
LLNL-TR-463495

A Novel Coarsening Method for
Scalable and Efficient Mesh
Generation

A. Yoo, D. Hysom, B. Gunney

December 2, 2010



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



A Novel Coarsening Method for Scalable and Efficient

Mesh Generation∗

Andy Yoo David Hysom Brian Gunney

Lawrence Livermore National Laboratory
Livermore, CA 94551

Abstract

In this paper, we propose a novel mesh coarsening method called brick coarsening method. The
proposed method can be used in conjunction with any graph partitioners and scales to very large meshes.
This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes
called bricks, layered in a similar way to conventional brick laying, and then assigning each node of
the original mesh to appropriate brick. Our experiments indicate that the proposed method scales
to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with
significantly less edge cuts. Our results further indicate that the proposed brick-coarsening method allows
more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining
good partitioning performance with relatively good edge-cut metric.

1 Introduction

Graph partitioning is an important problem that has many scientific and engineering applications in such
areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V
is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices
of the graph (V ) into k disjoint groups such that each group contains roughly equal number of vertices and
the number of edges connecting vertices in different groups is minimized.

Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations,
as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across
computing nodes1. The impact of graph partitioning on the reduction of communication can be easily
seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph
partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-
zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-
vector multiplication can be performed locally on each processor and hence to minimize communication.
Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each
processor. Graph partitioning is a well known NP-complete problem [13], and thus the most commonly used
graph partitioning algorithms employ some forms of heuristics [30, 15, 1, 29, 5, 7, 15, 12, 28, 24, 23]. These
algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and
they tend to trade off these factors.

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.

1In this paper, graph and mesh are used interchangeably.



A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how
to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where
scalability becomes a big issue. For example, we have found that the ParMetis [20], a very popular graph
partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an envi-
ronment should be fast and scale to very large meshes, while producing high quality partitions. This is an
extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able
to produce partitions that minimize inter-processor communications and balance the load imposed on the
processors.

Our goals in this work are two-fold:

• To develop a new scalable graph partitioning method with good load balancing and communication
reduction capability.

• To study the performance of the proposed partitioning method on very large parallel machines using
actual data sets and compare the performance to that of existing methods.

The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an
input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of
mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research.
In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These
brick are then laid in a way similar to conventional brick laying technique, which reduces the number of
neighboring blocks each block needs to communicate. Contributions of this research are as follows.

• We have developed a novel method that scales to a really large problem size while producing high
quality mesh partitions.

• We measured the performance and scalability of the proposed method on a machine of massive size
using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones
using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning
method is successfully applied to.

• We have shown that proposed method can reduce the number of edge cuts by as much as 65%.

The paper is organized as follows. We first provide some preliminaries in Section 2. The proposed
coarsening method is discussed in Section 3 in a greater detail, followed by the results from our experiments
in Section 4. Related work are discussed in Section 5, and conclusions are drawn in Section 6.

2 Preliminaries

In a typical numerical simulation, a physical object being studied, referred to as domain, is first discretized
to a model that computer can understand. The physical domain is often represented in a form of grid called
mesh. Each cell in the mesh is referred to as zone. A zone can be of any shape, but it usually logically
rectangular or hexahedral for two- and three-dimensional mesh, respectively.

Given a graph G = (V,E), k-way graph partitioning is problem of finding k disjoint subsets of vertices in
G that minimizes the cut-size, which is defined as the sum of the weights of edges between the subsets, while
each subset has (approximately) equal vertex weight sum. Given a graph where each vertex represents a task
to be performed associated with certain computational cost and inter-task communication cost, represented
by the corresponding vertex and edge weights respectively, the k-way graph partitioning provides us with an
optimal distribution of the tasks over k processors that ensures minimal communications and load balancing.
Figure 1 shows 4-way graph partitioning on a small example graph.



Figure 1: A 4-way partition of an example 12-vertex graph. With vertex and edge weights assumed to be 1,
each subset of vertices has the cost of 3. The average cut-size of this partition is 2.5.

