
LLNL-CONF-427005

ScalaTrace: Tracing, Analysis
and Modeling of HPC Codes at
Scale

F. Mueller, X. Wu, M. Schulz, B. de Supinski, T.
Gamblin

April 1, 2010

PARA 2010
Reykjavík, Iceland
June 6, 2010 through June 9, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

ScalaTrace: Tracing, Analysis and Modeling of HPC Codes at Scale
Frank Mueller∗1, Xing Wu1, Martin Schulz2, Bronis R. de Supinski2, and Todd Gamblin2

1 Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695-7534
2 Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore, CA 94551

Abstract Characterizing the communication behavior of large-
scale applications is a difficult and costly task due to code/system
complexity and their long execution times. An alternative to run-
ning actual codes is to gather their communication traces and
then replay them, which facilitates application tuning and future
procurements. While past approaches lacked lossless scalable
trace collection, we contribute an approach that provides orders
of magnitude smaller, if not near constant-size, communication
traces regardless of the number of nodes while preserving struc-
tural information. We introduce intra- and inter-node compres-
sion techniques of MPI events, we develop a scheme to preserve
time and causality of communication events, and we present re-
sults of our implementation for BlueGene/L. Given this novel ca-
pability, we discuss its impact on communication tuning and on
trace extrapolation. To the best of our knowledge, such a con-
cise representation of MPI traces in a scalable manner combined
with time-preserving deterministic MPI call replay are without
any precedence.

1 Introduction
Scalability is one of the main challenges of petascale com-
puting. One central problem lies in a lack of scaling of
communication. However, understanding the communica-
tion patterns of complex large-scale scientific applications
is non-trivial. An array of analysis tools have been devel-
oped, both by academia and industry, to aid this process.
For example, Vampir is a commercial tool set including a
trace generator and GUI to visualize a time line of MPI
events [2]. While the trace generation supports filtering,
trace files, which are stored locally, grow with the number
of MPI events in a non-scalable fashion. Another exam-
ple is the mpiP tool that uses the profiling layer of MPI
to gather user-configurable aggregate metrics for statistical
analysis [10]. Locally stored profiling files are constrained
in size by the number of unique call sites of MPI events,
which is independent of the number of nodes. However,
mpiP does not preserve the structure and temporal ordering
of events, which limits its use to high-level analysis. Other
communication analysis tools have similar constraints: ei-
ther their storage requirements do not scale or they are
lossy with respect to program structure and temporal or-
dering.

In contrast to prior work, our work develops a scalable
trace-driven approach to analyze MPI communication that
can represent lossless, full traces in constant size. We
demonstrate in in our results that our objective has been
achieved for a number of benchmarks. We have further
developed tools (a) to replay communication, optionally

∗Email: mueller@cs.ncsu.edu

with widely preserved timing information, (b) to detect in-
efficiencies in the utilization of the communication API,
and (c) to extrapolate traces for strong scaling.

2 Lossless Tracing
Communication analysis tools are currently constrained in
that either their storage requirements do not scale or they
fall short in tracing all events by only providing aggregate
statistics.

In contrast to prior work, ScalaTrace provides a scal-
able trace-driven approach to analyze MPI communica-
tion. While past approaches fail to gather full traces for
hundreds of nodes in a scalable manner or only gather ag-
gregate information, we have designed a framework that
extracts full communication traces orders of magnitude
smaller, if not near constant size, regardless of the num-
ber of nodes while preserving structural information and
temporal event order.

