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Abstract

Over the course of the past two decades, quantum mechanical calculations have emerged as a key
component of modern materials research. However, the solution of the required quantum mechan-
ical equations is a formidable task and this has severely limited the range of materials systems
which can be investigated by such accurate, quantum mechanical means. The current state of the
art for large-scale quantum simulations is the planewave (PW) method, as implemented in now
ubiquitous VASP, ABINIT, and QBox codes, among many others. However, since the PW method
uses a global Fourier basis, with strictly uniform resolution at all points in space, and in which
every basis function overlaps every other at every point, it suffers from substantial inefficiencies in
calculations involving atoms with localized states, such as first-row and transition-metal atoms, and
requires substantial nonlocal communications in parallel implementations, placing critical limits on
scalability. In recent years, real-space methods such as finite-differences (FD) and finite-elements
(FE) have been developed to address these deficiencies by reformulating the required quantum
mechanical equations in a strictly local representation. However, while addressing both resolution
and parallel-communications problems, such local real-space approaches have been plagued by one
key disadvantage relative to planewaves: excessive degrees of freedom (grid points, basis functions)
needed to achieve the required accuracies. And so, despite critical limitations, the PW method
remains the standard today.

In this work, we show for the first time that this key remaining disadvantage of real-space
methods can in fact be overcome: by building known atomic physics into the solution process using
modern partition-of-unity (PU) techniques in finite element analysis. Indeed, our results show
order-of-magnitude reductions in basis size relative to state-of-the-art planewave based methods.
The method developed here is completely general, applicable to any crystal symmetry and to both
metals and insulators alike. We have developed and implemented a full self-consistent Kohn-Sham
method, including both total energies and forces for molecular dynamics, and developed a full MPI
parallel implementation for large-scale calculations. We have applied the method to the gamut of
physical systems, from simple insulating systems with light atoms to complex d- and f- electron
systems, requiring large numbers of atomic-orbital enrichments. In every case, the new PU FE
method attained the required accuracies with substantially fewer degrees of freedom, typically by
an order of magnitude or more, than the current state-of-the-art PW method. Finally, our initial
MPI implementation has shown excellent parallel scaling of the most time-critical parts of the code
up to 1728 processors, with clear indications of what will be required to achieve comparable scaling
for the rest.

Having shown that the key remaining disadvantage of real-space methods can in fact be over-
come, the work has attracted significant attention: with sixteen invited talks, both domestic and
international, so far; two papers published and another in preparation; and three new university
and/or national laboratory collaborations, securing external funding to pursue a number of related
research directions. Having demonstrated the proof of principle, work now centers on the necessary
extensions and optimizations required to bring the prototype method and code delivered here to
production applications.
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1 Introduction

Of paramount importance in the investigation of new and unknown materials, and of more com-
mon materials under extreme conditions, is the generality and accuracy of the theoretical methods
employed in their study. First and foremost, a first-principles (ab initio) quantum mechanical
description is required whenever departures from isolated-atomic or known condensed-matter con-
figurations may be significant. However, a merely ab initio approach is not enough in the investi-
gation of such unfamiliar materials systems: the approach must be general, equally applicable to
all atomic species and configurations, and systematically improvable so that errors can be clearly
known and strictly controlled.

The PW pseudopotential method [1] is among the most widely used ab initio methods which
afford this level of generality and systematic improvability. The accuracy and generality of the
PW method arises from its nature and basis: a variational expansion approach in which solutions
are represented in a Fourier basis. By virtue of the completeness of the basis, any condensed
matter system can be modeled with arbitrary accuracy, in principle, by simply adding sufficient
wavenumbers to the basis. In practice, however, the PW method has a number of significant
limitations with respect to the solution of large, complex problems, and this has inspired extensive
research in the past decade into alternative approaches better suited for such problems [2–4]. Among
the more mature of these to date are the real-space finite-difference (FD), finite-element (FE), and
wavelet based approaches.

Like the standard PW method [1], the FE method [2–5] is a variational expansion approach.
However, whereas the PW method employs a Fourier basis, with every basis function overlapping
every other at every point in the domain, the FE method employs a basis of strictly local piecewise
polynomials, each overlapping only its immediate neighbors. Because the FE basis consists of poly-
nomials, the method is completely general and systematically improvable, like the PW method.
Because the FE basis is strictly local, however, the method offers some significant advantages with
respect to large-scale calculations. First, because the FE basis functions are localized, they can be
concentrated where needed in real space to increase the efficiency of the representation. The PW
basis has the same resolution at all points in space and this leads to substantial inefficiencies in the
solution of highly inhomogeneous problems such as those involving first-row and transition-metal
atoms, and in finite or semi-infinite system calculations such as those involving atoms, molecules, or
surfaces. Recent progress on this issue in the context of PW bases includes ultrasoft pseudopoten-
tials [6], optimized pseudopotentials [7, 8], adaptive coordinate transformations [9–11], and, more
recently, the projector augmented wave (PAW) method [12]. However, in working to soften the
problem (allowing less strongly localized solutions), these developments apply equally to real-space
approaches. Second, the FE method can accommodate a wide variety of boundary conditions:
Dirichlet boundary conditions for molecules or clusters, Bloch boundary conditions for crystals, a
mixture of these for surfaces, etc. The PW method is limited to periodic boundary conditions.
Third, and most significantly for large-scale calculations, the strict locality of the FE basis facili-
tates massively parallel computations by minimizing the need for nonlocal communications. PW
methods rely on Fourier transforms which can lead to substantial inefficiencies in such distributed
computations due to the need for large numbers of computational nodes to communicate with one
another. Recent progress on this issue in the context of PW bases includes new fast Fourier trans-
form formulations [13,14], localized planewave formulations [15], and efficient distribution schemes
for electronic states and planewave coefficients on large numbers of processors [16].

