
SANDIA REPORT
SAND2012-2093
Unlimited Release
Printed March 2012

Effective Software Design and
Development for the New Graph
Architecture HPC Machines

Damian Dechev

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND 2012-2093
March 2012

Unlimited Release

Effective Software Design and Development for
the New Graph Architecture HPC Machines

Damian Dechev
Scalable and Secure Software R&D Department,

Sandia National Laboratories
P.O. Box 969, MS-9158

Livermore, CA 94551-0969
ddechev@sandia.gov

March 17, 2012

Abstract
Software applications need to change and adapt as modern architectures evolve. Nowadays advance-

ment in chip design translates to increased parallelism. Exploiting such parallelism is a major challenge
in modern software engineering. Multicore processors are about to introduce a significant change in the
way we design and use fundamental data structures. In this work we describe the design and program-
ming principles of a software library of highly concurrent scalable and nonblocking data containers.
In this project we have created algorithms and data structures for handling fundamental computations
in massively multithreaded contexts, and we have incorporated these into a usable library with familiar
look and feel.

In this work we demonstrate the first design and implementation of a wait-free hash table. Our multi-
processor data structure design allows a large number of threads to concurrently insert, remove, and
retrieve information. Non-blocking designs alleviate the problems traditionally associated with the use
of mutual exclusion, such as bottlenecks and thread-safety. Lock-freedom provides the ability to share
data without some of the drawbacks associated with locks, however, these designs remain susceptible to
starvation. Furthermore, wait-freedom provides all of the benefits of lock-free synchronization with the
added assurance that every thread makes progress in a finite number of steps. This implies deadlock-
freedom, livelock-freedom, starvation-freedom, freedom from priority inversion, and thread-safety.

The challenges of providing the desirable progress and correctness guarantees of wait-free objects
makes their design and implementation difficult. There are few wait-free data structures described in
the literature. Using only standard atomic operations provided by the hardware, our design is portable;
therefore, it is applicable to a variety of data-intensive applications including the domains of embedded
systems and supercomputers.Our experimental evaluation shows that our hash table design outperforms
the most advanced locking solution, provided by Intel’s TBB library, by 22%. When compared to more
traditional locking designs we show a performance improvement by a factor of 7.92. When compared to
alternative non-blocking designs, our hash table demonstrates solid performance gains in a large major-
ity of cases, typically by a factor of 3.44.

3

Acknowledgements

The author thanks Curtis Janssen, Keith Vanderveen, Jon Berry, Gilbert Hendry, and Joe Kenney for
their helpful feedback and support for this work.

4

Contents

Table of Contents 6

Figures 6

Tables 6

1 Introduction 9
1.1 Motivation . 10
1.2 Our Approach . 10

2 Designing the Scalable Template Library 11

3 Implementation Challenges 12

4 Implementation Approach 14

5 Design and Implementation of a Wait-free Hash Table 15
5.1 Background . 16
5.2 Related Work . 16
5.3 Algorithms . 17

5.3.1 Implementation Overview . 17
5.3.2 Operations . 17
5.3.3 Main Functions . 20
5.3.4 Algorithm 1 - put (key, value, threadID) . 20
5.3.5 Algorithm 2 - putSub

(local, insertThis, hash, threadID) . 20
5.3.6 Algorithm 3 - get (key, threadID) . 21
5.3.7 Algorithm 4 - remove (key, threadID) . 23
5.3.8 Supporting Functions . 24
5.3.9 Memory Management . 24
5.3.10 ABA Problem . 25

5.4 Semantics . 25
5.5 Correctness . 25
5.6 Wait-Freedom . 25

5.6.1 Linearization Points . 26
5.7 Linearizability . 27
5.8 Performance Evaluation . 30
5.9 Relevance . 31

6 Conclusions and Future Work 31

A Supporting Functions 36
A.1 Algorithm 5 - getNode (local, pos) . 36
A.2 Algorithm 6 - getNodeRaw (local, pos) . 36
A.3 Algorithm 7 - inUse (hash, threadID) . 36
A.4 Algorithm 8 - markDataNode (local, pos) . 37
A.5 Algorithm 9 - unmark (node) . 37

5

A.6 Algorithm 10 - isMarked (node) . 37
A.7 Algorithm 11 - isSpine (node) . 37
A.8 Algorithm 12 - expandTable

(threadID, local, pos, node, right) . 37
A.9 Algorithm 13 - allocateNode

(value, hash, threadID) . 37
A.10 Algorithm 14 - freeNode

(value, hash, threadID) . 38
A.11 Algorithm 15 - freeNodeStack

(node, threadID) . 39

List of Figures

1 An example of the structure of the hash table. 19
2 An example of possible threads interleaving. 26
3 A potential ordering of multiple put operations. 27
4 A sequential history of the proposed ordering. 27
5 The average number of clock ticks, per thread, used by each algorithm when running the

specified total number of threads. 31
6 The average number of clock ticks, per thread, used by each algorithm when running the

specified total number of threads. 32

List of Tables

1 Linearization of concurrent operations on a position that is initially null. 28
2 Linearization of concurrent operations on a position that is initially a dataNode. 29
3 Linearization of concurrent operations on a position that is initially a markedDataNode. . . . 30

6

List of Publications

Below we provide a brief list of publications and poster presentations that are a part of this work.

Publications in Conference Proceedings:

• Andres Vidal, Damian Dechev, Alain Kassab, Evaluation of two acceleration techniques in a multi-
threaded 2D Poisson equation solver, In Proceedings of the International Conference on Computa-
tional Science (ICCS 2012), Omaha, Nebraska, June 4-6, 2012 (To Appear). SAND Number: 2012-
1797C

• Steven Braeger, Nicholas Arnold, Damian Dechev, Scalable N-Body Event Prediction, Central Eu-
ropean Journal of Computer Science, Springer-Verlag, March, 2012. SAND Number: 2012-1460
J

• Andres Vidal, Alain Kassab, Daniel Mota, Damian Dechev, A Multithreaded Solver for the 2D Pois-
son Equation, In Proceedings of the 20th ACM/SIGSIM High Performance Computing Symposium
(HPC 2011), Orlando, FL, March 26-29, 2012 (To Appear). SAND Number: 2012-1461 C

• Shiyuan Jin, Damian Dechev, Zhihua Qu, Parallel Particle Swarm Optimization (PPSO) on the Cov-
erage Problem in Pursuit-Evasion Games, In Proceedings of the 20th ACM/SIGSIM High Perfor-
mance Computing Symposium (HPC 2011), Orlando, FL, March 26-29, 2012 (To Appear). SAND
Number: 2012-1459 C

• Damian Dechev, The ABA Problem in Multicore Data Structures with Collaborating Operations, In
Proceedings of the 7th International Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom 2011), Orlando, FL, October 15-18, 2011. (Presenter).
SAND Number: 2012-1525 C

• Tae-Hyuk Ahn, Damian Dechev, Heshan Lin, Helgi Adalsteinsson, Curtis Janssen, Evaluating Per-
formance Optimizations of Large-Scale Genomic Sequence Search Applications Using SST/macro, In
Proceedings of the 1st International Conference on Simulation and Modeling Methodologies, Tech-
nologies and Applications, SIMULTECH 2011, Noordwijkerhout, The Netherlands, July 29 - 31,
2011. Acceptance Rate: 25/141=17.7%. (Presenter). SAND Number: 2011-3682C

• Peter Pirkelbauer, Damian Dechev, Bjarne Stroustrup, Support for the Evolution of C++ Generic
Functions, In Proceedings of 3rd International Conference on Software Language Engineering (SLE
2010), Eindhoven, The Netherlands, October 2010. Acceptance Rate: 17/62=27.4%. SAND Num-
ber: 2011-0081C

• Damian Dechev, Peter Pirkelbauer, Bjarne Stroustrup, Understanding and Effectively Preventing the
ABA Problem in Descriptor-based Lock-free Designs, In Proceedings of 13th IEEE International
Symposium on Object/component/service-oriented Real-time Distributed Computing (IEEE ISORC
2010), Carmona, Spain, May 2010. (Presenter). SAND Number: 2010-0971C

Workshop and Poster Participation:

• Steven Feldman, Emile Kanhai, Damian Dechev, Lock-Free Concurrent Hash Tables, In Science
Magazine, Special Feature: International Science & Engineering Visualization Challenge 2011, Febru-
ary, 2012.

