ... [ [V, . ineq.(3.21). Default is set to 2.
Class dtMAX based

This is a variation of the dynamic time strategy in Section 3.2.4, replacing eq.(3.21)
with

Afmin lf “J\rr.ime step < Nlnit
n+2)
At:lt:{:\){.bnaed - (n-+1) (3‘22)
min (max (min (At,,,, At,.)  At,) , BAE ) otherwise
where N, . .. is current time step number.

This time stepping is defined by setting

[TimeDiscr]
dt_strategy = dtMAX_based

I

in the file
INPUT/ConfigR7.1inp”
There are three input parameters for this strategy, defined in the file
INPUT/dt.inp”
as

[dtMAX based|
° dto = ... - At

[} min *

[dtMAX based|
™ dtmax=.. | At

[] “max *

[dynamic_time|
. ' nsteps.start =... [ [V, . ineq.(3.22). Default is set to 2.
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Class CFL_dt_dtMAX
[ TIMED: dynamic_ot |
| TIMED:CFL_based |
Fig. 3.3 : Hierarchical tree of the Class CFL_dt_dtMAX.

This 3-stage dynamic time stepping is a combination of classes CFL_based,
dt_const and dtMAX based. Itis defined by setting

[TimeDiscr]
dt_strategy = CFL_dt_dtMAX

I

in the file
INPUT/ConfigR7.inp”
Each stage is defined in the file
INPUT/dt.inp”
as

Stage I. Fort = [0 ... 1,]:

[CFL_dt_dtMAX] ) )

° ; crLo=.. [ CFL,,, incomputing At .
[CFL_dt_dtMAX] . .

o | cruax=.. | CFL_ _ incomputing At

[] max *

[CFL_dt_dtMAX]

L ] n_steps_start = ... |[. ‘f\T{ it
( '

in eq.(3.21). Default is set to 2.

Stage IL. Fort = [t, ... t,]:

[CFL_dt _dtMAX]
° time2 = ... Ly

{
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[CFL_dt_dtMAX]
. dt2 = ...

[]

Stage III. Fort > t,:

[CFL_dt_dtHAK]
[ ] time3d = ...

0

[CFL_dt_dtMAX]
° dt3 = ...

0

[CFL_dt_dtMAX]

[ ] dt3max = ...

[]

- At

. constant time step at this stage.

. At . for this stage.

for this stage.

‘max
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3.3 Space Discretization

HIS chapter describes spatial discretization for hyperbolic, diffusion and reac-

tion operators of eq.(3.1), in 1D (Section 3.3.1). Extensions to 2D and 3D are
discussed in Section 3.3.2. The hierarchical tree of the space discretization Class
SDiscr is shown in Figure 3.4.

SPACE. SDIscr

| sPacE-DGM
i

SPACE:DG_ D SPACE:DG_2D

———— SPACEDGU_TD |

1 SPACEIDGO_Z0 |

I SPACE:DGI_1D | SPACE-DGI_ED |
| [spacE-DGz_1D ['sPacE-DGz_zD |
L SPACE:DG3_1D L [spacE-DGa_zD |

Fig. 3.4 : Hierarchical tree of the Class SDiscr.

3.3.1 One-dimension

Fig. 3.5 : Hierarchical tree of the Class DG_1D_CV.

In this section we describe 1D discontinuous Galerkin based spatial discretiza-
tion, as implemented in components derived from DG_1D_CV, Figure 3.5.
Discontinuous Galerkin (DG)

A DG method [RH73, Coc89, CS89, CLSRY, CHS90] of the pt™-order solves for
(p + 1) degrees of freedom (DoFs) in each cell, L{:;TU“”"’}, representing a solution
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inside each cell Z_ as

p
(n)
cell Z cell 1{n} €eent) (3.23)
n=0
where £ (£) is a basis function of n'"-order; typically, the scaled (fmu = W)
Teell

Legendre polynomials. The limiting case of p = 0 corresponds to the first-order
finite-volume method, with Z/{ml)l being the cell-average quantities.

The evolution equations for each degree of freedom in a cell (;) can be written
in a semi-discrete form as

iy L (3.24)
dt j
Time discretization is described in Chapter 3.2. Implicit schemes are implemented
using Jacobian-free Newton Krylov (JENK) algorithm (see Chapter 3.4), which
requires formulation of residuals. In the case of CN scheme, these residuals are

computed as:

e Hm),n —Hm),|n At m)n m),|n
{ )—Z/{l )o[n+1] ujt J[]_?(S—; 1[+1]+<S—.;( }.I]) (3.25)
used in JENK’s non-linear solver of type
vla) :a 1) _ (u 1)
= U (3.26)

a=0,1,..
Source terms are discretized as

(H‘ , +D ,) L., (=1 - (H, . +D 1) L. D+ ]‘T(n} (z) dx
1=3 1=3 i i+3 ita L x

T I‘
" = J 3.27
J ij" ( )
where H i) are numerical hyperbolic fluxes at cell edges, computed with one of
the hyperbollc flux treatment schemes (Section 3.3.1), and D_ , are numerical
112

diffusion fluxes® (Section 3.3.1). The vector T (:s) is defined as

T @) = [A@+ 7 @]0.L, @ +R@)E, @) (3:25)

3We treat hyperbolic and diffusion operators similarly. This is different from [v1.N05],
where the integration-by-parts of the diffusion operator is done twice. This double inte-
gration is meaningful only if the diffusion coefficient is constant, which is not the case
considered here.
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Integration over the cell Z; is done using /N-point Gaussian quadrature formula,
where N is varied from 4 to 16 (i.e., the higher the order of the discretization,
the more accurate integration is necessary). The parameter C', is a normalization
constant for the Legendre polynomials,

B Az
" n+41

(3.29)

The derivation of the weak form eqs.(3.24)-(3.28) is given by Cockburn [("55Y].

In-Cell Recovery (¢cRDG)

Using 3(p + 1) DoFs in the cell () and its immediate (“von Neumann”) neigh-

bors, (j+1), one can either reconstruct or recover additional degrees of freedom,
Z(n=p+1,..., R)R

UJ_ , where R = 3p + 2. In the present study, we will follow Lo &
van Leer [L.vI.0Y], who refer to recovery as a weak interpolation technique for
locally building a polynomial from the given on a computational net piecewise-
discontinuous polynomials in such a way, so the L,-projections of the “recovered”
and original polynomials coincide. This is to be contrasted to the reconstruction,
which uses strong interpolation for building a polynomial, whose functions and/or
its derivatives are matched in points.

The “recovered” (R + 1)"-order-accurate in-cell polynomial is

R R
Uy @)= U "2, 6) =21 9 () (3.30)

n=>0 n=0
N ”
W

()

th

where ) (¢) is the Hermite polynomial of the n™ order and (; = = — z;. The

recovered Hermite-based DoFs f{ " are computed using the following “weak
statements™:

iy

£ U i = || & Ndx
If w (Ea) Uz (2) da If wm (&) f(x)da -

where m=j,j+1 and n=0,..p

which corresponds to (R+1) equations solved for unknowns fﬁ(":n‘””m . Equations

(3.31) enforce the recovered polynomial f(a:) to be indistinguishable from the DG
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solutions in cells j j1,, from the broken Sobolev space point of view. Once all Ja")
are found, the recovered Legendre-based DoFs are computed as

—(n),R 1+2n B i
ZA’; "= Z:r.fh /’ﬁtn} (fj) (Z f1 }ﬁtﬂi (C.i)) dx (3.32)

T n=>0
i

Equations (3.31) and (3.32) can be straightforwardly solved with any symbolic
manipulation software (e.g., Mathematica or MatLab).

SPACE cRADGY BPACE cADGE SPACE chDGI SPALE PPN

| SPACE.ir_cROGY [ ZPACE in_chDG2 1 PacE w it | I

e SPACE uni_cRDG

SPALE und_cROGI —— SPACEan PPM_TVD
| IS
— IPACE ww PP
———— 3PaCE wi_PPM_TVD

e SPACE o _PPU_WEND

Fig. 3.6 : Hierarchical tree of the Class cRDG.

_ The first (p + 1) DoFs of the unlimited cRDG coincide with DG’s DoFs,
U;"’m = Z};"}, n = 0,...,p, implying that the conservation of the first (p + 1)
moments is not affected by the recovery. The rest DoFs (n = p+1, ..., R) provide
high-order terms, boosting the accuracy of the DGM. They are given below*:? (see
also Figure 3.6).

PIECEWISE-CONSTANT, cRDG'” (Figure 3.7):

Regular grid, Class uni_PPM:

?j{ 1).R L}',fi)] —LF.(E)I
i a 4 (3.33)
“2),R

ZF0) g 7(0) | L7(0)
U1 —24 "+
12

*In this manuscript, the schemes are denoted as CRDG:J), where p is the order of basis
functions for the DG, while (0) corresponds to the order of spatial accuracy.

>For irregular grids, we show here only the piecewise-constant and piecewise-linear
discretizations.
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SPACECADG

l SPACE: PFM |

; | I | | 1
SPACE-IN_PFM_TVD. | | SPACE:in_PPM_WENG | SPACE unl_PPM SPACE-un|_PPM_TVD | [SPACE-unl_PPM_WEND

SPACE-rr_PPM |

Fig. 3.7 : Hierarchical tree of the Class PPM (cRDG,).

Irregular grid, Class irr PPM:

[ Az, ((Bay,, - Ar,_,) (38, +2(Ba,_, + Az, )T -
= (Az; + Az ) (Az + QAIH[)L};(B)I‘-}-
ZIULR +(Az; + Az, ) (Ax; + 2A‘"’j—1)3’_’2{:—]{
j = AAw+Ar; ) (Awy Ay, ) (Ary+Az  +Az;,, ) (3.34)
2(2),R
L{i A2 Az (L?J(Eg _u:i(”)) + Az, (L?](E{ _u:j(”}) +
0, (220 4, + )
3 3 1 3
2(Az+Ax;,_, ) (Ax;+Az,,, ) (Az,+Az,_,+Az;, ;) |
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SPACE:cROG
SPACE:irr_cRDG1 SPACE:.uni_cRDG1 |
Fig. 3.8 : Hierarchical tree of the Class cRDGL1.
(6) .
PIECEWISE-LINEAR, CRDG ~ (Figure 3.8):
Regular grid, Class uni_cRDGI:
B o770 70 e (71 1) L f(0)
k- (Ui +U") ) -5 (U~ ) 1460
U 336
]
ke ss1(U) —d.”) ) —1o7 (@), +a ") ) 10340
i . 3888 (335)
ZLR ar30)  =(0) =(0) (1) =(1)
Z/{J. ‘)‘uj _uj—l _uj-i—l_uj—l_l—uj+1
112
0" ( ) (
: +0) _=(0) 1) ) | ao=(1)
B 5@ ) )+ (A0 1 ) +asd
L 3888
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Irregular grid, Class irr_cRDG1:

7(2NR
u -

=(3),R

2006 (21405641 (€ + 1)+ 1ED | = 2065, (7€, (T, +18) +82) +13)€2
—(26;,, (49,1 (&1 +2) +54) + 15)&;_; — (&4, + 1)(T&;, (46, +3) + 3))
€y + D2+ & (U (1405611 (6 +1) + DEL, + 2061, (76, (76, +18)
+82) +13)€2, | +26,_, (49€;_, (§_, +2) +54)¢;, +lo£J+1 +&_,(76_,(4§,_, +7)
+24) +3) (&, + 13 +30@" — 207, +¢_, (14(351 A ved”
(%s L H2) T (26, (26, +5) +5)ES, —2(%&”(%5&1._1(&,._.“)
(%s, V(&) +4) +76) ”"’(s _u o+ D14, (46, +13) + ME,
(4g,_, (T08_, +177) + 333) — 30 (4¢;_ 1(7053 . +177) + 333)
(&, (2€,_, (224¢,_, +gm)+2313)+3r4))5, — (3 (44062 | + 894, _, +377)
Ju‘”’ (44052 +804E, +377)+7L?“’ (gJ 1(§J ) 16§f (&, +d)—285) —385)
_137) € — (307, (4, (85¢; 1+1ol)+zss)+su (26 (56, (8§21 (7,2 (&,
+4)+44)+68}+db?)+203}+uj

-‘(0}

+76)

_(qu

& (gf_l(zgj_l(mgj_l(mj_l +21) 4 901)
+1995) — 1274) — 518)) €2, —(—15&7“” (26&2 +42¢,_, +lo) T i (&2 (€

+2)(6;_, (26, (708, 1+%21)+um)+r%7)—m%)HM‘“’(?aj_l(s,._. +2)(¢;_,
(&1 (7€, _1 (36, +14) + 158) + 131) + 105) + 105)) &, — 15(21d, + 7"

—6U" ), — €2 (=600 + 30 (&;_, (&, (46,_, (T€;_, + 38) +333) +377)
+2os)+u‘1’(

£ (2¢_,( J_I(J.J&j_l +194) + 432) + 959) + 518)) +3Uf:]1(£3
+1)3 (10{?&,_1(£j_1 +1) +2)€2, + 26, (T6_, (36_, +11) + 60)&,, +30, .,
+&_,(4€;_, (7¢;,_, +17) + 45) + 10)))
1% _ (€

[ a6 (60, + e, +

-u

-1 T8 (6 A5G +6,, )P

6 (=262, +650 +1) €2, — (4, + 134, (76, +9)
F1E_y = (641 + DB, (6, + D+ D) (6, +12+€,, () (212, + DE,
+3(§j+1(4§j+1 +25) + 11)E2 | + (&, (29 — 66, (26, + 1)) + 13)§_, +§&,
. o .
=662, (61 + 1) +1) (€0 + D3 =, (3(A) (662, - 6(&40 — DE?
-5 (bﬁf+1 +9£.|+1 +2) ‘EJ 1

j—1

= 5(E 41 + D4a + D) oy + D2 +T (€40 + 1)
Q 663, +6(¢;_, 1)§f+1+5(sg2 +9¢,_ 1+2)53+1 5(€,_, + 1)(3¢,_, +1))
0

J{ (§-1 — j+l}(bﬁj—1 + 2480+ (26 — 3¢, (108, +13))€3 | — (36,4, (2654 (564,
+24) +49) + 11)€2 (E,+.(3EJ+.(1"3£J+1 +49) + 137) +?4)£J (€ + D6,
(251 (3611 (40 +3)+4) —19) = 5))) + U (=6(¢;,, +2)€° | +6(¢;,, — D(E,,,
+2)65_ | + (86;,,(36;,, (26, +7) +17) — 45)&“ + (26, (66, (4€,,, (&, +T) + 63)

+501) +77)E3 | + s(zgm(gm(;“(gm(EJH i 28) + 126) + 224) + 161) +bd}§2

(QEJ+I(EJ+I(£J+I(£J+I(FS

36,1 (€, +2)) +301) + 483) + 322) + 133)¢,_

_(£j+| + l)(EJ'_H (EH_I (EH-I (12£j+1(£j+1 + 3) + T) _84) - 105) - 28))}) )

(3.36)

186 (6, + V%6 + 1P, 6, 1 1 =
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(u“’s, L (B0 +DE, + (610 (T 10 +15) + 506, + 64y —
{1)
= (0)

(5, 1 +1) +£J+1 (_
=(0) (0)

— e +E 1gi(su

~ (o155,

(6, (56,_, — 11) = 37)€?,,
_354 L= 28¢5 98¢, +91) + 3
—~(0)

‘"’(s,  (15¢,_, +7) = 11) + 30,

“”(é, L&y +2)(4€, 1(5, L H3)+18) +7) + U

“‘{U)
+1(£.| 1 +l) (_'JE,?+1

+4§;_,(§_, +2) )+1)))

+"£j—1‘£j+1 _4£J+1

+35) + 56) + 35)) —

\

(6 (56,11 (& L6+ 12) —26))@11
(EJ 1'(‘1:‘J |(EJ 1 +3)(5£_1-_| _4) - 14) +7)+

=

7£12+1(£J+1 +1)+ 1) \

(_753 + T(£,+1 - 1)52 + (E_i+1(8£j+1 T 15) + 1)E_|—1

7

1

(£J+1 + l)('4-£_|+1 + l)} (£J+1 + l} +W E
~a7 (&, +2)E5,, + (5 (6, +4) - 1 (s +4) =1 (4, (26,
+0)+4%))£4 (%u‘"’((n—%s, Dé 1+%7)+7L?‘ (%, (26, +7) +13)
-'(0) +g.3&.'(0) +L?;f|}

+

a” (262, (&1 (261 (6 1+Q)+4Q)+4o)—%))s,+l + &, (U (56, +4)
(éj—l +1)(£j_1(£j_1(8£j_1

) (3.38)

4R

146, (& +1)%6, (60 + 126 + 60 +1)°

( u(-ll—:;ﬁJ 1 (352“ +2(§-, +2)640 HE0 + )(53 11D+, ( jti)l
(Ea + &1 (3€_1 + 260 + 0+ D&y + D3+ (3(-A (6
+26,0 +2)(Eo + 13 U G + D32y + €4y +2) + U
(el L= &) (830 + (382 +o)£f+1 &1 (36, + 11)E,, + 96, +
§_1(5 (5., +5)+9) +5)) +Mm(fj—1 +&,,+2) ((£j+1 +2)€7
+(EJ+1(QEJ+| + T) + 7)512_ + (£J+| + QJ(EH_I (EH-I + 5) + 5)£j—l +
\ (Ej+1 + 1)(£j+1(25j+1 + 5) + 5))})

2R

]‘8€j—1(£j—1 + 1)3£j+1(§j+1 + 1)3(§j—1 + é_j-{—l + 1)3

Aa,J 1
A:r :

xr
where { , = <= and§_, =

(3.39)
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SPACE:cROG

SPACE . .cRDG2

SPACE:r_cRDGZ | | SPACE:wNI_cROGZ |

Fig. 3.9 : Hierarchical tree of the Class cRDG2.