The advantages of a strictly local, real-space approach in large-scale calculations have been
amply demonstrated in the context of finite difference (FD) methods [2, 3, 17–27]. These methods
allow for some variable resolution in real space, can accommodate a variety of boundary conditions,
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and require no computation- or communication-intensive transforms. However, FD methods achieve
these advantages by giving up the use of a basis altogether, instead discretizing all terms directly on
a real-space grid, which leads to disadvantages such as limited accuracy in integrations [3,23,28] and
nonvariational convergence [2,3]. Perhaps most significantly, however, because FD methods lack a
basis, it is difficult to build known physics into the methods in order to increase the efficiency of the
representation; whereas basis oriented approaches such as the FE method allow for the possibility of
incorporating such known physics by, for example, adding functions to the basis which contain that
physics. Indeed, as we discuss below, we exploit this property in the present work to substantially
reduce the required basis size. By retaining the use of a basis while remaining strictly local in real
space, FE methods combine significant advantages of both PW and FD approaches.

The main disadvantages of FE methods relative to FD methods are that they can be sub-
stantially more complex to implement, produce generalized rather than standard eigenproblems
(as produced by most FD methods), and can require more storage. The greater complexity of
FE based approaches has limited their maturation relative to FD based approaches but the gap
has continued to narrow as extensive efforts have continued over the years and more high-quality
standard FE libraries have become freely available [3]. The additional storage required for sys-
tem matrices is not an issue for large problems since it grows only linearly with system size while
other storage requirements common to both methods, such as for eigenvectors, grow quadratically.
Finally, recent advances in iterative eigensolvers [25, 29, 30] and efficient parallel implementations,
have greatly reduced the relative difficulty of solving the generalized eigenproblem. Most impor-
tantly for the present work, however, both increased storage and generalized eigenproblem may
be more than compensated by exploiting the much greater flexibility of the FE method to con-
centrate degrees of freedom where needed, by incorporation of known physics into the basis, thus
substantially reducing the degrees of freedom, and so eigenproblem size, required to achieve a given
accuracy.

The finite-element method [5] has had a long history of success in diverse applications ranging
from civil engineering to quantum mechanics. Applications in engineering go back to the 1950s.
Applications to the electronic structure of isolated atomic and molecular systems began to appear in
the 1970s [31,32]. White et al. [33] applied the method to full 3D atomic and molecular calculations
in 1989, finding substantial advantages from the generality and strict locality of the basis but also
inefficiencies in all-electron calculations of small molecules with uniform meshes due to the rapid
variations of the wavefunctions near the nuclei. Applications to solids have appeared more recently.
Hermansson and Yevick [34] applied the FE method to non-self-consistent solid-state electronic-
structure calculations in 1986, finding that it was less efficient than the PW method for small
problems with relatively smooth potentials, when uniform meshes and cubic- or lower-order bases
were employed. Subsequent work has focused on the application of the method to large-scale
calculations, where the strict locality of the basis can provide significant advantages in the context
of massively parallel computations. Tsuchida and coworkers [35–39] have applied the method to full
self-consistent molecular and solid-state electronic-structure calculations. They have implemented
nonuniform meshes [35], adaptive coordinate transformations [36], pseudopotential and all-electron
calculations [35], molecular dynamics [37], and an O(N) formulation [37]; and have demonstrated
the favorable efficiency of the method relative to FD approaches [36]. Their calculations so far have
been confined to orthorhombic unit cells, Γ-point Brillouin zone sampling, and insulating systems.
The PI and coworkers [4,40–45] have formulated a completely general FE based electronic-structure
method, allowing arbitrary Bravais lattices, full Brillouin zone sampling, and the treatment of
metallic as well as insulating systems. Initial non-self-consistent positron calculations in solids [41]
demonstrated the capacity of the FE based approach for large-scale calculations, accomplishing the
largest such calculations reported to that time. The PI and coworkers have addressed, in particular,
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Figure 1: Self-consistent FE and exact energy bands for Cu for 4×4×4 and 6×6×6 uniform meshes
of cubic elements. The FE bands are essentially indistinguishable from the exact self-consistent
solution over the whole of the k-space path already for the 6× 6× 6 mesh. (The “exact” solution
is taken from a well converged PW calculation.)

the enforcement of the required Bloch-periodic boundary conditions in the context of a general
C0 basis [40], the use of nonlocal operators in the context of self-consistent calculations [4], and
the computation of the crystal potential and total energy in real space [44]. They have recently
reported the first FE based ab initio electronic-structure calculations of metals [45] (Figure 1).
Torsti et al. [3] have recently reported initial non-self-consistent calculations of bulk Si and have
demonstrated the remarkable efficiency of FE methods with advanced mesh refinement in side by
side comparisons with FD methods. Work continues [46–48] along the classical mesh refinement
path to treat the rapid oscillations in the wavefunctions in the vicinity of the atomic nuclei; however,
in exploiting only the scale of oscillations and not their known orbital nature, such methods must
invariably overcome a quite substantial degree-of-freedom disadvantage relative to mature orbital-
based methods [49–52] in order to be competitive.

The great flexibility of the finite-element method to concentrate degrees of freedom in real space
where needed and omit them where not, via standard mesh refinement techniques, allows a much
more efficient representation of highly inhomogeneous problems, as occur in ab initio electronic
structure, than is possible by either FD or PW approaches. However, it has recently been recognized
in the context of molecular calculations that one can do much better still by adding functions to
the standard FE basis which contain the known physics in the most difficult parts of the domain—
i.e., in the vicinity of the atomic nuclei, in the present case, where the wavefunctions vary most
rapidly. Dusterhoft et al. [53] added atomic orbitals to the standard FE basis in 2D axisymmetric
all-electron calculations of C2. They found an order of magnitude increase in efficiency relative to
standard mesh-refinement techniques. More recently, Yamakawa and Hyodo [54,55] demonstrated
the substantial gains in efficiency which can be accomplished by adding well-chosen Gaussian basis
functions to the standard FE basis in full 3D all-electron molecular calculations. A significant
disadvantage of the above approaches, however, noted in Ref. [55], is that by adding such extended
functions to the otherwise strictly local FE basis, sparseness and locality are compromised, leading
to inefficiencies in parallel implementation. Modern partition-of-unity (PU) techniques [56–59] in
finite-element analysis provide an elegant and highly efficient solution to this problem. Recently, the
PI and collaborators have addressed the enforcement of Bloch-periodic boundary conditions and the
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use of orbital enrichment in a partition-of-unity finite-element (PUFE) formulation for quantum-
mechanical eigenproblems [60], and the application of enriched finite-element (EFE) methods to
the all-electron Coulomb problem [61]; demonstrating in both contexts substantial reductions in
basis size relative to classical FE. Most recently, order-of-magnitude reductions in basis size relative
to current state-of-the-art PW methods in full self-consistent Kohn-Sham calculations have been
demonstrated [62] (see Section 3.1 below).