7

• Amruth Dakshinamurthy, Curtis Janssen, Damian Dechev, A Compiler-based Framework for Auto-
matic Extraction of Software Models for Exascale Hardware/Software Co-Design, In Proceedings of
the Fifteenth Annual High Performance Embedded Computing Workshop (HPEC 2011), MIT Lin-
coln Laboratory, Lexington, MA, September 21 - 22, 2011. (Presenter). SAND Number: 2012-1523
C

• Steven Feldman, Pierre LaBorde, Damian Dechev, A Lock-Free Concurrent Hash Table Design for
Effective Information Storage and Retrieval on Large Data Sets, In Proceedings of the Fifteenth An-
nual High Performance Embedded Computing Workshop (HPEC 2011), MIT Lincoln Laboratory,
Lexington, MA, September 21 - 22, 2011. SAND Number: 2012-1524 C

• Steven Feldman, Pierre LaBorde, Damian Dechev, Facilitating Efficient Parallelization of Informa-
tion Storage and Retrieval on Large Data Sets, In Proceedings of the 25th ACM International Con-
ference on Supercomputing (ICS 2011), Tucson, AZ, May 31- June 4, 2011. SAND Number: 2011-
3222C

• Amruth Dakshinamurthy, Damian Dechev, Automatic Extraction of SST/macro Skeleton Models, In
Proceedings of the 25th ACM International Conference on Supercomputing (ICS 2011), Tucson, AZ,
May 31 - June 4, 2011. (ACM Student Research Competition Finalist). SAND Number: 2011-3224C

8

1 Introduction

Advances in chip design have brought multi-threaded parallel programming to mainstream computing and
have made exploiting such parallelism a major challenge in modern software engineering. In [24], Gartner
identifies “Parallel Programming” and “Increase Programmer Productivity 100-fold” as two of the seven
“Grand Challenges Facing IT” by examining the fundamental issues and technologies whose resolutions
“will have a broad and extremely beneficial economic, scientific or societal effects on all aspects of our
lives”. The ever expanding heterogeneity of modern architectures are demanding developers to effectively
manage a growing variety of available resources such as high degree of parallelism, single-chip multi-
processors, and the deep hierarchy of shared/distributed cache and memories, Nowadays parallelism is of-
fered in a variety of ways, including PC clusters, distributed multiprocessors, SMP, multi-core, GPU, vector
units, among others. Each machine typically features a deep hierarchy of shared/distributed caches and
memories, and good data locality is required to achieve computation efficiency. The ever expanding hetero-
geneity of modern architectures demands applications to quickly migrate to a variety of architectures while
maintaining scalability to an increasingly larger number of nodes. Both small-scale multicores and future
exascale supercomputers have to employ new methodologies for effective access to shared memory and the
routing of data. The article suggests [24] that “the main challenge with parallel computing is to create appli-
cations that fully exploit a multicore architecture” and also that such an enormous increase in productivity
can be achieved by “minimizing the time required to find the perfect software module and avoiding the
need to modify reusable software.” The increasing variety of parallel architectures has led to an even greater
degree of highly specialized codes. The development of such codes requires deep expertise in multithread-
ing and parallel computing and a broad knowledge of the hardware architecture. A critical element of our
effective use of such new and future multi-processor architectures is the design and application of highly
concurrent multi-processor data structures [47].

Programming shared-memory multiprocessors (multicores) is notoriously hard because of the unpre-
dictable asynchronous nature of modern computer systems. Pingali et al. [42] and Shavit [47] argued that
many modern mainstream applications exhibit complex, irregular, and rapidly changing communication
patterns and interactions. Such parallelism is substantially different than the traditional parallel applications
known in scientific computing with slow changing and regular synchronization patterns. In spite of the criti-
cal role in emerging applications of such irregular parallel algorithms, currently we have few insights of how
to effectively and safely parallelize such irregular algorithms demanding irregular and rapid data exchanges
and sharing of large volumes of data among multiple threads. The irregular computation and synchronization
patterns of the emerging parallel applications and the increasing variety of the modern hardware architec-
tures pose an enormous challenge in constructing highly reusable and portable multi-processor software
libraries. For instance, large graph problems that arise in complex network analysis, data mining, computa-
tional biology, enabling predictive discrete event simulation, and other critical applications have sparked the
development of new types of high-performance architectures and codes [2, 29]. These codes involve very
large numbers of threads and much greater sharing of information among processors than traditional scien-
tific computing approaches, posing much greater concurrency challenges. It is difficult to effectively and
safely parallelize such irregular algorithms which demand irregular and rapid data exchanges and sharing of
large volumes of data among multiple threads.

To accommodate the paradigm shift towards concurrency and heterogeneity, a plethora of new pro-
gramming models are being developed and tested to support the development of concurrent multi-threaded
applications on multi-core architectures. However, most of the existing concurrent programming models
are based on mutual exclusion, which is the most common synchronization technique for shared data but
can lead to significant overhead, high complexity, and reduced parallelism and key safety hazards including
race conditions, deadlock, livelock, and ordering violations [22, 12]. Such errors are hard to reproduce,
often lead to unpredictable real-time behavior and are difficult to debug. According to a study at NASA

9

Ames [34, 43], the current development and validation techniques are prohibitive for problems of such com-
plexity. Programming models and concurrent data structures that are easier to use and capable of scaling to
arbitrary numbers of threads are in critical needs to ameliorate the problems.

Applications and algorithms need to change and adapt as modern architectures evolve. Such adaptations
have become increasingly difficult for developers as they are required to effectively manage an ever-growing
variety of resources such as a high degree of parallelism, single-chip multi-processors, and the deep hierar-
chy of shared and/or distributed caches and memories. Developers writing concurrent code face challenges
not known in sequential programming: notably, to correctly manipulate shared data. A critical element for
effective use of such new and future multi-processor architectures is the design and application of highly-
concurrent, multi-processor data structures [48]. ISO C++ [50] is widely used for parallel and multi-threaded
software. The recently released C++ standard, C++11 [28], simplifies concurrent programming by including
a new memory model and standard library support for threading and atomicity. However, C++11 and the
majority of the commonly used programming languages still do not provide standard multi-processor data
structures and algorithms.

1.1 Motivation

Currently, the most common synchronization technique is the use of mutual exclusion locks. This can se-
riously affect the performance of the system by diminishing its parallelism [22]. The behavior of mutual
exclusion locks can sometimes be optimized by using a fine-grained locking scheme [27], [40] or context-
switching. However, the interdependence of processes implied by the use of locks, even efficient locks,
introduces the dangers of deadlock, livelock, starvation, and priority inversion. Wait-freedom implies free-
dom from such hazards [22]. However, all of these appealing properties of wait-freedom are difficult to
implement in practice as they require that no thread can block another, in such a way that the other thread is
unable to make progress in an amount of time that is guaranteed to be finite. Guaranteeing this property is
especially difficult as it requires reasoning about all of the possible ways that all of the possible operations
may interleave, in a concurrent environment. In many cases, the problem with locks is one of difficulty of
providing correctness more than one of performance [13]. As a result, there are not many wait-free algo-
rithms in the literature. In fact, there are no other wait-free hash tables at all. Though there is one hash
table that comes close, it is wait-free until it must resize [18], and there are several lock-free hash tables
implemented as well [22], [37], [46].