PIECEWISE-QUADRATIC, cRDG;”, (Figure 3.9).

(Regular grid), Class uni_cRDG2:

—2808207 ) +11436 Y ~1%) ) 8831 @)+ 1) + 185U U2
57021

)+84505(U, 1) U, ) )+35627 (U2 +U2) )

—2324800,") 45207404 *) +- 116240 4"+, B

j+1

1235520

7480 + 345U, U\ )+316(@ 1, +UL ) )+1890WU 2, —UT))
16848

403007 +6238U4> —2015W %, +U7) ) +1630@ ) UL, ) —809@ %, +ULD)

i1 1)
213840

—25007 ) +120@ Y, —U” )~ 1150, +2 ) )81 U2
247104

— 4400 6260 +-220@d " +U)) )+ 185, ) +103@P, +AD))
1010880

(3.40)
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| space:croG

SPACE.cRDGI

| SPACE Itr_cROGS | Epnﬁ:;urﬁ_cnmﬂ

Fig. 3.10 : Hierarchical tree of the Class cRDG3.

PIECEWISE-CUBIC,CRDG; , (Figure 3.10).

(Regular grid)®, Class uni_cRDG3:

=(10),R
U

J

=(11),R
U

1

[
[

(\
[

~1700875002, ) — 255386740\~ + 8504375, ") + UL} + 7153735 1) ) T

—1964693;81}}” = 4036941821.?;3} + 825 uassa(z,?“” L?“”) 66772041 % )

-L?J” } + 4665 497(1}“’1 +L'«'(2 )+ 18115;7:.}"(12'.‘3’1 - aj*jf?l,

aa 173720

@) + 4Ly + aosorasr@d( ) — G2 — 14038579(1,;“’, + P

120305007 4 156030201 — 646525 + ALY + 589265(“}_:_}1 -a)y- )

( ~0055007{" — 10100200 4 as2rs @) + AP, + azars @, — A+

19383!00
20198381007, ") + 32088523000 % + 8115825, —d(Y) )+
+752397"5(‘%{;}5 + L?j“’ )+ 498'31t;u7(23‘f’, L?{g’l) + 1@24‘;255(12‘”. + 12“"1)

366121951

—43&5-11(12‘2} +U?) + 193995{32“" -a®)

515513923‘2 (3.41)

+33*m1(u‘2’1 +u“})+16m5(u”’ —ad)

(_

-—12:;7181}].{” - 178()34{}}3‘ + 54911{&'{”’ IJ{U) T 4»3{}271’12“1"I +IJJ.‘_'1_‘I)+ J

ﬁ BOSO60

+33509(L7j‘_f_’ L?WJ ) — 14009{12“ r2‘+1}
6(1624?'.‘8
n620d(® + 124602 — s81@%) + U Y)) + 553, - )~
455(2?4.‘3 :'1‘21) + 241(11”’ z}” D
. 20003184
.ﬂwu“’ + T2: ;1u‘3’ + 2375 (u‘”’ Au“” ) + 2103 b4 u“ ) )+
+1513(u*3’ —u“” ) + 6"3(u“1 +uj‘“” )

l .‘SlJBJB G656 .

0,

50On 1rreguldr grid, we dropped the accuracy of recovery to the 8" order, i.e. ZA’
n==58, ...,

—(n),R
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Remarks:

Eq.(3.33) is exactly unlimited FV-PPM [CW & 1],

The stencil of cRDG of any order is compact and exactly the same as that
of FV-PPM (i.e., involving only von Neumann neighbors).

Recovery operation provides a mean for local spatial error estimator, which
can be utilized in uncertainty quantifications and useful in Adaptive Model
Refinement (AMoR) and tagging for adaptive hp-refinements of meshes .

Recovered DoFs is the auxiliary information, which is utilized to com-

pute residuals in each cell. No extra memory is necessary to store L?i{“m,
n = p-+ 1,..., R, as they are computed locally, used for computation of

local numerical hyperbolic fluxes, integral term, and inter-cell (interface)
recovery iRDG of the diffusion operator, and then disposed.

The cost of the in-cell recovery is very insignificant, compared to the most
CPU-consuming computation of numerical hyperbolic fluxes.

In some boundary conditions, it is necessary to utilize “sided” recovery, i.e.
dropping some weak statements either from the left or from right cell. In
this case, the order of accuracy is dropped. For example, using “recovery-
from-the-left”, the following DoFs can be constructed on uniform mesh:

cRDG,, O (Az?):
- —, (0) 3(0) X 2
[u_m.?z ] _ [ Mj( _Mj(_l } (3 | )
i 2
cRDG,, O (Az?):
Z}(?}R —l&?}ﬂ}-i-l-")b?j{f)l-'rlgzzj{l)—FllZIj(l:;_
i B 24 (3.43)
—*3),R 00} | 4700) (1) 2701)
L{_ —uj +uj—l+uj +ij_1

4 8
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cRDG,, O (Az"):

C OR T " 80024\ —80004! ") —005U4") —695U42 | +1051 —42108 | ]
- 960
]
(3.44)
dOR | = | 1200120 —1250 V115062 | 41100 81
j 320
(5 R -~ - - - ()
a’” GO T
- - o 120 E
cRDG,, O (Az"):
( —11319 (A —d%) ) + 122150 + 1042302, - )
—135450>) + 816944, + 1380004 + 420947,
0856
- ,H4) R -
U
] - -, -
—9653 (uj“” —U?)) + 100170V + 928072, —
o= —100314%) + 7847U2), + 7747 + 4019002, (3.45)
i 11648 =
7 b —1925 (A0 —d%) ) + 19530 + 189777, —
J = -
—18550%) + 168702 | + 12830 + 1027147,
e 0856
(TR
U
L ¢
_95 L?J.(m _L;,'J(E}l) + 23’)1};(” + 25"'{'.2—’11 _
ol 4 2, 150 11508,
5 1664 _

In the code, the minimum (default) number of Gaussian quadrature points for
in-cell recovery DG are: 6 for cRDG,, 8 for cRDG, and 10 for cRDG,. This
set ensures that the errors of the Gauss-Chebyshev integration [PTVEY9] is
smaller than the errors from in-cell recovery, in the case of combined in-cell

Note: and inter-cell recoveries (inter-cell recovery is more demanding). It is also
instructive to note that, if only the in-cell recovery were applied, the minimum
set of quadrature points would be: 4, 6 and 8 for cRDG,, cRDG, and ¢cRDG,,
respectively.

Limiting

Limiting is necessary in the presence of strong discontinuities (e.g., shocks, con-
tacts). There is a number of limiting schemes available in R;. We summarized
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them below.

I SPACE Limiler
[ ) |
SPACE.GenMomLisiier SPACE.TVD_Limiters
¥ ¥
[ [ I [ I ]
SPACE.GML_Inter_cell | SPACECKnvooonova | SPACE:MinMOa SPACE:Superoee SPACE vandlbadal SPACE-vanAlDadas SPACE vanLearZ

SPACE Krivodonova_Ch

Fig. 3.11 : Hierarchical tree of the Class Limiter.

Finite Volume, cRDG,. In the case of finite-volume discretization (Figure 3.7),
we implemented TVD limiters [Tor99], Figure 3.11. In terms of cRDG’s DoF,
these limiters can be written as:

ut  -ur
L—{’fl),R i+3 j_%
i 2
— (3.46)
=(2),R L?L w{('}+uﬂ
u’l i+ i~ 3
a
where'
i — | AT (1t)r(a”.aT)+A7 (1-nt)r(aTA7)
N 4
2 3.47
cny 0 A (14s )1*(A+.A‘)+A+ (1_,\-—)1'(5‘ A+) Bk
M.i—' i 4
L(0)  +(0)
ot = A:J:j +Amj_l—,ﬁ:r:j+] - — A.rrj—A;r:j_l +A'1"j+1 A+ — oA Lt -U. AF =
A{:‘] —I—ﬁ.{;'.;j_ . +Arr:j+| 2 A;::j +A.7:j_| +&‘rj+1 2 i A.?:j +A;r:j+1 ¥
=(0)" =

ZAmjzﬁ and the limiter I" (a,b) is defined by one of the following five
options:

Class vanAlbadal. First Van Albada limiter is

2
a +ab

I'(a,b) = ————
(a"b) (ﬂ2‘|’b2+f

(3.48)

7On uniform mesh Az, =Az, , =Ar,  andst =K~ = 3.
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Class vanAlbada2. Second Van Albada limiter is

2ab

Pl = 30 p e 4

(:0) a4+ b +¢ (3.49)

Class MinMod.
; a
I'(a,b) = max ([], min (1,_ ;)) ._ (3.50)
where r = if (|b| <€) €-Sign(b)
else b

Class vanLeer2. Van Leer limiter is

if(Jo4+rl<e &£
s ofr wherer =|a|Sign(b)  (3.51)

[ (a,b) = {

Class Superbee.

I'(a,b) = max (0‘1113.}{ (min (1. 2—0) . min (2._ E))) 5 (3.52)
r r

if (|b] <€) e-Sign(b)

where r = { alke "

In eqs.(3.48-3.52), ¢ = 10719,

In addition to TVD limiters, we also incorporated WENO, limiting [/596] into
the cRDG,, as described below.

Classes uni_PPM WENO and irr PPM WENO. Limited DoFs are defined by eq.(3.46),

where
(L) ., (L) (L) ., (L)
Z}L _op Py o Py
i+3 B ol o)
. ®) L, R ®) (3.53)
uH = ap ln +ay ].L

| (0
=3 GH. -H.‘!‘L
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(Az+az, ) /15"

(R)
(1[_ - Aarj +ij_1+Aa:j+Rl (3 54)
(L) (A:J':j+f_\:1:j_1))/|Sl ’
(83 = — . —
R &J.j —I—A.rj_l —I—A.I.J._H
R
Qa® Az, s
"R T Az +Arxr. , +Ar.
i i=1 () j+1 (355)
e = Az /1S
8o A,Tj +&:J'J._1 —I—Aurj_H
. 2
IS{L} i '1A=1'12 L—{'(()} =(0) 2
- ) b R oL PR + Eweno
(A.rj-f—A:rj_l ) J i (3 56)
. 2 J.
(R) 1A2? —+0) —(0) 2
_ i
IS —— (1l -2 ) + o
(A.rj+A:rj+l ) :
=(0) (0)
q}”_‘} B m.-Hluj +A.-;-juj+l
R - Az +Ax.
Jo M o) (3.57)
q}(}l} . xﬁ.::j 1Hj -l—/_\.rju ]
L - A:::J. +A:J':j 5
(L) —=(0) Az, —(0) =(0)
B = U ++—="— (U —-U
L i A:cj+A.t.j_l i j—1 (3 58)
(R) =) Ax. =) =(0) %
B = U+ —— (U U
R i ij-kAarj g j i+1

-8
and £, = 10 .

Generalized moment limiter, cRDG, (Class Krivodonova). In the case of

the general (R + 1) -order cRDG, the limiting can be applied using the gener-
alization of the moment limiter, originally introduced by Krivodonova in [Ki07].
The procedure is applied at the end of each Runge-Kutta stage, and can be de-

scribed as follows.
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First, all DoFs at the cell () are transformed into

g s g = (k) (k)
the characteristic space, ¥; =L U, k=0,..,R, where

1. |L is the left eigenvector matrix of the Jacobian,
evaluated at the solution state at the cell center,

Z’{.1R () -

Next, the limiting is started from k=R,..,1, as

k
= (K S (k=1) (k- 2Az,
(o (05 -57) (i)
. T+ BT, )
() Af,rﬁ-— 1)
lIJi' = MinMod ! k (3.59)
. (‘i;u.-.—u lﬁu‘:—l}) ZA-'L‘J-
5 ] -1 Ag, Az
\ A__}E_”
J
=L.(k) = (k) —14 v . ' ’
e If T, —~ Al < 107, the limiting of the parti-
cular characteristic field is stopped.
; = (k) = L. (k) ; o S
e Otherwise, set lI'j == iI!j , and continue limiting,

until k=1 is reached.

Finalﬁly, compute“lirnited DoFs in physical space
—(k) = (k ; :
as Mj( = R ‘Ifj , k = 0,...R, where R is the right
eigenvector matrix of the Jacobian.

MinMod function in eq.(3.59) is defined as

MinMod (a, b, ¢) = { ﬁgn (a) min (|al, 6], |c|) létsl:g{;,(;zf Sgn (b) = Sgn (c) (3.60)

In the limiting case of n = 0 (R = 3), eq.(3.59) reduces to the MinMod limiter

[ll ,I.._J\], Krif ]',.-'].
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Hyperbolic flux treatment algorithms

First, we compute the “Left” and the “Right” states at each edge +1)s

i+

R —# —# R —#
U, = U e, (1) and a“ = g Ur™ e, (1) (.61)
I+3g 1=0

Then, numerical fluxes H w3 of the hyperbolic operator H are computed using
one of the six available ﬂux (reatment schemes, Fig.3.12.

SPACE ExaciRS_4_SWTGamma SPACE Flusay

SFACE ALSM SEACE Courdral SRACE CLLE SPACE Godunty ERACE MLLC SFACE LLF
"

SPACE RF

Fig. 3.12 : Hierarchical tree of the Class RiemannSolver.

I. Local Lax Friedrichs (Class LLF). This is the simplest flux treatment scheme,
which requires only the knowledge of system’s eigenvalues. LLF fluxes are simply
computed as:

]_ — =,
H,6 = [% (u )+'H (u )+a/\m (U ~U )] (3.62)
it3 2 it it+3 ity i+

Where A___ is the maximum absolute value of eigenvalues, computed at U and

max 3
i+l

—“R . . .
U states. Parameter « is usually set to 1 in shock-dynamics problems, and
435

a ~ 0.1 in low-Mach number applications.

I1. Characteristic Local Lax Friedrichs (Class cLLF). This is an extension of
the above simple form of LLF to the characteristic space. First, left and right
states and corresponding fluxes are transformed into characteristic space,

¢ = LU ,; & = LH(U,
e Ly (3.63)
¢ = LU ; & = LH(U,

it it
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Then, LLF is applied in each ¢ of i fields, —;  ng:
1 L R L R
q)f.j:t% - 5 ((I)f + (1){ —I_ (l.)\l',mnx ((fbr = qu )) (3 .6-'-)

In this case, A, . is the maximum eigenvalue of the f'" field, computed at the

“Left” and “Right” states. Once characteristic fluxes for all fields are computed,

the physical fluxes are recovered as ]I-]I_i =R 'TI)_i . Eigensystems [L, R, A] are
i J

=+(n) ,=(n)

A P gl .
computed at the edge “average” state, U, = > ———* £ (0), where p is the

n=0
number of the evolved DoFs in DG.

