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Abstract

Most topic modeling algorithms that address the evolution of documents over time use the same
number of topics at all times. This obscures the common occurrence in the data where new subjects
arise and old ones diminish or disappear entirely. We propose an algorithm to model the birth
and death of topics within an LDA-like framework. The user selects an initial number of topics,
after which new topics are created and retired without further supervision. Our approach also
accommodates many of the acceleration and parallelization schemes developed in recent years for
standard LDA.
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Chapter 1

Introduction

In recent years, topic modeling algorithms such as latent semantic analysis (LSA)[17], latent
Dirichlet allocation (LDA)[10] and their descendants have offered a powerful way to explore and
interrogate corpora far too large for any human to grasp without assistance. Using such algorithms
we are able to search for similar documents, model and track the volume of topics over time, search
for correlated topics or model them with a hierarchy.

Most of these algorithms are intended for use with static corpora where the number of docu-
ments and the size of the vocabulary are known in advance. Moreover, almost all current topic
modeling algorithms fix the number of topics as one of the input parameters and keep it fixed
across the entire corpus. While this is appropriate for static corpora, it becomes a serious handicap
when analyzing time-varying data sets where topics come and go as a matter of course. This is
doubly true for online algorithms that may not have the option of revising earlier results in light
of new data. To be sure, these algorithms will account for changing data one way or another,
but without the ability to adapt to structural changes such as entirely new topics they may do so
in counterintuitive ways. See Figure 1.2 for an example where a major change in content (dis-
cussion of Hurricane Katrina) appears in a wholly non-obvious place in the data (a topic about
communication).

1.1 Motivation

Understanding the changes in a data set over time is essential in narrative formation and is a natural,
ubiquitous part of any sort of analysis. For an everyday example, see Figure 1.1, an excerpt from
a chart that traces the lineage of pop and rock-and-roll music starting in the 1950s. This chart was
constructed manually by an expert in the field and surveys hundreds of artists (whose works, in
some sense, can be considered “documents”) to illustrate the birth and death1 of genres (“topics”)
within popular music. However, this period in popular music comprises a very small amount of
data compared to other domains of current and ongoing interest. The following two examples
involve far more data than any expert could hope to grasp in a lifetime of study – and that data is
constantly growing. Moreover, large amounts of money, security, and even lives can depend upon
the ability to quickly grasp and respond to changes in their structure.

1In some cases the disappearance of a type of music may be a greater cultural contribution than its birth.
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Portfolio Analysis: Given a set of technical papers, patents and press releases covering a
field, what are the major topics of discussion and what entities are discussing them? When does
discussion of a particular subject cease? Where should research funds or venture capital be invested
for greatest return?

Cybersecurity: Traffic on a network can be tokenized in many ways, including some as simple
as grouping on source and target address and TCP port. This makes it accessible to topic modeling
algorithms. One of the most difficult and enduring tasks in cybersecurity is characterizing “normal”
traffic for use as a baseline for detecting abnormal and potentially interesting events. An algorithm
that detects new “topics” in such traffic can present them to an analyst for investigation and either
highlight them in future or incorporate them into the evolving baseline.

We aim to close the gap between what current algorithms can do (Figure 1.2) and what we
would like to do (Figure 1.1). We present an algorithm to enable the discovery of new topics in
time-varying document sets. We use regular LDA with collapsed Gibbs sampling as a basis in
order to preserve the applicability of many of the optimizations and extensions developed in recent
years.

1.2 Algorithm Sketch

The intuition behind our approach is as follows. As described by Blei et al. [10], the latent Dirich-
let allocation algorithm models a document as a mixture of topics2. Each topic is a probability
distribution over some vocabulary V . LDA uses Bayesian inference to learn both the mixture
components φ and the mixing proportions θ that best represent a set of input documents D. The
mixture components, which are our topics, can then be used to infer mixing proportions for a new
set of documents D′.

If we allow the topics φ to change as we learn mixing proportions for D′, we obtain a new
matrix φ ′ whose contents are similar to the original φ . Intuitively, the topics change slightly to
better approximate the combination of D and D′. We call these changes topic drift. Our hypothesis
is tha while a small amount of drift is normal, a large drift indicates the emergence of a new topic.
Since the distance between two probability distributions is a well-studied concept, we can measure
this drift and operate on its values.