1.2 Our Approach

Our work delivers practical design, implementation, and support tools for highly concurrent and reusable
multi-processor data structures. In particular, we have developed a collection of highly concurrent scal-
able data containers together with an associated compiler to support nonblocking synchronization of shared
memory operations [22, 47, 12], a recent synchronization mechanism known to provide better safety and
performance than traditional blocking synchronization techniques by eliminating hazards such as deadlock,
livelock, and priority inversion and by being highly scalable in supporting large numbers of threads. The
entire system integrates an extensive set of architecture-specific optimizations, e.g. reduction of synchro-
nization overhead and enhancement of data locality, and parameterizes their configurations so that they can
be automatically tuned when porting together with our runtime system to a variety of multicore platforms.
In addition, our research integrates a mature platform for developers to study and analyze their application
performance at scale by integrating the Structured Simulation Toolkit’s macroscale simulation components
(SST/macro) [2, 44]. Through our collaborations with the developers of SST/macro, our team employs a
highly functional architecture simulator with which we are deeply familiar, and our framework uses the
internally integrated SST/macro to interactively assist developers in attaining our objectives. The goal is

10

to create a portable generic software platform and building blocks to greatly assist domain scientists and
engineers who are not experts in concurrency theory and formal methods to produce highly efficient and
correct code.

When building large-scale software applications developers apply the core problem-solving approach
as when constructing other large-scale artifacts – namely the processes of decomposition and abstrac-
tion [31]. Library-centric software development has become increasingly important in modern software
design [49, 28]. Through this work we deliver high-quality and reliable building blocks for multi-processor
programming and an easy and effective composition process. Our research creates algorithms and data
structures for handling fundamental computations in multithreaded contexts and incorporates these into a
practical and usable library with a familiar look and feel. The main challenge is in the design and imple-
mentation of the librarys data structures and our support environment. That way the burden of multicore
algorithms design and optimization is placed on the library developers (the PI of this work and our team) and
not on the users of our collections of data containers. Thus, our nonblocking library hides the complexity
of parallel programming to the majority of its users. Many modern parallel programming codes contain a
large number of architecture-sensitive programming techniques and optimizations that are tailored to spe-
cific problem domains or hardware platforms. Often, to achieve a high degree of efficiency, developers of
such concurrent codes need to re-engineer the very fundamental data structures and algorithms known in
computer science such as queues, stacks, hash tables, linked-lists, and vectors [47, 41, 42]. Our approach
helps deliver easy, effective, and scalable multi-processor programming in C/C++ and allows for a dramatic
increase in the reuse and portability of complex multithreaded software components.

2 Designing the Scalable Template Library

Processes in shared memory multiprocessor systems communicate with each other by executing atomic
reads and writes to various shared data. The result of the concurrent execution of a number of operations
is dependent on the processes interleaving. Thus, various synchronization mechanisms are necessary to
ensure that the desired interleaving of operations is enforced at all times and the program semantics are
preserved. The most common technique for synchronizing concurrent processes is the use of a mutual
exclusion locks [22], which guarantees thread-safety of a concurrent objects by blocking all contending
threads except the one holding the lock. Even for conventional multicore systems of modest size, the use
of blocking reduces parallelism and can lead to convoying effects that can seriously detriment application
performance [17]. Further, incorrect use of locks is hard to detect using traditional testing procedures,
whereas a program can be deployed and used for a long period of time before the flaws become evident and
cause anomalous behavior [10, 12]. A key component of our research is to develop a library of composable
and highly scalable generic concurrent data structures to support nonblocking synchronization [22, 47, 17,
12], which enhances thread safety and enables fast execution by eliminating hazards associated with mutual
exclusion locks.

Our multi-processor scalable template library provides concurrent data structures with composable,
generic and linearizable C++ interfaces similar to the C++ Standard Template Library [28]. Nonblocking
synchronization is a recent alternative to mutual exclusion that allows the implementation of highly scalable
data objects for multithreaded systems and at the same time eliminates entire classes of safety hazards associ-
ated with the application of locks. A concurrent object is lock-free [22] if it guarantees that some process will
always make progress in a finite number of steps. It is additionally wait-free if all processes are guaranteed
progress. Lock-free and wait-free algorithms do not use mutual exclusion locks and can efficiently utilize
resources on shared memory multiprocessors with low latency and high bandwidth of interprocessor com-
munication [22]. Our existing work shows that it can eliminate whole classes of concurrency hazards while
delivering significant performance improvements by a large factor for many scenarios [12, 10, 8, 15, 7, 11].

11

A study by Tsigas et al. [55] demonstrates that large scale scientific applications using nonblocking synchro-
nization generate fewer cache misses, exhibit better load balancing, and show significantly better scalability
and performance when compared to their counterparts using locks.

ISO C++ [50] is widely used for parallel and multi-threaded software. The recently released C++ stan-
dard, C++11 [28], includes a new memory model and standard library support for threading and atomicity.
As stated by Stroustrup [51], the designer and inventor of C++, C++11 includes “lock-free programming
facilities for people who want to provide something radically different”. However, C++11 and the majority
of the commonly used programming languages still do not provide standard multi-processor data structures
and algorithms. We will design and implement a collection of nonblocking data containers for C/C++ with
interfaces that are easy to use and composable, with enhanced safety by eliminating the hazards of dead-
lock, livelock, and priority inversion, and with significant performance gains for a large number of multicore
applications. Our library delivers fundamental concurrent data structures such as stacks, queues, dequeues,
linked-lists, dictionaries, dynamic arrays, and hash tables, starting with two critical containers, a hash table
and a priority queue, for modern data-intensive applications. Each container includes components needed to
easily compose them as nonblocking building blocks, such as iterators, lock-free memory management, and
memory allocation schemes. We extend the generic object-oriented ISO C++ STL interface and evaluate our
approach by using our library within a number of real-world concurrent codes and a number of benchmark
suites including the Mentovo suite [45] for scientific codes.

While there is an increasing demand for nonblocking algorithms, currently we lack a collection of
portable and generic C/C++ nonblocking objects that can easily be applied to existing code. In this work
we develop the theory, techniques, and building blocks that can be used by domain scientists and engineers
who are not experts in parallel programming and nonblocking synchronization to compose efficient, safe,
and scalable codes. Composition is a natural way to construct and reason about large and complex systems.
We develop compositional strategies for building scalable nonblocking applications and for optimizing such
application and their use of system resources. To overcome the drawbacks associated with the application
of blocking synchronization and deliver high scalability and performance, we focus on the application of
nonblocking synchronization techniques [22, 47, 12, 7].

3 Implementation Challenges

Two key challenges exist in designing scalable concurrent data structures: 1) the asynchronous nature of
multi-threaded computation, where the correctness of concurrency is hard to guarantee as threads execution
can be interleaved in an arbitrary fashion, and their progresses and completion are sensitive to variations of
operating system scheduling decisions, interrupts, and page faults; and 2) complexity of modern hardware
platforms, where the interconnect among memory and processors, the layout of data in memory, and the
dynamic communication patterns [22, 2] among threads make the performance of synchronous operations
hard to predict. The correctness and performance issues are directly related [47], as the more optimizations
applied to improve a parallel algorithm’s performance, the harder it becomes to reason about this algorithm’s
correctness. The difficulties in guaranteeing correctness, which is established by reasoning about safety and
liveness, while attaining high performance also result in several other challenges in developing a library of
composable and reusable nonblocking data containers, discussed in the following.

Safety guarantee: which establishes that no possible threads interleaving can corrupt the semantics of a
concurrent object, i.e. “nothing bad will happen” [22]. Guaranteeing safety in a concurrent algorithm is
challenging because of the many possible scenarios in which threads can interleave, which require rules
for mapping concurrent executions to sequential ones. One such set of rules has been described by Lam-
port [32] in his sequential consistency model, which requires that the results of a concurrent execution are

12

equivalent to those yielded by some sequential execution. A more strict version of sequential consistency is
linearizability [22], where a concurrent operation is linearizable if it appears to execute instantaneously in
a given point of time, called linearization point, between the time of operation invocation and the time of
its completion. In effect, linearizability additionally requires that the total ordering in the derived sequential
history respects the real-time ordering of operations of the concurrent execution. According to real-time
ordering, an operation o1 is said to precede an operation o2 if o2’s invocation occurs after o1’s response.
Operations that do not have real-time ordering are defined as concurrent. To allow for greater reusability of
our multi-processor library components, we aim to support linearizability as our safety guarantee.