1 1
2

II1L. Central differencing (Class Central). This option is not really recommend-
ed in general computations, as produces unstable results in many configurations,
since it does not have numerical diffusion:

H - l?%’ (z}“ ) +H (z}“ )] (3.65)
ity 2 i+ i+

IV. Roe-Fix (Class RF). This is a variation [SO89] of the above-described cLLF
scheme, in which eq.(3.64) is replaced by

if (A >0 & A
L R

Puur =) @ if (A <0 & A" <0 (3.66)

f

>0

Apply cLLF  otherwise

V. Godunov (Class Godunov). First, exact Riemann solver is applied to the jump

3 i+

[L?L u" .] [GZ1 76, Tor99]. This gives a state predicted at the new time,

¥ (f.fnm). Numerical flux is computed from this state, H = H (Z]“ew).
z

Fara | H s 1
it g 1 i+g

VI. AUSM (Class AUSM). AUSM stands for Advection Upstream Splitting Method.
[tis developed as a numerical inviscid flux function for solving a general system of
conservation equations. The AUSM first recognizes that the inviscid flux consist
of two physically distinct parts, i.e., convective and pressure fluxes. The former
is associated with the flow (advection) speed, while the latter with the acoustic
speed; or respectively classified as the linear and nonlinear fields. Currently, the
convective and pressure fluxes are formulated using the eigenvalues of the flux
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Jacobian matrices. We implemented the latest version AUSM™"P as described in
Dr. Liou’s recent paper [Lio06].

Fig. 3.13 : Hierarchical tree of the Class 1RDG.

Diffusion fluxes: Inter-cell recovery (iRDG)

Numerical diffusion fluxes Dji ; at cell edges are computed from the “recov-
ered” inter-cell continuous solution profiles [vI.NO5, vELRO7, vRyvLOS, vELO9,
L.v1.09]. An (N +1)"-order continuous “recovery” profile V" . (x) between cells
i—1] and fj is “recovered” from the in-cell (cRDG-recoveredi d2isc0ntinu0us solu-
tionsb?;: (x,t) and L?:_l (z,t) eq.(3.30) as

N
V@)=Y V"7, (gi_%) (3.67)

k)R * . "
=xr—ax_,.V | arerecovered in a weak sense, using the following
i=3 i—5

where ¢,
-1 } .
van Leer et al. “recovery” constraints [vL.LN05]:

£ NUS () de= [ £ IV () da
I{ (n) (£ ) T, I{. (n) (é- ) j—%( J (3'68)

where m=j,j—1 and n=0... R

which corresponds to (V + 1) equations solved for unknowns V"""
1=z
Then, numerical diffusion fluxes are defined as
= d =
D, =D(V_, (0) -V, (0 (3.69)

~~ v

Diffusion coeff, matrix ]:)"' (0)
1
=g
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requiring % , (0) and V . (0), which are computed from the recovered profiles
=3 =3

eq.(3.67) and given below".(sec Figure 3.13).

SPACE:IRDG

SPACE:IRDG1 I

SPACE:irt_iRDG1 | | SPACE uni_iRDG1 |

Fig. 3.14 : Hierarchical tree of the Class 1RDG1.

PIECEWISE-CONSTANT’, iRDG'” (Figure 3.14):

Regular grid, Class uni_iRDG1:
—_— (0) , ,5(0) 1) (1)
Vv o (u s ) (uj_] = )
i-3 6

‘}_}’ _ (u(u) _u({’i) (U(I)W(l))
j—,i, AAx

Irregular grid, Class irr_iRDGLI: (3.70)
3((@, +a’) Azt + aa? Q,f:"’ ~dM))

fj _ + AxJ.A.BJ._l (A:rj_] (‘X}w ﬂm) + Ax (‘th 3 W{]J ))

i-3 3(A z.+Az, =

(ol e )

—=(1) =(1}
+Az,_, (Az,_, — Az)U ") - Add (A, — AU

j—1
3
i—-% A:t:j Aﬂ:j_l (AJ 3 +A1j_ i )

i=1

PIECEWISE-LINEAR'", iRDGiﬁ} (Figure 3.15):

Regular grid, Class uni_iRDG2:
—_ ”(L?(m_i_u(m)H%( +(1) u‘”)+ (u(2)+u(2))

fj 1
S 32 3.71)
~0)  ~+(0) (1) | (1) «2) 2
5y _ _75(uj_| 4, ) aa(u +,_ )+z4( - )
J—é QDA:J'

8Here, we show only the piecewise-constant and piecewise-linear discretizations on
irregular grids.
n=0,1)
Note that ZA’ _,  used here are those from the in-cell recovery, Section 3.3.1.

n=0,1,
1"Note that ?]( . * used here are those from the in-cell recovery, Section 3.3.1.
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[ sPacEiroG

SFACE:RDGE

| SPACE:irr IRDGZ | SPACE ;um_lHui‘jz_;
Fig. 3.15 : Hierarchical tree of the Class 1RDG2.

Irregular grid, Class irr iRDG2:

=(1) =(2) =(0) =(2)

SU_, +U " +U_ (58, (26_, + 1)+ 1)) +&_, (16U

+5 0 (T€,_, +5) +&_, (A" +&_, (—5U " (&, (§_, +5)

= +7) + 50 (6,_, (6, +5)+10) + U (& _, (56,_, + 16) + 14))))

Vg = 5 I (3.72)
2 (=3¢, (g, (5, + D — 164" +84d™ + 300" - ")
+500, 7 (s + 3§ (G +2) - 140)€2 -5 (g, (4262

oo A -9 - - (6, (L + 9 -T) -5))

-y Az;&;_y (& +1)°
where {,_, = &Ax;‘j' :
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 SPACE-RDG

SPACE-IRDGS

SPACE:Irr IRDGA | | SPACE :uni_IRDG4 |
Fig. 3.16 : Hierarchical tree of the Class 1RDG4.

PIECEWISBQUADRATIC“,iRDG (Figure 3.16).

(Regular grid), Class uni_iRDG4:

1

( 5376 (uj"’ +u3“”) ass6 ("), —IZ;”) 4 3006 (u“’ +um) )

- . (-U (4) —{4)

P o +211(ij )+1[}Ui(uJ +4d )

-3 10752

2835 (" ") — 251 (@ +d +1?75(u““ -u?

A 981 (A" +a7) ) +320 (@" -4,

gl 384Ax

Z
| SPACE-IRDG

SPACE:IRDGS

SPACE:ir_iRDGS | | SPACE uni_iRDGS

Fig. 3.17 : Hierarchical tree of the Class 1RDG5.

—An=0,..,4 - *
'"Note that Uj(_j_l " used here are those from the in-cell recovery, Section 3.3.1.

+(2) ) ) (3.73)
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PIECEWISE-CUBIC'?, iRDG; * (Figure 3.17).

(Regular grid), Class uni_iRDG5:

(Slls(u“”Jrﬂ“” + 7854 (20, +d",) + 6666 (A +207)) + )
=(5) —-(.,})

3 +493J( i +u‘3’) + zstn(z}“’ +u” ) +1024 (J uj

V;—é = 16896 3.74
20106 (" " ) — 26034 (U +0"), ) + 20057 (A" —d”, ) - 3.74)

3 —13509 (u‘” +d’ ) 46793 (u‘ : —zI'j“’) — 1989 ( A +L7;fjl)

30724z

Fig. 3.18 : Hierarchical tree of the Class cRDG_Dirichlet.

Specification of boundary conditions for cRDG (and DG) requires special at-
tention. This is because typically we have BCs for primitive variables, while
solving DG evolution eq.(3.24) also requires boundary conditions for high-order
DoFs — more than available in practical situations. We deal with this “under-
specification” problem by specifying Neumann BCs for high-order DoFs, as fol-
lows'?. Suppose, we are given a boundary value U, for a scalar 4.

¢RDG,. Forcing the in-cell recovered solution for the first real cell (j) to satisfy

u- (:1:_ 1) =: Uge
Rl -5
5 " (3.75)
J =3
12Note that M =%% \ised here are those from the in-cell recover 'y, Section 3.3.1.

3For brav:ty, only left boundary and uniform mesh will be described. Extensions to
the right boundary and irregular mesh are straightforward.
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SPACE:cRDG_BC
SPACE::cRDG_Dirichlet

| sPACE:cRDGO_Dirichiet |

| SPACE:uni_cRDGO_Dirichlet |

Fig. 3.19 : Hierarchical tree of the Class uni_cRDGO_ Dirichlet.

results in;

(0) (0)

4O 6Ugc—5U,  +U,
o) i (0) () (3.76)
Ul = 6(Vae—2") +1,

The order of spatial discretization with this BC is O (Az?).

SPACE;cRDG_BC
SPACE:cRDG_Dirichlet

| SPACE:cRDG1_Dinchlet

[ SPACE::uni_cRDm_Dirichlet]

Fig. 3.20 : Hierarchical tree of the Class uni_cRDG1l Dirichlet.

¢RDG, . Forcing the in-cell recovered solution for the first ghost cell (;_;y and the
first real cell (j) to satisfy
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results in
- 132U, TTH(IH—E—lTIU{]) 4714(”’ 3304
u' — i+l
i () 5 (1) (n) )
40 _ —~180Ug +105U,” —269, +7=,u -5
=1 . 8 5 : (378)
5 492U, —261U. }+7emu‘ ) zz*u‘ }+161U{ ¢
u{ ) BC i
Q) i )
(1 (0} (1 (0) (1)
U = —90Ug +45U” — 147U + 45U, — 32U,

The order of spatial discretization with this BC is O (Az*).

SPACE:CRDG_BC
SPACE:cRDG_Dirichlet

I

SPACE:cRDG2Z_Dirichlet

| SP.ﬁ.CE::uni_cRDGZ_Dirichlel|

Fig. 3.21 : Hierarchical tree of the Class uni_cRDG2_Dirichlet.

¢RDG.,. Forcing the in-cell recovered solution for the first ghost cell (j_;) and the
first real cell () to satisfy

R
U (.').'?j_%)ZUBC
= (vii) - (wiii) = (vi)
@a,) =0 () =@(,) = 6
7 (wii) = (wviii)
= (=) = (my) =
results in:
18840U, — 312701, +4|31u1 " —3am0u® + 12500U]) —
4O — 108454}, +6369U, )
-1 160
—6552U, + 112380, " — 11930 +12591U'* — 46861, +
) +4045U, || — 2385U ") (3.80)
U, = 32
3720Ugc — 6690 " + 'zawj“ — 7580 ™ + 2070U) —
f?}
4o — 2575U ) + 15314,
-1 T 32
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41
1) (2)

97620U,, — 180825U" " + 3480 — 20a567U'” + 832450
+ 434974,

(IV E
am) il ?zdmu.i-l—l i+1
e 10
! : (0) (1) " (2) (0)
—216720Ugc + 4109400 ' + 22054, + 465723U,  — 1942200, +
aj +169595U"" 4 43407 — 10221347
u = j+1 i+1
-2 0
6900U,. — 134-2531;”-’ —azsu't - 15-2163,1;” + (sszsuj‘fn, -
i35 — 5715 + 3464U ")
z/{ —_ j+1 i+l
j=2

The order of spatial discretization with this BC is O (Ax®).

SPACE:CRDG_BC

I

SPACE:cRDG_Dirichlet

S.PACE::CR.DGS_:DmchIeI

[ SPACE:uni_cRDG3_Dirichlet |

Fig. 3.22 : Hierarchical tree of the Class uni_cRDG3_Dirichlet.

¢RDG,. DoFs for ghost cells are computed forcing the in-cell recovered solution
for the first ghost cell ;_;) and the first real cell ;) to satisfy

ujR (3"- 1) = Ugc

=3
(xi) (x)

O (o))" = 0 ) = 0 () = )

) = (xy) = (R ) 0

1
2

The order of spatial discretization with this BC is O (Az®).

Neumann Boundary Conditions

Suppose we are given a gradient of a scalar I/ at the boundary, U;C. The ghost
cells are populated a follows'.

For bravity, only left boundary and uniform mesh will be described. Extensions to
the right boundary and irregular mesh are straightforward.
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Fig. 3.23 : Hierarchical tree of the Class cRDG_Neumann.

SPACE:cRDG_EC

I

| SPACE-cRDG_Meumann

I

| SPACE: cRDGI_Neumann

| SPACE:uni_cRDGO_Neumann |

Fig. 3.24 : Hierarchical tree of the Class uni_cRDG0_Neumann.

¢RDG,. Forcing the in-cell recovered solution for the first real cell (j) to satisfy

(ujﬂ (mi—%))! - U;C (3.82)

(Z/(_R (a« ,)) = 8

1 i=3

results in:
U’ = U - Az
0y (0) ‘)AJ) ; (3.83)
uj—? - ?A; e a’jUBc

The order of spatial discretization with this BC is O (Ax).

| SPACE:CRDG_BC
i SPACE -cRDG_Neumann
| SPACE:cRDG1_Meumann

T |

| SPACE:uni_cRDG1_Neumann |

Fig. 3.25 : Hierarchical tree of the Class uni_cRDG1_Neumann.
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¢RDG, . Forcing the in-cell recovered solution for the first ghost cell (;_;y and the
first real cell (j) to satisfy

(v) (3.84)

results in
yo —aaUy Awomu” 135" ~TU), 455U
- ' © o) © (€
20U A‘—-l"JL( SQH +-15H —33U.
L{f“ = BC i+1 (3 85)
i=1 5
U’ = —50U; Az — 1182,{“” — T2 + 119U, — 682/{1{3
u., = U, A:L + 183&{“” + 107&{‘” 18324’“” +1044, .

The order of spatial discretization with this BC is O (Az”)
SPACE::cRDG_BC
SPHCE :cRDG_._.Neumann

[ sPACE.cADGZ_Neumann

[ SPACE:uni_cRDGZ_Neumann |

Fig. 3.26 : Hierarchical tree of the Class uni_cRDG2_Neumann.

¢RDG,. DoFs for ghost cells are computed forcing the in-cell recovered solution
for the first ghost cell ;_,) and the first real cell () to satisfy

(4 (54)) = @ (54)

) =
Ch (3)2))((}) (" (=, ))({)} (3.86)
= () =@ () =0

The order of spatial discretization with this BC is O (Az").
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SPACE:cRDG_BC

SPACE :cRDG_Meumann

l

EPACE:cRDG3_Meumann

l

| SPACE:uni_cRDG3_Neumann |

Fig. 3.27 : Hierarchical tree of the Class uni_cRDG3_Neumann.

¢RDG,. DoFs for ghost cells are computed forcing the in-cell recovered solution
for the first ghost cell (;_;y and the first real cell (;) to satisfy

(MjR (mi—%))’ - (afl (:BJ—%)), = Uc
@6, @ e @) O

(@ (5) =@ () =@ (ey) =0

The order of spatial discretization with this BC is O (Ax®).

Characteristic Boundary Conditions

Characteristic boundary conditions are specified analyzing eigensystem of the hy-
perbolic part of eq.(3.1). The number of BCs is defined by the number of incoming
waves. Special care must be exercised to not specify conflicting BCs.

Input options

The name of the input file for space discretization of a component derived from
the class DG_1D_CV (Figure 3.5) is specified in the component’s input file, un-

[GeneralOptions|

der space discr file = discretization [ File “discretization.inp” should
{

be located in the “INPUT/” folder. The following input options are currently
available:

|General]

] space.discr = ... | space discretization scheme:
[
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(0) Finite Volume, class DG0_1D.
(1) Linear DG, class DG1_1D.
(2) Quadratic DG, class DG2_1D.
(3) Cubic DG, class DG3_1D.

|General]

[ ] ! recovery_InCell = true/false | app]y/don’[ il‘]-CC]] recovery (CRDG)

[General] . o
® Limiting = ... [, options for limiters.
I
In the case of DG, _:

(0) Unlimited.

(£ 0) Krivodonova’ limiting (class Kr ivodonova).

In the case of finite-volume (DG,)):

(0) Unlimited.

(1) WENO, (Classes uni_PPM_WENO or irr_PPM_WENO).

(2) Van Albada 1 (Classes uni_PPMor irr_PPM plus vanAlbadal).
(3) Van Albada 2 (Classes uni_PPMor irr_PPM plus vanAlbada?2).
(4) MinMod (Classes uni_PPMor irr_PPM plus MinMod).

(5) Van Leer 2 (Classes uni_PPMor irr_PPM plus vanLeer?2).

(6) Superbee (Classes uni_PPM or irr_PPM plus Superbee).

|General]

° i nunof QP = ... |: this is the number of quadrature points that code will use,

if it is greater than the minimum (default) number of Gaussian quadrature
points for in-cell recovery (see the Note at the end of Section 3.3.1).

|General]

. i flux.scheme = ... |, flux scheme used for hyperbolic operator. The following

options are available:

(0) Central (class Central).
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(1) Local-Lax-Friedrichs (class LLF).

(2) AUSM™ -up (class AUSM).

(3) Godunov (class Godunowv).

(4) LLF in characteristic space (class cLLF).

(5) Roe-Fix (class RF).