Clearly, in the presence of such precise a priori information about the nature of the solution,
as in the present context, it can be of great advantage to use that information to arrive at the
solution most efficiently. This has been appreciated from the earliest days of multi-atom calculations
in quantum chemistry, employing all manner of Slater, Gaussian, and/or numerical orbital basis
sets [51,52,63]. In the present work, we show for the first time that this can in fact be done while
retaining both strict locality and systematic improvability of the basis as a whole: by building
known atomic physics into the solution process using modern partition-of-unity techniques in finite
element analysis. Indeed, our initial results show order-of-magnitude reductions in basis size relative
to state-of-the-art PWs for a broad range of problems, especially those involving localized states.
The method developed here is completely general, applicable to any crystal symmetry and to both
metals and insulators alike. We have developed and implemented a full self-consistent Kohn-Sham
method, including both total energies and forces for molecular dynamics, and developed a full MPI
parallel implementation for large-scale calculations. We have applied the method to the gamut of
physical systems, from simple insulating systems with light atoms to complex d- and f- electron
systems, requiring large numbers of atomic-orbital enrichments. In every case, the new PUFE
method attained the required accuracies with substantially fewer degrees of freedom, typically by
an order of magnitude or more, than the current state-of-the-art PW method. Finally, our initial
MPI implementation has shown excellent parallel scaling of the most time-critical parts of the code
up to 1728 processors, with clear indications of what will be required to achieve comparable scaling
for the rest.

2 Partition-of-unity finite elements

The partition of unity (PU) method [56–59] generalized the classical finite-element (FE) method by
providing a means to incorporate local asymptotic solutions of boundary-value problems into the
FE approximation. Any set of functions {φi(x)}

n
i=1 that sum to unity form a partition of unity. The

generalized finite-element method [64–66] and the extended finite-element method [67–71] are both
particular instances of the partition-of-unity finite-element (PUFE) method. The PU paradigm
permits the modeling of singularities, discontinuities, or sharp gradients on a fixed mesh. The
striking advantages are that regular meshes suffice, system matrices are sparse, and high-accuracy
can be obtained on relatively coarse meshes. In addition, in contrast to classical FE, remeshing is
not needed for moving boundary problems. Early applications were in the modeling of holes and
cracks in 2D [70] and 3D [71], and in coupling with level sets and fast marching methods to model
material interfaces [72] and three-dimensional crack growth [73–75]. There is growing interest in
PUFE methods and new applications continue to emerge—for example, wave propagation [76–78],
phase transformations [79], multiscale modeling [80], and reduced-order modeling [81] in recent
years.

In the PUFE method, in addition to the classical FE basis functions, basis functions that can
represent discontinuities in the physical quantities [68] or their derivatives [72, 82] are included so
that these geometric features can be represented without the mesh needing to conform to them. For
example, a jump discontinuity in the pressure across a surface would indicate that the usual basis
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Figure 2: Modeling a discontinuity at x = x0. (a) Classical FE bases; and (b) Discontinuous
enriched bases. The function H(x) = 0 if x < x0 and unity otherwise. Nodes 2 and 3 are enriched.

functions should be enriched with a Heaviside function, which is zero on one side of the surface
and unity on the other. The additional Heaviside function is known as an enrichment function.
The classical and enriched basis functions on a 1D grid are shown in Figure 2. The PU method
goes further than the mere representation of jump discontinuities; enrichment functions can also
include, for example, the form of an asymptotic solution near a singularity or essentially any known
property of the solution.

In classical FE, a basis function φj(x) is associated with node j in the mesh. In Figure 2a,
classical FE basis functions in 1D are illustrated. Let ωj = {x : φj(x) > 0} be the region of support
for φj(x). The nodes belonging to an element are given by the connectivity of the element, whereas
the dual ωj, is the collection of elements that are associated with a specific node j. The PUFE
approximation for a scalar-valued function u is of the general form [56]:

uh(x) =

n∑

j=1

φj(x)

(

uj +

m∑

α=1

ϕα(x)ajα

)

, (1)

where ϕα(x) are enrichment functions, uj are classical degrees of freedom, and ajα are additional
enriched degrees of freedom. The support of the enriched basis ϕαφj is identical to that of φj . If
the span of the exact solution for a boundary-value problem is contained in the PUFE basis, then
the PUFE solution will be identical to the exact solution. Note that a single node can be enriched
using many different enrichment functions. The caveat, however, is that the enriched basis must
constitute a linearly independent set, which is more often the case with non-polynomial enrichment
functions than with higher-order polynomials, which can introduce linear dependencies [83].

3 Application of PUFE method to the Kohn-Sham equations

In ab initio calculations, the required solutions (wavefunctions and potentials) vary most rapidly
in the vicinity of the atomic nuclei and become more and more atomic-like the closer one gets
to the atomic centers. Hence, we employ atomic wavefunctions as enrichments in the solution of
the crystal eigenproblem and atomic potentials as enrichments in the solution of the associated
Coulomb problem.

3.1 Self-consistent calculations

Because the Fourier basis is global, the convergence of the energies and eigenvalues with respect to
number of basis functions (DOFs) in the PW method is spectral, i.e., faster than any polynomial.
Whereas, being polynomial based, the convergence of FE and other such real-space methods is
determined by polynomial completeness. For a polynomial basis complete to order p, the errors
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Figure 3: Error in total energy of LiH versus number of degrees of freedom using standard PW,
real-space FE, and new real-space PUFE methods.

in energies and eigenvalues of self-adjoint operators are O(h2p) while the errors in the associated
eigenfunctions are O(hp+1) [5]. Hence, for sufficiently high accuracies, the spectral convergence of
PW based methods must dominate and require fewer DOFs than fixed-degree polynomial based
methods such as FE. However, at lower accuracies, with PU enrichment in particular, the FE basis
can require fewer DOFs, substantially fewer in fact, as we show below.