Liveness guarantee: which establishes that eventually progress will be made in the system, i.e. “some-
thing good will happen” [22]. Defining a liveness guarantee means specifying its progress condition such
as lock-freedom, wait-freedom, deadlock-freedom, and starvation-freedom [22]. For instance, a wait-free
operation is independent and can complete without requiring support from the scheduler, while a deadlock-
free operation guarantees concurrent operations will not enter a state of deadlock but requires strong support
from the scheduler [47]. We aim to support wait-freedom and lock-freedom as our liveness properties.

Composability While well-established, the sequential consistency model implies that sequentially con-
sistent objects are not composable. This means that a data object implemented using sequentially consistent
components may not be sequentially consistent. Such lack of composability is a significant disadvantage
when building concurrent libraries and seriously inhibits the reusability of parallel software. By enforcing
the more strict linearizability consistency model, our library will guarantee composability as well.

Scalability By Amdahl’s Law [22], the speedup of a parallel algorithm is the ratio of a program’s ex-
ecution time on a single processor to its execution time on P processors. A concurrent data structure is
scalable if its observed speedup increases with P. In practice, as concurrency grows it becomes increasingly
hard to obtain scalable behavior. This is illustrated by a simple application of Amdahl’s Law: using 10
processors we achieve only a twofold speedup with 60% concurrent execution time and five fold speedup
with 90% concurrent execution time. If we increase the processors we use up to 20, we will get a seven-
fold speedup. Therefore, regardless of the processing power of our multicore machine and the increasing
number of cores we use, our speedup will be significantly limited by only a 10% sequential execution of our
program. For a majority of multi-threaded applications, the portions of code that are hard to parallelize are
those implementing multi-threaded synchronizations and communications [47, 29, 6, 2, 44]. On a multicore
platform with shared memory, these synchronization mechanism coordinate the access to the shared data
structures. Often applying common synchronization mechanisms that work well with low concurrency can
severely limit the possibility of scalable behavior. In particular, the use of mutual exclusion is known to
introduce sequential bottlenecks and inhibit scaling. Further, the completion of concurrent algorithms can
be significantly impacted by variations of the scheduler’s decisions, making it hard to provide guarantees
of progress, e.g., if the scheduler delays the thread holding the lock, all other threads waiting for this lock
will be blocked. Another potential performance bottleneck is memory contention caused by all contending
threads attempting to access a single shared memory location [22], which causes prolonged waiting time
and heavy memory traffic on platforms employing typical cache coherence protocols. Our research will
address all the above synchronization problems through efficient implementations of wait-free and lock-free
synchronous operations.

13

4 Implementation Approach

Our library is centered around a collection of practical highly concurrent nonblocking data containers with
interfaces that are composable and easy to use, with enhanced safety by eliminating the hazards of dead-
lock, livelock, and priority inversion, and with portable performance gains for a large number of multicore
applications. The research is based on the following technical approaches.

Safety and progress guarantees: We focus on providing data structures that are linearizable [22],
where concurrent operations appear to execute instantaneously in any given point of time, and wait-free [22],
where a concurrent object guarantees that all processes will make progress in a finite number of steps. For
algorithms that do not allow for an effective wait-free implementation, we will guarantee they are lock-free,
where at least one process will always make some progress in a finite number of steps.

Linearization is a more restrictive form of the sequential consistency model [32] and will allow concur-
rent operations supported by our library to be easily composed while maintaining their sequential consis-
tency. Wait-freedom is most desirable as it guarantees system-wide throughput and starvation-freedom in a
finite number of steps. This property significantly reduces the performance problems of parallel algorithms
by avoiding sequential bottlenecks and memory contentions associated with the traditional blocking (lock-
based) synchronization mechanisms and some naive lock-free approaches. Theoretically, it has been shown
that all algorithms can be implemented in a wait-free manner [22]. The authors in [22] demonstrate a uni-
versal construction that allows for the wait-free implementation of concurrent objects. However, the use of
a universal construction leads to the memory cost growing linearly with the number of threads. In practice,
effective implementations of wait-free algorithms require the use of programming techniques similar to their
lock-free counterparts combined with a methodology for bounding the steps each operation can take.

Implementation of wait-free and lock-free algorithms: for the implementation of our nonblocking
data structures we plan to apply the following commonly used programming techniques.

• Completion of operations through fine-grained optimistic speculation: lock-free and wait-free algo-
rithms do not use locks but instead rely on a set of read-modify-write atomic primitives such as the
word-size CAS instruction [26]. Lock-free algorithms most commonly utilize the compare-and-set
instruction to implement a speculative manipulation of a shared object. Each contending process ap-
plies a set of writes on a local copy of the shared data and attempts to exchange a shared object with
the updated copy by executing a CAS operation. This speculative execution guarantees that from
within a set of contending processes, there is at least one that succeeds within a finite number of steps.

• Assisting aborted threads: lock-free algorithms often employ a methodology for assisting obstructed
threads such as the use of descriptor objects [12, 17]. A significant challenge in designing lock-free
algorithms is implementing a correct assistance methodology. Assisting other operations is the most
error-prone and costly part of a lock-free algorithm [12].

• Type and state value marking: wait-free and lock-free implementations often use a pointer bit marking
technique to atomically exchange a pointer and its state using only a single-word CAS operation. The
pointer bit marking technique exploits the last two bits of a pointer value, which are unused in a
pointer representation, to store up to three additional value states.

• Duplicate memory copy: certain lock-free algorithms use a descriptive log storing a record of all
pending reads and writes and a duplicate memory copy used to perform speculative updates that are
invisible to all other threads until the linearization point of the entire transaction.

Given the above programming techniques, a typical lock-free algorithm executes in four phases [22]: 1)
completion of its own operation; 2) assisting an obstructed operation; 3) aborting an obstructed operation;
and 4) waiting. In a naive lock-free implementation, the repeated attempts of contending threads executing

14

a CAS on the same memory location would result in memory contention. Advanced lock-free algorithms
use a contention management algorithm to decide when to assist, abort, or wait.

5 Design and Implementation of a Wait-free Hash Table

In this section we describe the design and implementation of the first, bounded, wait-free, extendible, con-
current hash table C++ design. The main goals of our design are to deliver scalability, safety, and high
performance for multi-processor applications. A hash table [5] is a data container that uses a hash func-
tion to map a set of identifying values, known as keys, to their associated values. The standard interface
of a hash table consists of insert, delete, and search, each with an average time-complexity of O(1). The
new C++ Standard Template Library [28] provides the unordered map class as a standard sequential hash
table implementation. The known lock-based hash table designs inherit the disadvantages of blocking syn-
chronization as discussed earlier [13]. The negative impact of blocking synchronization is increased during
the process of the redistribution of the elements in a hash table, also known as a global resize, that occurs
when adding new buckets. Thus, the problem of engineering practical and efficient non-blocking hash table
designs has been of both practical and theoretical interest [37], [46], [22]. Our wait-free implementation
avoids global resizes through new array allocation which is bounded by the number of indirections (pointers
to chase). The presented design includes dynamic hashing, which means that each element has a unique
final, as well as current, position. The code representing the implementation we discuss here is open source
and we intend to make it freely available.

Our multi-processor hash table design offers the following contributions:

(a) Wait-freedom: we describe the first bounded wait-free hash table design. Our data structure guarantees
that all threads complete their operations in a finite number of steps. This implies that we have a non-
blocking execution.

(b) Non-blocking: we ensure that no thread can prevent another from accessing information. By providing
the non-blocking progress guarantee for our operations, the presented design avoids the typical safety
hazards associated with blocking synchronization.

(c) Perfect hashing: each element has a unique final position in the table, and this position allows the
algorithm to insert, find, and delete elements concurrently, in constant time.

(d) Extendible hashing: we treat the hash as a bit string and rehash incrementally [14].

(e) Portability: because we only rely on atomic operations available on most modern architectures (such as
atomic read, atomic write, and Compare-And-Swap or simply CAS [22]), we ensure that our implemen-
tation can be used on a wide range of multi-processor architectures.