[LLF]
e Parameter o in LLF and cLLF schemes is defined as alpha = ...

e Parameters of the AUSM™-up scheme [1.i006] are defined as

[AUSM]
Split M number = ...
Split P_funct = ...
Interf C_sound = ...
low MACH_AUSM = ...
Mach2_inf AUSM = ...

(
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DG for Primitive (Non-Conservative) Variables

Complib. Componemt MISC. OneD
CompLib:DG_1D_CV

ComplLib:DG_10_PWV I

| Compl l{.‘PInﬁ_PuI
¥

e = : "
Complib-Elbow_Pur | | Complig-HaatedPipe_Pul CompLib-Pump_Pui

J—I—|

CompLib: FipeGw_Pul CompLib:FipeTw_Pu)

Fig. 3.28 : Hierarchical tree of the Class DG_1D_PV.

In many practical applications, the use of conservative variables is not the best
choice for linear algebra. For example, in stiff fluids low-Mach-number flows,

partial derivatives of pressure relative to density and temperature are very large,
op

85 and % > 1. In these flows, density is nearly constant (incompress-
T 0

ible limit), while pressure and internal energy/temperature may vary significantly.
Thus, from the linearization around a state (F,, p,, 1)

= 3—;: (3.88)

Ty )

opP
P=~F, - -_—
0 + (;’0 {)O) ap

one can see that small error in density may cause significant errors in pressure.

Much better choice would be to use the set of non-conservative variables, for ex-
P

ample, | u

Modification of the described in Sections 3.3.1-3.3.1 DG schemes is rather
straightforward. We sglvc for (p + 1) degrees of freedom (DoFs) of primitive
variables in each cell, V"~ representing a solution inside cell Z_, as:

(n)

P
VI (r) - V(:ull anj (écoll) (389)

n=>0

In implicit schemes, we drive residuals for mass, momentum and energy con-
servation of type eq.(3.25) to zero. In this formulation, source terms defined by
eq.(3.27) are computed using primitive-variable- in-cell and inter-cell recovered
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+1] —n .
solutions. Time derivatives require Z/{ i U " The DoFs for conservative vec-

tors are computed using high-order mapping Vl L M Res

—m)R(x] 14+ 2n - [ =ix]
o _ © / g, €)W @)de (3.90)

I
i

where we used Gauss-Chebyshev integration [PTVFOY].

In terms of JFNK, the conservative residuals are used to advance solution for
primitive variables as

(a 1)

D) la-1)
X =X (,]IA) (3.91)
= 0.1,
where A is defined are the Jacobian of transformation 24 5 , which with a proper
choice of primitive variables ought to generate a better—condltloned JENK’s Jaco-
bian matrix JA.

Importantly, since we compute residuals using conservative formulation, the
only possible conservation errors might sneak in only due to discretization/inte-
gration errors in eq.(3.90).

3.3.2 Two-Dimensional Structured Mesh

CompLib:Component | MISC:TwoD

t
I

| CompLib:DG_2D_CV

I

CompLib:ConductionSlab2D .

Fig. 3.29 : Hierarchical tree of the Class DG_2D_CV.

In this section we describe 2D structured-mesh discontinuous Galerkin Legendre-
polynomial based spatial discretization, as implemented in components derived
from DG_2D_CV, Figure 3.29.
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Extension of the cRDG to 2D structured grid is straightforward. This was
demonstrated for linear DG in [NPMO9], where we developed the in-cell and
inter-cell recovery for equations of type eq.(3.1), demonstrating their applica-
tions for solving Navier-Stokes equations and coupled non-linear neutron diffu-
sion and heat conduction problem on 2D regular structured grids. The key aspect
in the developing in-cell recovery was to choose a proper set of weak statements
of type eq.(3.31), in order to be able to construct additional degrees of freedom.
Specifically, we dropped some 5"~ and 6'"-order cross-derivatives, and chose only
two weak statements for von Neumann (face) neighbors, and one weak statement
(“cell-average”) for vertex neighbors. The resulting cRDG, was formally 4-
order accurate (6'™-order in normal derivatives). More details can be found in
[NPMO09].

3.3.3 Two-Dimensional Unstructured Mesh

Extension of the cRDG to unstructured grid is more demanding. It is much more
practical to apply reconstruction, rather than recovery. In [[LLLNMOY], Luo et al.
developed the “In-Cell Reconstructed DG” for compressible Euler equations. A
quadratic polynomial solution is reconstructed based on underlying linear DG so-
lution using only von Neumann (face) neighbors and a least-squares method. The
method was shown to be as accurate as quadratic DG, but computationally more
efficient. This is because the vector of unknowns for the cRDG{l'” 1s two times
smaller, and the numbers of quadrature points for domain and face integrations
were also less than those required for the DG_{:} . The cRDGl;s) was demonstrated
to perform excellently on arbitrary grids (including hybrid triangle/quads, and
highly-stretched Navier-Stokes meshes), using examples of low and intermediate
Mach number flows around cylinder, NACAQO012 airfoil, and three-element airfoil
(for details, see [|.L.NNMOY]).
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3.4 Jacobian-Free Newton Krylov (JFNK) Method

SLVR:NLSalver

[ |

ISLVH::H?_NEMW SLVR:R7SNES ‘

Fig. 3.30 : Hierarchical tree of the Class NLSolver.

ACH stage of IRK (Section 3.2.2) requires solution of the non-linear system
in the form

rés (A?‘) =0 (3.92)

where

=¥ —*# k=0,..., ] T —2(k=0,...,p T —2(k=0,...,p T !
X = (u“ 7/ 7 A ) (3.93)

1 1 2 1 N
is a solution vector which includes all (p + 1) degrees of freedom for all variables
in all N_,_computational cells. The residual vector r€s for each DoF at the cell
(c) takes the form:

rk

(k) [rk] (k)[n] (k) —r]

res = U U - A Z a,.S. (X ) (3.94)
© r=1

In the following sections, we will describe nonlinear algorithm used to solve the

system eq.(3.92). Input parameters controlling this nonlinear solve are specified

in file “INPUT/JFNK. inp”.

3.4.1 Newton’s method

We solve Eq.(3.94) with Newton’s method, iteratively, as a sequence of linear
problems defined by

—g

I°620° = —rés (x ) (3.95)

The matrix J° is the Jacobian of the '™ Newton’s iteration and 6 X" is the update

vector. Each u element of the Jacobian matrix is a partial derivative of the T
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equation with respect to the j'" variable:

res,

W= A,

1

e
[1]

(3.96)

The linear system Eq.(3.95) is solved for X", and the new Newton’s iteration
value for & is then computed as

a1 —a e
X =X 46X (3.97)
Newton’s iterations on X are continued until the convergence criterion

HTE?'S (.f) rés (A_:"”)

is satisfied. The nonlinear tolerance is tol, = 107,

< toly
2

(3.98)

2

The algorithm described above is the simplest nonlinear solver
(NonLinear_Slvr=2). There are several other Newton-like algorithms avail-
able [BGMS97, BBG 01, BBE"04], including:

e Line Search with cubic backtracking [1)553] (NonLinear_S1lvr=0, de-
fault);

e Line Search with quadratic backtracking [1)5%3] (NonLinear_Slvr=l)
and

e Trust Region Method [MSGHE!] (NonLinear_Slvr=4).

3.4.2 Krylov subspace iterations (GMRES)

The linear solver used in our code is the Arnoldi-based Generalized Minimal
RESidual method (GMRES) [5556]. It belongs to the general class of Krylov sub-
space iteration methods. These projection (Galerkin) or generalized projection

generalized projection (Petrov-Galerkin) methods [Sa:03] are suitable for solving
non-symmetric linear systems of the form Eq.(3.95), using the Krylov subspace,
K.,

7

K, = span (??D,J-Fn.fﬁ,. .]1*) (3.99)



100 CHAPTER 3. NUMERICS

where 7, = Jad‘i’r +7rés (fa) In GMRES, the Arnoldi basis vectors form a trial

th

subspace out of which the m'"-iteration solution is constructed:

o} -l

82X = 0K, + 8,7, + & JF, + &,I°7 + ... + ¢, "7, (3.100)

T

where (£, €, ,.... £ ) are “coordinates” of the m'" trial solution in the Krylov sub-

space. As one can see, only matrix-vector products are required to create new trial
vectors. The iterations are terminated based on a by-product (free) estimate of the
residual that does not require explicit construction of intermediate residual vec-
tors. This is a major advantage of GMRES over other Krylov methods. GMRES
has a residual minimization property in the Euclidean norm. The major draw-
back of GMRES is that it requires the storage of all previous Arnoldi/(Krylov)
basis vectors. This problem can be alleviated with efficient preconditioning (see
Chapter 3.5).

3.4.3 Jacobian-free implementation

Since GMRES does not require individual elements of the Jacobian matrix J, it
never needs to be constructed. Instead only matrix-vector multiplications Jr are
needed, where i € (1, Jr,,J°r,,...) are Krylov vectors. Thus, Jacobian-free
implementations are possible. The action of the Jacobian matrix can be approxi-
mated by Fréchet derivatives

rés (}E: - CE’) — 1€s (A_f")
Ji ~ = (3.101)

There are two approaches for choosing ¢, controlled by NLSvr_mf _t ype param-
eter.

Brown & Saad. The first (default, NLSvr_mf_t ype=0) approach is taken from

[BS90]:
)?T o s 2t r
a2 if ‘X R| > & IR,
&= e (DT 17l ) (3.102)
En:IXminslgn X K W OthOl‘WISC
2

There are two control parameters: €, (NLSvr_Erel=10"" on default) and
X . (NLSvr_Umin=10"° on default).
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Pernice & Walker. The second approach is taken from [PW98]:

fn__,\fl—l—‘f

£= - (3.103)

1%
The only control parameter is ¢, (NLSvr_Erel=10"" on default). Note
that for the entire linear iterative process X does not change. Therefore,

1+ Hrﬂ need be computed only once.

With the Jacobian-free formulation, the work associated with forming the Ja-
cobian matrix and its storage can be eliminated, which is a significant saving of
both CPU time and storage, provided that the number of Krylov vectors is kept
small (see Chapter 3.5). Moreover, in many non-linear applications, the Jacobian
matrix is not available due to size and complexity.

3.4.4 Inexact Newton

One important modification to Newton’s method employed here is called an in-
exact Newton’s method [ X01]. The term “inexact” refers to the accuracy of the
iterative linear solver. The basic idea is that the linear system must be solved
to a tight tolerance only when the added accuracy matters — i.e., when it affects
the convergence of the Newton’s iterations. This is accomplished by making the
convergence of the linear residual proportional to the non-linear residual:

HJH&;E'; + rés (.f) H <

rés (f) ‘ ‘ (3.104)

By default, v, is a constant. Alternatively, one can invoke the algorithm by Eisen-
stat and Walker [FEW96] (by setting parameter NLSvr _EW=true), which computes
v, at each step of the nonlinear solver.
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3.5 Preconditioning

ECAUSE GMRES (Section 3.4.2) stores all of the previous Krylov vectors, it
B is necessary to keep the number of iterations relatively small, to prevent the
storage and CPU time from becoming prohibitive. This is accomplished by pre-
conditioning the linear system. Preconditioning is a transformation of the original
linear system into one with the same solution, but is easier to solve with an iter-

ative solver [Saal)3]. We are using the right-preconditioned form of the linear
system,
. | .._"a__:._,,. —ra
TP BT = —rés (%) (3.105)
j oy

where P~ approximates J~*. The right-preconditioned version of Eq.(3.101) is

rées (.;E" - S]P_lr?f) — rés (f)

€

JP 'R} ~

(3.106)

This operation is applied once per GMRES iteration, in two steps:

I. Preconditioning: approximately solve Y =P~ l§

a  res( X" +es Y )—res(X”
IT. Compute matrix-free product: JéY ?cw’( s sl )

(=S

Finding a good preconditioner is often a combination of art, science, and intu-
ition. A mathematically good preconditioner should efficiently cluster the eigen-
values of the iteration matrix [Saa03, KIKO1]. A preconditioner can also be defined
as any subsidiary approximate solver that is combined with an outer iteration tech-
nique (e.g., multigrid, or one of the Krylov iteration solvers). One of the simplest
and most popular ways of defining a preconditioner is to perform an incomplete
lower-upper (ILU) factorization of the original matrix J. A number of variations
—ILU(k), ILUT, ILUS, ILUC, etc. — are discussed in [Saal)3].

An important class of preconditioners for the JENK method is referred to as
Physics-Based-Preconditioning (PBP) or PDE-based [ (/]. The motivation be-
hind this approach is that there exist numerous legacy operator-split algorithms to
solve nonlinear systems. These algorithms were developed with insight into phys-
ical time scales of the problem. A direct benefit of this insight — a reduced implicit
system, or a sequence of segregated semi-implicit solvers can be applied, instead
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of attempting to solve the fully-coupled system. Relevant fluid dynamics exam-
ples include the semi-implicit all-speed-flow Implicit Continuous-fluid Eulerian
(ICE) algorithm [ A7 1], the semi-implicit incompressible-flow SIMPLE [Pais0)]
and the Projection algorithms [Cho67].
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3.6 Equation of State and Thermophysical Proper-
ties

3.6.1 Simple Substances

HE simplest descriptions of matter are for substances idealized as having only
Tone relevant reversible work mode. These substances are called simple sub-
stances. The state postulate defines that the number of independently variable
intensive thermodynamic properties of a simple substance is two.

More specifically, we are concerned with substances for which the only impor-
tant reversible work mode is volume change (P dv work). The theory of simple
compressible substances is quite well developed [RP77, Atk94], and considerable
data have been accumulated relating the thermodynamic properties of many such
substances. While realizing that no substance is truly simple, it is customary in
engineering analyses to satisfactory treat materials involved as simple compress-
ible substances.

The hierarchical tree of the Class Simple_Substance is shown in Figure
3.3,

From the state postulate we know that the temperature (7") and pressure () of
a simple compressible substance can be expressed functionally as

T = T(iv)
P = Phay
where ¢ and v = ﬁ are the specific internal energy and specific volume, respec-

tively. These relations imply that we could completely fix the intensive thermo-
dynamic state of a simple compressible substance by specifying any two indepen-
dently variable intensive thermodynamic properties. It is well known [2777] that
temperature and specific volume are always independent properties for a simple
compressible substance, and we can think of the pressure and specific internal
energy as being functions of these properties,

P = P(Tw)

¢ = $(T,9)
In certain special cases these equations can be expressed in explicit algebraic form,
but in general it is easier to represent them in tables. The equations, in algebraic,
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graphical, or tabular form, which relate the intensive thermodynamic properties
of any substance are termed the equations of state of the substance.

The class of Simple_Substance materials incorporates those which do
not allow phase transition (melting, freezing, evaporation, condensation). Thus,
pressure I” and temperature 7" are always independent variables, which allows

for some simplifications. In particular, using the calculus of functions of two
variables, for any three functions z, y and z, any two of which may be selected as

the independent pair,
ox dy dz\
).G).(5),- e

This allows to compute important partials of independent variables. For example,

® (Qﬁ)u fromv =v (P, T), as

arT
OP\ (0T [ v or (55,

® (%)ﬂ from p = p (P, i):

ai
. a
(()—P) :—(‘*_ﬁ’g)” (3.109)
%/,  (55)

To simplify farther, we separately treat Fluids (liquids and gases), 3.6.2, and
the Solids.
Enthalpy. A thermodynamic property which is of particular importance is the
enthalpy h, defined by

h=i+ Pv (3.110)

Specific heats. Consider the specific internal energy as a function of 7" and v,
i =1 (T, v). The difference in energy between any two infinitesimally close states

is then
. i i
di = (a—T)U dT + (a)"{m (3.111)
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The slope of a line of constant v on a (¢ — T') thermodynamic plane is a function
of state, and called specific heat at constant volume'”:

i
C, == 3112
=), R

Using the calculus of functions of two variables',

1

C, = (@) (%) (3.116)
(ﬂ) _ ar i i P
o)» = (%),

which can be used for tabulated equations of state, Section 3.6.4.

Another specific heat is defined as

__ i P
Gly= (@) = (ﬁ) - (@) (3.117)
T J ' aor), p*\oT),
13Sometimes called specific isochoric heat capacity.
16 In fact,
dp = (28) dpP %) di
P (dP)r_ 7t (c)a)P(?

ar = (§).aP + (5F), di
T = (%)i@p + (%) di

Eliminating dT in the last two equations, plugging dp from the first one, and collecting
the terms with d P on the left and with di on the right,

e |@),- (%) (%) | =4 |8, - @+ (%), (%),] e

Since the changes di and dP are independent, setting di = 0 leads to

Q_T_
(B—T) = (ﬁ””)"- (3.114)
%/ (%)

Similarly, setting dP = 0 leads to

oT\ _ (9T _(0T\ (%
(&)~ (%), (%)), s

which is inverse of equation (3.116).
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and called the specific heat at constant pressure'’. Using the calculus of functions
of two variables'®,

_1-z (&),

G R

Both C', and C, constitute two of the most important thermodynamic deriva-
tive functions, and their values have been experimentally determined as functions
of the thermodynamic state for a tremendous number of simple compressible sub-
stances, [RP77, Atk94].