Two-way partitioning is often called as bisection. Many existing graph partitioning methods often partition
graph by iterating a bisection algorithm. A class of graph partitioning algorithm we are mainly interested
in this paper is called multi-level graph partitioning. A typical multi-level graph partitioner operates in
three phases: coarsening, partitioning, and uncoarsening phases. In coarsening phase, the original graph is
transformed into a coarser and smaller graph by (often repeatedly) clustering vertices and corresponding
edges. Desired number of sets of coarsened vertices are obtained during the partitioning phase by running a
partitioning algorithm. The coarsened vertices and edges are then transformed back to original vertices and
edges in the uncoarsening phase.

3 Proposed Coarsening Method

Most of existing graph partitioner aim at finding partitions that reduce edge cuts and ensure balanced
computational load. As stated earlier, graph partitioning is an NP-Complete problem. Even many of the
approximate graph partitioning algorithms are computationally expensive, and their complexity increases as
the problem size increases. This becomes a serious bottleneck for scalability, especially when input meshes
are comprised of hundreds of millions of zones or more.

A common approach used by multi-level graph partitioners [22, 20, 21] to solve this problem is to reduce
the problem space by coarsening the original graph (or mesh). The coarsening is usually done by clustering
the zones of the given mesh into blocks of zones, which are then passed to partitioning algorithms.

In this paper, we propose a new mesh coarsening method, called brick coarsening method, that can be
used in conjunction with with any existing graph partitioner to improve their scalability, performance, and
partitions quality. Given a mesh, the method conceptually divides the mesh into the blocks of zones of
roughly equal size (in terms of the number of zones in them), which we refer to as bricks. When assigning
zones to bricks, the method attempts to allocated about equal number of zones to each brick to ensure the
load balancing.

The key to the reduction in communication lies in the way how the given mesh is divided into bricks,
or conversely, how the bricks are combined into the original mesh. In the proposed method, the bricks are
laid in a very similar way to the conventional brick laying in masonry. The basic idea of this method is as
follows. Consider two brick layouts shown in Figure 2.

In Figure 2.a, the bricks are layered as a grid. In this lay out, the number of neighboring processors that
each processor needs to communicate, assuming that single brick is assigned to a processor, is 9. If the bricks
are laid out as shown in Figure 2.b, the number of communicating neighboring processor is reduced to 6.
Each arrow in Figure 2 represents a potential edge cut, when the coarsened mesh is partitioned by a graph
partitioner. Since the number of edge cuts is reduced by the proposed coarsener initially, the final number
of edges cuts obtained by the graph partitioner is also reduced. Furthermore, the number of edge cuts is
reduced exponentially as the dimension of the mesh increases. For example, in a 3D mesh, the the number
of edge cuts obtained by using two methods shown in Figures 2.a and 2.b are 26 and 14, respectively.



(a) Bricks laid in grid pattern (b) Bricks laid in offset pattern

Figure 2: Comparison of two brick laying techniques in a 2D mesh.

(a) 2D mesh coarsening (b) A screen shot of a 3D mesh coarsening

Figure 3: Brick coarsening methods for 2D and 3D meshes.



(a) Original mesh (b) Decomposed mesh

Figure 4: An example of 2D mesh that is composed of four blocks. Original irregularly-structured mesh is
divided into four blocks, each depicted in different colors.

Figure 3 presents two examples that illustrate show given meshes are coarsened using brick coarsening.
Figure 3.a shows a layout of coarsened 2D mesh. In this layout, the maximum number of communicating
neighbors per each processor is 6. Fewer communication may be required for the processors on corners and
sides. However, a slightly different brick layout is needed to for 3D mesh, as shown in Figure 3.b that shows
a screen capture of coarsened 3D mesh using hexahedral bricks. Readers should note that the brick laying
method is also applied on the additional Z dimension to minimize the edge cuts per processor. Here, the
brick coarsening method ensures the minimum number of communicating neighbors per processor (six) on
X-Y, Y-Z, and Z-X planes.