(f) Thread-death safety: if a thread suddenly dies, regardless of the point during its execution, no data is
lost; except, at most, the thread’s own operation.

(g) High performance: our wait-free hash table design outperforms, by 22%, the state of the art blocking
designs such as the concurrent hash table implementation in Intel’s Threading Building Blocks library.
Furthermore, we outperform traditional blocking designs by a factor of 7.92. When compared to al-
ternative non-blocking solutions, our hash table provides consistent performance gains (by a factor of
3.44).

(h) High scalability: our implementation demonstrates scalable behavior, and our performance gains are
even larger compared to the alternative approaches in scenarios with more contention — greater numbers
of threads competing for shared resources.

(i) Safety: our design goals help us achieve a high degree of safety, and our design avoids the hazards of
lock-based designs: deadlock, livelock, priority inversion, and starvation.

15

The rest of this work is organized as follows: Section 5.1 briefly introduces the fundamental concepts of
non-blocking synchronization, in Section 5.2 we discuss related work, Section 5.3 presents the algorithms of
our wait-free hash table design, Section 5.8 offers a discussion of our performance evaluation, Section 5.9
provides an overview of the practical impact of our work, and in Section 6 we conclude and discuss our
future work.

5.1 Background

As defined by Herlihy et al. [22], a concurrent object is lock-free if it guarantees that some process in the
system makes progress in a finite number of steps. An object that guarantees that each process makes
progress in a finite number of steps is defined as wait-free [22]. Non-blocking (lock-free and wait-free)
algorithms do not apply mutual exclusion locks. A mutual exclusion lock guarantees thread-safety of a
concurrent object by blocking all contending threads except the one holding the lock. By definition, a lock-
free1, concurrent data structure guarantees that when multiple threads operate simultaneously on it, some
thread completes its task in a finite number of steps despite failures and waits experienced by other threads.
By applying atomic primitives such as CAS, non-blocking algorithms implement a number of techniques
such as optimistic speculation and thread collaboration to provide for their strict progress guarantees.

The practical implementation of lock-free containers is known to be difficult: in addition to addressing
the hazards of race conditions, the developer must also use non-blocking memory management and memory
allocation schemes [21].

Recent research into the design of lock-free data structures includes: linked-lists [19], [37]; queues [36],
[53], [39]; stacks [20], [39]; hash tables [37], [39], [18], [46]; binary search trees [16], and vectors [9].

The problems encountered include low parallelism, excessive copying, inefficiency, and high overhead.
The use of hash tables is widespread in real-world applications, however, the problem of the design and
implementation of a wait-free hash table is difficult — there have been no previous implementations. De-
signing lock-free containers is hard and achieving wait-freedom is an enormous challenge.

5.2 Related Work

A possible solution, that delivers scalability and high performance for modern multi-processor program-
ming, is a lock-free data structure; and the only design that could be better is one that is also wait-free, such
as the one presented in this paper. There are no pre-existing wait-free hash tables in the literature, as such,
the related work that we discuss consists entirely of lock-free designs.

In order to achieve our design goals, we are developing an innovative approach to the structure of the
hash table that uses an extendible hashing scheme that is similar to the work of Shalev et. al. in the paper
titled “Split-Ordered Lists: Lock-Free Extensible Hash Tables” [46]. The key differences between their
design and our work are that Shalev et. al. do not implement a hash table structure, and their design is not
wait-free. Another approach for implementing a non-blocking hash table is presented by Gao et. al [18].
They implement a solution that is wait-free in the common case, but degrades in performance to lock-free
when a table resize is in progress. Michael [37] describes a lock-free hash table design that uses linked lists
for collision-resolution; whereas, we use arrays — to avoid the overhead of next pointers. There is only one
claim of a wait-free hash table implementation that the authors are aware of [4]. This hash table design has
been described in the author’s blog discussions and has not been published in the academic literature. Click’s
design is presented as a Java-based implementation and allows stacked, global resizes which are undesirable
as they are known to have a negative performance impact. Furthermore, the intricacies involving the C/C++
implementation of a wait-free hash table are avoided in [4].

1Lock-freedom is a progress guarantee (as defined in [22])

16

5.3 Algorithms

In this section we define a semantic model of the hash table’s operations, outline a correctness proof based
on that model, address concerns related to memory management, and provide a description of the design
and the applied implementation techniques. The presented algorithms have been implemented, in both ISO
C and ISO C++, and designed for execution on an ordinary, multi-threaded, shared-memory system —
supporting only single- word read, write, and CAS instructions.

5.3.1 Implementation Overview

The hash function that we use is a one-to-one hash, where each key produces a unique hash value. Our hash
function reorders the bits in the key in order to promote a more even distribution of elements. The user may
specify his own hash function as long as the number of bits in the key is equal to the number of bits in the
hash. The length of the memory array used in the table is defined as a power of two. By taking the first
N bits of the hashed key, where N is equal to the binary logarithm of the length of the memory array, we
determine the location, on the main array, to place the key-value pair. If that position is another memory
array, then we shift another N bits to determine the position on that next array. The hash table structure is
composed of nested arrays, where a position in one points to another array. However, the total number of
arrays is bounded by the key length and the size of each array. When we refer to indirections or depth we
mean the number of entries one might need to check before a key is found. Note, this places no limit on the
total number of elements that can be stored in the hash table, the table can expand to hold all unique keys.
However, the number of keys is limited by the bits in the key.

The maximum number of indirections — the maxDepth — is equal to the number of bits in the key
divided by X , where X is the number of bits taken from the key, as described earlier. For example, a 32-
bit key with an array of length 64 would have at most five indirections. If users have a large data set, they
should choose a much larger length for the memory array, which further decreases the number of indirections
caused by going from memory array to memory array. The size of the main memory array should be equal
to the expected number of data elements that need to be stored — the data structure handles any further
expansion as necessary. If the position that a key hashes to is occupied, then a new memory array must be
created. When the new memory array is added to the table, then the current element is moved into it. By
allowing concurrent table expansion this structure is free from the overhead of an explicit resize that involves
copying the whole table, thus facilitating concurrent operations. Moreover, some related algorithms, such
as the implementations of Click [4] and that of Gao et. al [18], allow stacked resizes, which can lead to
starvation of one or more threads. By allowing concurrent table expansion our data structure is free from
global and/or stacked resizes. These resizes lead to performance loss due to contention as well as inefficient
use of memory — due to multiple sparsely-used, old tables.

5.3.2 Operations

This section provides a detailed description of the implementation of our hash table’s operations.
Definitions:

We begin by presenting a number of definitions that help us explain the key algorithms in further details.

(a) Key: a unique identifying value for a piece of data. In this paper we assume a 32-bit integer key
— we have also tested with multiword keys, such as the 20 bytes needed for SHA1. The hashed key is
expressed as a continuous list of 6-bit sequences e.g. A−B−C−D, where A is the first 6-bit sequence, B
is the next 6-bit sequence, and so on — these represent positions at various depths. These bits sequences
are isolated using logical shifts.

(b) Value: the information associated with a key.

17

(c) dataNode: holds the hashed value of a key and the value that is associated with that key.

(d) Memory array length: the constant length of the memory arrays.

(e) MaxDepth: is the maximum number of spineNodes that a thread must traverse before it reaches a posi-
tion where no collisions can occur. The maxDepth is equal to the ceiling of the length of the key in bits
divided by spine pow.

(f) spineNode: a memory array of fixed length, where the length is a power of two. The binary logarithm
of the memory array length is used to determine how many bits are necessary to determine the location
to place a dataNode in the spineNode. For example, in a memory array of length 64 = 26, we would
take 6 bits for each successive spineNode. A spineNode is recognized by a bit mark on the pointer to it.

(g) Memory array depth: the number of levels of spines to traverse where A is at level one, B is at level two,
C is at level three, and D is at level four; where A, B, C, and D refer to the same concept defined above.

(h) Independent operations: operations performed on different memory arrays are considered independent,
because no operation on one memory array affects an operation on any other memory array.