C (3.121)

Compressibilities. Consider the specific volume as a function of 7" and P, v =
v (T, P). The difference in specific volume between any two infinitesimally close

71t is also sometimes called the heat capacity at constant pressure.

18 In fact,
dp = (3—ﬁ) dP + (3—‘?) di
i P

ar = (%) aP + (&) di
dT = (%)d{) & (g%)de

Eliminating dT in the last two equations, plugging dp from the first one, and collecting
the terms with d P on the left and with di on the right,

@), - &), - (%), (%) ] -« |(%), &), -@,] o

Since the changes di and dP are independent, setting dP = 0 leads to

: or
(%) = (;’;)P (3.119)
.0)

Similarly, setting di = 0 leads to

(55) - ().~ (%),

Combining eq.(3.119) and (3.117) leads to eq.(3.121).

(3.120)
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states 1s then

v v
v = [ — T — [P
o (31“);:({ £ (3P)rrd
5y

The slope (—) p represents the sensitivity of the specific volume to changes in

aT
temperature at constant pressure, leading to the definition of the isobaric com-
pressibility:
1 [ 0Ov 1 [ 0p
f=-|—) =—17 = 3.122
1=3(a1),= (8T>P (122
Using eq.(3.127),
)
1 (5
f=—— (5 )f’ (3.123)

aT
P (W)P
The coefficient of linear expansion used in elementary strength-of-materials
textbooks is
. 3
o= —|
3"'

The slope (%)I is a measure of the change in specific volume associated with a

change in pressure at constant temperature, defining the isothermal compressibil-

ity:
1 fov\ 1 /0p _
X="7% (8}3),‘,. Cp (E)P)T G129

Young's modulus of elasticity is proportional to y. Using the calculus of functions
of two variables'”,

! dp (%?)P (%),
x=1 (5}3)_—(C’—TT (3.128)
19 In fact,
dp = (%‘f—) d (7)18) al
T P

S
- -

dp = (%) ap (%‘f—)dc

P
ar ar ;
dT = (TP), dP + (W)Pd"
Eliminating dp in the first two equations, plugging into that the last equation for d7", and
collecting terms for d P on the left and for di on the right,

" [(%)T - (3),+ (3#), (B)TI)} - [(%’2),, - (%), (—’f—)} (3.125)
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It is also possible to demonstrate that

C
X = pcl’(}g (3.129)

The sound speeds of materials are related to the partial derivatives of the pressure
At op aPY .
[Atk94], (%) and (zﬁ),,-

; P(%
¢= \/(%)Jr% (3.130)

dp
g= ((_}1&) (l—@) (3.131)
aPrP /i

Using eq.(3.109),

3.6.2 Fluids

The hierarchical tree of the Class Fluids is shown in Figure 3.33. We split
fluid materials into two groups: those which have analytical form of equations
of state ( Sections 3.6.3-3.6.4), and those which are specified in tabular/bi-cubic
interpolation form.

3.6.3 Gamma Law Gas

Class GammaGas is a subset of general fluids; see Figure 3.34. Equation of state
for an ideal or perfect gas is

P = pRT (3.132)

Since the changes di and dP are independent, setting di = () leads to

ap\ [ Op ap ((ﬂ:)
®)-0)-@).8 o

Similarly, setting dP = 0 generates

(@)P = ( ), (3.127)

or), = (3,
Combining eq.(3.126) with eq.(3.124) leads to eq.(3.128).

&
—_

&
~

>

ol

(a7
by
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[ PROPS:Materials |

4

| PROPS::Substance_Properties

| PROPS:Fluids |
t
I 1
| PROPS:Analytical | PROPS:Tabular
; I
| _ I _ _
PROPS:GammaGas | | PROPS:LinearEosS | PROPS:Tabular_P!

PROPS :StiffenedGanmaGas |

Fig. 3.33 : Inheritance tree for Class Fluids.

i PROPS:Materials |

| PROPS::Substance_Properties |

| PROPS:Fluids |
| PROPS:Analytical | | PROPS:gas

| PROPS..GammaGas

| PROPS: StiffenedGammaGas |

Fig. 3.34 : Inheritance tree for the Class GammaGas.
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where R = % is the specific gas constant, with the universal gas constant 7, ~

8.31451 n]c;]l.r( and M is the molecular weight of the gas.

One of the important features of a perfect gas is that its internal energy depends
only upon its temperature. Thus, eq.(3.111) reduces to:

di = C,(T)dT (3.133)

and C), depends only upon T'. From eq.(3.110), the enthalpy / also depends only
on temperature, leading to

dh = C,(T)dT (3.134)
Next, one can easily see that
dh = C,(T)dT =di+d(Pv) = C,dT + RdT

leading to
R=C,—C,

Now, we can introduce 7 as the ratio of specific heats [ Atk9-1]:

Ce
=5 (3.135)

The next level of assumption is stating that C', is independent of temperature,
i.e. the assumption of calorically perfect gas, leading to the following relation of
the specific internal energy and temperature:

i(T)=1i,+C, (T-T,) (3.136)
where 7' and ¢, are some reference constants.

With this, we can write “Gamma-Law” equation of state as

P(p,i)=p(y=-1)(i—i,+C,T) (3.137)
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and important thermodynamic properties are defined as

C, = const Specific heat at constant volume
Cy =l Specific heat at constant pressure
B(T) = !i Isobaric compressibility
viP) = % Isothermal compressibility
c(P,p) = %; Speed of sound (3.138)

Input parameters must be specified in the material input file, which should be
located in the folder

“INPUT/Materials/”

The following options must be set:

[EoSParameters)
gamma = ... — ¥
sph=..=C,
Tref = .. =2 T
IEref = ... =1,

{

3.6.4 Stiffened Gamma Law Gas

Class stiffenedGammaGas is another subset of fluids; see Figure 3.35. The
“stiffened gamma law gas” [('/]1 70] is a simplest generalization of the gamma
law gases eq.(3.137) to fluids and solids:

P=(y-1)p(i—4+C,T,) -1 (3.139)

where I1 is the so-called “stiffening parameter”. This equation of state is known to
provide a reasonable approximation of thermodynamic processes in gases, liquids
and also in solids under high pressure conditions. The values of parameters 7 and
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| PROPS:-Materials |

‘ PROPS:Substance_Froperies i

‘ PROPS:Fluids |
‘ PROPS:Analytical | PROPS:gas
t *

|
i PROPS::GammaGas

1

I PROPS: StiffenedGammaGas l

Fig. 3.35 : Inheritance tree for the Class Stif fenedGammaGas.

I1 for some gases, liquids and solids are given in [5A9Y].

Important thermodynamic properties are defined as

C, = const Specific heat at constant volume
C, = ~C, Specific heat at constant pressure
B(T) = —,}: Isobaric compressibility
x(P) = Wlﬁ Isothermal compressibility
. _ F(P+IT) :
el ) = %/ e Speed of sound (3.140)
ap
(%7), = p(v—1)
( ap ) _ Pyl
dp i - P

Input parameters are the same as for the Class GammaGas, except for additional
input:

|[EoSParameters)|
Pi=.. =1

I
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Linearized EOS (Class LinearEoS)
| PROPS: Materials |

| PROPS:Substance_Froperies |

I PROPS:Fluids |
[ PROPS:Analytical | [ PROPS:liguid
L ; | :

| PROPS:LinearEos |

Fig. 3.36 : Inheritance tree for the Class LinearEoS.

(Figure 3.36). Another simple approximation for EOS is the following lin-
earization around a fixed state (p,, 7} ):

P(i(]zT):Pu+Pp|g(p_p(J)+PT|(J(T'_TIJ) (3.141)

where Py = P(p,.T,). By = (57) (po.T,) and Pyly = (57), (0. T,) are

given constants.
Relationship 7 (7') is defined by eq.(3.136), where C| is a given constant.

Notably, C',, depends on both temperature and pressure:

PP,
3
P—FP,—P. T-T
Pplu (pu + L I?;I{}( ]))
1o

Accordingly, v is also a function of temperature and pressure, 7y (P, T').

G.(T, P)=C. + (3.142)

The specific volume v as a function of pressure P and temperature 7’ is defined
as:
By

T, Pl =
Po I)pl[)_‘_P_ JD() - PT|U(T_'I;])
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which leads to the following isobaric compressibility:

P,
8(p) = Lxlo (3.143)
2Ar
and isothermal compressibility:
1
X (p) = T (3.144)
PPl
Finally, the sound speed is defined as
P P, |
C(P,p):\/Pp‘D+Tp2 (3.145)

and

oPY Bl (7Y
i p_ C,’ op «;_ Al

Input parameters must be specified in the material input file, which should be
located in the folder

“INPUT/Materials/”

The following options must be set:

[EoSParameters)]
Pref = ... = F,
Dref = ... = p,
Tref = ... =T,
IEref = ... — i,
sph=..—=C,
dPREADEN = ... —+ P, |,
dPREATEM = ... — Py,
|

Tabulated (P — i) EOS (Class Tabular PI)

This is an important class of materials, which allows for representation of realis-
tic material properties, defined in tabulated form, as a function of fluid pressure
(P) and specific internal energy (z). In general, the class Tabular_PI allows
for modeling of two-phase (liquid/vapor) systems as well. Here, we will focus on
the algorithms used for property interpolation in single-phase regions. Property
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i PROPS-Materials |

| PROPS:Substance_Properies |

| PROPS:Fluids ‘

|I PROPS:Tabular | | PROPS:liquid_vapour |

t
|

| PROPS:Tabular_PI |

Fig. 3.37 : Inheritance tree for the Class Tabular_PT.

approximations in the two-phase zone are described in Section 3.6.7.

The use of the class Tabular PI for tabulated property approximations is
most cost-effective when both pressure and specific internal energy are primary
unknowns, such as for example in components of the Pipe Pui family. Class
Tabular_PT is designed to read tabulated input data from the given file, and
apply smooth and accurate bi-cubic interpolation on the supplied data set.

I/0 (Class Read_PI_Table)

Actual I/O of the data is performed by the Class Read_ PI_Table. The name of
the table data file is specified under

[Table]
Table File = TableFile Name

(

in the material input file, located in the folder
“INPUT/Materials/”
Read_PI_Table will look for the file
“INPUT/Materials/Tables/TableFileName.dat”
An example of tabulated data file is given by

“INPUT/Materials/Tables/Water_at_l6MPa.dat”
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which defines saturation (liquid and vapour) properties (i.e., specific internal en-
ergy i,,, ., temperature 7, density p_, ., speed of sound c_, , . isochoric
specific heatc, ., isobaric specific heatcp . isobaric compressibility 5, v,
thermal conductivity r_, , ., dynamic viscosity y_ , ., and surface tensiono_, | ),
as a function of pressure. Then, for each pressure level, one has to specify 7', p,
¢, Cyy Cpy B, K, i, and o for each of two single-phase zones (liquid and vapour),
tabulated as a function of specific internal energy. The number of pressure levels
in the table are defined by the parameter

[Define]
PressurelLevels = ...

|

at the beginning of the table file. The number of specific internal energy levels at
each pressure level is arbitrary, but must be confined in the range from i, toi_,,
defined under

‘beg

[Define]
IEN beg = ...
IEN_end = ...

[]

It is generally recommended to supply at least 2-3 points for each of single-phase
regions, covering the range more or less uniformly.

Bi-cubic interpolation (Classes of Table Props Evaluator PI family)

After reading the data from the input file, Class Read_PI_Table does split the
range of specific internal energy [i, ., ...i,,, ]| into three zones:

to 7

Liquid: From i o, (P)

beg

Vapour: Fromi_, , (P)toi

“end

Two-phase: Fromi_, , (P)toi_, . (P)

To define boundaries between zones, we build cubic splines using discrete data
for saturation specific internal energy.

Next, we can transform each of the irregular-shape zone in the (P — i) for-
mulation, into the regular rectangular shape in the (P — z) formulation, where
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0 < x < 1 1is the specific internal energy-based “quality” of the zone. It is defined

as
Liquid:
Vapour:

Two-phase:

?'_.zlmt:g

L = I‘Sil.t_,l‘(!‘,)_ibl..‘g
T = E_isat.\"(P) (3 146)
=T fe-nd __.js_at.\-’ (;2) ’
i—t
T = sat,L

?.:.la,t R (‘P}_ism.{. (P)

Fig. 3.38 : Inheritance tree for the Class Table Props_Evaluator_PI.

It is rather straightforward to demonstrate that the transformation of the deriva-
tives in the (P — 7) formulation into the derivatives in the (P — ) formulation is
accomplished using the following formulas:

Jelis
IP 1,
gd

oz

where ® is a scalar, while cf—;,

eq.(3.146).

@

00| 4 00 0
aP|; T Bilp oP|,

b1 8 (3.147)
5ilp Bx

and 3—;| can be computed using definition
P

Property evaluations in each of these three zones are accomplished using Classes
of Table Props_Evaluator_PI family, Fig. 3.38. Here, we will summarize
interpolation in the single-phase liquid and vapour zones. Property evaluation in
two-phase zone is described in Section 3.6.7.

There are five material properties which must be smoothly interpolated as

functions of P and z (i, P):

. density, p (P, x),

2

. temperature, T (P, z),

3. dynamic viscosity, (P, z),

4. thermal conductivity, x (P, z), and

5. surface tension, o (P, z) (relevant only for liquid).
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The rest important thermodynamic quantities are derivatives of p (P, z) and

T (P x):
P (2
. ﬁ(l—%) (3.148)
aP/i
%= 1 (3.149)
%p T (3p),
1- E(2
Cp = (@gd?)*’ (3.150)
o1 ) p
and
2
p--tite 3.151)

(9T

P(zﬁ)p
Note that the above-given formulas imply thermodynamic consistency and rely
on the fact that interpolations of density and temperature are smooth, allowing

to accurately compute derivatives (%) ; (E‘,%) ; (%) and (—g—fs) , and via
— P ¥ o = P T
ap ap aT ar
eq.(3.147) (57) .+ (55),» (57) , and (55).-
There are two options for smooth interpolations of properties ® = p, 7', 1, K,
oro.

Bi-Cubic spline

This option is activated by setting

[Table]
interpolation =0

[

in the material input file, located in the folder

“INPUT/Materials/”
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A
J= Npi <
—@
*
=
=9 &
i=1@= ® :
Zbeg gﬂ

Fig. 3.39 : On bi-cubic spline interpolation of properties.
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The algorithm is explained by Figure 3.39, illustrating the case for single-
phase liquid zone.

1. For each pressure level P, we construct and store cubic spline of ®, (i) (see
[PTVE99] for details of cubic spline interpolation).

2. Suppose we are looking to interpolate properties at (P, 7) .

e First, compute x, .

e Second, using available splines for each pressure level, compute prop-
erty ® and (%)P for each intersection of the dashed line z = z, with
each pressure level (orange circles in Figure 3.39).

e Third, construct cubic splines for evaluation of ¢ and (%?) s along the
dashed line.

o

_and (55)

e Next, using these splines, evaluate @, (%)p

“lo

2 : 9 ad el
e Finally, using (W)P‘n and (W)Jn and eq.(3.147), compute (07) ‘“
This option is rather expensive, as it involves Np spline evaluations (including
table search with bisection), construction of two new splines along the pressure
direction, and finally two spline evaluations. A cheaper option is to utilize bi-cubic
interpolation.

Bi-Cubic interpolation

This option is activated by setting

[Table]
interpolation=1

[

The basic idea is to re-tabulate data in the rectangular-shape (P — 2) domain.
The size of this new table is defined by parameters

[Table]
bi3_pre_axis = ...
bidx_axis =...

(
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Density, kg/m®
1000

Fig. 3.40 : Example of the Tabular_PT table-interpolated density (high-pressure wa-
ter/steam) as a function of pressure and specific internal energy.