Meshes typically used in scientific computing has irregular structure as shown in Figure 4.a, for example.
Here, an irregular 2D mesh can be decomposed into three (semi-) structured meshes (Figure 4.b). In this
case, the brick coarsening method can be applied to each submesh first, and then the coarsened submeshes
are combined together before graph partitioning algorithm is applied. Therefore, at the boundary where two
submeshes joined, the brick laying pattern may not hold and therefore, there may be more communications
from those processors at the boundaries.

Algorithm 1 describes the proposed coarsening method in greater detail. For the sake of discussion, we
assume that input mesh and bricks are cubes (that is a 3D mesh with square faces).

In this algorithm, we assume that the zones in the input mesh are numbered by increasing their Z, Y, and
then X coordinates. The brick IDs are numbered similarly. The core of the brick coarsening algorithm is a
mapping function, find-brick, that, given a logical coordinate of a zone, returns the logical coordinate of the
brick into which the zone is agglomerated. This function computes the coordinate a brick corresponding to
each zone, properly offsetting the bricks at each dimension. From the logical coordinate of a brick, we can
easily calculate the corresponding brick ID. In addition, a function that does inverse mapping can also be
easily constructed.

4 Experiment Results

This section presents experimental results for the proposed brick coarsening method. We have conducted
our experiments on uBGL, a massively parallel machine developed by IBM [33]. We are mainly interested
in the effect of the brick method on the performance of existing graph partitioners. Two state-of-art graph



Algorithm 1 Brock Coarsening Method

1: Input: A 3D mesh M with X × Y × Z zones and m denoting the number of zones in each dimension
2: Output: A coarsened 3D mesh and a map Γ that maps a zone to brick coordinate
3:

4: Divide M into a group of bricks that are laid out in an offset manner at each dimension
5: for all ∀ zones z in M with coordinate (x, y, z) do
6: (x′, y′, z′) = find-brick(x, y, z)
7: Add mapping (x, y, z) ⇒ (x′, y′, z′) to Γ
8: end for
9:

10: function find-brick(x, y, z)
11: z′ = z

m
12: if z′ mod 2 == 0 then
13: y′ = y

m
14: else
15: if y == 0 then
16: y′ = 0
17: else
18: y′ = y−1

m +1
19: end if
20: end if
21: if z′ mod 2 == 0 then
22: if y′ mod 2 == 0 then
23: x′ = x

m
24: else
25: if x == 0 then
26: x′ = 0
27: else
28: x′ = x−1

m +1
29: end if
30: else
31: if y′ mod 2 == 0 then
32: if x == 0 then
33: x′ = 0
34: else
35: x′ = x−1

m +1
36: end if
37: else
38: if x < 2 then
39: x′ = 0
40: else
41: x′ = x−2

m +2
42: end if
43: end if
44: end if
45: end if
46: end function



(a) Partition time (b) Mean edge cuts

Figure 5: Comparison of the performance of the brick-coarsened and naive RCB methods. 3375 zones per
processor are used and cube bricks with side length of 3, 4, and 5 are used in these experiments.

partitioners, RCB [3] and PT-Scotch [8], are evaluated in this study. The quality of partitions generated by
these partitioners and their execution time were the metrics of interest.

4.1 Description of Experimental Environment

Our experiments were performed on IBM uBGL and the Lawrence Livermore National Laboratory. The
uBGL is based on the original IBM BlueGene/L architecture [4]. The machine consists of 40960 compute
nodes (CNs), each of which where each CN contains two IBM PowerPC processors, and hence the system
has 81920 processors in total. The total peak performance of the system is 229.4 TFLOP/s running at 700
MHz. The uBGL is equipped with 512 MB of main memory per CN (and 22 TB of total memory).

Each CN contains six bi-directional torus links directly connected to nearest neighbors in each of three
dimensions. The CNs are also connected by a separate tree network in which any CN can be a root. The
torus network is used mainly for communications in user applications and supports point-to-point as well as
collective communications. The tree network is also used for CNs to communicate with I/O nodes. It can
be also used for some collectives such as broadcast and reduce.

A CN runs on a simple run-time system called compute node kernel (CNK) that has a very small memory
footprint. The main task of the CNK is to load and execute user applications. The CNK does not provide
virtual memory and multi-threading support and provides a fixed-size address space for a single user process.
Many conventional system calls including I/O requests are function-shipped to a separate I/O node which
runs on a conventional Linux operating system.