(i) Watching/Unwatching: we use a watchList that allows us to determine if it is safe to reuse dataNodes
that were removed from the hash table. The act of watching a hashed key is assigning to a threads
watchValue the hashed key that thread is operating on. The act of unwatching a hashed key is assigning
null to a threads watchValue. The importance of watching and unwatching hashed keys is described in
Section 5.3.9 where we discuss our memory management approach in more details.

(j) key match: a key is a match to another key when both keys contain the same bits in the same order. By
extension a key match also when the hashed value of a key is equal to the hashed value of another key.

(k) watchList: an array, where each thread has its own position that is used to store the hashed value of the
key that thread is operating on.

(l) watchValue: refers to a position in the watchList that belongs to a specific thread.

(m) failCount: a thread-local counter that is incremented whenever a CAS fails and the thread must retry its
attempt to update the table.

(n) maxFailCount: a user defined constant used to bound the maximum number of times that a thread
continues an operation after a CAS operation fails.

(o) local: the spineNode that an operation is currently working on.

(p) pos: the position on local that an operation is currently working on.

(q) markedDataNode: a pointer to a dataNode that has been bitmarked at the least significant bit (LSB) of
the pointer to the node.

(r) reuseSpineStack: an array of pointers, where each thread has its own position that is used to hold
pointers to spineNodes that the thread had allocated but failed to add to the table.

(s) reuseDataNodeArray: a two-dimensional array with T rows — the number of threads. Each row of
this array is known as a thread’s reuseArray. This array has ten columns — an experimentally derived
constant — that is used to store nodes for reuse.

18

(t) reuseDataNodeStack: an array of pointers, where each thread has its own position that is used to store a
linked list of nodes for reuse

(u) Valid Insert Location: a memory location whose contents are null or a key match.

User Defined Constants:

(a) spineSize: the length of the list in the spine data structure

(b) spinePow: the binary logarithm of the spineSize

(c) keySize: the length in bits of the key

Structure and Traversal of the Hash Table:
The hash table is composed of memory arrays of fixed length where each position points to either a dataN-
ode, a spineNode, or null. Traversing the table is done by taking the first set of bits from the hashed key
and examining the pointer at that position on the current memory array. If the pointer stores the address of
a spineNode, then the next set of bits are taken, and that position on the new memory array is examined.
Figure 1 illustrates this scenario.

Figure 1: An example of the structure of the hash table.

Figure 1 illustrates the two operations detailed below. Note that the spines have a length of eight; this
means that exactly three bits are needed to determine the position to store our dataNode on any spine.

If we would like to find the key 0-4-2, then we first need to hash the key. We assume that this operation
yields 2-1-2. We shift the hash to isolate the first three bits which equal the decimal value two. So, we
examine position two of the main memory array. We see that this position is a spine so we must determine
the position on this spine to examine. This is done in the same manner by shifting the original hash again to
isolate the next three bits of interest which have the decimal value of one. We examine position one of the
spine that is at position two of the main spine. This position contains a dataNode, so we compare its hash
to the hash of the key that we are searching for. The comparison reveals that the hashes are both equal to
2-1-2, so we return the value associated with this node.

If we would like to insert the key 1-2-3, then — in a similar manner to find — we must first hash the
key. We assume that this operation yields 5-6-1, and we examine position five of the main memory array.

19

This position already holds a dataNode, so we must expand the table by adding a spine here. A reference to
the dataNode that was already there must be present in our new spine before we swap that dataNode for the
spine. After a successful CAS we then insert our dataNode into the new spine.

5.3.3 Main Functions

In this section we provide a brief overview of the main operations implemented by our wait-free hash
table. Unless otherwise noted all line numbers refer to the current algorithm being discussed. Note that
a spineNode or a bit mark cannot exist at maxDepth, because no hash collisions can occur there. Unless
otherwise stated, all algorithms are bounded by a constant number of steps that is equal to the number of
lines in that algorithm.

5.3.4 Algorithm 1 - put (key, value, threadID)

The put function is used to insert a key-value pair into the hash table if the key is not already in the table,
and update the key’s value if the key is in the table. In order to promote a more even distribution of keys
a hash value is generated by reordering the bits in the key (line 1). The method for generating the hash
value is application-dependent and is left to the end-user of the data structure. The only restriction placed
on generating a hash value is that perfect hashing must be used, e.g. if the hash of A is equal to the hash
of B then A must equal B. A node is then allocated to hold the hash of the key and the key’s value (line
2). Next, the thread assigns the hash value, that it is operating on, to its position in the watchList (line 4),
see Section 5.3.9 for details on our strategy for memory use and reclamation. Finally, the put function calls
the putSub function (defined in Section 5.3.5 that places the key-value pair into the table (line 5). Before
returning, the put function assigns zero to its position in the watchList (Lines 6-7).

Algorithm 1 put key,value, threadID
1: hash=hashKey(key);
2: insertThis=allocateNode(value,hash,threadID); \\ see Algorithm 13 for allocateNode
3: local=head;
4: threadWatch[threadID]=hash;
5: putSub(head,insertThis,hash, threadID);
6: threadWatch[threadID]=0;
7: return ;

5.3.5 Algorithm 2 - putSub
(local, insertThis, hash, threadID)

The putSub function places the node to be inserted, insertThis, into the hash table in a bounded number
of steps. The operation examines a finite number of memory locations a finite number of times before
returning. The number of memory locations that we examine is limited by the maxDepth (see Section 5.3.2)
and the number of times each memory location is examined is limited by the maxFailCount, which is
discussed in detail later in this section. For a put operation to complete it must reach a memory location
that is a dataNode or null. When it does, it performs a CAS. There are two cases that cause the operation to
be considered completed: either the CAS succeeds; or it fails, but the thread can infer that another thread’s
operation immediately overwrote its put operation, this case is described in detail later. Otherwise, the
thread re-examines the current contents of the memory location, incrementing its failCount. If the the
maxFailCount is reached it forces an expansion on that position. The expansion provides a new spine that
the competing threads can use to insert into, with less contention. When the maxDepth is reached, regardless
of the result of CAS, the operation is completed. The reason that we still perform a CAS, in this case, is to

20

reuse memory. Whichever thread’s CAS succeeds reuses the dataNode that was replaced with a spineNode
during the expansion.

The putSub function first determines the position, p, where insertThis belongs, on the main spine
(line 2) – the same method, for determining the position of interest, is used in the get and remove functions.
The value p is determined by isolating the spinePow leftmost bits of the hashed value. For subsequent
positions, the hashed key is shifted to the right by spinePow bits. The thread then checks the contents of
local[pos] by performing an atomic read (line 8). Any modifications to the table that occurred before the
atomic read (line 8) are considered to have occurred before this operation.

If the value at p contains a pointer to a spineNode, signified by a bit mark on the second LSB of the
pointer, then the thread examines that spineNode (line 10).

If it contains a markedDataNode (line 12), then the thread calls expandTable (defined in Algorithm
12), on that position. When the expandTable operation returns, the contents of that position must be a
spineNode, which the thread then examines (line 13).

If the position that we called putSub on contains a null value, then the thread attempts to replace the
null value with a pointer to insertThis, using the atomic CAS operation. If the thread succeeds, then the
thread returns, after adjusting the element count (Lines 16-17). When a CAS operation fails, as a result
of a thread replacing null with a spineNode or placing a bit mark on null (which becomes a spineNode
after expandTable operation), the thread examines the new spine and tries again, to insert its node. If the
CAS fails as a result of another thread inserting a key match, then the thread returns because its operation
linearizes (see Sections 5.4, 5.5) such that its value was inserted, but was immediately replaced by the other
thread’s operation (line 29). If the CAS fails as a result of anything else, then the thread increments its
failCount, and re-examines the position (line 31).

If it contains a dataNode that is a key match, then the thread attempts to replace the current node with
the thread’s new node using the atomic CAS operation. If the thread succeeds, then the thread returns, after
freeing the node that was removed (line 35). If the thread fails, as a result of another thread bit marking
the node, then the thread calls expandTable on the position (line 46) and re-examines the new position on
the spineNode that has been read. If the current node is a spine, then the thread also re-examines the new
position on the spineNode that has been read (line 43). In all other cases, it can be reasoned that the outcome
of this thread’s operation occurred, and was immediately overwritten by a subsequent operation.