Our trace-gathering framework utilizes the MPI profil-
ing layer (PMPI) to intercept MPI calls during application
execution. Profiling wrappers trace which MPI function
was called along with call parameters within each node,
such as source and destination of communications, yet
without recording the actual message content. This intra-
node information (task-level) is compressed on-the-fly. We
also perform inter-node compression upon application ter-
mination to obtain a single trace file that preserves struc-
tural information suitable for lossless replay.
Intra-Node Compression: Within each node, we com-

press MPI call entries, generally repeated due to a code’s
loop structure, on-the-fly. To this extent, regular section
descriptors (RSDs) are exploited to express MPI events
nested in a single loop in constant size [3] while power-
RSDs (PRSDs) are utilized to specify recursive RSDs
nested in multiple loops [5]. MPI events may occur at
any level in PRSDs. For example, the tuple RSD1:<100,
MPI Send1, MPI Recv1> denotes a loop with 100 it-
erations of alternating send/receive calls with identical
parameters (omitted here), and PRSD1:<1000, RSD1,
MPI Barrier1> denotes 1000 invocations of the former
loop (RSD1) followed by a barrier. These construct cor-
respond to the code in Figure 1. The algorithmic details of
MPI event compressions over PRSDs can be found else-
where [7, 8].

To efficiently compress events, a set of generic and an-
other set of domain-specific optimizations are performed.
(1) Calling sequences are identified by generating a sig-
nature derived from a stack walk. Thus, call origins to

file://localhost/Users/schulz6/Downloads/mueller@cs.ncsu.edu

common routines (e.g., MPI Send at call site 1) can be dis-
tinguished. (2) Communication end-points are encoded in
a location-independent manner (relative to the rank of the
current MPI task). This fosters identical encoding, e.g.,
for stencil codes, across nodes. (3) Request handles are
identified by a relative index into a handle buffer of con-
stant size, which is dynamically updated. This abstracts
for (i = 1; i < 1000; i++) {

for (k = 1; k < 100; k++) {
MPI Send(...); /* send call 1 */
MPI Recv(...); /* recv call 1 */

}
MPI Barrier(...); /* barrier call 1 */

}
Figure 1: Sample Code for PRSDs

from runtime-dependent data structures in a portable man-
ner, e.g., for handles returned by asynchronous commu-
nication calls such as MPI Isend. (4) Iterative constructs
with an indeterministic number of repetitions of a com-
mon event type are aggregated into a single event. For
example, an application may wait for the completion of n
asynchronous events using MPI Waitsome in a loop, yet
the MPI call may aggregate multiple completions as a re-
sult of each call. This will be abstracted as n calls.
Inter-Node Compression: Local traces are combined

into a single global trace upon application completion
within the PMPI wrapper for MPI Finalize. This approach
is in contrast to generating local trace files, which results
in linearly increasing disk space requirements and does
not scale as traces must be moved to permanent (global)
file space. The I/O bandwidth, particularly in systems like
BlueGene/L (BG/L) with a limited number of I/O nodes,
could severely suffer under such a load. To guarantee scal-
ability, we instead employ cross-node compression, step-
wise and in a bottom-up fashion over a binary tree net-
work overlay. To this extent, events and structures (RSD
/ PRSDs) of nodes are merged when events, parameters,
structure and iteration counts match (see [7, 8] for algo-
rithmic details).

We again employ a set of generic and domain-specific
optimizations: (1) Sequences of nodes/task IDs are en-
coded using PRSDs, which allows a concise representation
even for subsets of nodes as traces from different nodes are
merged within the reduction tree. We utilize a radix tree
whose encoding fosters efficient PRSD representations of
sets of task IDs. (2) Events are temporally reordered when
they originate from different nodes (and have no causal re-
lation) to result in a more concise representation.

3 Deterministic Replay
One of the objectives of collecting communication traces
is to analyze them off-line. One key virtue of our envi-
ronment is that one can replay communication traces in a
generic manner, even without the availability of applica-
tion code. All that is needed is the trace itself. Our replay
engine will be discussed in more detail in the preliminary

results.
We have designed and implemented a replay engine that

issues communication calls in the same order that they
were originally issued by an application. The input to the
replay engine consists of the compressed trace. The replay
engine itself does not actually decompress this trace. In-
stead, it interprets the compressed trace on-the-fly to issue
communication calls. In effect, the replay engine imple-
ments the inverse functions of the compression algorithms
in an interpretative manner. When it encounters an RSD
or PRSD, it issues calls iteratively observing the structure,
frequency and parameters of communication calls. Hence,
our structure-preserving compression scheme is key to a
scalable replay methodology, which does not require ex-
cess amounts of memory. In fact, its memory requirement
is loosely bounded by the size of the compressed trace,
which is often of constant size.