In the next section we provide a brief survey of related work before moving on to the details of
our algorithm and its implementation. We present test results on a real-world data set composed of
articles posted on BoingBoing (http://boingboing.net), a blog concentrating on themes of intellec-
tual property, popular culture and science fiction. We conclude with a discussion of our algorithm’s
advantages and drawbacks and a few avenues for future work.

2A topic in the LDA sense is not the same as a topic in the linguistic sense. However, for the purposes of this paper
we use the two interchangeably, as LDA topics are often comprehensible as linguistic topics.
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Figure 1.1. An excerpt from the chart entitled “Genealogy of
Pop/Rock Music” by Reebee Garofalo, cited in Edward Tufte’s
“Visual Explanations” [51]. This is a hand-drawn visualization of
the emergence, development and disappearance of sub-genres of
music across nearly 30 years of history. Our ultimate goal is to
generate charts like this automatically.
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Figure 1.2. Latent Dirichlet Allocation (LDA) applied to 7,025
articles from the Boing Boing web site (http://boingboing.
net) spanning all of 2005. We fixed the number of topics at 20
to produce the chart here. Since LDA cannot change the number
of topics during execution, major developments such as Hurricane
Katrina are subsumed in existing topics and are difficult to distin-
guish.

January 2005 December 2005Data: boingboing.net articles from 2005

Books
Messaging HURRICANE

KATRINA
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Babies
Industrial and Graphic Design
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Security and Privacy

The Courts and File Sharing
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Medical Research
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Antiques and Memorabilia
Photography

Music, Movies and File Sharing
SONY Rootkit

Debacle
Business and Finance
Disney Movies and Theme Parks

Life, Work and Fun

Open Source and Open Culture
Movies and Movie-Making
News, Journalism and the Internet

Broadcasting and Intellectual Property (Tivo, Digital Radio)
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Chapter 2

Related Work

There are two broad classes of dynamic topic models: those that rely on discretization of time,
e.g. an underlying Markov model, and those that are based on time as a continuous variable within
the analysis. Discrete time models inherently assume that topics arise at specific, predetermined
points in time. Effectively, this is similar to evaluating a sequence of static LDA models on each
interval in isolation and assessing the the change in the topic distribution from one interval to the
next. Computationally this is cumbersome and can lead to missing the emergence of topics.

For example, in Topics Over Time[53] the topics are held constant and the time information
within the model is treated as a variable and used to discover these hidden topics. A change in
words coupled with a discrete change in time is used to detect a change in topic patterns. Con-
versely, Timeline[2] uses a hierarchical Dirichlet process[50] to learn topics within within each
group of documents and introduces temporal dependence to connect topics from different inter-
vals. The mathematics involved in introducing this dependence do not lend themselves to a simple
implementation.

Other methods [e.g. 3] rely on the KL divergence[33] to detect a change in topic distribution.
The intent of the KL metric is to provide a measure of the information gained or lost as an indication
of the emergence or decay of topics. The lack of symmetry of the KL metric presents the possibility
of mis-characterizing the change in topic structure. There are a number of alternative valid distance
metrics that can be used to detect the topic dynamics; our choice here is the symmetric Jensen-
Shannon information metric[36]. The symmetric nature of the metric allows us to use a z-test[54]
to statistically identify a change in topics as a function of time.

Another approach to allowing a model to change over time arises from sequential importance
sampling, also known as particle filtering. Doucet et al. [19] provide an overview. The intuition
behind particle filtering is that instead of spending all available computation on tracking the single
best estimate of a set of parameters, one can, in a sense, try all possibilities and let the statistics sort
it out. Canini et al. [14] describe an implementation of online LDA in the framework of particle
filters that yields results with higher likelihood than the common approach of running regular LDA
run multiple times and keeping the best result.
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Chapter 3

Algorithm

In this section we describe the details of our algorithm. Our goal is to track the divergence of topics
between epochs to identify newly-emerged topics and the change in volume and content to identify
topics that have run their course and can be terminated.

3.1 Data Organization and Parameters

We begin with the assumption that the documents are ordered in ascending order according to their
timestamps. The user chooses the size of one epoch, the unit of time within which topics will
remain constant, at whatever granularity is desired. For a corpus where several documents arrive
each day, a week-long epoch may be most appropriate. For a corpus spanning decades, a month-
or year-long epoch may be best. This choice is informed more by the user’s needs than by any
algorithmic requirement.