To assess the efficiency of the PUFE method relative to current state-of-the-art electronic-
structure methods on real, 3D, self-consistent problems, we developed a prototype self-consistent
PUFE code by extending our existing conventional FE electronic structure code according to the
formulation of Ref. [60]. We then compared the prototype PUFE code head-to-head against a
standard PW code and modern conventional FE code in total energy calculations of LiH, using
hard, transferable HGH pseudopotentials [84]. The results were striking. Figure 3 shows the error
in total energy for LiH versus number of degrees of freedom (basis functions) using standard PW,
modern real-space FE, and new prototype real-space PUFE codes. The horizontal line indicates an
error of 10−3 Ha, typical in ab initio calculations. First, note that PW calculations required a factor
of 8 fewer DOFs to reduce the error to the required level than the real-space cubic FE method:
which demonstrates the extent of the DOF disadvantage real-space methods must overcome to be
competitive with planewaves. Now consider the cubic PUFE result. This achieved the required
level of accuracy with a factor of 16 fewer DOFs than the PW method.

Moreover, since real-space codes use local bases, they tend to be less computationally expensive
per degree of freedom than planewave codes. Our experience comparing well optimized parallel
FD code MGmol [85] and planewave code Qbox [16] on moderate numbers of processors indicates
about a factor of 3 advantage for the real-space code with respect to computational expense per
degree of freedom. Others [86] have found even larger advantages. Hence, the factor of 16 fewer
degrees of freedom for the real-space PUFE code relative to planewaves suggests well over an order
magnitude speedup relative to planewaves for a mature optimized implementation. And, due to
the strict locality of the basis, that advantage should only increase with increasing numbers of
processors.

To assess the performance of the PUFE method in the worst case, we applied it to a difficult
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for Al; and (c) Error in total energy of CeAl versus number of degrees of freedom using standard
PW, real-space FE, and new real-space PUFE methods.
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f-electron system: triclinic CeAl, with atoms displaced from ideal positions. Because Ce has a
full complement of s, p, d, and f states in valence, it requires 17 enrichment functions to span
the occupied space (whereas Li requires only two), making this a particularly severe test for the
efficiency of PUFE relative to planewaves. The enrichment functions for Ce and Al are shown
in Figs. 4a and 4b, respectively. Figure 4c shows the error in the total energy for CeAl versus
number of degrees of freedom (basis functions) using standard PW, modern real-space FE, and new
real-space PUFE codes. First, we note that PW calculations required a factor of 16 fewer degrees of
freedom to reduce the error to the required level than the real-space cubic FE method, which again
demonstrates the extent of the degree-of-freedom disadvantage real-space methods must overcome
to be competitive with planewaves. Now consider the cubic PUFE result. Remarkably, even with
the large number of enrichment functions for Ce, the PUFE method still achieved the required level
of accuracy with a factor of 5 fewer DOFs than the current state-of-the-art PW method.

3.2 All-electron Coulomb problem

All-electron calculations in a FE basis require the calculation of the Coulomb potential VC due to
a net neutral charge density (nuclear and electronic) ρ = ρn+ρe ≡ ρ++ρ−. For periodic solids, we
are confronted with three distinct divergences which must be addressed: (1) the 1/r divergence of
the electrostatic potential at the nuclei, (2) the divergence of both potential and energy lattice sums
due to the long-range 1/r nature of the Coulomb interaction, and (3) the infinite self energies of
the nuclei. For finite systems (e.g., molecules), there are no long-range divergences, but the others
persist. A common approach to handle such lattice summations is the Ewald method [87], which
relies on Fourier transforms. The limitations of the reciprocal space approach have inspired much
research on the Coulomb problem using real-space and local-orbital based approaches [2–4,88,89].
Other approaches include smearing the nuclear charge (distributed nucleus approximation) [90] and
using nonsingular, though rapidly varying, electronic density as source [2, 3, 33, 46–48, 55, 91, 92].
In Pask et al. [61], we introduced a real-space approach to treat the all-electron Coulomb problem
without distributed nucleus approximation, sphere-interstitial matching, need for FFTs, or Ewald
summation.

To resolve the divergence of the Coulomb potential, we introduce a smooth neutralizing density
ρ̃ and write the total charge ρ in the unit cell as

ρ(x) = ρ+(x) + ρ−(x) = ρ+(x) − ρ̃(x)
︸ ︷︷ ︸

neutralized nuclear density

+ ρ−(x) + ρ̃(x)
︸ ︷︷ ︸

neutralized electronic density

≡ ρ̃+(x) + ρ̃−(x), (2)

where ρ+(x) =
∑

i qiδ(x− τi) is the total nuclear charge density and ρ−(x) is the electronic charge
density (Figure 5). We form ρ̃ in the unit cell as a sum of smooth, strictly local densities ρ̃I centered
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Ṽ −

2

(b)

2 4 8 12 16 20 24 32
10

−7

10
−5

10
−3

10
−1

10
1

Number of elements in each directionE
rr

or
 in

 C
ou

lo
m

b 
en

er
gy

 p
er

 a
to

m
 (

H
a)

 

 

FE
EFE

(c)

Figure 6: Finite element (FE) and enriched finite element (EFE) solutions for crystalline diamond.
(a) Charge densities; (b) Enrichment functions; and (c) Error in Coulomb energy per atom.

at atomic positions τI with integrals
∫
ρ̃I = qI : ρ̃ =

∑

I ρ̃I , where the sum is over all sites I in the
crystal such that ρ̃I 6≡ 0 (i.e. ρ̃I nonvanishing) in the unit cell.

The total potential V (x) in the unit cell may now be written as

V (x) = V +(x) + V −(x) = Ṽ +(x) + Ṽ −(x) =
∑

I

qI
|x− τI |

− ṼI(x)

︸ ︷︷ ︸

known analytically

+ Ṽ −(x), (3)

and therefore the potential associated with ρ̃− can be obtained from a solution of Poisson’s equation

∇2Ṽ −(x) = −4πρ̃−(x), (4)

subject to periodic boundary conditions. Since the total Coulomb energy per unit cell in the all-
electron case is divergent, we extract the divergent nuclear self-energy analytically. The weak form,
discrete equations, and expressions for the total Coulomb energy are provided in Ref [61].