If the position that we called putSub on contains a dataNode with a different key, then the executing
thread calls expandTable (line 52). If the expansion is successful, then the thread re-examines the new
position on the spineNode that has been read and attempts to insert its node on the new spine. If the
expansion failed, then the thread increments its failCount and re-examines the contents at that position.

5.3.6 Algorithm 3 - get (key, threadID)

The get operation determines whether or not a key exists in the table. If it does, then the function returns
the key’s associated value. The get operation examines, at most, the same number of memory locations
that the put operation does, maxDepth; this constant bounds the possible number of steps that this operation
could attempt before successful completion.

To search for a key, a hash value is generated from the key and the thread assigns the hash to its watch-
Value (line 2). The position is extracted from the hash, the same process used in put, and the thread reads
the value held at the position (Lines 5-6). If the value read is a pointer to a spineNode, then the thread
examines a new position (line 9). If the the value read is a node whose hash value matches (line 11), then
the node’s value is returned; otherwise, null is returned. Before returning, the thread sets its watchValue to
null.

21

Algorithm 2 putSub local, insertT his,hash, threadID
1: for int r=0; r<keySize;r+=spinePow do
2: pos=hash&(spineSize-1);
3: hash=hash >> spinePow;
4: failCount=0;
5: while true do
6: if failCount >maxFailCount then
7: markedDataNode(local,pos);
8: node=getNodeRaw(local,pos);
9: if isSpine(node) then

10: local=node;
11: break;
12: else if isMarked(node) then
13: local=expandTable(threadID,local,pos,node,r);
14: break;
15: else if node==null then
16: if CAS(local[pos],null, insertThis) then
17: atomicAdd(¤tSize, 1);
18: return ;
19: else
20: node=getNodeRaw(local,pos);
21: if isSpine(node) then
22: local=node;
23: break;
24: else if isMarked(node) then
25: local=expandTable(threadID,local,pos,node,r);
26: break;
27: else if node->hash == insertThis->hash then
28: freeNodeStack(insertThis, threadID);
29: return ;
30: else
31: failCount++;
32: else
33: if node->hash == insertThis->hash then
34: if CAS(local[pos],node,newNode) then
35: freeNode(node, threadID);
36: return ;
37: else
38: node2=getNodeRaw(local,pos);
39: if node2==null then
40: freeNodeStack(insertThis, threadID);
41: return ;
42: else if isSpine(node2) then
43: local=node2;
44: break;
45: else if isMarked(node2) && unmark(node2)==node then
46: local=expandTable(threadID,local,pos,node,r);
47: break;
48: else
49: freeNodeStack(insertThis, threadID);
50: return ;
51: else
52: local=expandTable(threadID,local,pos,node,r);
53: if !isSpine(local) then
54: failCount++;
55: else
56: break;

Algorithm 3 get key, threadID
1: hash=hashKey(key);
2: threadWatch[threadID]=hash;
3: local=head;
4: for int right=0; right<keySize;right+=spinePow do
5: pos=hash&(spineSize-1);
6: hash=hash >> spinePow;
7: node= getNode(local,pos)
8: if isSpine(node) then
9: local=node;

10: else
11: if node->hash == hash then
12: value=node->value;
13: break;
14: threadWatch[threadID]=0;
15: return value;

22

5.3.7 Algorithm 4 - remove (key, threadID)

The remove operation determines if a key exists in the table and, if so, it removes the key from the table.
Note that the remove operation does not call get because get returns a value, not a position and a spine. The
remove operation examines at most the same constant number of memory locations that the put operation
does, maxDepth; this constant bounds the possible number of steps that this operation could attempt before
successful completion.

To search for a key, a hash value is generated from the key and the thread assigns the hash to its watch-
Value (line 2). The position is extracted from the hash, the same process used in put and get, and the thread
reads the value held at the position (Lines 5-6).

If the value read is a pointer to a spineNode, then the thread examines a new position (line 27). If it is null,
or a dataNode whose hash does not match (Lines 9, 25), the thread exits the for loop, clears its watchValue,
and returns false. If a marked node is at the current location, then the thread calls expandTable and re-
examines the new position on the spineNode that has been read (line 11).

If the value read was a dataNode whose hash matches, then the thread calls CAS on the position, replac-
ing the value that was read with null. If the operation succeeds, then the thread frees the node, decreases
the element count, clears its watchValue, and returns true (Lines 15-17, 28-29). If it fails, and the next
read reveals a bit-marked version of the same node or a spineNode, then the thread re-examines the new
position on the spineNode that has been read. Otherwise, the thread returns (line 23), and we reason that the
outcome of this thread’s operation occurred, but was immediately overwritten by a subsequent operation.
The subsequent operation could be a put or remove with the same key. If the subsequent operation was
a put, then we reason that we removed the key, but immediately after, another operation put the original
key. Similarly, if the subsequent operation was remove, then that remove occurred first and our operation
occurred immediately after.

Algorithm 4 remove key, threadID
1: hash=hashKey(key);
2: threadWatch[threadID]=hash;
3: local=head;
4: for int r=0; r<keySize;r+=spinePow do
5: pos=hash&(spineSize-1);
6: hash=hash >> spinePow;
7: node= getNodeRaw(local,pos)
8: if node == null then
9: break;

10: else if isMarked(node) then
11: local=expandTable(threadID, local,pos,node,r);
12: else if !isSpine(node) then
13: if node->hash == hash then
14: if res=CAS(local[pos], node, null) then
15: freeNode(node,threadID);
16: decrementSize();
17: break;
18: else
19: node2=getNodeRaw(local,pos);
20: if isMarked(node2)&&unmark(node2)==node then
21: local=expandTable(threadID,local,pos,node,r);
22: else
23: break;
24: else
25: break;
26: else
27: local=node;
28: threadWatch[threadID]=0;
29: return res;

23

5.3.8 Supporting Functions

This section briefly describes the supporting functions referenced in the pseudocode of the preceding al-
gorithms. A more in-depth discussion of these algorithms, along with corresponding pseudocode, can be
found in Appendix A.

(a) getNode: returns the pointer value, without bit marks, held at pos on local.

(b) getNodeRaw: returns the pointer value held at pos on local.

(c) inUse: returns true if the hash is present in another thread’s watchValue, otherwise, it returns false.

(d) markDataNode: atomically places a bit mark on the value held at pos on local.

(e) unmark: removes the bit marks from a pointer value

(f) isMarked: returns true if the pointer has a bit mark at its second LSB

(g) isSpine: returns true if the pointer has a bit mark at its LSB

(h) expandTable: adds a new spine when there is a hash collision or a high amount of contention on a
single memory location.

(i) allocateNode: this function returns a pointer to a node that can be used to store a key-value pair. If
there is a valid node in the thread’s reuseDataNodeStack, then the thread pops the node off the stack
and returns that a pointer to that node. If the stack is empty, then the thread checks its reuseArray for
nodes that were referenced but now are not. If one is found, then the thread uses that node; otherwise, it
calls the memory allocator.

(j) freeNode: this function determines if there is a possibility that the node is referenced. If there is the
potential, then it places the node into the reuseArray. If another node is removed from the vector,
then that node is moved to the reuseDataNodeStack, and the freed node takes its place. If there are
no empty positions in the reuseArray, then its size is increased by one — as opposed to the standard
practice of doubling in size, because the reuseArray rarely, if ever, increases in size in practice.

(k) freeNodeStack: takes a node that no thread can have a reference to, and pushes it onto the reuseDataNodeStack.