The user must select values for the following parameters. We discuss suggested rule-of-thumb
values in Section 4.3.

• k0, the initial number of topics

• α and β , the standard LDA hyperparameters (50
k0

and 0.1 are common choices)

• zsplit , the required “outlierness” to declare a new topic

• timmune, the number of epochs that must pass after a split before a recently-split or recently-
created topic is eligible for bifurcation

• vmin, the minimum volume below which a topic is eligible for termination

• tending, the number of epochs of “probation” before a topic with volume below vmin will be
terminated

Once we have chosen values for all the parameters, we set aside the first several epochs’ worth
of documents as a training set. In our experiments we used 10. There is no specific required value
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for this number except that it should contain several times as many tokens as the densest epoch.
We call this training set e0.

We begin by fitting a standard LDA model to the documents in e0 with the user’s values for k0,
α and β . Using collapsed Gibbs sampling, we learn z0, an assignment of topics to tokens. We run
the Gibbs sampler to allow it to burn in and then use a single sample from the posterior distribution
to estimate φ0 and θ0.

3.2 Tracking Topic Drift

After processing the training data in epoch 0 we proceed as indicated in Algorithm 1. To compute
the drift of any topic φ k

t with respect to its counterpart φ k
t−1 we note that each topic is a proba-

bility distribution. This allows us to choose any convenient divergence measure such as Hellinger
distance, Hellinger coefficient or Jensen-Shannon divergence. Jensen-Shannon divergence is at-
tractive because it handles naturally the case where the two distributions being compared have
different support.

After computing the drift dk
t for all topics in epoch t we can determine whether any of them

have changed enough to indicate that it has changed enough to constitute a new topic.

3.3 Identifying New Topics

Many factors, from the choice of hyperparameters and k0 to the distribution of types in the data
itself, can influence the exact values of the drift measures from epoch to epoch. For this reason we
do not use the drift values directly but instead consider their properties as an ensemble and look
for outliers.

Since statistics such as the mean and variance are themselves susceptible to the influence of
outliers, we use the modified Z score[21] to identify the central tendency. The modified Z score is
similar in spirit to the standard Z score but uses the median and median absolute deviation (MAD)
instead of the mean and standard deviation. The median and MAD are far more resistant to the
influence of outliers. 1

Once we have the Z score for each topic the parameter zsplit (one of the supplied inputs to the
algorithm) allows us to identify which topics have drifted too far and need to be split. Algorithm
1 describes this process. We note that the reassigned tokens are precisely those that caused the
excessive drift and thus form a natural foundation for the new topic. Finally, once a new topic

1The median and MAD are based on a loose assumption that the data being characterized are normally distributed.
We observe that the distribution of drift values is unimodal but not necessarily normal according to an Anderson-
Darling test. Neither are they conclusively not normal, although they are often skewed toward higher values. We
might achieve better results by fitting a gamma distribution to the data and using that to estimate the likelihood of each
drift value.
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Algorithm 1 Overall algorithm for LDA with topic birth/death. The notation LDA(D,z) indicates
the use of LDA to learn topic assignments for all tokens in the supplied documents D using topics
from the already-learned model z. Details of the method for detecting and closing low-volume
topics are omitted here for clarity but are discussed further in Section 3.4.

K0← Kinitial
E0← training documents
E1, . . . ,EN ← documents divided into epochs
(z,φ0)← LDA(E0, /0) {train initial model}
for i = 1 to N do

Mark low-volume topics as closed
(z,φi)← LDA(Ei, z) {learn assignments for latest epoch}
for k = 1 to Ki−1 do

di←JS(φ k
i−1,φ

k
i ) {compute topic drift since last epoch}

end for
(m,s)← median and MAD of d1 . . .dK
for k = 1 to Ki−1 do

ak← dk−m
s

if ak > zsplit then
knew← Ki +1 {start a new topic}
Ki← Ki +1
Reassign tokens in z from k to knew

end if
end for
Remove tokens for oldest |Ei−1| documents from zi

end for

has been created, both it and its parent are immune from further splits and termination for timmune
epochs.