We now apply the method to the computation of the all-electron Coulomb potential in crystalline
diamond. The unit cell has lattice constant a = 6.75, with fcc lattice vectors a1 = a/2(0, 1, 1), a2 =
a/2(1, 0, 1), a3 = a/2(1, 1, 0), and carbon atoms at positions τ1 = (0, 0, 0) and τ2 = (1/4, 1/4, 1/4) in
lattice coordinates. We consider nuclear point charges qi = 6 at positions τi and take the electronic
density ρ− from overlapping all-electron atomic densities. We take cutoff radius rc = 1.4 a.u. so
that the neutralizing densities ρ̃I(x) = 6g(|x− τI |) are nonoverlapping, where g(r) is a smooth C2

cutoff function which vanishes identically for r > rc. We solve this problem using cubic FE and
enriched FE (PUFE with all nodes enriched and constrained to have the same coefficient). The
enrichment function is constructed using a one-dimensional radial spectral element solver to obtain
the atomic potential solutions. The numerical results are shown in Figure 6: charge densities are
plotted in Figure 6a, the two enrichment functions, one for each atom, are shown in Figure 6b, and
the convergence for FE and enriched FE is illustrated in Figure 6c. The enriched finite element
solution has an accuracy of order 10−5 Ha in the Coulomb energy for a 16× 16× 16 mesh (28,674
degrees of freedom), whereas the the best uniform-mesh FE result provides an accuracy of only
10−2 Ha on a 32 × 32× 32 mesh (229,376 degrees of freedom).

3.3 Adaptive quadrature

In the preceding section, we presented a new formulation for the Coulomb problem, which was solved
using enriched FE. An open and critical issue in enriched/PUFE techniques is efficient numerical
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Figure 8: Computing
∫

Ω
f(r)dx. (a) Plot of f(r); (b),(c) Convergence with respect to number of

integration points in each direction and minimum distance between Gauss points, respectively.

integration. Since the enrichment functions are sharp and localized, we resorted to high-order
tensor-product quadrature to obtain the results shown in Figure 6 [61]; however, for the method
to be viable, efficiency in computing the stiffness matrix and force vector entries (Kd = f) is
paramount. For the integration of functions with peaks at or near a boundary over the interval, the
Möbius transformation has been adopted in quantum chemistry [93–95]; for electronic-structure
calculation with a 1/r term in the integrand of the Hamiltonian, Batcho [46] used the Duffy
transformation [96, 97]. In general, since the atom can be located anywhere inside the element,
the above approaches do not meet our needs. Instead, we have developed an adaptive quadrature
scheme that yields remarkable accuracy at minimal cost—this provides the required efficiency to
solve the all-electron equations of DFT using the PUFE approach.
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Figure 7: Integrands in K and f .

The integrand of the element stiffness matrix con-
tains terms such as ψ, ψ2, ∇ψ, ∇ψ · ∇ψ, and ψ∇ψ
(ψ is the enrichment function; see Figure 7). The nu-
merical integration algorithm that we have developed
constructs a quadrature rule over each finite element
that satisfies a given error tolerance for all the above
integrands. Adaptive integration schemes are normally
recursive in nature and have a few common ingredients:
a quadrature rule that can be applied to the integration
domain to provide a local estimate of the integral; a pro-
cedure to estimate the local integration error; a strategy
to partition the integration domain into smaller divi-
sions of the same shape; and a stopping criterion [98–100]. Our quadrature construction algo-
rithm is specifically designed for high accuracy on parallelepipeds. We use a tensor-product of
one-dimensional Gauss quadrature rules with five points in each direction to evaluate the local
integrals. A tensor-product quadrature with eight points in each direction is used as the reference
integral to estimate the local error. If the absolute error of integration is larger than the prescribed
tolerance, the integration domain is uniformly divided into eight cells and the adaptive integration
is performed over each cell recursively. This process is started with the six integrands of Figure 7,
and at each step only those functions whose integration error is higher than the tolerance are passed
to the next level; until all functions are accurately integrated.
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Table 1: Comparing tensor-product and adaptive quadrature schemes for the diamond problem.

Mesh Error tolerance
Number of integration points

Pure FE Tensor-product Adaptive quadrature

2× 2× 2 7× 10−3 1000 512000 128750
4× 4× 4 2× 10−3 8000 169000 72750
8× 8× 8 2× 10−4 64000 624000 137500
12× 12× 12 2× 10−5 216000 1840000 297375
16× 16× 16 6× 10−6 512000 14020000 540000
20× 20× 20 4× 10−6 1000000 27196000 1171500
24× 24× 24 7× 10−7 1728000 46852000 1896000

3.3.1 Analysis of adaptive scheme

In all-electron calculations, the charge density has a cusp at the atomic sites (nuclei). However,
this does not have an adverse effect on the efficiency of our integration method, and a high rate of
convergence is realized. The following example demonstrates the efficacy of the approach. Consider
the integration of the function f(x) = 1−r, where r is the distance of the point x to the origin. The
domain is Ω = [−1, 1]d ⊂ R

d. A plot of the function f ∈ C0(Ω) in 2D is shown in Figure 8a. We use
Gauss quadrature to integrate f , independent of the location of the cusp. Figures 8b and 8c depict
the convergence of the integration scheme as the number of integration points is increased: a rate
of convergence of d+ 1 is observed in d-dimensions. If f ∈ Cm(Ω) (m ≥ 0) and Ω ⊂ R

d, then the
convergence rate is m+ d+ 1. This “blessing of dimensionality” makes our approach particularly
efficient in three dimensions for integrands with strongly localized inhomogeneities (such as cusps).

3.3.2 All-electron diamond

We now revisit the all-electron problem for diamond, which was considered in Section 3.2. We apply
the adaptive integration algorithm and results are compared to the tensor-product rule in Table 1.
The error tolerance (the input of the quadrature construction algorithm) is the maximum allowable
error that produces a stable result. Since cubic FE shape functions are used, a 5-point Gauss rule is
employed in each direction. Adaptive integration proves to be markedly superior to tensor-product
quadrature. The improvement is most evident for finer meshes where higher accuracies are required:
the integration demand of the PUFE solution is only marginally greater than the pure FE solution
on fine meshes. And the adaptive scheme achieves the required accuracy with an order of magnitude
fewer total quadrature points than the previously implemented tensor-product scheme.