Using the replay engine, we conducted experiments to
verify the correctness of our scalable compression ap-
proach. We replayed compressed traces to ensure MPI se-
mantics are preserved, to verify that the aggregate number
of MPI events per MPI call matches that of the original
code and that the temporal ordering of MPI events within
a node are observed. The results of communication replays
confirmed the correctness of our approach. During replay,
all MPI calls are triggered over the same number of nodes
with original payload sizes, yet with a random message
payload (content). Thus, the replay incurs comparable
bandwidth requirements on communication interconnects,
albeit with potentially different contention characteristics
since event times are not preserved (addressed below).
Communication replay also provides an abstraction from
compute-bound application performance, which is neither
captured nor replayed. This makes the replay mechanism
extremely portable, even across platforms, which can ben-
efit rapid prototyping and tuning. It also supports assessing
communication needs of future platforms for large-scale
procurements.

4 Preserving Time
The objective of trace analysis is generally to find ineffi-
ciencies in the code, e.g., as indicated by load imbalance
between nodes. Such analysis requires knowledge about
the timing between events. Hence, conventional trace tech-
niques simply attach a timestamp to all communication
events. Such timestamps also facilitate a time-accurate re-
play. However, our compression techniques would seize to
be effective if each event was timestamped. Hence, scal-
able trace compression with precise timestamps is infeasi-
ble.

Our trace compression scheme and the replay engine
support two methods of capturing timing information of
different tasks in computational sections (between any two
communication calls) [9]. First, a low-cost statistical ap-
proach to capture delta times has been designed. Sec-
ond, to resemble computational imbalance, a variation-

none intra inter

010

210

410

610

810

1010

1210

51
2

25
6

12
86432

Tr
ac

e
siz

e
[B

yt
es

]

Number of CPUs
(a) LU Trace File, Varied # Nodes

none intra inter

010
110
210
310
410
510
610
710
810
910

1010

51
2

25
6

12
86432

Tr
ac

e
siz

e
[B

yt
es

]

Number of CPUs
(b) CG Trace File, Varied # Nodes

none intra inter

010
110
210
310
410
510
610
710
810

51
2

25
6

12
86432

Tr
ac

e
siz

e
[B

yt
es

]

Number of CPUs
(c) IS Trace File, Varied # Nodes

Figure 2: Subset of NAS PB, Trace File Size per Node on a BG/L

preserving recording scheme was devised, still within a
constant size trace representation, yet with a higher con-
stant factor. Delta times denote the elapsed time between
adjacent trace events. In contrast to absolute time, the rel-
ative notion of time makes delta times amenable to com-
pression. Delta times are collected for event pairs. For
example, RSD1 has two timing regions that will be cap-
tured: (a) from send to receive and (b) from receive to send
(between consecutive loop iterations). Each delta time is
associated with the terminal communication event, i.e., at
the beginning (prologue) of receive for (a) and the begin-
ning of send for (b).

We dynamically create size-limited histograms of delta
times suitable for our existing trace compression scheme.
Based on a user-defined number of bins, delta times are
recorded in an online balancing scheme to equalize bin
volumes using a weighted subrange partitioning scheme
(algorithm 2 in [9]).

5 Trace Extrapolation
Judging the effect of problem and/or task scaling on perfor-
mance is a hard problem. While some advances have been
made using application modeling or deriving similarities
and characteristics from microbenchmarks [4, 6, 1], we
follow a complementary direction. We extrapolate larger
communication traces from smaller ones, which can then
be used to replay these larger traces and empirically detect
communication problems or project system requirements
for future procurements of HPC systems. If communica-
tion is the impeding factor to scalability, our framework
can aid in the analysis of codes and performance projec-
tions for existing and future systems.