3.4 Closing Old Topics

Just as new topics of discussion arise over time in bodies of text, old ones will often fade away
and be subsumed into some larger discussion or else dropped entirely. We approximate this effect
by measuring the number of tokens assigned to each topic k as a fraction of all documents in the
current window. If the total number of tokens in the window after epoch e is ne, a topic must hold
at least ne·vmin

ke
tokens to remain a going concern. Topics with fewer tokens are placed on probation.

If a topic stays on probation for more than tending epochs then it is marked as closed. Tokens in
new documents cannot be assigned to closed topics.
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Chapter 4

Implementation and Results

4.1 Implementation Notes

We implemented our algorithm primarily in Python with a few speed-critical components in a C++
module. Our LDA implementation relies on collapsed Gibbs sampling with a symmetric Dirichlet
prior as described by Griffiths and Steyvers [25]. We use NLTK [8] to load documents from disk
and remove common stop words using its built-in “english” stop list. We do not otherwise filter
the tokens to remove either low- or high-frequency terms from the data.

In many LDA implementations using Gibbs sampling, the φ and θ count arrays account for
the majority of the runtime memory requirements. The φ arrays grow particularly large and sparse
when the number of terms used in the corpus grows without bound, as is frequently the case with
technical literature. We take advantage of this sparsity by implementing φ and θ as hash tables
instead of flat arrays. Moreover, we move these hash tables along with the topic sampler itself into
a C++ module callable from Python for speed. Since these are the most frequently called parts of
the code we realize more than 10x acceleration in the system as a whole.

4.2 Handling Changing Vocabulary

The size of the vocabulary and the number of topics are both involved in the update equation for
topic assignments in the Gibbs sampler. Since both of these parameters change naturally as new
documents arrive and old ones leave, we must account for their changing values. In our system we
recalculate α , K and W (see Algorithm 1) at the beginning of each epoch according to the terms
and topics currently in use. This suffices because the collapsed Gibbs sampler does not explicitly
store estimates of θ and φ .

4.3 Parameter Values

Our hope was that it would be possible to start the algorithm off with a parameter count reflecting
a certain desired level of abstraction for the results. For example, an initial topic count of 20 for a
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corpus of thousands of documents should produce very high-level topics whereas a topic count of
100-200 should produce far more detailed results. To test this, we ran with the following parameter
settings, all determined empirically.

• K0 = 20 (fairly abstract topics)

• α = 50
K (standard value in the LDA literature)

• β = 0.1 (another standard value in the LDA literature)

• zsplit = 5

• timmune = 5 (determined by inspecting new topics to see when their volumes stabilize)

• vmin = 0.25 (see Section 5.2.2 for discussion)

• tending = 5

4.4 Test Data and Environment

We tested our algorithm using a set of 63,999 articles from Boing Boing (http://boingboing.
net), a blog covering issues in popular culture with a loose focus on technology, intellectual prop-
erty and politics. In late January 2011 they made all the articles published on their web site avail-
able for download as XML [42]. We retrieved these articles and stripped out the HTML formatting,
leaving just plain text. The entire data set contains 9.48 million tokens.

We ran our tests using one core of a dual-processor Mac Pro desktop with 32GB of memory.
Even when running the entire data set at once with full history data in memory (including all
documents) the Python process never required more than 3.2GB of memory. We anticipate that
this will go down still further with an all-C++ implementation.

4.5 Results: Finding Katrina

For clarity of illustration, we present here the results of a run over the subset of the data span-
ning calendar year 2005. This year is a good test case because of one particularly notable event.
Hurricane Katrina struck the city of New Orleans in late August, causing widespread devastation
and sparking a number of crises whose effects and resolution were topics in the media for many
months afterward. We used this event as a benchmark to judge whether our algorithm was doing
anything at all reasonable.

For ease of comparison, we reproduce as Figure 4.5 the 20-topic chart of 2005 first seen in
the introduction. It is followed by our results on the same data in Figure 4.5. Topics that were
automatically created by our algorithm are highlighted in green and blue.

20



Figure 4.1. Latent Dirichlet Allocation (LDA) applied to 7,025
articles from the BoingBoing web site (http://boingboing.
net) spanning all of 2005. We fixed the number of topics at 20
to produce the chart here. Since LDA cannot change the number
of topics during execution, major developments such as Hurricane
Katrina are subsumed in existing topics and are difficult to distin-
guish. The labels on each topic were created manually by inspect-
ing the most highly-weighted terms in the LDA results.