Temperature, K

1400

600

400

14.0

Fig. 3.41 : Example of the Tabular_PT table-interpolated temperature (high-pressure
water/steam) as a function of pressure and specific internal energy.
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Dynamic viscosity, (Pas)

10” 1.000E-05
1.963E-04
3.825E-04

| 5.688E.08
ur.ssos-oa
9.413E-04

10" 0.001128
0.001314
£.001500

Two-phase
-5
14.0
14.5
-1.0
70 150 p, MPa

17.0

Ix

Fig. 3.42 : Example of the Tabular_PT table-interpolated dynamic viscosity (high-

pressure water/steam) as a function of pressure and specific internal energy.
Thermal conductivity, W/(m K)

0.7 0.07000
0.1500
0.6 0.2300

0.3100
Ho:!m
0.47T00
0.5500
IO 6300
0.7100

b
o

i
S

Two-phase

o
(8]

IIFI!IIH!IHIIH}

&
-

Fig. 3.43 : Example of the Tabular_PT table-interpolated thermal conductivity (high-
pressure water/steam) as a function of pressure and specific internal energy.
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C,, Ji(kg K)

P, MPa

16.5
17.0

Fig. 3.44 : Example of the Tabular_PI table-interpolated isochoric specific heat (high-
pressure water/steam) as a function of pressure and specific internal energy.

C,, Ji(kg K)

¥ 6251

L aare

l 1,050E404
1.263E+04
1.4T5E+04

. 1.688E404
1.900E+04

Fig. 3.45 : Example of the Tabular_PT table-interpolated isobaric specific heat (high-
pressure water/steam) as a function of pressure and specific internal energy.
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Speed of sound, m/s

1600,

Fig. 3.46 : Example of the Tabular_PT table-interpolated speed of sound (high-pressure
water/steam) as a function of pressure and specific internal energy.
Surface tension, N/m

0.000
0.009375
0.01875
0.02813
0.03750

0.05
0.04688
0.04 0.08625
-
0.03 0.07500
0.02
0.01
17.0 0.00
16.5 1.0

P, MPa

14.0

0.0

Fig. 3.47 : Example of the Tabular_PI table-interpolated surface tension (high-
pressure water) as a function of pressure and specific internal energy.
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At each point of this new table, we compute ¢ using bi-cubic spline algorithm de-
scribed above. For bi-cubic interpolation, we need also derivatives (75) . (‘j‘%)

P
92
0P
ues with some small AP and Az, and use second order finite differencing to
estimate point values of the derivatives. This is done at the initiation stage of the
class Table Props_Evaluator PI_lphase._Bi3.

and cross-derivative ( . To compute these derivatives, we perturb point val-

Then, we can use bi-cubic interpolation algorithm described in [PTVEO9],
Importantly, for efficiency purposes, 1) we use “hunt” table search algorithm
[PTVE99], storing and later providing initial guess each time property evalua-
tion has been invoked. 2) First time we hit an element of the (P — x) table, we
dynamically allocate memory for sixteen coefficients ¢;;, ¢, 7 = 1, .., 4 needed for
bi-cubic interpolation (see details in [TV I99]), compute them and store for fu-
ture use. These coefficients are rather expensive to compute, so we store them
for the next time we hit the same element. Then, any subsequent evaluation of
interpolated value and its derivative is rather inexpensive sum of the type

4 4
O(Pg) = X Y e w?

i=1i=1

4 4
®p(Pz) = ZZ(@—I)( 20 I(f,{f,

=1

=1
®.(P) = T30 Dot

i=1i=1

el
['=8

(see [TVE9Y] for explanation of local element coordinates w and £).

We found that this bi-cubic interpolation is roughly 2.5 times faster than bi-
cubic spline algorithm.

Examples of property evaluations using this bi-cubic interpolation algorithm
are shown in Figures 3.40-3.47, for tabulated water near 16MPa.

3.6.5 Implicit property evaluations

The above-described algorithms do rely on the fact that pressure P and specific
internal energy ¢ are given. Sometimes, it is also necessary to solve inverse prob-
lem, for example, given density and pressure, compute specific internal energy,
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i(p,, P,). In this case, we use Newton-Raphson algorithm, solving the following
nonlinear problem
F@)=p.—p (Pu"‘f)

iteratively, where p (F,,7) is coming from the above-described bi-cubic interpola-
tions. Parameters for Newton iterations are specified as

[Table]
MAXIT = The maximum number of iterations
tol_IEN = Absolute non-linear tolerance

I

For initial guess, we employ a variation of the zbrak algorithm from [PTVF99],
“looking inward” on an initial “root bracketing™ interval. Resolution for initial
guess search in this bracketing strategy is defined by parameter

[Table]
search res = ...

|

Similar algorithm is used when we need i (7', P), P (i, p), P (i, T, etc.

3.6.6 Eigensystems

Eigensystem of the hyperbolic part of governing equations in the form eq.(3.1)
can be derived by analyzing Jacobian matrices

o

J =
ou

(3.152)

Using the eigensystem decomposition of governing equations, one can transform
physical variables into the characteristic fields, which allows to efficiently use
upwinding schemes.

Euler equations, 1D, Class EigS_Eulerl1D

SPACE:EigenSystem

SPACE:EigS_Euler1D

Fig. 3.48 : Inheritance tree for the Class EigS_Euler1D.
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(Figure 3.48). A general form of the Jacobian matrix for 1D Euler equations
in conservative formulation is:
0
(?')ji, } 5 2 - ap
—£ (pu? — ) + (5_”),

— @

__ * (3.153)
(%)ﬂ 2 ; ap (%_?}p“z (%’xg S
u| —* (pu? — E) + (d_p) - H H — 5 wl|l+4 =

where £ = p (a + %) and H = %. Then, the eigenvalue matrix of the system
eq.(3.153) is:

u—c 0 0
A= 0 i 0 (3.154)
0 0 u+t+e

where the sound speed is defined by eq.(3.130).

The Left and the Right eigenvector matrices™ are:

1
2
R=|[ %< u fike (3.155)

and

L= Hf—,”: %~ L (3.156)
I-¢+5F" —t+: 71
respectively. The parameter I' is defined as I’ = (%Z)P. Thus, the vector of
characteristic variables is
R et
®=LU= {—’P (3.157)
P—T

3.6.7 Multi-phase fluids
Tabulated (P — i) EOS (Class Tabular PI)

This class of material representation allows for modeling two-phase boiling/con-
densing systems. As discussed in Section 3.6.4, the (P — i) space is split into

20These are defined as JR = RA, LJ = AL, and L = R~
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i PROPS::Substances |

| PROFS:Multiphase_substances |

F'HDPS::Three_phase_suhstances' | F'RDIE'S:.Two_phase_substances ]

PROPS: liquid_vapour |

PROPS:Tabular_PI |

Fig. 3.49 : Inheritance tree for the Class Multiphase_substances.

three zones: liquid, vapour and two-phase. The first two zones are explained in
details in Section 3.6.4. Here, we will be focusing on the two-phase zone. In this
case, Tabular_PI uses property evaluators of the Table Props_Evalua-

tor_PI_2phase family, Figure 3.50.

FROPS:Tabie_Props_Evalualor
-

[ PROPS:Tabls_Props_Evaluslor_Fi
+

| PROFS-Tabla_Props_Evalualot_PI_tprase |
*
: [ 1
PROPS:Table_Props_Evalustor_PI_Zphase_Cublc | | PROPS: Table_Props_Evaluator Pl_Zghase_ Quarmc |

Fig. 3.50 : Inheritance tree for the Class Table Props_Evaluator_PI_2phase.

Temperature

Temperature is independent of specific internal energy, and a function of only

pressure,
T (P) = Tsal (P)

As a consequence,

o0
= o0
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Viscosity and Thermal Conductivity

Dynamic viscosity ;¢ and thermal conductivity x are assumed to be functions of
pressure and thermodynamic quality, defined as
P)

sat L (
P)— iy (P) @159

7 —1

x(Pi) = -

?'sat_.\’ (

Saturation specific internal energies i, (P) and i, (P) are computed using
cubic splines.

There are two models for ¢ = p, r, currently implemented in the class Ta—
ble_ Props_Evaluator_ PI_Zphase:

1. Linear-average,
¢> (x (P" 2’)) = d}sat.L(l - x) + (lbﬁnt.,va:
and

2. Harmonic-mean,

Density

Definition of effective density in the two-phase zone requires special attention, as
it is closely related to the definition of speed of sound,

[/
= ‘1 (1 — M) (3.159)

(55); P

ap

The naive approach of setting density to be linear-average of saturation prop-
erties, using thermodynamic quality as a weighting kernel function

p(@(Pi) = po (1= 0) 4 po 2

turns out to be a bad choice, since it is not only generates discontinuity in sound
speed at saturation lines, but also generates non-hyperbolic system with ¢ < 0 at
x > 0.5,
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Speed of sound, m/s

Fig. 3.51 : Example of the Tabular_PI table-interpolated speed of sound (high-pressure
water/steam) as a function of pressure and specific internal energy. Based on cubic ap-
proximation of density in the two-phase zone, p (2, P) = p, (x, P).
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A better choice is to use cubic or higher-order approximations of type

p(@P) = pu.(@—1)"(1+22)+
psat.\/:}: (3 = 2:1{:) = (isat,L - ?:sat.\’) (:C = 1) ]

e T 0P
((J’ 1) pi T ¥ %5y

+x

L

Cubic term (ensuring continuity of density and sound speed), = p, (z, P) (3 1 60)

+Y a,(P)a* (n—3)— (n—2)z+2""?)

n=4

"

Quartic™ correction, helping to “shape” speed of sound, = pog(x, P)

With this, the sound speed behaves smoothly, as demonstrated in Figure 3.51 for
water near 16 MPa.
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Testing the Developmental Version

N this Chapter, we present examples of using RISMC /-2 to perform numerical
Isimulations that help develop a basic understanding of the code performance,
particularly with respect to architectural features and solution algorithms imple-
mented in this code version.

4.1 Blowdown test (accuracy, efficiency)

4.1.1 Problem formulation

Let consider a single-phase blowdown problem. A vessel of 100 m’ in volume,
filled with air at 300 K and 100 bars, is placed in a containment of 10" m” in vol-
ume, under 300 K and 1 bar. A pipe, Sm-long and 15 cm in diameter connects the
vessel and containment as shown in Figure 4.1. Both the vessel and the contain-
ment are modeled by the Tank1f components. The pipe is represented by the
Pipe component. The characteristics-based Pipe2Tank1f interface is used to
connect the vessel to the pipe and the pipe to the containment. Air is modeled as
gamma-gas (Section 3.6.3), with v = 1.4, specific heat C, = 1000 T, =0,

kg K°
i, = 0 and constant dynamic viscosity g = 1.983 - 1{}_"’1%. Three test-cases are
considered:

e Inviscid.

¢ Viscid, Filonenko-based friction, with Class Friction pipe_lphase
_Filonenko as friction closure, and

135
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e Viscid, enhanced friction, with Class Friction pipe_lphase
tonst,; &£ =1

Vessel

Containment

Fig. 4.1 : Outline of the blowdown problem.

As set, this problem represents a harmonic oscillator, i.e., some kind of “manome-

32

ter”.
e Inthe first stage, there is a rarefaction wave propagating towards the vessel.

e Next, the flow “chokes” at the exit of the pipe. Characteristics-based in-
terface between the pipe and the containment naturally captures choking,
without special “modeling” usually utilized in legacy codes. The gas is
discharged from the vessel to the containment, within approximately 40
seconds equalizing pressures in both. During this process, the vessel cools
down significantly, while the containment pressure slightly increased.

e If there is no any dissipative mechanisms introduced in the problem (nu-
merical or physical), the pressure in the vessel “overshoots™ due to inertia,
and the harmonic oscillations begin. These oscillations with continue in-
definitely in the inviscid case and high-order space-time discretizations.
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e In the case of friction, these oscillations will be damped, until no-flow
steady-state is established.

e Under very strong dissipation (real case), the friction will remove oscillation
completely, and the pressures in the vessel and containment will smoothly
equilibrate (without oscillations), establishing no-flow steady state.

Since this problem involves shock dynamics, only first-order convergence in
space is expected. We will use finite-volume cRDG, scheme with van Albada-2
limiter. The base grid size is set to Az = 5¢cm. Richardson-extrapolation-based
convergence is demonstrated in Figure 4.12.

Three fully-implicit time discretization schemes are used and compared — the
BEuler, the BDF2 and the ESDIRK3, Section 3.2.2. For dynamic time control,
we use the CFL-based strategy (Section 3.2.4).

4.1.2 Computational results

Computational results are presented in Figures 4.4-4.9.

First, we show comparison of inviscid and viscid (Filonenko-based) simula-
tions, in Figures 4.2, 4.3, 4.8, 4.9, 4.6 and 4.7. In both cases, we utilized second-
order BDF, time discretization scheme. It can be seen that the inviscid case re-
sults in oscillations of both pressure and temperature (see also Figures 4.4 and
4.5). With each “overshoot” of pressure, the flow in pipe reverses, bringing warm
air from the containment to the vessel. Dissipation due to the second order time
discretization is very low, and since no physical dissipation introduced in the sys-
tem, the oscillations will persist indefinitely. As one can see from Figure 4.10,
Mach number in the pipe is also oscillatory, being able to accelerate during each
flow reversal to Mach=1 and choke.

In the case of the viscid Filonenko-based simulations, the friction in the pipe
effectively removes energy from the system, damping oscillations, as demon-
strated in Figures 4.2, 4.3 and 4.10. Notably, the Filonenko-based friction law
is based on steady-state fully-developed correlations, which apparently under-
predict friction losses in the considered case of highly developing oscillatory flow.
In the reality, the friction losses are significantly higher, due to the losses in the
multidimensional shock dynamics in both vessel and containment (not represented
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Fig.4.2: Inviscid vs. viscid blowdown problems. Comparison of the vessel/containment

pressure histories.
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Fig. 4.3 : Inviscid vs. viscid blowdown problems. Comparison of the vessel/containment

temperature histories.
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Fig. 4.4: Dynamics of the pressure in the vessel and containment for inviscid blowdown
problem.
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Fig. 4.5 : Dynamics of the temperature in the vessel and containment for inviscid blow-
down problem.
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Fig. 4.6 : Dynamics of the pressure profile for Filonenko-based viscid case. van-Albada-
2-limited cRDG,, BDF,, Az = 5 cm.
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Fig. 4.7 : Dynamics of the Mach number profile for Filonenko-based viscid case. van-
Albada-2-limited cRDG,, BDF,, Az = 5 cm.
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Fig. 4.8 : Dynamics of the pressure profile for inviscid case. van-Albada-2-limited
cRDG,, BDF,, Az = 5 cm.
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Fig. 4.9 : Dynamics of the Mach number profile for inviscid case. van-Albada-2-limited
c¢RDG,, BDF,, Az = 5 cm.
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Fig. 4.12 : Space convergence study. Simulations were run with RK3-TVD scheme, at
CFL ~ 1, till £ = 1sec. Correspondent pressure and Mach number profiles are also
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shown.

here at all), and the entrance effects/developing/oscillatory flows. Thus, we expect
no oscillations in the real physical systems. This problem clearly exemplifies the
need for more complex closures and higher-fidelity components. To demonstrate
the complete damping of oscillation with significant friction losses, we run a case
with constant-friction & = 1. The results shown in Figure 4.1 1 demonstrate almost
no-oscillation transient'.

The effects of the numerical dissipation due to low-order time discretization
are shown in Figures 4.13 and 4.14. The first order BEuler scheme quickly
damps oscillations, effectively draining the energy from the system. Obviously,
this discretization scheme is not adequate when the modeling of physical instabil-
ities is necessary (like in the BWR instability problems). Both the second-order
BDF 2 and the third-order ESDIRK3 schemes perform comparably, without drain-
ing the energy from the system oscillations.

Finally, we demonstrate efficiency of the time stepping by using implicit schemes
and dynamic time control, in Figures 4.15 and 4.16. As one can see, we are able

'In fact, only a few very small oscillations took place at time around ~ 435sec.
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Fig. 4.13 : Effects of time discretization on the vessel/containment pressure histories.
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to run robustly and accurately simulations, stepping 1000 times over the acoustic
Courant limit, and up to 800 times over the material Courant limit, Figure 4.15.

In the case of enhanced friction, our time steps approximately 10° larger than
those due to acoustic or material CFL. It is instructive to note that the CFL__, =1
is the theoretical stability limit for ICE-based algorithm in legacy system thermal-
hydraulics codes. This implies that, for this test problem, we can take hundreds
or thousands times larger time steps than RELAPS5-generation codes, without nu-

merical instability problems and any loss of accuracy.
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4.2 Multi-Component Close-Loop Configuration

We use the term “VR;” reactor to refer to the first, most simplified “virtual re-
actor” modeled in RISMC -2 (Figure 4.17). It is a thermalhydraulics loop,
10m-tall and 10m-wide, made of 20 components: eight Pipes, four Elbows,
a Pump, a Pressurizer, a core (PipeQw + dummyNeutronics), and heat
exchanger (HX) PipeTw, and three controllers (PumpPrescribedHistory,
PrzPrescribedHistory and CRPrescribedHistory).