The extrapolation of system overhead from small appli-
cation runs to larger ones is a challenging problem that has
not been solved. Yet, a number of subproblems become
feasible with ScalaTrace. We consider the problem of
strong (task) scaling. Given a set of communication traces
of, say, 8, 16, 32 and 64 nodes, we can extrapolate the
corresponding trace for n nodes of the same application.
We devised a method to extrapolate larger communication
traces from smaller ones for task (strong) scaling. The key
insight is that communication parameters combined with
PRSD iterators provide sufficient detail for this approach.
E.g., if a communication parameter depends on the num-
ber of columns of a matrix whose size is input dependent,
then problem scaling will increase this parameter at a cer-
tain rate. Given a minimum of three data points, a fitting

curve can be constructed to extrapolate the growth rate of
this parameter. Thus, payloads can be adjusted according
to such fitting curves. A larger problem size can also af-
fect the number of timesteps of a convergence algorithm.
By capturing the iterators of timesteps within histograms,
such dependencies can be discovered and modeled again
via curve fitting.

Similar to problem scaling, the size of a group commu-
nicator may depend on the total number of nodes, and this
growth under task scaling can be extrapolated with curve
fitting methods. For such node dependencies, we require
d + 1 data points (traces) for a d-dimensional Cartesian
layout and then apply Gaussian elimination to extrapolate
parameters, such as communication end-points, for arbi-
trary sizes n. E.g., after determining the dimensionality, we
can infer the coefficients A,B,C,D for a given layout and
solve for values Vi: A× ni+B× xi× yi +C× xi +D = Vi
for i∈ {1, ...,d+1}where ni = f (zi) to facilitate the calcu-
lation for row-major layouts. We have prototyped a trace
extrapolation method for strong scaling that automatically
transforms a set of traces of smaller size (number of nodes)
to one of arbitrary size. The extrapolated traces have been
replayed successfully, as reported in the next section.

6 Results
We assessed the effectiveness of ScalaTrace through ex-
periments with benchmarks and an application on BG/L.
Our results confirm the scalability of our on-the-fly MPI
trace compression by yielding orders of magnitude smaller
or even near constant size traces for processor scaling and
problem scaling.

We conducted experiments with the NAS Parallel
Benchmark (NPB) codes for class C inputs [12] and
UMT2k on BG/L. Figure 2 depicts the trace file sizes on a
logarithmic scale without compression (none), with local
compression (intra-node) and with cross-node compres-
sion (inter). We identified three categories of codes wrt.
inter-node compression efficiency: (1) those that result in
near constant-size traces (DT, EP, LU, BT and FT), regard-
less of the number of nodes, (2) those with sub-linear scal-
ing of trace size as the node count increases (MG and CG)
and (3) those that do not scale yet (IS and UMT2k). The
first class, represented by LU (Fig. 2(a)), shows reductions
for intra but only inter delivers constant size traces. The
second class, represented by CG (Fig. 2(b)), shows consid-
erable compression at the node level (intra) and sub-linear
(but not constant) sized traces for inter-node compression.

The third class, represented by IS (Fig. 2(c)), shows a sim-
ilar trend but with a faster than linear growth rate for inter.

The next experiment assesses the effectiveness of delta
times to resemble application behavior during replay. Fig-
ure 3 depicts the wall-clock time for the uninstrumented
application, mpiP[10]-instrumented application and three
replay options based on uncompressed, intra-node com-
pressed and globally compressed traces. It shows highly
accurate replay times irrespective of number of nodes
and levels of compression, which is representative for all
benchmarks.

