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MODELING THE DYNAMICS OF COMPROMISED NETWORKS

BRADEN SOPER AND DAN MERL

1. Introduction

Accurate predictive models of compromised networks would contribute greatly to im-
proving the effectiveness and efficiency of the detection and control of network attacks.
Compartmental epidemiological models have been applied to modeling attack vectors such
as viruses and worms [1]. We extend the application of these models to capture a wider
class of dynamics applicable to cyber security. By making basic assumptions regarding
network topology we use multi-group epidemiological models and reaction rate kinetics
to model the stochastic evolution of a compromised network. The Gillespie Algorithm is
used to run simulations under a worst case scenario in which the intruder follows the basic
connection rates of network traffic as a method of obfuscation.

2. SIR Model

The standard SIR model for infectious diseases is defined in terms of the susceptible, S,
infected, I, and removed, R, compartments of a population of size N . If the population
is closed we have N = S + I + R. Letting β be the contact rate between susceptible and
infected individuals and ν be the removal rate of infected individuals, the dynamics of the
system are given by the following system of ODES.

dS

dt
= −βSI/N

dI

dt
= βSI/N − νI

dR

dt
= νI

3. SLIR Model

We modify and extend the standard SIR model to include a latently infected group, L.
This group contains compromised computers capable of “infecting” other computers yet
are not known to be compromised. We use the standard incidence of transmission, but
with L+ I infecting agents. Latently infected computers are discovered at a rate of d and
overtly infected machines are removed from the network at a rate of r. We assume there
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is a maximum rate, ρ, at which computers can be repaired and returned to the network.
We will consider two possible functions which limit the repair rate to the threshold ρ. The
first of these is simply f(R) = R

N and the second is g(R) = 1− e−γR where γ is a threshold
parameter.

3.1. Threshold f(R). Given a repair rate threshold f(R) = R
N , the SLIR dynamics are

defined as follows.

dS

dt
= −β(L+ I)S/N + ρR/N(1)

dL

dt
= β(L+ I)S/N − dL

dI

dt
= dL− rI

dR

dt
= rI − ρR/N

Figure 1. SLIR Dynamics

We assume the population is closed with N = S+L+I+R. Furthermore, all parameters
are assumed to be positive. Starting with one latently infected node and N − 1 susceptible
nodes, we wish to find the threshold value R0, the expected number of new infections due
to a single infected node. The time spent covertly infected is roughly 1

d and the time spent

overtly infected is roughly 1
r . Thus the average time a single node is infected is r+d

rd . If

we keep L + I fixed at one we obtain S(t) = (N − 1)e−
β
N
t. If N is large then we assume

N ≈ N − 1 and the expected number of new infections, R0, due to a single infected node
is as follows.
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R0 = S(0)− S
(
r + d

rd

)
= N − 1− (N − 1)e−

β
N

( r+d
rd

)

= (N − 1)(1− e−
β
N

( r+d
rd

)) ≈ N
(
β

N

)(
r + d

rd

)
= β

(
r + d

rd

)
Because the system is closed we have R = N − S − L − I and we need only consider

S,L, and I. System (1) then reduces to

dS

dt
= −β(L+ I)S/N + ρ(N − S − L− I)/N

dL

dt
= β(L+ I)S/N − dL

dI

dt
= dL− rI.

Clearly (N, 0, 0) is a steady state of the system. Suppose there exists a steady state
(S∗, L∗, I∗) with S∗ > 0, L∗ > 0 and I∗ > 0. Any such steady state will be determined by

β(L∗ + I∗)S∗/N = ρ(N − S∗ − L∗ − I∗)/N = dL∗ = rI∗.

From these equations one obtains the following.

S∗ =
Nrd

β(r + d)
=

N

R0

L∗ =
rρN

Nrd+ ρ(r + d)

(
1− rd

β(r + d)

)
=

rρN

Nrd+ ρ(r + d)

(
R0 − 1

R0

)
I∗ =

dρN

Nrd+ ρ(r + d)

(
1− rd

β(r + d)

)
=

dρN

Nrd+ ρ(r + d)

(
R0 − 1

R0

)

It is clear that R0 > 1 is a necessary condition for an endemic equilibrium point to exist
in the first octant while R0 = 1 reduces (S∗, L∗, I∗) to (N, 0, 0). Thus we suspect R0 = 1
is a bifurcation threshold.