January 2005 December 2005Data: boingboing.net articles from 2005

Books
Messaging HURRICANE

KATRINA
Messaging

Babies
Industrial and Graphic Design
Music
Security and Privacy

The Courts and File Sharing
Basic Article Structure (Comments, Links, Citations)

Medical Research
Video Games
Antiques and Memorabilia
Photography

Music, Movies and File Sharing
SONY Rootkit

Debacle
Business and Finance
Disney Movies and Theme Parks

Life, Work and Fun

Open Source and Open Culture
Movies and Movie-Making
News, Journalism and the Internet

Broadcasting and Intellectual Property (Tivo, Digital Radio)
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Figure 4.2. LDA with topic birth/death applied to the same 7,025
articles from BoingBoing. The original 20 topics are drawn in
grayscale. Topics created by our algorithm are shown in blue and
green and appear directly above the topic from which they sepa-
rated. For example, the topic “Apple Sued In France over DRM”
emerged from the “Copy Protection and iPods” topic. Note that
not only did our algorithm separate Hurricane Katrina as a dis-
tinct topic, it identified further splits such as conditions in the As-
trodome evacuation shelter and the beginnings of the process of
rebuilding.

Messaging and Global Communication Ubiquitous Wireless Internet Access
PastafarianismPodcasts & CopyrightMedia Industry and Copyright

Telecommunications CompaniesO’Reilly Emerging Technologies Conference

RebuildingAstrodome
SculpturesHurricane

Katrina

Power GenerationBrains, Memory and Aging
Science Fiction

Security and Privacy

Scott Peterson Trial
University Research

Antiques and Memorabilia
Photography and Cartoons

Links to Other Sites

Basic Article Structure

Copy Protection and iPods Apple Sued In France over DRM
Lawsuits and Anonymous Blogging

SONY Rootkit
Computers (especially Apple)

Video Games

Movies, Copyright and Congress

Online News

Open Source and Open Culture

China and Civil Rights

Business and Finance

Star Wars
January 2005 December 2005Data: boingboing.net articles from 2005
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Chapter 5

Discussion

We developed our algorithm as an extension to LDA with the intent that existing acceleration
schemes such as Fast LDA [41], Sparse LDA [57] and Approximate Distributed LDA [40] should
still be applicable after our modifications. We achieved this by leaving the collapsed Gibbs sampler
unchanged and instead modifying the number of topics and the token labels between iterations. We
can do this with exactly the same operations that the sampler itself uses to label tokens with topics
and track the counts of how many tokens in each document belong to each topic.

5.1 Planning for Parallelism

Our approach lends itself to a parallel implementation. The most data-intensive part is the com-
putation of topic divergence between the current and previous epoch. In this stage we compute
k Jensen-Shannon divergences over distributions of length V . Once all the drift values are avail-
able, the simplest (and fastest) approach is to compute and broadcast the modified z-scores, then
allow each node to independently modify topic labels for its share of the latest epoch. No complex
communication is required.

5.2 Shortcomings

We find two principal shortcomings in the algorithm as presented in this report. Both relate to
the behavior of created topics over time as it relates to already-existing topics. As a result, our
algorithm performs very well over smaller numbers of epochs ( 50-100) but begins to diverge
beyond that.

5.2.1 Rich Topics Get Richer

We observe a “rich get richer” phenomenon among the top few topics when we run our algorithm
for more than about 100 epochs. That is, the heaviest topics from the training set and the first few
epochs will be used more and more frequently to label tokens as time goes on. At the same time,
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newly created topics rarely grow beyond a certain point. For example, when we ran the entire
BoingBoing corpus with 50 initial topics, we reached a point (midway through 2007) where the
algorithm held a total of 360 topics. Fully 25% of the tokens were labeled with the most heavily-
weighted topic. This topic was used to label over 100 times as many tokens as the topic with
median weight. Moreover, the top 10 topics accounted for just over half of the token labels. Under
such circumstances we believe that the most frequently appearing topics will continue to grow.