Total MPI Compute

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

gl
ob

no
de

un
co

m
pr

m
pi

P
un

in
st

gl
ob

no
de

un
co

m
pr

m
pi

P
un

in
st

gl
ob

no
de

un
co

m
pr

m
pi

P
un

in
st

gl
ob

no
de

un
co

m
pr

m
pi

P
un

in
st

gl
ob

no
de

un
co

m
pr

m
pi

P
un

in
st

Ex
ec

ut
io

n
tim

e

Number of CPUs
32 64 128 256 512

Figure 3: FT Replay: Aggregate of All Nodes (BG/L)

We have also replayed traces successfully at extrapo-
lated sizes. Preliminary results not only indicate functional
correctness but also close results in timing of extrapolated
traces when replayed compared to application behavior at
scaled size for up to 16k nodes (see Figure 4, dark/maroon
bars are extrapolated, scaling is limited by input sizes). We
are working on generalizing our approach to a large num-
ber of common communication patterns.

 1

 4

 16

 64

 256

 1024

FT512
FT1024

FT2048

FT4096

FT8192

FT16384

- IS64
IS128

IS256
IS512

IS1024

IS2048

IS4096

IS8192

IS16384

- CG16
CG64

CG256

CG1024

CG4096

Ru
nn

in
g

Ti
m

e
(s

)

App Time
Replay Time

Figure 4: Replay after Extrapolation on a BG/P

7 Conclusions
This paper gives an updated overview over ScalaTrace.
ScalaTrace provides a scalable methodology for event trac-
ing that has been demonstrated for MPI and I/O events. It
annotates events with time-preserving information suitable
for deterministic MPI call replay. Traces can further be ex-
trapolated in the dimension of number of tasks (nodes) to
assess communication scalability and assist procurement
decisions for future HPC installations. Further informa-
tion about ScalaTrace can be found elsewhere [7, 9, 8, 11].

8 Acknowledgements
This work was supported in part by NSF grants 0410203,
0429653, 0237570 (CAREER), 0937908, and 0958311.

Part of this work was performed under the auspices of
the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contracts
DE-AC05-00OR22725, W-7405-Eng-48, and DE-AC52-
07NA27344 under LLNL-CONF-427005.

References
[1] R. Bell and L. John. Improved automatic testcase synthesis

for performance model validation. In International Con-
ference on Supercomputing, pages 111–120, June 2005.

[2] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Per-
formance optimization for large scale computing: The scal-
able VAMPIR approach. In International Conference on
Computational Science (2), pages 751–760, 2001.

[3] P. Havlak and K. Kennedy. An implementation of interpro-
cedural bounded regular section analysis. IEEE Transac-
tions on Parallel and Distributed Systems, 2(3):350–360,
July 1991.

[4] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser-
man, and M. Gittings. Predictive performance and scala-
bility modeling of a large-scale application. In Supercom-
puting, Nov. 2001.

[5] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A.
McKee, and A. Yoo. METRIC: Tracking down inefficien-
cies in the memory hierarchy via binary rewriting. In In-
ternational Symposium on Code Generation and Optimiza-
tion, pages 289–300, Mar. 2003.

[6] G. Marin and J. Mellor-Crummey. Cross architecture per-
formance predictions for scientific applications using pa-
rameterized models. In SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, page (to ap-
pear), 2004.

[7] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski.
Scalable compression and replay of communication traces
in massively parallel environments. In International Paral-
lel and Distributed Processing Symposium, Apr. 2007.

[8] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski.
Scalatrace: Scalable compression and replay of commu-
nication traces in high performance computing. Journal
of Parallel Distributed Computing, 69(8):969–710, Aug.
2009.

[9] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz. Pre-
serving time in large-scale communication traces. In In-
ternational Conference on Supercomputing, pages 46–55,
June 2008.

[10] J. Vetter and M. McCracken. Statistical scalability analysis
of communication operations in distributed applications. In
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2001.

[11] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scal-
able multi-level i/o tracing and analysis. In Petascale Data
Storage Workshop, Nov. 2009.

[12] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler. Ar-
chitectural requirements and scalability of the NAS parallel
benchmarks. In Supercomputing, 1999.