To characterize the fixed points we linearize the system around them using the Jacobian.
If dS

dt = f(S,L, I), dLdt = g(S,L, I) and dI
dt = h(S,L, I), then the Jacobian is defined as the

matrix

J(S∗,L∗,I∗) =

fS fL fI
gS gL gI
hS hL hI


where subscripts denote differentiation and each derivative is evaluated at the fixed point

(S∗, L∗, I∗). The Jacobian for system (1) is
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J(S∗,L∗,I∗) =

− β
N (L∗ + I∗)− ρ

N − β
N S
∗ − ρ

N − β
N S
∗ − ρ

N
β
N (L∗ + I∗) β

N S
∗ − d β

N S
∗

0 d −r


For the fixed point (N, 0, 0) we have

J(N,0,0) =

− ρ
N −β − ρ

N −β − ρ
N

0 β − d β
0 d −r


The characteristic equation for this matrix is

(
ρ

N
+ λ)[λ2 + (r + d− β)λ− (β(r + d)− dr)] = 0.

Thus one eigenvalue is given by λ1 = − ρ
N and the other two are given by

λ2,3 =
1

2

[
−(r + d− β)±

√
(r + d− β)2 + 4(β(r + d)− dr)

]
.

The discriminant of this polynomial can be rewritten as (r−d)2+2(r+d)Nβ+β2N2 > 0,
hence all eigenvalues are real (i.e. no periodic or spiraling solutions exists locally around
this fixed point). If R0 = 1 then β(r+d)−dr = 0 and the characteristic polynomial reduces
to λ( ρN + λ)(λ+ r + d− β) = 0 giving a zero eigenvalue. Furthermore since β = rd

r+d and

β, r, d > 0 we must have r+d−β > 0. So locally the fixed point at (N, 0, 0) is a degenerate
attracting fixed point when R0 = 1. If R0 < 1 then β(r + d) − dr < 0 and we will obtain
two positive eigenvectors. If R0 > 1 then β(r + d)− dr > 0 and there will be one positive
and one negative eigenvalue. In either case it is a type of saddle point where we again see
R0 acting as a threshold value, this time controlling a bifurcation of the qualitative nature
of the fixed point at (N, 0, 0).

The Jacobian for the fixed point with L∗, I∗ > 0 is

J(S∗,L∗,I∗) =

−
βρ(R0−1)
Nβ+ρR0

− ρ
N − β

R0
− ρ

N − β
R0
− ρ

N
βρ(R0−1)
Nβ+ρR0

β
R0
− d β

R0

0 d −r


The characteristic polynomial for this matrix is(
βρ(R0 − 1)

Nβ + ρR0
+

ρ

N
+ λ

)[(
β

R0
− d− λ

)
(r + λ) +

dβ

R0

]
− βρ(R0 − 1)

NR0
(r + d+ λ) = 0

Let φ = βρ(R0−1)
Nβ+ρR0

+ ρ
N . Then we have

(φ+ λ)

(
β

R0
− d− λ

)
(r + λ) +

dβ

R0
(φ+ λ)− βρ(R0 − 1)

NR0
(r + d+ λ) = 0.
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If we write the characteristic polynomial as Aλ3 + Bλ2 + Cλ + D = 0 we have the
following.

A = −1

B =
β

R0
− (r + d)− φ

C = (φ+ r)(
β

R0
− d)− rφ+

rβ

R0
− βρ

N

R0 − 1

R0

D = −rdρ
N

(R0 − 1)

Though possible, determining the roots in terms of the above parameters using the cubic
formula may be a bit cumbersome, and at this point we have not embarked on this task.
Thus further work is needed to determine the local stability of the endemic equilibrium.