We speculate on the causes of this problem. As we noted in Section 4.5, newly created topics
tend to be very specific (e.g. Hurricane Katrina, the Astrodome, or SONY’s distribution of a
particular copy protection method) while earlier topics tend to represent broader categories such as
video games, intellectual property and science fiction. It may be that general categories are “close
enough” to attract tokens that might be better suited to a more specific topic.

One possible solution to this problem is to use more tokens to seed a new topic. Instead of
using only the tokens from the latest epoch, we could reach back into the document window and
reassign other tokens from earlier documents. The parent topic is an obvious source for these
tokens. This is unlikely to be sufficient since the new topic will still be limited by the contents of
its parent. Up to a certain point, we are aided by the fact that the Gibbs sampler uses proportions
(i.e. p(k|d) ∝ p(t|k)p(k|d) for a topic k, term t and document d) without reference to the overall
number of tokens belonging to each topic, but we do not believe this will be enough. We discuss
other possible solutions in Section 6.2

5.2.2 Topics Never Die

To our surprise, we have not observed a single instance of a topic being terminated when running
on real data. Instead, topics will settle down to some minimal-but-stable volume and stay there
indefinitely. We conjecture that this may be due to the influence of the Dirichlet prior as a smooth-
ing factor in the selection of topics for tokens. Since an open topic will always have some nonzero
probability of being chosen for any token, it stands to reason that in each epoch there will be some
nonzero number of tokens with any given label. It may also be the case that these “ghost” topics
are overfitting some aspect of the data. Given their generally small size, it is also possible that these
ghost topics accumulate random drift over time that keeps them too large to qualify for closure.
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Chapter 6

Conclusions

6.1 Alternative Distance Metrics

While the algorithm performs smoothly with the Jensen-Shannon distance metric, it is not clear that
JS will generalize to other data sets. A number of alternative measures have been used successfully
on similar efforts. These include:

Pearson Correlation Coefficient (Pearson, 1896)

σp =
∑

C
i ( fUi− f̄U)( fVi− f̄V )√

∑
C
i ( fUi− f̄U)2

√
∑

C
i ( fVi− f̄V )2

where f̄U = 1/n∑
C
i fUi = 1/C

Hellinger Coefficient (Hellinger, 1907)

σH =
C

∑
i

√
fUi fVi

Proportional Similarity (Renkonen, 1938)

σps(U,V ) = 1− ∑
C
i | fUi− fVi|

2
=

C

∑
i

min( fUi, fVi)

Of these, the Hellinger Coefficient and the Proportional Similarity have the most promise for
increased topic resolution while being robust to data stream characteristics.

6.2 Topic Decay

As mentioned in Section 5.2.2, in our tests the topics do not noticeably decay. This likely results
from a number of factors including, among other items, too strong a prior for topic generation
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(large values of α) or possibly from long term instability of the Gibbs sampler. Reducing α is
not a preferred solution, since this will negatively impact the emergence of topics as well. One
solution might be to periodically, reset the analysis at some logical point in the data stream. While
this raises the question of correspondence between topics before and after this reset, it would allow
the sampler to learn a new, more balanced distribution going forward. A second, significantly more
computationally involved solution, is the relaxation of the number of topics at each epoch; allow
the number of topics to increase or decrease with each generation. This approach is well suited for
a particle filter implementation similar to the one described by Canini et al. [14].

6.3 Clustering in Topic Space

One possibility that has been raised in the literature as well as in discussion is to identify the-
matically related groups of documents by performing an additional clustering step in the space of
mixing weights (probability distributions) resulting from LDA. Here each document would be re-
garded as a point on a k-simplex whose coordinates are defined by that document’s mixing weights.
It is possible that this would sidestep the topic decay problem. We could either use an algorithm
such as k-means that takes the number of clusters as an input parameter or else opt for a clustering
method such as the one described by Schubert and Sidenbladh [48] that learns the “best” number
of clusters during execution.

6.4 Final Thoughts

We have demonstrated that topic drift in LDA is an indicator of the emergence of a new subject
within a corpus of non-technical news articles. In tests, our method successfully identified major
topic shifts within our test corpus. While we have not yet tested our approach on a wider array of
data types, we believe that this same method will generalize well. Our algorithm is structured to
maintain compatibility with many of the acceleration schemes and enhancements made to LDA in
recent years. Although topic decay remains a significant problem when processing larger data sets,
we have approaches in mind to ameliorate or avoid this phenomenon.
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