3.4 Parallel implementation

For an efficient parallel implementation, we assume the meshes are uniform and that the number
of elements in each direction of the Poisson mesh is an integer multiple of the number in the
Schrödinger mesh. Because the orbital/potential enrichments take up the rapid variations in the
desired crystal wavefunctions/potentials, a uniform FE mesh is sufficient, as demonstrated in the
preceding sections. Also, because the Poisson solution is such a small, and linearly scaling, part
of the total self-consistent solution, increasing its number of elements as an integer multiple of the
wavefunction mesh presents no problem. Finally, in our initial implementation, each partition has
the same number of elements and nodes and, therefore, the number of elements in a given lattice
direction will be an integer multiple of partition count in that direction.
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Figure 9: Example 6x8 mesh.

A straightforward static scheduling is employed, where there is a one-to-one mapping between
partitions and processes. This scheduling works well if all partitions have similar workloads. This
may not always hold, however, since the execution time for applying the nonlocal projectors may
vary among partitions. The main reason for this variation is the sparsity of the nonlocal projector
vectors. The partitions with no atoms will tend to have sparser nonlocal projector vectors due to the
locality of the projector functions (on the order of half nearest neighbor distance). Consequently,
partitions with no atoms will have smaller execution times for nonlocal projector computations.
Whereas this is not a significant problem for scaling, it does point to opportunities for further
optimizations.

MPI is employed for the parallelization throughout. Synchronous (blocking) MPI subroutines
are used. Subsequent implementations will exploit nonblocking MPI calls to overlap computations
with communications.

3.4.1 Domain decomposition

The Schrödinger and Poisson meshes are partitioned so that the result vector found by matrix-
vector products has an equal number of elements in each partition. The partitioning of the mesh
is illustrated on an example 6x8 mesh (Figure 9). Here, the gray nodes are image nodes. There
are no additional degrees of freedom (DOFs) for image nodes due to the Bloch-periodic boundary
conditions of problem.

The results from matrix-vector multiplications are stored based on the partitioning shown in
Figure 10. As shown in the Figure, the vectors are partitioned in a nonoverlapping fashion. An
MPI Gather can be used to gather all results on a single processor. However, currently, the results
are collected on the main processor (processor 0) by MPI Send and MPI Recv calls. The result
vectors belonging to partitions (w1, w2, w3, and w4) and the global result vector w are also shown.

3.4.2 Parallel matrix-vector multiplication for Hloc

The element-by-element (EBE) matrix-vector multiplication for the local part of the Hamiltonian
Hloc is written as

w =
∑

e

He
locv

e, (5)
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Figure 10: 2x2 partitioning of the nodes and the corresponding result vectors w.

Figure 11: The elements and nodes used for the EBE computations on partition-1.
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where He
loc are the local element matrices, and ve are the local element vectors corresponding to

element DOFs. In finite element computations, the entries of the global vectors v and w correspond
to unique DOFs. To compute a result vector entry wi, entries of v corresponding to the adjacency
set of DOF i (iUAdj(i)) are required. Therefore, for a given partition, the size of vector v is larger
than that of vector w since the vector v also includes the entries corresponding to the adjacency
set of the DOFs within the partition. Similarly, for EBE computations, all element matrices
connected to the DOFs within the partitions are used. Figure 11 shows the elements and nodes
used for partition-1. Here, element matrices corresponding to yellow colored elements are used in
EBE computations. The red colored nodes correspond to the components of the w1 vector. The
components of the v1 vector correspond to red colored nodes plus green colored nodes. As shown
in Figure 11, elements on opposing boundaries are also required for the EBE computations due to
the Bloch-periodic boundary conditions of the problem.

Once the elements are assigned to processes (e.g., yellow elements for partition-1 in Figure 11),
each process computes the element Overlap and Laplacian matrices corresponding to its elements.
The element connectivity information must be modified according to the vectors v and w distributed
among the processes. The element connectivity information is updated at the partitioning stage
based on the distributed result w and operand v vectors.

The parallel matrix-vector multiplication is performed in three main steps:

1. Main process (rank 0) distributes the global operand vector v to all processes. The entries of
distributed vectors vd are duplicated for the nodes at the boundary of the partitions (green
nodes in Figure 11). The rank 0 process sends vd by calling MPI Send and other processes
make a corresponding MPI Recv call to get vd.

2. Each process computes the EBE matrix-vector product. The element DOF connectivities are
modified according to the indices of wd and vd. The results are stored in distributed result
vectors wd. The entries of w are stored in a nonoverlapping fashion (red nodes in Figure 11).

3. The distributed result vectors wd are gathered at the main process (rank 0). The global
result vector w is composed of the wd vectors. The results are gathered using MPI Send and
MPI Recv calls. MPI Gather might be used in future implementations. (See Figure 10 for
gathering of w vectors.)

3.4.3 Parallel matrix-vector multiplication for Hnonloc

The matrix-vector computations for the nonlocal part of the potential (Hnonloc) are performed as
the summation of dot-products:

w =
∑

l

flhlf
H
l · v, (6)

where fl are nonlocal projectors and hl are weights. There can be a large number of nonlocal pro-
jectors and the operation given in Eq. 6 consumes the largest share of execution time for sufficiently
large problems. For parallel computations, the entries of fl and v are distributed in a nonoverlapping
fashion (Figure 10). Unlike the local operator computations, communication between processors is
required during the nonlocal operator computations. The nonlocal computations are divided into
two parts:

cl = fHl · v (7)

w =
∑

l

flhlcl (8)
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Figure 12: Partitioning of the elements for density computations on example 6x8 mesh.

The operation shown in Eq. 7 is a dot-product and requires communication between processors.
First, each process computes the scalars cl corresponding to the nodes within its partition (red nodes
in Figure 11). To obtain a global cl value, first, cl values computed on individual partitions are
summed. Then, the result is distributed to all processors. These two operations can be performed
with a single MPI AllReduce. After the global cl values are distributed to processors, the remaining
computations shown in Eq. 8 can be performed without further data transfers.

After the result vector w is found at each partition, the global result is gathered at the main
processor. This gathering operation proceeds in the same way as for the Hloc computations (Fig-
ure 10).