Figure 2. SLIR Dynamics with N = 100, β = 0.5, ρ = 0.3, r = 0.25,
d = 0.1 and repair threshold f(R) = R

N



6 BRADEN SOPER AND DAN MERL

Figure 3. SLIR Dynamics with N = 100, β = 0.5, ρ = 0.3, r = 0.25,
d = 0.1 and repair threshold f(R) = R

N

3.2. Threshold g(R). To obtain a different probabilistic interpretation of the repair pro-
cess we consider the repair rate threshold g(R) = 1 − e−γR. The SLIR dynamics then
become

dS

dt
= −β(L+ I)S/N + ρ(1− e−γR)(2)

dL

dt
= β(L+ I)S/N − dL

dI

dt
= dL− rI

dR

dt
= rI − ρ(1− e−γR)

Still assuming a closed population the system reduces to
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dS

dt
= −β(L+ I)S/N + ρ(1− e−γ(N−S−L−I))(3)

dL

dt
= β(L+ I)S/N − dL

dI

dt
= dL− rI

We find the steady states for system (2) in a similar way. Again (N, 0, 0) is a steady
state and any non-zero steady state (S∗, L∗, I∗) will be determined by

β(L∗ + I∗)S∗/N = ρ(1− e−γ(N−S∗−L∗−I∗)) = dL∗ = rI∗.

From β(L∗+ I∗)S∗/N = rI∗ and dL∗ = rI∗ we obtain S∗ = Nrd
β(r+d) from which it follows

ρ− rI∗ = ρe−γ(N−S∗−L∗−I∗)

ρ− rI∗ = ρe
−γN+γ Nrd

β(r+d)
+γ r

d
I∗+γI∗

(ρ− rI∗) e−γ
r+d
d
I∗ = ρe

−γN(1− rd
β(r+d)

)
.

Multiplying both sides by γ r+drd e
γρ r+d

rd gives

γ
r + d

rd
(ρ− rI∗) eγρ

r+d
rd
−γ r+d

d
I∗ = γρ

r + d

rd
e
γρ r+d

rd
−γN(1− rd

β(r+d)
)

γ
r + d

rd
(ρ− rI∗) eγ

r+d
rd

(ρ−rI∗) = γρ
r + d

rd
e
γρ r+d

rd
−γN(1− rd

β(r+d)
)
.

Let W (z) denote the Lambert W function (i.e. the inverse of the function f(z) = zez).
Because the left hand side is of the form zez and the right hand side is positive, we can
write

γ
r + d

rd
(ρ− rI∗) = W

(
γρ
r + d

rd
e
γρ r+d

rd
−γN

(
1− rd

β(r+d)

))
.

Rearranging we finally obtain

I∗ =
ρ

r
− d

γ(r + d)
W

(
γρ
r + d

rd
e
γρ r+d

rd
−γN

(
1− rd

β(r+d)

))
.
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It follows that L∗ = ρ
d −

r
γ(r+d)W

(
γρ r+drd e

γρ r+d
rd
−γN

(
1− rd

β(r+d)

))
. The steady state solu-

tions can be rewritten in terms of the basic reproduction number, R0.

S∗ = N/R0

L∗ =
ρ

d
− β

dγR0
W

(
γρ

β
R0e

γρ
β
R0−γN

(
R0−1
R0

))
I∗ =

ρ

r
− β

rγR0
W

(
γρ

β
R0e

γρ
β
R0−γN

(
R0−1
R0

))

IfR0 = 1 thenW

(
γρ
β R0e

γρ
β
R0−γN

(
R0−1
R0

))
= W

(
γρ
β R0e

γρ
β
R0

)
= γρ

β R0 and (S∗, L∗, I∗, R∗)

reduces to (N, 0, 0, 0). When R0 < 1 we have S∗ > N , which is not possible. Furthermore,
for any x, a > 0 we have xex+a > xex and applying the Lambert W function to both

sides we obtain W (xex+a) > W (xex) = x. Thus W

(
γρ
β R0e

γρ
β
R0−γN

(
R0−1
R0

))
> γρ

β R0 from

which it follows that I∗ < 0 and L∗ < 0. On the other hand, when R0 > 1, S∗ < N and