Pipe3, 6m-long

Pipe5, 2m-long

Pipe2, 2m-long

Heater

Pipe6, 2m-long

Pipe1, 2m-long Elbow3

Pipe7, 5m-long
Pump, im-long

Fig. 4.17 : Formulation of the “VR;” reactor problem.
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e The elbows (type Elbow) are Im in radius _rad_torus, nodalized uni-
formly along the arc coordinate, with the base mesh of 4 elements.

e The pipes are of type Pipe. Pipe3 is nodalized with the base mesh of 12
elements, all the rest pipes are nodalized with 4 elements.

e The core consists of two components — the heated pipe (PipeQw) and the
heater (dummyNeutronics. The heated pipe is nodalized with the base
mesh of 8 elements. The nominal power of the heater (Class dummyNeut ronics)
is 4 MW.

e The heat exchanger (HX) is represented by the component of type PipeTw
and nodalized with the base mesh of 8 elements. We utilized constant-
Nusselt wall heat transfer closure (Class
HTC_pipe_lphase_const), with the constant wall temperature 7! =
600 K, and the enhanced heat transfer rate, Nu = 10*. The smoothing edge

heat transfer effects are represented by Ji:;c’ =1

e The pump is Im-long, and nodalized with the base mesh of 4 elements. The

pump  model is  the simplest  constant pump head,
AP, . . =5-10" Pa, without additional pump heating, S|, """ = 0.

E

e The pressurizer is modeled with dummyP rz, designed to keep loop’s pres-
sure at nominal 16 MPa.

The working fluid is water at high-pressure, represented by a linearized EOS,
described in Sections 3.6.4.

The sequential mesh refinement is provided by setting

[General]
mesh refine = 2, 4,8, 16, 32

0

corresponding to the total mesh refined from 153 to 2448 elements. All Pipe-
based components (including Pump, Core and HX) are 15 cm in radius. The fric-
tion law was set to Filonenko-based, Class Friction_pipe_lphase_Filonenko.
Hydraulic diameters of both Core and HX is set to 15 cm.
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4.2.1 Steady-state

Initial conditions for are constant-temperature 7' = 600 K, motionless, and linear
(in the y-direction) pressure profile, according to the gravity head (g = —9.8 3).
The pressure at the top of the loop is set to 16 MPa.

The reactor is brought to the “steady-state” in two stages:

1. The first 10* sec: the pump is on, and the heater is off.

2. 10* = 2 - 10? sec: the heater is on.

4.2.2 Power transient

CRP
MW ©

~ 0.01

time, sec

Fig. 4.18 : Dynamics of the control rod position and power for the SCRAM transient.
Solution with 304 elements, cRDG,,, and BDF; schemes.

In the first transient test, we fully inserted control rods within 20 sec, as shown
in Figure 4.18. The corresponding power response is shown in the same Figure
in the red. The power first dropped down, during the first 5 sec of the transient,
causing the coolant temperature to drop. Then, the temperature Doppler feedback
is taking off, bringing the power to ~ 14% of nominal, after about 30 sec of the
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Fig. 4.19 : Pressure distribution for the SCRAM transient. Solution with 304 elements,
c¢RDG,, and BDF; schemes.
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Fig. 4.20 : Density distribution for the SCRAM transient. Solution with 304 elements,
¢RDG, . and BDF; schemes.
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Fig. 4.21 : Velocity distribution for the SCRAM transient. Solution with 304 elements,
cRDG,, and BDF> schemes.
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Fig. 4.22 : Temperature distribution for the SCRAM transient. Solution with 304 ele-
ments, cRDG,,. and BDF; schemes.
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Fig. 4.23 : Jacobian matrix pattern for solution with 304 elements, cRDG,, and BDF,
schemes (at steady-state), when Doppler feedback is accounted for.
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Fig. 4.24 : Jacobian matrix pattern for solution with 304 elements, cRDG,, and BDF3
schemes (at steady-state), when Doppler feedback is ignored.
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transient. Pressure, density, velocity and temperature profiles for different times
of the transient are shown in Figures 4.19, 4.20, 4.21 and 4.22, respectively.

It is instructive to note the important effect of the Doppler feedback on the
structure of the Jacobian matrix, comparing Figures 4.23 and 4.24. The tempera-
ture coupling in the core causes a significant number of rows to be fully filled-in.
This effect is efficiently accounted for by re-probing the Jacobian matrix during
the transient.

4.2.3 Pressurizer failure transient

Core
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Fig. 4.25 : Pressure distribution for the pressurizer failure transient. Solution with 304
elements, cRDG,, and BDF; schemes.

In the next transient, we “fail” the pressurizer, causing the loop pressure to
drop from 16 MPa to 15 MPa during the first 26 sec. Both the pump and core
remain at full power.

The response of the reactor’s flow parameters is shown in Figures 4.25, 4.26,
4.27 and 4.28 — for pressure, density, velocity and temperature, correspondingly.
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Fig. 4.26 : Density distribution for the pressurizer failure transient. Solution with 304
elements, cRDG,,, and BDF; schemes.
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Fig. 4.27 : Velocity distribution for the pressurizer failure transient. Solution with 304
elements, cRDG,, and BDF; schemes.
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Fig. 4.28 : Temperature distribution for the pressurizer failure transient. Solution with
304 elements, cRDG,, and BDF3 schemes.
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4.3 Thermohydraulic Loop with a I&C System

Pipe3, 6m-long

Pipe$§, 2m-long
Pipe2, 2m-long
Heater - =
- \ ;;H"“-q._
Control System .
Pipe6, 2m-long
vy €
Pipe1, 2m-long Elbow3

Pipe7, 5m-long
Pump, im-long

Fig. 4.29 : Formulation of the “VR»" reactor problem.

“VR," is an “upgrade” of “VR,”, with the following modifications:

1. Nominal power of the heater is increased to 6 MW. In the following exer-
cise, we will ignore Doppler feedback effects.

2. Wall temperature in heat exchanger is reduced to 530 K.

3. Both Core and HX induce additional friction due to some internal flow
obstructions, effectively represented by hydraulic diameter set to 5 cm,
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CompLib:Component
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T

CompalLib VR2ZCaontrol_mod! CompLib:VRZContral_modil

Fig. 4.30 : Inheritance tree for Class VR2Control.

smoothly transitioned to the effective diameter of 15 cm, using sine smooth-
ing functions with o .. = 0.1 at the entrance and exit of the Core and
HX.

4. Nominal pump power is increased to AP, = 2-10° Pa.

ump,nominal

5. Control system is added (Figure 4.30), with a Instrumentation and Control
(I&C) system, including “sensors™ and “actuators’ connected to the pump,
pressurizer, core and HX, see Figure 4.29.

4.3.1 Pump failure with SCRAM

CompLib:Component
&

CompLib:dummyCompanant | MISC:ControlSystem MISC:Ze oD
[ i 3
1 H
!
ComplLib VR2Cantral
- &

| CompLib::YR2Control_mocl |

Fig. 4.31 : Inheritance tree for Class VR2Control_modI.

In the first example with “VR,” (VR2Control _modI), we will analyze a
scenario of pump failure with possible subsequent full or partial SCRAM. We
start with the reactor at the nominal steady-state, and 4 sec after we initiate a
pump failure. This will be followed by the insertion of control rods. This scenario
is controlled by the component VR2Control modI, Figure 4.31.

There are four variable parameters used in the present study:
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Tplnnp

is phased out from the full power P

Td{:lay *

to 100 sec.

en

TCRI—"

: Relaxation time of pump’s phase-out, varied from 10 to 100 sec. Pump

Pump

nominal position (set to 0.5) to CRP_ , within

=1toP

Pump = 0 Wlthln Tl'-’ump'

Delay time, between pump’s trip and starting SCRAM, varied from |

CRP_ ,: Control rod position at the end of SCRAM, varied from 0.05 to 0.55.

Relaxation time of the control rod system. CRs are inserted from the

Terp SeC. varied from 10 to 50 sec.

The figure of merit (FOM) for RISMC analysis of VRj is the “Peak Coolant

Temperature” (PCT).

Inputs for components of type VR2Control_modI are specified in

“INPUT/DefineComponents/ComponentName.inp”

files, where “ComponentName” is a unique name of the control system compo-
nent, as defined in the file “INPUT/ListOfComponents.inp”. To declare
the component “ComponentName” to be of the type VR2Control_modI, one

must set

[Define]
type = VR2Control modI

The pump is controlled using the following input parameters:

[PumpHistory]

event_start =— Start of the pump failure
event.duration = 7.,
pow_end = P,

|||||| P
resolve =— During the event, the maximum time step At is set to

I

TPumg

3
resolve

The control system is controlled using the following input

parameters:

[CRPHistory]
pump_End_act =— P,
event. delay = 7, ,
event_duration = ’;cnp
CRP_End = CRP,_,
resolve =— During the event, the maximum time step At is set to

, causing the SCRAM

|||||||

TCRP_

resolve
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Fig. 4.32: Dynamics of the maximum coolant temperature for selected transients. Full
phase-out of pump within 26 sec, and SCRAM applied within 20 sec, started 7, sec
after start of the pump trip.
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Fig. 4.34 . Pressure distributions 1 hr after the starts of selected transients. Solutions
with 2032 elements, cRDG,, and BDF; schemes.

Core Prz HX Pump
(111 1 o B B B B LA S I LN L ML =
1 P — - - ]
670 ' ' E
3 U 3
o . Nominal state 3
650 ' ¢
3 1 3
640—: ru \. _:
630 E ) No SCRAM (CRP=0.5) ]
i i . -
1 \ 3
6204 ' E
- 610 3 E
e 600 Partial SCRAM (CRP=0.3) cRDG,, BDF,
£ e " 2032 elements  J
580 3 i % E
5704 _ 7 T T e 3
560 3 3
550 3 E
540 3 e DERAM(CRESO00) E
B A B

0 5 10 15 20 25 30 35

|
b

Fig. 4.35: Temperature distributions 1 hr after the starts of selected transients. Solutions
with 2032 elements, cRDG,,, and BDF; schemes.
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Fig. 4.36 :  Velocity distributions 1 hr after the starts of selected transients. Solutions
with 2032 elements, cRDG,,, and BDF; schemes.
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Figures 4.32-4.37 show results from the selected parameter set. Figures 4.32
and 4.33 demonstrate the history of PCT and energy balance in the system. Spa-
tial distributions of pressure, temperature, velocity and density are presented in
Figures 4.34, 4.35, 4.36 and 4.37, respectively.

To compute RISMC “logo™, we utilize the SNL's DAKOTA software. Each of
RISMC /3-2 runs was set for the maximum ¢ = 600 s of accident transient time?,
which executed in parallel within 1.5-2 min on each CPU of 2x4-core 2.8GHz
Intel Xeon Linux desktop. The total of 10,000 MC runs took = 40 clock hours.

Each of four uncertain parameters are sampled from the corresponding range,
using equal probability. Figure 4.38 shows PDF and CDF for PCT, using 100,
1,000, 10,000 and 100,000 random samples.

4.3.2 Pressurizer failure transient

In the second example with “VR,” (VR2Control modII), we analyze a sce-
nario with pressurizer failure, followed by pump trip and initiation of SCRAM.
This scenario is controlled by the component VR2Control _modII, Figure 4.39.

There are seven variable parameters used in the present study:

end . . N
e P, . final pressurizer’s pressure at the end of transient, varied from 15

to 15.5 MPa.

e 7, . Time (duration) of the pressurizer failure transient, varied from 10 to
50 sec.

e P . Minimum pressure in the pump, causing the trip, varied from 15.6 to

Pump

15.7 MPa.

d Tf’ump

is phased out from the full power P,

: Relaxation time of pump’s phase-out, varied from 10 to 100 sec. Pump
=1toP, = (0 within 7,

Pump*

Pump Pump

2As one can see from Figure 4.32, the PCT occurs at the very beginning of the tran-
sient.
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Fig. 4.38 : RISMC *“capacity-loading” plot for “pump failure with SCRAM”, generated
using Monte-Carlo sampling.
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CompLib:Component
s

ComplLibzdummyComponant| | MISC:ControlSystem MISC:ZeroD
S | ==

f i

Complib \.’R'.'_‘Comml

| CampLib::VR2Control_modll |

Fig. 4.39 : Inheritance tree for Class VR2Control modIT.

SCRAM . . . .
:M : Maximum temperature in the system causing the SCRAM, varied

from 665 to 675 K.

e CRP_: Control rod position at the end of SCRAM, varied from 0.05 to 0.55.

® 7. .. Relaxation time of the control rod system. CRs are inserted from the

nominal position (set to 0.5) to CRP_ , within 7, sec. varied from 10 to 50 sec.

The figure of merit (FOM) is the “Peak Coolant Temperature” (PCT).

Inputs for components of type VR2Control modIT are specified in
“INPUT/DefineComponents/ComponentName.inp”

files, where “ComponentName” is a unique name of the control system compo-
nent, as defined in the file “INPUT/ListOfComponents.inp”. To declare
the component “ComponentName” to be of the type VR2Control_ modIT,

one must set

[Define]
type = VR2Control modII

(

The pressurizer is controlled using the following input parameters:

[PrzHistory|

event_start — Start of the pressurizer failure

event_duration — Tpys
ened
pre_End = Py
ra i . T
B ) . . i Pra
resolve = 2 DUI‘II!g the event, the maximum time .\IE]) At 18 set to el

I

The pump is controlled using the following input parameters:
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[PumpControl]
Tri N Trip
rippressure = — P,
Pump_relax = = Toump
pow-end = 7 Fpum
resolve = — During the event, the maximum time step At is set to ZEusy

resolve

{0

The control system is controlled using the following input parameters:

[SCRAM]
SCRAM
SCRAM_temperature = -
CRP_relax = —*Torp
CRP_End = = CRP_,
i resolve = — During the event, the maximum time step At is setto rg‘g(',‘l';e

Each of RISMC (-2 runs was set for the maximum ¢t = 1,200 s of acci-
dent transient time. The total of 10,000 MC runs took = 1.7 clock hours on 300
CPUs of INL's IceStorm supercomputer. Each of seven uncertain parameters
are sampled from the corresponding range, using equal probability. Figure 4.40
shows PDF and CDF for PCT, using 100, 1,000, 10,000 and 100,000 random sam-

pling.

4.3.3 High-Performance Parallel Computation

In the next example (VR2Control modII with 20 uncertainty parameters), in
addition to seven scenario-uncertainty parameters of Section 4.3.2, we add 1 more
scenario-, 11 modeling- and 1 discretization-uncertainty parameters:

end

1. P, . final pressurizer’s pressure at the end of transient, varied from 15

to 15.5 MPa.

bo

Tp.,. Time (duration) of the pressurizer failure transient, varied from 10 to
50 sec.

3. P : Minimum pressure in the pump, causing the trip, varied from 15.6 to

Pump

15.7 MPa.

4. 7, Relaxation time of pump’s phase-out, varied from 10 to 100 sec. Pump

Pump*
is phased out from the full power P, =1t P, = = 0within7, ..

Pump
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Fig. 4.40 : RISMC “capacity-loading” plot for “pressurizer failure scenario”, generated

using Monte-Carlo sampling.
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5.

18.

19.

SCRAM

Tlux

from 665 to 675 K.

: Maximum temperature in the system causing the SCRAM, varied

CRP_ ,: Control rod position at the end of SCRAM, varied from 0.05 to 0.55.

Terp. Relaxation time of the control rod system. CRs are inserted from the

CRP*

nominal position (set to 0.5) to CRP

uq Within 7. sec varied from 10 to 50 sec.

End power of the pump, varied from 0 to 0.1.

Parameter «v in LLF scheme (see Section 3.3.1), varied from 0.9 to 1.

. Hydraulic radius in the core, varied from 0.05 to 0.06 m.

. Hydraulic radius in the HX, varied from 0.05 to 0.06 m.

. Wall temperature in the HX, varied from 528 to 532 K.

. Nominal power of the core, varied from 5.98 to 6.02 MW.

. Nominal pump head. varied from 1.98 to 2.02 Bar.

. Uncertainty in turbulent friction law, varied from -3 to + %.

Uncertainty in HX” Nusselt number, varied from -1 to 1 %.