4.2 Performance Study Results

First, we have measured the effect of the brick coarsening on the performance of the two graph partitioners
considered in this study, RCB and PT-Scotch. Three dimensional synthetic meshes with 3375 local zones
per processor are used in all of the weak-scaling experiments. Figure 5 presents the results for the RCB
method for different brick sizes, where the performance of the naive and brick-coarsened RCB methods is



0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

Pa
rt

iti
on

 T
im

e 
(S

ec
)

Number of Processors

Non-Brick

Brick (Dim=4)

Brick (Dim=5)

Coarsening (Dim=4)

Coarsening (Dim=5)

8000

9000

10000

11000

12000

13000

14000

0 2000 4000 6000 8000 10000

M
ea

n 
Ed

ge
 C

ut
s

Number of Processors

Non-Brick

Brick (Dim=4)

Brick (Dim=5)

(a) Partition time (b) Mean edge cuts

Figure 6: Comparison of the performance of the brick-coarsened and naive PT-Scotch methods. 3375 zones
per processor are used and cube bricks with side length of 4 and 5 are used in these experiments.

compared. Figures 5.a and 5.b show the time to partition given mesh and the mean edge cuts obtained by
the partitions, respectively.

The total partitioning time of the brick-coarsened RCB includes the time to coarsen given input meshes
to smaller meshes. As shown in the Figure 5.a, the brick coarsening overhead is very small compared to
partitioning time, especially for large number of processors. The coarsening time constitutes only 10% of
total execution time when 32768 processors are used and we expect this number should grow smaller as
we increase the number of processors used. It is also interesting to note that the proposed brick coarsening
method scales very well as shown in the figure, where the brick coarsening time remains constant independent
of the brick size and the number of processors used. The brick method achieves such high scalability, mainly
because it clusters input meshes following a simple, predetermined order (similar to brick laying technique),
and hence there is no need to optimize any global objective functions.

The run-time of the brick-coarsened RCB method, however, is consistently higher than that of the naive
RCB method. In worst case, the brick-coarsened RCB method runs as much as 1.5 times slower than the
naive RCB as shown in Figure 5.a. On the other hand, the brick-coarsened RCB generates partitions whose
edge cuts are considerably smaller than those of the naive RCB method. The Figure 5.b shows that the
brick-coarsened RCB can reduce the number of edge cuts by as much as 65%. This indicates that the brick-
coarsened RCB actually performs more iteration and produces better partitions, enabled by the reduced
problem size with the brick coarsening. Furthermore, the mean edge cuts decreases as we increase the brick
size. We believe that it is mainly due to the synthetic meshes used in the experiments as input, as using
larger brick sizes reduces the overall problem size while maintaining the overall structure of the input meshes,
allowing the RCB method to obtain finer partitions.

Figure 6 compares the performance metrics for naive and brick-coarsened PT-Scotch methods, where
Figures 6.a and 6.b show the partition time and the mean cut edges obtained by the PT-Scotch for different
brick sizes, respectively. As in the RCB method, the coarsening time remains constant independent of the



brick sizes and the number of processors used, again proving high scalability of the brick coarsening method.
Unlike the RCB method, however, the naive PT-Scotch method exhibits higher partition time than its
coarsened counterparts as shown in the Figure 6.a. This is due to the higher complexity of the partitioning
algorithm employed by the PT-Scotch, compared to that of the RCB method. Here, the brick coarsening
simply reduces the problem space with which the PT-Scotch method runs faster. This is clearly indicated
by the fact that the brick-coarsened PT-Scotch with brick size 5 outperforms the one with the brick size of
4.

We have found, however, that the naive PT-Scotch method outperforms the brick-coarsened method in
terms of the mean edge cuts as indicated in Figure 6.b. The partitions obtained by the brick-coarsened PT-
Scotch method have 5 to 15% more edge cuts on average than the naive PT-Scotch method. We believe that
this is closely related to the complex partition algorithm of the PT-Scotch method itself. With uncoarsened
mesh, the naive PT-Scotch can perform partitioning with finer granularity (at the expense of high computing
time), whereas coarsening increases the granularity of the partitions. This is an important trade-off that
needs careful examination, because PT-Scotch, like other graph partitioners, is known to fail to scale to very
large problems. For those problems, the brick coarsening is needed to reduce the problem size and hence
critical to achieving high scalability. This needs further investigation.