3.4.4 Parallel density computations

The density computations are performed on the nonoverlapping subdomains of the Poisson mesh.
Figure 12 shows the nonoverlapping subdomains for the example 6x8 mesh. Once the eigenfunctions
and eigenvalues are calculated, the charge densities are computed at each Gauss point without
any communication between processors. However, some communication between the processors
is required for the numerical integration of the charge densities. The integration is required for
normalization and it can be performed independently in each partition using the Gauss point
charge density values within the elements of each partition. The integration can be written as the
summation of integrals over each partition:

∫

ρ dV =
∑

p

∫

ρ dVp (9)

Ip =

∫

ρ dVp, (10)

where ρ is the charge density at Gauss points, V is the unit cell volume, Vp is the partition volume,
and Ip is the integral computed on partition p.

The Ip values computed on each partition are summed and the summation is sent to all proces-
sors. The two operations (summation + broadcast) can be performed with a single MPI AllReduce.
Once the integral is received by all processors, the charge densities are normalized at each processor
independently.
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Figure 13: Parallel speedup of 108 atom Al3Cu calculation on up to 1728 processors of LLNL sierra.

The parallel computation of the charge density on the Schrödinger mesh is carried out in the
same way as for the Poisson mesh.

3.4.5 Initial results

Figure 13 shows the parallel speedup of a 108 atom Al3Cu calculation on up to 1728 processors of
LLNL sierra. In this initial parallel implementation, only the most computationally intensive parts
of the code were parallelized. As is clear from the Figure, the most computationally intensive part
of the PUFE calculation, the construction of the electronic density, scales almost perfectly up to the
full 1728 processors allocated, requiring just 8 sec to complete on 1728 processors. The construction
of local matrices scales well also as shown just below the density, with some degradation due to
additional gather-scatter operations. Less attention was given to this portion due to its smaller
computation time: as it is, requiring less than 1 sec on 1728 processors. The sparse matrix-
vector multiplies, however, did not scale well in the initial implementation. Subsequent analysis
showed that this was a result of excessive gather-scatter operations in the implementation. The
vast majority of these, however, can be removed by keeping the relevant data structures distributed
rather than gathering on every processor before every operation. These optimizations are underway
presently.

4 Outlook

In this work, we have shown for the first time that a local, systematically improvable, real-space ba-
sis can attain the accuracies required in quantum mechanical materials calculations with not only
fewer but substantially fewer degrees of freedom than current state-of-the-art planewave based
methods, as implemented in VASP, ABINIT, QBox, and a host of other codes the world over. In
demonstrating this, the work has attracted increasing attention as it has progressed. Over the
course of the project, sixteen external invited talks were presented, including three international;
two papers [60, 61] have been published and another [62] is in preparation; and multiple external
collaborations have been forged, resulting in multiple external proposals funded. Prof. N. Suku-
mar at UC Davis was awarded an NSF-DMS grant to work on quadrature and polynomial or-
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der/continuity issues for the PUFE Kohn-Sham method. Profs. Zhaojun Bai and N. Sukumar at
UC Davis were awarded a UC-Lab Fee Research grant to develop efficient parallel eigensolvers for
the PUFE method. Dr. Kristopher Andersen at the Naval Research Laboratory was awarded an
HPTi PETTT grant to develop a high-order spectral-element projector-augmented-wave alterna-
tive to the PUFE method, leveraging much of the expertise, code, and collaborations developed
in the present project. Most recently, we have begun a collaboration with the quantum chemistry
group of Prof. T. J. Martinez at Stanford on the application of the PUFE methodology devel-
oped here to molecular, cluster, and nanostructural materials; and an associated NSF proposal has
been submitted. In addition to attracting three postdocs and two graduate students based at UC
Davis, the work has attracted students to the Laboratory to work with the PI, Dr. Pask. Graduate
student, Ondrej Certik, came to the Lab to work on high-order radial solvers, used to construct
enrichment functions for the larger PUFE electronic structure method, as a participant in the 2010
Computational Chemistry and Materials Science Summer Institute. Mr. Certik has now returned
to the Lab to work with Dr. Pask on his Thesis. Most recently, two more graduate students, Zhenfei
Liu at UC Irvine and Cindy Wang at Cal Tech, have applied to the 2011 Computational Chemistry
and Materials Science Summer Institute to work with Dr. Pask on related research.

Given the substantial external interest, multiple collaborations developed, and associated fund-
ing now secured or submitted, the work begun here continues actively on several fronts. Having
demonstrated the proof of principle, work now centers on the necessary extensions and optimiza-
tions required to bring the prototype method and code delivered here to production applications,
with an eye toward Stockpile Stewardship applications, in particular.
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[12] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–17979, 1994.

[13] S. Goedecker, M. Boulet, and T. Deutsch. An efficient 3-dim FFT for plane wave electronic
structure calculations on massively parallel machines composed of multiprocessor nodes. Com-
put. Phys. Commun., 154(2):105–110, 2003.

[14] A. Canning and D. Raczkowski. Scaling first-principles plane-wave codes to thousands of
processors. Comput. Phys. Commun., 169(1-3):449–453, 2005.

[15] C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne. Introducing ONETEP: Linear-
scaling density functional simulations on parallel computers. J. Chem. Phys., 122(8):084119,
2005.

[16] F. Gygi, E. W. Draeger, B. R. De Supinski, R. K. Yates, F. Franchetti, S. Kral, J. Lorenz,
C. W. Ueberhuber, J. A. Gunnels, and J. C. Sexton. Large-scale first-principles molecular
dynamics simulations on the BlueGene/L platform using the Qbox code. In Proceedings of
Supercomputing 2005, page 24, 2005.

[17] J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-difference-pseudopotential method:
Electronic-structure calculations without a basis. Phys. Rev. Lett., 72(8):1240–1243, 1994.

[18] M. M. G. Alemany, M. Jain, L. Kronik, and J. R. Chelikowsky. Real-space pseudopoten-
tial method for computing the electronic properties of periodic systems. Phys. Rev. B,
69(7):075101, 2004.

[19] A. P. Seitsonen, M. J. Puska, and R. M. Nieminen. Real-space electronic-structure calcula-
tions: Combination of the finite-difference and conjugate-gradient methods. Phys. Rev. B,
51(20):14057–14061, 1995.

[20] F. Gygi and G. Galli. Real-space adaptive-coordinate electronic-structure calculations. Phys.
Rev. B, 52(4):R2229–R2232, 1995.

[21] K. A. Iyer, M. P. Merrick, and T. L. Beck. Application of a distributed nucleus approximation
in grid based minimization of the Kohn-Sham energy functional. J. Chem. Phys., 103(1):227–
233, 1995.