. Uncertainty in specific heat, varied from 3.05613 to 3.05813

kJ
kg K*

Uncertainty in dynamic viscosity, varied from 70.14547 to 70.16547 ,:,_;

Uncertainty in

. Uncertainty in

aP |
dp |

op
ar |

[ r‘l )

LPo '.J.EI )

, varied from 0.1851 to 0.1853 2754y,%,

, varied from 0.7389 to 0.7391 L2,
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Fig. 4.41: RISMC “capacity” curve for “pressurizer failure scenario with 20 uncertainty
parameters”, generated using Monte-Carlo and LHC sampling.
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Monte-Carlo Analysis

Each of twenty uncertain parameters are sampled from the corresponding range,
using equal probability. Computational results for Monte-Carlo (MC) and Latin
Hypercube Sampling (LHS) with 10° samples are shown in Figure 4.41. The total
of 10° code runs were executed successfully (without single crash) within ~ 16

clock hours using 512 CPUs on IceStorm .

3IceStorm Specs:

SGI Altix ICE 8200 distributed memory blade cluster.

256 compute blades with two quad core Intel Xeon processors each.
2,048 compute cores total, 2.66 GHz clock speed.

2 login nodes, each with 8 cores.

2 GB memory per core, 4 TB memory total.

DDR 4X InfiniBand interconnect network.

Operating System: SUSE Linux Enterprise Server 10.

70 TB disk capacity.
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4.4 Loading Calculation and Smart Sampling

The VR; reactor is “upgraded” to allow for testing methods of sensitivity analysis
and uncertainty quantification. In particular, two techniques of uncertainty propa-
gation methods are applied, which address the estimation of tail probabilities in a
more efficient way than a pure sampling strategy does.

Analytic reliability methods operate by transforming the uncertainty quantifica-
tion problem to an optimization one, where the goal is to find the “most probable
point” of failure (MPP). In a standardized normal space, one can think of the most
probable point as the distance between the origin and the failure region. This dis-
tance is called the reliability index, beta, and represents how far the failure surface
is from nominal or mean behavior. For example, a beta value of 2 represents a fail-
ure region that is 2 standard deviations from mean conditions, and a beta value of
3 (where failure is three standard deviations away from nominal) is a more reliable
design. Analytic reliability methods do require gradient calculations (gradients of
the response with respect to the uncertain variables) but they tend to be extremely
efficient at finding response levels according to percentiles of output distributions,
especially if the response is not too nonlinear.

Stochastic expansion methods develop an approximation of a random response
function in terms of finite-dimensional series expansions. We will examine two
classes of expansion methods: polynomial chaos expansion (PCE) and stochastic
collocation (SC).

In PCE, the output is represented as a sum of orthogonal polynomial basis
functions which are chosen based on the distribution type of the random inputs
(e.g. normal inputs use Hermite polynomials, uniforms use Legendre polyno-
mials, etc.) The uncertainty propagation problem becomes one of obtaining the
coefficients of the polynomials in the expansion. There are a variety of meth-
ods to obtain the coefficients, including multidimensional integration based on
tensor-product quadrature or sparse grids, multidimensional integration via ran-
dom sampling, or linear regression.

SC is very similar to PCE except that the polynomials are replaced by La-
grange polynomial interpolants. Once the expansions have been developed (e.g.
the coefficients calculated), one has an analytic form of the stochastic input-output
mapping, and one can sample that mapping extensively to build up a CDF of the
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output (for example) and obtain tail probability estimates. Research has shown
that CDF estimates using stochastic expansion can converge much faster than sam-
pling [cite Eldred].

These methods will be implemented using the DAKOTA software framework,
which has several algorithmic variations implemented for both reliability and

stochastic expansion methods.

Two VR cases are considered, with six and twenty one variable parameters,
randomly selected from uniform distributions.

Six-parameter case

Tri ¥ e . 3 3 ¥
L. P“r:p: Minimum pressure in the pump, causing the trip, varied from 15.6 to

15.7 MPa.

2. 7, : Relaxation time of pump’s phase-out, varied from 10 to 100 sec. Pump

Pump *
is phased out from the full power P =1toP, = 0 within7, .

Pump Pump

3. End power of the pump, varied from 0 to 0.4.

SCRAM . . . -
4. 77" Maximum temperature in the system causing the SCRAM, varied

max

from 625 to 635 K.

5. CRP_,: Control rod position at the end of SCRAM, varied from 0.025 to 0.24.

nd *

6. 7...: Relaxation time of the control rod system. CRs are inserted from the

CRP-
nominal position (set to 0.5) to CRP_ , within 7, sec. varied from 10 to 50 sec.

end

Twenty-one-parameter case

end

1. P, : final pressurizer’s pressure at the end of transient, varied from 15

Prz

to 15.5 MPa.

2. 7, Time (duration) of the pressurizer failure transient, varied from 10 to
50 sec.
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. Uncertainty in specific heat, varied from 3.05513 to 3.05513 >

Trip P % % s 2
¥ Minimum pressure in the pump, causing the trip, varied from 15.6 to
Pump

15.7 MPa.

T......: Relaxation time of pump’s phase-out, varied from 10 to 100 sec. Pump

Pump *
is phased out from the full power P =1to Py, = O within7, .

Pump

End power of the pump, varied from 0 to 0.4.

SCRAM " . " .
‘“cx . Maximum temperature in the system causing the SCRAM, varied

from 625 to 635 K.

. CRP_ ,: Control rod position at the end of SCRAM, varied from 0.025 to 0.24.

. Terp: Relaxation time of the control rod system. CRs are inserted from the

CRP"

nominal position (setto 0.5) to CRP__ , within 7, sec. varied from 10 to 50 sec.

end

Parameter v in LLF scheme (see Section 3.3.1), varied from 0.9 to 1.

. Hydraulic radius in the core, varied from (.05 to 0.06 m.

. Hydraulic radius in the HX, varied from 0.05 to 0.06 m.

Wall temperature in the HX, varied from 510 to 515 K.

. Nominal power of the core, varied from 14 to 16 MW.

Nominal pump head. varied from 1.98 to 2.02 Bar.

. Uncertainty in turbulent friction law, varied from -10 to 10 %.

. Uncertainty in HX" Nusselt number, varied from -15 to 15 %.

/
K-

. Uncertainty in dynamic viscosity, varied from 71.4547 to 71.6547 ,:\,_f

W

LWL Jr\ g

Uncertainty in thermal conductivity, varied from 0.4476655 to 0.4876655

. Uncertainty in 2| , varied from 0.185 to 0.1854 MPap3
o dp 'f‘.'_-r
Il."l.\'-{u]
. Uncertainty in 22| , varied from 0.7388 to 0.7392 222,

(ro:Ty)
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Fig. 4.43

Sensitivity to the end pump power (6-parameter case).
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Fig. 444 : RISMC “capacity” curve for “pressurizer failure scenario with 6 uncertainty
parameters”, generated using Monte-Carlo sampling.
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Figures 4.42 and 4.43 demonstrate sensitivity of the PCT to the end control
rod position, CRP__,, and to the end pump power. It can be seen that the sensitiv-
ity plots are discontinuous.

Capacity curve generated with 10* Monte-Carlo runs is shown in Figure 4.44.

Figures 4.45 and 4.46 compare LHC sampling and PCE approach. It can be
seen that for a smaller sample, PCE converges faster than LHC. The two methods
produce similar results.

10°4
9x10™
8x10" 4
Reference: 10° LHC |
(T P 1
7x1074 = 5
8 Sl 2 97 LHC samples ]
* PCE with 97 evaluations
ox10" ] [ = .
I e
640 650 660 670 680 690 700 710
PCT, K

Fig. 4.45 : CDF for “pressurizer failure scenario with 6 uncertainty parameters”, gener-
ated using 97 samples. LHC sampling versus polynomial chaos expansion (PCE).
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Fig. 4.46 : CDF for “pressurizer failure scenario with 6 uncertainty parameters”, gener-
ated using 545 samples. LHC sampling versus polynomial chaos expansion (PCE).

4.5 3D Loop Configuration

This example is related to a more complex configuration modeled with the code
5 version. A PWR-type primary coolant system is rendered in 3D (Figure 4.47),
whereas the reactor vessel model includes a core (heated channel), a downcomer,
a metal vessel, and a control rod (Figure 4.48).

A steady-state solution is shown in Figures 4.49-4.50, and space convergence
in Figure 4.51. A model for core neutronics, vessel wall fluence and thermo-
mechanics, vessel material degradation will be implemented and used to charac-
terize the aging of the reactor pressure vessel. The model will be extended for
study safety margins in “feed-and-bleed” scenarios including “aging-accentuated
feed-and-bleed” scenarios.
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Fig. 4.48 : Configuration setup for PWRg: reactor vessel.
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Fig. 4.49 : Steady-state coolant temperature solution.
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Fig. 4.50 : Steady-state pressure solution.
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Fig. 4.51 : Convergence in space for coolant temperature in the primary system, using
different space discretization schemes.

Simulation of plant operation (including startups and shutdowns over refueling
cycles) using this loop configuration is also performed. Figures 4.52-4.53 depicts
solutions for the plant operation over a time period of five years. Such a simulation
is possible thanking to the code’s computational efficiency. It is manifested by the
time stepping used that is several orders of magnitude larger than that determined
by the CFL limit characteristic of semi-implicit schemes in legacy system codes.
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Fig. 4.52 : Solution for 5-year transient. Dynamics of material CFL number vs. core

power and peak coolant temperature.
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Chapter 5

Concluding Remarks

ITH its high-order accurate (in both time and space) numerical schemes, the

RISMC code [, versiuon is computationally efficient, allowing it to be used
in both “plant aging” and “safety transient” regimes (with vastly different time
scales), and in both deterministic mode and probabilistic mode. Yet, with the in-
troduction of 3D domains in the deterministic mode and the large number of runs
required in the probabilistic mode, speed remains a practical challenge. Further-
more, when the plant system modeled grows in complexity, connectivity and vol-
ume, advances in multi-physics solution algorithms are central to maintaining the
computational efficiency demonstrated for single-phase thermal-hydraulics tests
shown in this report.

The speed requirement also varies for different classes of prospective users.
More importantly, the perception of speed changes with the character and ex-
pected value of the application, and with the availability of computing resources
to code users. As computing resources become affordable to utility, the cost of
computation would constitute a small fraction of the resources needed to set up
the analysis and to process the vast amount of information the code produce '.

Given the above-discussed variables, in lieu of a strict “numerical” require-
ment on speed, we suggest the following (Table 5.1) as guidance for development.
Input from stakeholders and feedback from early users will be taken into account
in revision. The research in LWR-S/RISMC project on high performance comput-

'A simulation run estimated 1000 processor x hour - six weeks on a single-processor
computer - takes a day in a cluster with 40 processors.

183
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ing and on data aggregation and forecasting will help establish a technical basis to
guide further formulation and implementation this requirement in the future ver-
sion of the RISMC code.

Table 5.1 : The RISMC code’s “speed” requirement given by the code run time
measured in processor x hour (PxH). Also: DM: deterministic mode; PM: prob-
abilistic mode; RCS: primary reactor coolant system; SCS: secondary coolant
system; CON: containment; ICE: instrumentation, control, electrical system.

Version | 0D /1D 0D /1D system | Systems included
Year system with 3D zones in modeling

B DM: 0.2 | N/A RCS,

2010 PM: 300 limited ICE

B3 DM: 1 DM: 10 RCS, SCS,

2012 PM: 500 | PM: 5000 limited ICE

B4 DM: 1 DM: 20 RCS, SCC, ICE,

2014 PM: 1000 | PM: 10000 limited CON

Os DM: 1 DM: 40 RCS, SCC, ICE, CON
2016 PM: 2000 | PM: 20000

For the RISMC code [, version - which has been developed in the spirit of
“VU-assessed” code - verification has accompanied the development in every
step. Also greatly helped are the high-order accurate schemes, which are very
sensitive to algorithmic implementation error. We document the work on verifi-
cation including a set of (now 180+) regression tests in a separate report. Most
notably, the method of manufactured solutions (MMS) has proven instrumental
for verification of fluid flow solver. As we move toward a multi-physics simula-
tion capability, it is critical that the MMS be extended to verify implementation of
solution for multi-physics problems. More subtle, and much harder to find out, are
erroneous data. The issue commands the need to develop a formalized approach
to data storage and data analysis.
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Glossary

constraint
The range of values, or limits, for a metric that are judged to be acceptable.
Performance constraints are assigned to physical variables characterizing
device behavior at each critical design point. 82

equations of state
The equations, in algebraic, graphical, or tabular form, which relate the
intensice thermodynamic properties of any substance. 107, 111

reconstruction
Using strong interpolation for building a polynomial, whose functions and/or
its derivatives are matched in points. 66, 97

recovery
A weak interpolation technique for locally building a polynomial from the
given on a computational net piecewise-discontinuous polinomials in such
a way, so the L,-projections of the “recovered” and original polynomials
coincide. 66, 97
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Index

hp-refinements, 74 DG, 65
RK-TVD, 49 Dirichlet Boundary Conditions, 86

) o DoF, degree of freedom, 65
acoustic Courant limit, 145

acoustic scaling, 48 Eigensystem, 92

AMOoR, 74 eigensystem, 129

Arnoldi basis vectors, 99 eigenvalue vector, 92

AUSM scheme, 82 Eigenvalues, 79, 92
eigenvalues, 129

BDF, 5{2 Eigenvectors, 79

BDF2, 50 enthalpy, 107

BE, 50 ESDIRK, 51

BEU]er., 50 EXOCIUS, 26

Blowdown, 135

Explicit integration, 50
Butcher tableau, 51

Filonenko, 136

calorically perfect gas, 113 fluids, 111
Contral, 8 Forward Euler, 50
Characteristic . Fréchet derivatives, 100
Boundary Conditions, 92 FV-PPM. 74
fields, 81
space, 79 Galerkin, 99
cLLF 81 gamma, 113
CN, 51 Gamma law gas, 111
component, 26 Gaussian quadrature formula, 66
Component Factory, 24 Generalized moment limiter, 78
compressibility, 109 ghost storage, 23, 30, 37
Contact discontinuity, 75 GMRES, 99
Crank-Nicholson, 51 Godunov, 81
cRDG, 66 Godunov scheme, 81
data structures, 30 Hermite polynomials, 66
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Heun, 50
Hyperbolic operator, 80

ICE, 102, 145

IceStorm, 165, 169

ideal gas, 111

ILU, 102

ILUC, 102

ILUS, 102

ILUT, 102

inexact Newton’s method, 101
Inter-cell recovery, 82
interface, 36

Interface Factory, 24

iRDG, 74, 82

isobaric compressibility, 110
isothermal compressibility, 110

Jacobian, 79, 99
Jacobian matrix, 99, 129
Jacobian-free, 100
JFENK, 98

Krivodonova, 78
Krylov subspace, 99

Left eigenvector matrix, 79, 92
Legendre polynomials, 65, 66
Limiters, 76
Limiting, 75
Line Search, 99
with cubic backtracking, 99
with quadratic backtracking, 99
Linear problem, 98
linearized equation of state, 116
LLF, 80
Local Lax Friedrichs, 80

material Courant limit, 145

MinMod, 77, 78
multi-phase, 130

Neumann Boundary Conditions, 86, 89
Newton’s

iteration, 99

method, 98
non-conservative variables, 95
non-symmetric linear systems, 99
Nonlinear systems, 98
normalization constant, 66
Numerical fluxes, 80

ordering, 30

parallelization, 35

partitioning, 35

PBP, 102
PDE-Based-Preconditioning, 102
Petrov-Galerkin, 99

Physical instabilities, 143
Physics-Based-Preconditioning, 102
PPM, 67, 74

primitive variables, 95

Projection, 102

Reaction operator, 80
reconstruction, 66

recovery, 66, 82

residual, 98

RF, 81

Riemann solver, 81

Right eigenvector matrix, 79, 92
RK-TVD, 50

Schur-complement, 35
Shock, 75

SIMPLE, 102

Simple substances, 104
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Sobolev space, 67

sound speed, 111

Source operator, 80
Specific heats, 107

SSP, 50

stiffened gamma law, 114
strong interpolation, 66
subsonic Euler system, 92
Superbee, 77

tabulated equation of state, 117
Trial subspace, 99

Trust Region Method, 99
TVD, 50, 76

under-specification, 86

Van Albada, 76

Van Albada limiter, 77
Van Leer, 77

Van Leer limiter, 77
visualization, 26

weak interpolation, 66
WENO, 77

Young’s modulus of elasticity, 110
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