5 Related Work

Graph partitioning is an extensively-studied problem, and many algorithms have been reported in the lit-
erature. This section briefly surveys some of the well-known graph partitioning algorithms. As mentioned
earlier, graph partitioning is NP-hard problem, and therefore most of the existing algorithms are heuristics-
based.

One of the earliest and widely-used partitioning methods developed is Kernighan-Lin (KL) algorithm [23].
The idea of the KL method is simple. Given a bisection, the KL method iteratively exchanges pairs of
vertices from each partition if the exchange reduces the cut-size. For this, each vertex is associated with a
gain value, which is the number of cuts reduced by moving the vertex from current group to another. The
KL algorithm selects a pair of vertices with the largest gain value for exchange. The KL algorithm is simple
but works relatively well. A drawback of this algorithm is its high computational complexity of O(|V |3).
Another drawback, which is common to many local improvement methods, is that the final partition quality
depends heavily on the initial partition. Dutt [9] has shown that the KL algorithm can be improved to
have O(|E|max(log|V |, dmax)), where dmax denotes the maximum node degree. The KL method was further
improved by Fiduccia and Matteyses (FM) [11], where an iteration can be done in O(|E|) time.

It is relatively easy to parallelize the KL algorithms, as finding an optimal bisection can be performed by
different processors independently. On the other hand, the SA and GA methods are inherently sequential.
Gilbert and Zmijevski [14] proposed a parallel graph bisection algorithm based on the KL method. In this
parallel implementation of the KL method, the adjacency list of vertices is assigned to different processors.
At each iteration, a pair of vertices with the largest gain values are selected and the update of the gain values
are made to the vertices adjacent to selected pair in parallel. The selected pairs are exchanged, then, if it
improves the partition quality.

Simulated annealing (SA) [25] is a general local search technique based on statistics mechanics. An
advantage of the SA method is that it does not get trapped in some local optima, in contrast to the greedy
methods like KL. Starting with an initial random solution S and temperature T , the SA method performs
following steps L times. A random solution S′ of the current solution S is obtained. If S′ improves the
quality of solution, S′ replaces S as current solution. However, even if the quality does not improve, S′

replaces S with a certain probability, which is a step to avoid being trapped in a local optimum. After
L iterations, SA method terminates if certain stopping criterion is met. Otherwise, another round of L



iteration is performed. The termination of SA method is controlled by manipulating the probability for a
new solution S′ to replace S.

Genetic algorithm (GA) is another method that tries to find optimal solution through searching random
solutions. The GA method starts with a set of random solutions, each of which is often encoded as a sequence
of bits, and it iterates a sequence of three operations, crossover, mutation, and replacement, until the solution
at hand does not improve. In crossover, two offsprings are formed by cutting the parent chromosomes at a
random position and concatenating the portions from the mother and father chromosomes. The offsprings
are then mutated by flipping bits at random locations in the mutation phase. Finally, the offsprings replace
existing chromosome in the replacement phase, if the replacement improves the quality of overall solutions.
Several GA-based graph partitioning methods have been reported in the literature [31, 26, 6].

Many k-way partition algorithms are reported in the literature. Most of the methods are bisection-based
in that they recursively apply a bisection step until k subsets of vertices are obtained. The best-known k-way
partition method is recursive coordinate bisection (RCB) [3]. The RCB method obtains a bisection by first
selecting a coordinate axis. Then, it finds a plane, orthogonal to the selected axis, that bisects the vertices
of graphs into two subsets of roughly equal size. This process is repeated until k subsets are obtained. A
more elaborate RCB-based method called inertial method has been proposed [10]. This method differs from
RCB in that it selects the axis of minimum angular momentum of the set of vertices, instead of a coordinate
axis. The inertial method is combined with the KL method, where bisection computed by inertial method
is improved by the KL method [27],

A parallel RCB-like method called unbalanced recursive bisection (UCB), was proposed [17]. As in RCB,
the cut planes are selected perpendicular to a selected axis. However, the bisection does not necessarily
subdivide the vertices into equal-sized subsets. Rather, it is sufficient to have subsets whose sizes are
multiples of |V |/k. Nakhimovski proposed that is similar to URB scheme, except that it tries to find a plane
that cuts minimum edges.