W

(
γρ
β R0e

γρ
β
R0−γN

(
R0−1
R0

))
< γρ

β R0 implying that I∗ > 0 and L∗ > 0. Thus R0 is again

the endemic threshold.
The Jacobian for the fixed point (N, 0, 0) is

J(N,0,0) =

−γρ −β − γρ −β − γρ
0 β − d β
0 d −r


A similar analysis as in system (1) yields equivalent results regarding the nature of

this fixed point. Letting W = W

(
γρ
β R0e

γρ
β
R0−γN

(
R0−1
R0

))
and Φ = S∗ + L∗ + I∗ =

N
R0

+ ρ
βR0 + 1

γW we can write the Jacobian of the fixed point (S∗, L∗, I∗) as

J(S∗,L∗,I∗) =

−(ρR0 − β
γW)/N − γρe−γ(N−Φ) − β

R0
− ρe−γ(N−Φ) − β

R0
− ρe−γ(N−Φ)

(ρR0 − β
γW)/N β

R0
− d β

R0

0 d −r


The above matrix is of a similar form to that of the endemic equilibrium of system

(1). Again we run into the problem of algebraic complexity in determining the roots of
the characteristic polynomial and further work is needed to determine the local stability.
It would be interesting to explore the possibility of constructing a Lyupunov Function to
demonstrate global stability. It is also of practical interest to demonstrate that the region
in the first octant bounded by the plane S + L+ I = N is positively invariant.
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4. Heterogeneous Networks

4.1. Multi-Group SLIR. One assumption mass-action models such as the SLIR model
makes is that the population is homogeneous in terms of individual contacts. This is
not a realistic assumption in many cases. In particular it is not often true for computer
networks. To deal with contact heterogeneity we consider a multi-group SLIR model where
the network is divided into n subnets, each of which is internally homogeneous with regards
to contact dynamics. This is accomplished by coupling n SLIR models. Let the the number
of susceptibles, latently infected, overtly infected and removed computers in each subnet
be given by Sk, Lk, Ik, Rk respectively. Let Nk = Sk +Lk + Ik +Rk and N = Σn

k=1Nk. The
parameters rk, dk and ρk are the removal, discovery and repair rates in the kth subnet and
βjk denotes the rate at which computers in the jth subnet contact computers in the kth
subnet.

Figure 4. Example of a multi-group SLIR network

The dynamics of the kth subnet are defined as follows.
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dSk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk +

ρk
N

Σn
j=1Rj(4)

dLk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk − dkLk

dIk
dt

= dkLk − rkIk
dRk
dt

= rkIk −
ρk
N

Σn
j=1Rj

If each subnet remains closed the kth system reduces to

dSk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk +

ρk
N

Σn
j=1(Nj − Sj − Lj − Ij)(5)

dLk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk − dkLk

dIk
dt

= dkLk − rkIk
dRk
dt

= rkIk −
ρk
N

Σn
j=1(Nj − Sj − Lj − Ij)

The alternative multi-group SLIR model becomes

dSk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk + ρk(1− eΣnj=1(Nj−Sj−Lj−Ij))(6)

dLk
dt

= −Σn
j=1βjk(Lj + Ij)Sk/Nk − dkLk

dIk
dt

= dkLk − rkIk
dRk
dt

= rkIk − ρk(1− eΣnj=1(Nj−Sj−Lj−Ij))

4.2. Global Stability. Provided we can find a Lyupunov function for the single group
SLIR model, we should be able to construct a Lyupunov function for the multi-group model
based on the work by Li and Shuai [2], thus demonstrating the global stability of steady
states.

5. Stochastic SLIR

If the number of computers in each subnet is not large the mass-action assumption of
deterministic models may not be a reliable approximation. In this case we want to discretize
the states of the system and proceed with a probabilistic interpretation. It seems reasonable
to assume that the evolution of the system depends only on its current state. We therefore
model the system as a Markov Jump Process and the parameters in our model become
event probabilities per unit time rather than event rates. For the single-group SLIR model
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we have four possible events. Let Ti be the transition probability per unit time for event i
to occur and associate the following events with each Ti.

