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responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
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O(N) complexity algorithms for First-
Principles Electronic Structure Calculations 

 
The fundamental equation governing a non-relativistic quantum system of N particles is 
the time-dependant Schrödinger Equation [Schrödinger, 1926] 
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In 1965, Kohn and Sham proposed to replace this original many-body problem by an 
auxiliary independent-particles problem that can be solved more easily (Density 
Functional Theory). Solving this simplified problem requires to find the subspace of 
dimension N spanned by the N eigenfunctions ψi corresponding to the N lowest 
eigenvalues εi of a non-linear Hamiltonian operator Ĥ determined from first-principles 
 

)()( rrH iii ψεψ =
∧

 
 
 
From the solution of the Kohn-Sham equations, forces acting on atoms can be derived to 
optimize geometries and simulate finite temperature phenomenon by molecular 
dynamics. This technique is used at LLNL to determine the Equation of State of various 
materials, and to study biomolecules and nanomaterials. 

Scaling problem: 
 Standard computational algorithms represent the electrons by N quantum wave 

functions extended over the whole computational domain (see Fig. 1) 
 This leads to O(N2) storage requirements and O(N3) arithmetic operations 
 Using LLNL powerful super-computers, large problems can be solved. But this 

cubic scaling becomes a critical bottleneck which limits our capabilities to study 
larger physical systems  



 
Figure 1: Isosurface of a computed electronic wave function in silicon crystal (64 atoms cell). It limits 
the volume in which one has the highest probability of finding the electron. 

Maximally localized Wannier functions representation 
 The electronic structure can be efficiently represented by a set of “localized” 

orbitals with a limited spread independent of the system size (“Maximally 
Localized Wannier Functions”) 

 These functions can be obtained from the eigenfunctions of the Hamiltonian 
operator by an orthogonal transformation (see Fig. 2) 
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Figure 2: Electronic orbital in silicon bulk (contour plot in slicing plane with projections of nearest 
atoms). A linear combination of eigenfunctions can lead to very localized functions. 

O(N) algorithm:  
 Represent electronic orbitals on real-space uniform mesh and use finite 

differences discretization 
 compute directly localized orbitals (truncated beyond a cutoff radius) by 

minimizing energy functional with localization constraints that only marginally 
affect accuracy  

 This approach is justified by the theory of “Maximally Localized Wannier 
Functions” 



 
Figure 3: strictly localized orbital in silicon crystal directly optimized on real-space mesh with 
localization constraints (contour plot in slicing plane) 

 
Figure 4: 2 localized orbitals in silicon nanowire (slice perpendicular to wire axis) 

Overcoming the cubic scaling wall  
We have demonstrated that this “localized orbitals” technique becomes more efficient 
than the traditional Plane Waves approach for physical systems larger than ~500 atoms. 
 



 
Figure 5: comparing computer time for the standard PW approach (QBox code) and our new linear 
scaling algorithm for a quantum simulation of liquid water (from Ref. [5]) 

O(N) Finite Difference Code: MGmol 
• Author: J.-L. Fattebert 
• ~50K lines C++ 
• Parallel: scales on more than 1000 CPUs 
• Based on domain decomposition with nonoverlaping localized orbitals treated in 

parallel 
• Libraries: 

o MPI 
o PB (own multigrid library for Poisson solver and preconditioner) 
o ScaLAPACK (with C++ interface)  
o HDF5 (parallel) 

Finite element approach for calculations on locally-refined 
meshes (with Rich Hornung http://www.llnl.gov/comp/bio.php/hornung1) 
 
As an alternative to Finite Differences, one can use a Finite Element approach as a real-
space discretization for the Kohn-Sham equations. In our experience, FE is somewhat 
more expensive than FD, but its variational principle is convenient when working with 
non-uniform meshes. 
 
We have developed a new electronic structure code based on an existing AMR parallel 
software infrastructure, SAMRAI (Structured Adaptive Mesh Refinement Application 
Infrastructure, http://www.llnl.gov/casc/SAMRAI/). SAMRAI is a C++ object-oriented 
AMR support infrastructure developed at LLNL. It provides flexible software tools for a 
wide range of AMR application research: parallel data infrastructure, gridding algorithms 
and communications functionalities. 
 
We use a hierarchical quadratic Finite Elements approach [6]. 
 



 

 
Figure 6: Illustration: electronic density isosurface for Be4 cluster, domain decomposition for 8 

CPUs 

Using Adaptive Mesh Refinement to improve scaling while 
controlling accuracy  
 
Maximally Locallized Wannier functions representation can benefit from local mesh 
refinement by representing their tails on a mesh coarser than the one used for their 
centers (Fig. 7). To investigate this new idea, new functionalities have been implemented 
in SAMRAI to allow a different patch hierarchy for each orbital. In practice a single 
patch hierarchy is used, but functions are set “inactive” on some patches (no data 
allocated and no work done). This is the concept of “Locally-Active Data” (Fig. 8). An 
electronic structure code is being developed based on this idea. 
 

 
Figure 7: Maximally Localized Wannier Function on a locally-refined grid 

 



 
Figure 8: concept of “Locally-Active Data”: single patch hierarchy, but functions “inactive” on some 

patches (no data allocated). 

Links: 
SciDAC project: Quantum Simulations of Materials and Nanostructures 
http://angstrom.ucdavis.edu/scidac/
 
SAMRAI 
http://www.llnl.gov/casc/SAMRAI/
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