[22] T. Hoshi, M. Arai, and T. Fujiwara. Density-functional molecular-dynamics with real-space
finite-difference. Phys. Rev. B, 52(8):R5459–R5462, 1995.

[23] E. L. Briggs, D. J. Sullivan, and J. Bernholc. Real-space multigrid-based approach to large-
scale electronic structure calculations. Phys. Rev. B, 54(20):14362–14375, 1996.

19



[24] N. A. Modine, G. Zumbach, and E. Kaxiras. Adaptive-coordinate real-space electronic-
structure calculations for atoms, molecules, and solids. Phys. Rev. B, 55(16):10289–10301,
1997.

[25] J. L. Fattebert. Finite difference schemes and block Rayleigh quotient iteration for electronic
structure calculations on composite grids. J. Comput. Phys., 149(1):75–94, 1999.

[26] J.-L. Fattebert and J. Bernholc. Towards grid-based O(N) density-functional theory methods:
optimized non-orthogonal orbitals and multigrid acceleration. Phys. Rev. B, 62(3):1713–1722,
2000.

[27] J.-L. Fattebert and F. Gygi. Linear scaling first-principles molecular dynamics with controlled
accuracy. Comput. Phys. Comm., 162:24–36, 2004.

[28] T. Ono and K. Hirose. Timesaving double-grid method for real-space electronic-structure
calculations. Phys. Rev. Lett., 82(25):5016–5019, 1999.

[29] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. Siam J. Sci. Comput., 23(2):517–541, 2001.

[30] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro. A comparison of eigen-
solvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods. Int.
J. Numer. Meth. Eng., 64(2):204–236, 2005.

[31] A. Askar. Finite-element method for bound-state calculations in quantum-mechanics. J.
Chem. Phys., 62(2):732–734, 1975.

[32] L. R. Ram-Mohan. Finite Element and Boundary Element Applications in Quantum Me-
chanics. Oxford University Press, New York, 2002.

[33] S. R. White, J. W. Wilkins, and M. P. Teter. Finite-element method for electronic-structure.
Phys. Rev. B, 39(9):5819–5833, 1989.

[34] B. Hermansson and D. Yevick. Finite-element approach to band-structure analysis. Phys.
Rev. B, 33(10):7241–7242, 1986.

[35] E. Tsuchida and M. Tsukada. Electronic-structure calculations based on the finite-element
method. Phys. Rev. B, 52(8):5573–5578, 1995.

[36] E. Tsuchida and M. Tsukada. Adaptive finite-element method for electronic-structure calcu-
lations. Phys. Rev. B, 54(11):7602–7605, 1996.

[37] E. Tsuchida and M. Tsukada. Large-scale electronic-structure calculations based on the
adaptive finite-element method. J. Phys. Soc. Jpn., 67(11):3844–3858, 1998.

[38] E. Tsuchida, Y. Kanada, and M. Tsukada. Density-functional study of liquid methanol.
Chem. Phys. Lett., 311(3-4):236–240, 1999.

[39] E. Tsuchida. Ab initio molecular-dynamics study of liquid formamide. J. Chem. Phys.,
121(10):4740–4746, 2004.

[40] J. E. Pask, B. M. Klein, C. Y. Fong, and P. A. Sterne. Real-space local polynomial basis
for solid-state electronic-structure calculations: A finite-element approach. Phys. Rev. B,
59(19):12352–12358, 1999.

20



[41] P. A. Sterne, J. E. Pask, and B. M. Klein. Calculation of positron observables using a finite
element-based approach. Appl. Surf. Sci., 149(1-4):238–243, 1999.

[42] J. E. Pask, B. M. Klein, P. A. Sterne, and C. Y. Fong. Finite-element methods in electronic-
structure theory. Comput. Phys. Commun., 135(1):1–34, 2001.

[43] J. E. Pask and P. A. Sterne. Finite elements in ab initio electronic-structure calculations.
In S. Yip, editor, Handbook of Materials Modeling, volume 1, pages 423–437. Springer, Dor-
drecht, 2005.

[44] J. E. Pask and P. A. Sterne. Real-space formulation of the electrostatic potential and total
energy of solids. Phys. Rev. B, 71(11):113101, 2005.

[45] J. E. Pask and P. A. Sterne. Ab initio electronic structure calculations of metals by the finite
element method. Bull. Am. Phys. Soc., 50:1107, 2005.

[46] PF Batcho. Computational method for general multicenter electronic structure calculations.
Phys. Rev. E, 61(6, Part B):7169–7183, 2000.

[47] Eric J. Bylaska, Michael Holst, and John H. Weare. Adaptive Finite Element Method for
Solving the Exact Kohn-Sham Equation of Density Functional Theory. J. Chem. Theory
Comput., 5(4):937–948, 2009.

[48] Lauri Lehtovaara, Ville Havu, and Martti Puska. All-electron density functional theory and
time-dependent density functional theory with high-order finite elements. J. Chem. Phys.,
131(5):054103, 2009.

[49] H. L. Skriver. The LMTO Method. Springer, Berlin, 1984.

[50] D. J. Singh and L. Nordstrom. Planewaves, Pseudopotentials, and the LAPW Method.
Springer, New York, 2nd edition, 2006.

[51] S. F. Boys. Electronic wave functions. I. A general method of calculation for the stationary
states of any molecular system. Proc. R. Soc. Lon. A, 200(1063):542–554, 1950.

[52] W. J. Hehre, R. F. Stewart, and J. A. Pople. Self-consistent molecular-orbital methods. 1.
Use of Gaussian expansion of Slater-type atomic orbitals. J. Chem. Phys., 51(6):2657, 1989.

[53] C. Dusterhoft, D. Heinemann, and D. Kolb. Dirac-Fock-Slater calculations for diatomic
molecules with a finite element defect correction method (FEM-DKM). Chem. Phys. Lett.,
296(1-2):77–83, 1998.

[54] S. Yamakawa and S. Hyodo. Electronic state calculation of hydrogen in metal clusters based
on Gaussian-FEM mixed basis function. J. Alloy. Compd., 356(2):231–235, 2003.

[55] S. Yamakawa and S. Hyodo. Gaussian finite-element mixed-basis method for electronic struc-
ture calculations. Phys. Rev. B, 71(3):035113, 2005.
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