T1 : S −→ L

T2 : L −→ I

T3 : I −→ R

T4 : R −→ S

Given a closed population let the state of the system be given by (s, l, i) where s is the
current number of susceptibles, l is the current number of latently infected and i is the
current number of overtly infected. Interpreting the parameters as probabilities per unit
time we have

T1(s, l, i) = β(l + i)s/N

T2(s, l, i) = dl

T3(s, l, i) = ri

T4(s, l, i) = ρ(N − s− l − i)/N.

Let P (s, l, i, t) be the probability of being in state (s, l, i) at time t. Then we can write

P (s, l, i, t+ ∆t) = (1− (T1 + T2 + T3 + T4)∆t)P (s, l, i, t) + T1P (s+ 1, l − 1, i, t)∆t

+ T2P (s, l + 1, i− 1, t)∆t+ T3P (s, l, i+ 1, t)∆t

+ T4P (s− 1, l, i, t)∆t+ o(∆t)

Multiplying out the first term, dividing by ∆t and taking ∆t→ 0 we obtain the Master
Equation for the stochastic SLIR model.

∂P (s, l, i, t)

∂t
=

β

N
(l + i− 1)(s+ 1)P (s+ 1, l − 1, i, t) + d(l + 1)P (s, l + 1, i− 1, t)

+ r(i+ 1)P (s, l, i+ 1, t) +
ρ

N
(N + 1− s− l − i)P (s− 1, l, i, t)

− (β(l + i− 1)(s+ 1)/N + d(l + 1) + r(i+ 1) + ρ(N + 1− s− l − i)/N)P (s, l, i, t)

To generalizing the above system to an n-group stochastic SLIR model let the state of
the system be given by the vector x = (s1, l1, i1, ..., sn, ln, in) and let the probability of
being in this state at time t be given by P (x, t). Define the following state vectors.
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Figure 5. One thousand runs of the single-group Stochastic SLIR with
N = 100, β = 0.5, ρ = 0.3, r = 0.25, and d = 0.1

x = (s1, l1, i1, ..., sn, ln, in)

xk
1 = (s1, l1, i1, ..., sk + 1, lk − 1, ik, ..., sn, ln, in)

xk
2 = (s1, l1, i1, ..., sk, lk + 1, ik − 1, ..., sn, ln, in)

xk
3 = (s1, l1, i1, ..., sk, lk, ik + 1, ..., sn, ln, in)

xk
4 = (s1, l1, i1, ..., sk − 1, lk, ik, ..., sn, ln, in)

A similar derivation as above yields the n-group SLIR Master Equation.
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Figure 6. One thousand runs of the single-group Stochastic SLIR with
N = 100, β = 0.5, ρ = 0.3, r = 0.25, and d = 0.1

∂P (x, t)

∂t
= Σj 6=k

βjk
Nk

(lj + ij)(sk + 1)P (xk
1, t) + Σn

k=1

βkk
Nk

(lk + ik − 1)(sk + 1)P (xk
1, t)

+ Σn
k=1dk(lk + 1)P (xk

2, t) + Σn
k=1rk(ik + 1)P (xk

3, t)

+ Σn
k=1

ρk
Nk

(Nk + 1− sk − lk − ik)P (xk
4, t)

− (Σj 6=k
βjk
Nk

+ Σn
k=1

βkk
Nk

(lk + ik − 1)(sk + 1) + Σn
k=1dk(lk + 1) + ...

...+ Σn
k=1rk(ik + 1) + Σn

k=1

ρk
Nk

(Nk + 1− sk − lk − ik))P (x, t)
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Figure 7. Distributions of some critical metrics for 1000 runs of the Sto-
chastic SLIR model.