In many cases, the graphs are not embedded in space, and hence only the combinatorial structure of
the graphs, rather than geometric information (i.e., coordinate), can be used in partitioning. The recursive
graph bisection (RGB) method [32] first finds a pseudo peripheral vertex in the given graph, which is defined
as a pair of vertices that are approximately at the greatest distance from each other. Then graph distance
from the selected vertex is calculated for every vertex in the graph by simple breadth-first search (BFS) and
then the vertex list sorted in the order of graph distance is divided into two equal-sized sets.

The recursive spectral bisection (RSB) method [30, 32] uses the eigenvector that corresponds to the second
smallest eigenvalue of Laplacian matrix of the graph, called Fiedler vector. The difference between coor-
dinates of the Fiedler vector provides the information about the distance between corresponding vertices.
The RSB method obtains a bisection by sorting the vertices with respect to their Fiedler vector coordinates
and dividing the sorted list into two halves. A parallel implementation of the RSB method was made on
Connection Machine CM-5 [34, 35] and on Cray T3D [2].

A partitioning method that employ multilevel approach was proposed [1]. A multilevel method consists
of three phases: coarsening, partitioning, and uncoarsening. During the coarsening phase, the vertices and
edges of given graph is coalesced into mega-vertices and mega-edges. When a sufficiently coarse graph is
obtained, partitioning is performed on the coarse graph. During the uncoarsening phase, these partition is
propagated back. Coarsening a graph into a smaller approximation of the original graph reduces the search
space drastically and hence improves the partitioning performance. In the partitioning phase, a bisection
partitioning [18] or k-way partitioning [16, 19] can be used. A KL-type of algorithms can be invoked to
improve the partition quality. Karypis and Kumar presented the parallel implementation of their multilevel
bisection method [22] and multilevel k-way partitioning algorithm [20, 21].



6 Conclusions

Graph partitioning plays an important role in large scientific parallel computing, as it boosts performance
by enabling load balancing and reducing communication time. Graph partitioning is a very difficult problem
that often requires computationally expensive algorithms to obtain good partitions. The high computational
complexity of graph partitioning algorithms makes it non-trivial to scale them to very large meshes with
hundreds of millions of zones, while generating high quality meshes.

We propose a novel mesh coarsening method called brick coarsening method in this paper to address
this issue. The proposed coarsening algorithm improves the scalability and achieves good load balancing by
clustering neighboring zones into equal-sized blocks of zones called bricks. More importantly, the proposed
algorithm reduces the inter-processor communications by laying out the bricks in an offset manner, similar
to conventional brick laying in masonry.

The proposed method, when used in conjunction with any existing graph partitioners, can improve their
performance in terms of the scalability and the quality of resulting partitions. Our experiments conducted
on a state-of-art massive parallel computer show that the proposed method scales to very large meshes while
allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. The
results also indicate that the proposed brick-coarsening method allows more complicated partitioners like
PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with
relatively good edge-cut metric.

References

[1] S. Barnard and H. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning
unstructured problems. In 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 711–718,
1993.

[2] S. T. Barnard. Pmrsb: parallel multilevel recursive spectral bisection. In Supercomputing ’95: Proceed-
ings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), page 27, New York, NY, USA,
1995. ACM.

[3] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors.
IEEE Trans. Comput., 36(5):570–580, 1987.

[4] Blue Gene/L. http://cmg-rr.llnl.gov/asci/platforms/bluegenel.

[5] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In 6th SIAM Conf.
Parallel Processing for Scientific Computers, pages 445–452, 1993.

[6] T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE Trans. Comput., 45(7):841–
855, 1996.