To simulate the evolution of this stochastic process we used the Gillespie Algorithm [3].
Notice in Figure 6 the long term evolution of the stochastic systems. Given the non-zero
probability of eradicating the network intruder, the stochastic system fluctuates around the
endemic equilibrium for a finite time. Eventually the intruder is eradicated leading to the
“disease-free” equilibrium. Compare this to the endemic equilibrium approached by the
deterministic system in Figure 3. Many useful statistical properties can be obtained from
these stochastic simulations. Here we present the distributions of some critical metrics in
figure 7 as well as the evolution of the distribution of susceptibles in figure 8.

6. Alternative Models and Future Work

6.1. SLIRP Model. There are many modifications of the basic compartmental epidemio-
logical models that may be useful for describing different scenarios. One possible extension
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Figure 8. Evolution in unit time increments of the distribution of suscep-
tible computers for 100 runs of the Stochastic SLIR model: 0 ≤ t ≤ 24.

is to consider a patched group, P, which contains computers that have been patched with
appropriate software as to make them, permanently or temporarily, immune to infection.
We may consider a birth and death parameter λ which represents the rate at which com-
puters break down or become obsolete and are replaced. Software patches sent out by
network administrators may be downloaded and installed at a rate of ρs while the patches
themselves fail at a rate of ψ. Denoting the repair rate by ρr and the threshold function
by f(R) we can consider the following much more complex system.
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Figure 9. 250 runs of a 10-subnet Stochastic SLIR with Nk = 10, βkk =
0.51, βjk = 0.01(j 6= k), ρs = 0.05, ρs = 0.15, r = 0.25, and d = 0.1. Red
dashed line is the mean.

dS

dt
= ψP + λ (1− S/N)− β(L+ I)S/N − ρsS

dL

dt
= β(L+ I)S/N − (d+ λ/N)L

dI

dt
= dL− (r + λ/N)I

dR

dt
= rI − ρrf(R)− λR/N

dP

dt
= ρsS + ρrf(R)− (ψ + λ/N)P
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Figure 10. Distributions of some critical metrics for 250 runs of the multi-
group Stochastic SLIR model.

Extending these models to the multi-group systems and incorporating stochasticity into
the dynamics presents a wide range of possible research.

6.2. Contact Network Epidemiology. Though coupling systems of ODEs into multi-
group epidemiological models takes some degree of contact heterogeneity into account, it
still relies on mass-action assumptions that may not be realistic. The use of percolation
theory and random graphs in Contact Network Epidemiology can dispose of the mass-action
assumptions by using arbitrary distributions of a networks edges among nodes, giving the
network more realistic topologies which may greatly affect the final outcome of a disease
[4]. One shortcoming of these models was the fact that they did not take into account the
dynamics of the disease over time, however more recently progress has been made along
these lines [5]. Applying the techniques from Contact Network Epidemiology to our current
modeling efforts may yield very useful results.
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Figure 11. One hundred runs of a 15-subnet Stochastic SLIRP with Nk =
30, βkk = 0.51, βjk = 0.01(j 6= k), ρs = 0.05, ρs = 0.15, r = 0.25, and
d = 0.1. Red dashed line is the mean.

6.3. Control Theory. Once an appropriate model is developed we would like to study the
optimal control of a compromised network. Control parameters such as the discovery rate
and removal rate are integral parts of network defense. By determining the associated cost
with each defense tactic, a cost function could be created to determine the optimal control
strategy which minimizes cost of defense and maximizes productivity of the network.

6.4. Game Theory. The adversarial nature of network attacks lends itself to game the-
oretic analysis. Framing our models of network intrusion in the language of game theory
and developing optimal strategies could provide meaningful insights to network defense
strategies.
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6.5. Network Data. Stochastic simulation provides a convenient testing environment
for the optimal control of a compromised network. Obtaining parameter values based on
observed network data flow would provide our models with more realistic network topology.
Defense parameters such as detection rate, patching rate and removal rate can be altered
to test for optimal response methods. Estimates of critical values may be obtained such as
average time to maximum intrusion, average total time of intrusion, and average number
of compromised machines.
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