[7] C.-K. Cheng and Y.-C. A. Wei. An improved two-way partitioning algorithm with stable performance
[vlsi]. IEEE Trans. on CAD of Integrated Circuits and Systems, 10(12):1502–1511, 1991.

[8] C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient parallel graph ordering. Parallel Comput.,
34(6-8):318–331, 2008.

[9] S. Dutt. New faster kernighan-lin-type graph-partitioning algorithms. In ICCAD ’93: Proceedings of
the 1993 IEEE/ACM international conference on Computer-aided design, pages 370–377, Los Alamitos,
CA, USA, 1993. IEEE Computer Society Press.



[10] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the parallel solution of
problems in computational mechanics. Internat. J. Numer. Meth. Engrg, 36(5):745–764, 1993.

[11] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In 25
years of DAC: Papers on Twenty-five years of electronic design automation, pages 241–247, New York,
NY, USA, 1988. ACM.

[12] J. Garbers, H. J. Prömel, and A. Steger. Finding clusters in vlsi circuits. In ICCAD, pages 520–523,
1990.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[14] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multi-
processor. Int. J. Parallel Program., 16(6):427–449, 1987.

[15] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Technical report, Sandia
National Laboratories, 1993.

[16] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), page 28, New York, NY,
USA, 1995. ACM.

[17] M. Jones and P. Plassman. Computational results for parallel unstructured mesh computations. Tech-
nical Report UT-CS-94-248, Computer Science Department, University of Tennesse, 1994.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
Technical Report 95-035, University of Minnesota, Dept. of Computer Science, 1995.

[19] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Technical Report
95-064, University of Minnesota, Dept. of Computer Science, 1995.

[20] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. In
Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM),
page 35, Washington, DC, USA, 1996. IEEE Computer Society.

[21] G. Karypis and V. Kumar. A coarse-grain parallel formulation of multilevel k-way graph partitioning
algorithm. In PPSC, 1997.

[22] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix
ordering. J. Parallel Distrib. Comput., 48(1):71–95, 1998.

[23] B. Kernighan and S. Lin. An efficient heuristics for partitioning graphs. Technical report, The Bell
System Technical Journal, 1970.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, Number
4598, 13 May 1983, 220, 4598:671–680, 1983.

[25] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[26] G. Laszewski. Intelligent structural operators for the k-way graph partitioning problem. In Fourth
International Conference on Genetic Algorithms, pages 45–52, 1991.



[27] R. Leland and B. Hendrickson. An emperical study of static load balancing algorithms. In Scalable
High-Performance Comput. Conf., pages 682–685, 1994.

[28] N. Mansour, R. Ponnusamy, A. Choudhary, and G. C. Fox. Graph contraction for physical optimization
methods: a quality-cost tradeoff for mapping data on parallel computers. In ICS ’93: Proceedings of
the 7th international conference on Supercomputing, pages 1–10, New York, NY, USA, 1993. ACM.

[29] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In SFCS
’91: Proceedings of the 32nd annual symposium on Foundations of computer science, pages 538–547,
Washington, DC, USA, 1991. IEEE Computer Society.

[30] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

[31] Y. G. Saab and V. B. Rao. Stochastic evolution: a fast effective heuristic for some generic layout
problems. In DAC ’90: Proceedings of the 27th ACM/IEEE Design Automation Conference, pages
26–31, New York, NY, USA, 1990. ACM.

[32] H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in
Engineering, 2:135–148, 1991.

[33] uBGL at LLNL. https://computing.llnl.gov/?set=resources&page=ocf resources#ubgl.

[34] Z. Zohan, K. Mathur, S. Johnson, and T. Hughes. An efficient communication strategy for finite element
methods on the connection machine cm-5 system. Technical Report TR-11-93, Parallel Computing
Research Group, Center for Research in Computing Technology, Harvard University, 1993.

[35] Z. Zohan, K. Mathur, S. Johnson, and T. Hughes. Parallel implementation of recursive spectral bisection
on the connection machine cm-5 system. Technical Report TR-07-94, Parallel Computing Research
Group, Center for Research in Computing Technology, Harvard University, 1994.