5.3.9 Memory Management

This section discusses the allocation and reuse of memory. When designing concurrent applications choos-
ing an appropriate memory management scheme is important, and the one chosen must be thread-safe. As
the standard memory allocator is blocking, special provisions must be made for lock-free and wait-free pro-
grams. Because of this we have made the design decision to allow the user to pick which memory allocation
scheme they use with our hash table — in our case, it must be wait-free. This adds the benefit of allowing
our hash table to use memory allocation schemes designed for specific hardware. In order for the hash table
to behave in a wait-free manner, the user must choose a memory allocator that can allocate memory in a
wait-free manner [52], [33]. We choose the Lockless Memory Allocator [33] because it uses a wait-free
queue for synchronization. We have taken care of freeing memory, and have done so in a way that reuses
memory in a thread-conscious manner that allows us to reduce overhead.

If a key is removed from the hash table by a successful CAS, then the dataNode holding the key is sent to
a recycling procedure. We do this because free and allocate are expensive operations, and we can reduce the
amount of times that our algorithm calls these functions by reusing memory. In addition to decreasing the
number of costly operations executed, recycling dataNodes allows us to control which memory locations
are used by the hash table, preventing the memory allocator from allocating a memory location that was

24

freed by one thread but is still referenced by another thread; which, would lead to inconsistency in the data
structure and the ABA2 [25] problem.

Our memory reclamation scheme relies on a watchList; which, is a global array of length T, the number
of threads. Each executing thread stores the hashed value of the key that the thread is operating on to its
watchValue, the position on the watchList that corresponds to the thread’s id. By restricting the reuse of a
memory address to the thread that recycled it, our reclamation scheme is able to operate without the need for
additional compare and swap operations. Since it has been shown that hash tables only need to increase in
size [23], once a memory array has been added to the table there is no need to watch it as it is not removed.

Each thread has a reuseDataNodeStack and a reuseDataNodeArray, nodes located on the stack are
not referenced by any other thread and can be reused without additional checks. To place a node on the stack,
the node must not be in use — this means that either the node is not in the table or no thread is operating
on the hashed value of the node’s key. Nodes that are in use are placed in a valid slot in the thread’s
reuseDataNodeArray. Nodes that are no longer in use can be moved from the reuseDataNodeArray to
the reuseDataNodeStack.

5.3.10 ABA Problem

The ABA problem is fundamental to all CAS-based systems [38]. To eliminate the ABA problem we have
developed a memory management scheme described in Section 5.3.9.

5.4 Semantics

The brief description of the hash table’s semantics, that is presented in the following sections, requires a
history of invocations and responses and defines a real-time order. An operation o1 is said to precede an
operation o2 in real-time order, if o2’s invocation occurs after o1’s response. Operations that do not have
real-time ordering are defined as concurrent [22].

5.5 Correctness

The main correctness requirement of the semantics of the hash table’s operations is linearizability [22]. A
concurrent operation is linearizable if it appears to execute instantaneously in some moment of time between
the time point tinv of its invocation and the time point tresp of its response. Firstly, this definition implies that
each concurrent history yields responses that are equivalent to the responses of some legal sequential history
for the same requests. Secondly, the order of the operations within the sequential history must be consistent
with the real-time order. Let us assume that there is an operation om ∈ Shash, where Shash is the set of all the
hash table’s operations. We assume that om can be executed concurrently with N other operations o1,o2...,oN

∈ Shash. We outline a proof, that operation om is linearizable, in the following sections.

5.6 Wait-Freedom

We prove the non-blocking property of our implementation by showing that out of n threads, all makes
progress. Since the progress of get operations are independent of other concurrent operations, get oper-
ations are wait-free. If multiple threads are performing conflicting CAS operations, then the single thread
that succeeds in completing the CAS operation makes progress by virtue of a successful insert. The fail-
ing threads also make progress in that their failure alerts them to one of three possible scenarios. The first
scenario occurs when it can be reasoned that the thread’s operation is no longer needed. This operation is
considered to have been completed, and then immediately overwritten. Following this line of reasoning it

2ABA is not an acronym

25

becomes clear that this operation does not actually need to be performed. The second possibility is that this
operation causes an expansion to occur. The final alternative outcome is that the thread simply retries its
operation. If this is the case then the thread only retries its operation a limitied number of times (equal to
maxFailCount) before it is forced to perform an expansion.

By virtue of one-to-one hashing, there are a bounded number of expansions that can occur,
∑
maxDepth−1
i=0 memoryArrayLengthi, because only one unique key can be inserted at a position of this depth. If

a thread fails a CAS operation at this stage, then it returns, its operation can be considered to have occurred,
then immediately overwritten.

5.6.1 Linearization Points

Linearization points are defined as the requirement that each method have at least a single point where the
method appears to take effect. In the presented design, the linearization points are the points when the thread
performs an atomic read or a CAS. The ordering of these atomic operations determines the order in which
these overlapping method calls occur in the derived sequential history. An atomic read does not modify the
state of the data structure, and the read must occur either before or after a write operation, not while a write
operation is occurring. This means that the value that is read must have at some point in time existed at the
specified memory address. Similarly, for a CAS operation to return true, it must have written a value to a
memory address. Once the value is written, then it is visible to all threads. If the CAS failed and a key match
now resides at the location, then this implies that the value was inserted and then immediately replaced. This
is intuitive if thought of as a linear program with two sequential insert operations that use the same key. If a
key match does not reside at the location then the thread expands the table at that point using CAS.

Threads Interleaving

Figure 2: An example of possible threads interleaving.

Figure 2 illustrates various scenarios of the interleaving of threads’ method calls and responses on the
hash table. Each line represents a single operation that a single thread is executing. The thread executes the
circles on its line from left to right. The circle with “R” in the middle refers to the thread reading the pointer
value at an arbitrary position on a memory array, and the circle with “W” refers to a CAS operation that uses
the value that was previously read to confirm that the value has not changed, and that it is therefore valid to
replace it with a new value.

The notation “Thread:Operation” is used. For example, the first circle would be described as A:R, and
the one to the left of it would be A:W. The thick black lines represent a method call by a thread and each
circle represents a serializable point of execution, and overlapping black lines represent method calls that
happen concurrently.

The gaps between circles and end points reflect arbitrary passages of time that are not based on the
lengths of the lines between them. Furthermore, circles on different lines that have overlapping black lines,

26

can be executed in any order, but each must still execute from left to right on its own line. For example, if
only threads A and C were considered one potential valid order of execution would be A:R then C:R then
C:W then finally A:W. However, A:W then A:R then B:R, then finally B:W, would not be a valid execution
since A:W must occur after A:R.

We assume that all threads are executing on the same memory array and that the initial state of the
position on the memory array is null. We also propose that no thread has priority and each CAS failure
implies that the thread inserted its element, and then that element was instantaneously replaced with a newer
element.

Serializability of Multiple put Operations:
Considering threads A through E from Figure 2 in this example, we propose an ordering, diagrammed below:

Figure 3: A potential ordering of multiple put operations.

Consider the following scenario wherein threads return values that are prefixed with “val .” Thread C
would pass its CAS operation, unlike A, which fails its CAS because of C’s write operation. Thread D’s
get operation would return “val C,” then thread B would replace “val C” with “val B,” and finally thread
E would return “val B.” A sequential history is shown in the timeline that follows in Figure 4. Regardless

Figure 4: A sequential history of the proposed ordering.

of the number of threads or the order of operations, a valid sequential history can be derived by using the
linearization points.

5.7 Linearizability

The following section discusses how we can derive a valid sequential history from a set of concurrent
operations of our hash table. The serialization of concurrent modifications to distinct memory locations is
considered trivial. The case where multiple get operations are called on the same memory address is also
considered trivial.

For put and remove operations that use atomic load and atomic CAS operations we define the initial
contents of the memory location as the value read by the respective atomic load of put or remove.

When considering several competing concurrent operations, one operation succeeds in the CAS. Each
operation can be ordered relative to the operation that succeeds. The operations that fail, all of those except
the succeeding operation, are considered to have taken place but had their changes immediately replaced
by that of the succeeding operation. Therefore, these failed operations are ordered before the succeeding
operation. All possible orderings of the failed operations with each other and the succeeding operation, lead
to the same result — the result of the succeeding operation.

A get operation that executes concurrently with a put or remove operation, on the same memory ad-
dress, returns the value placed there by the most recent CAS operation that occurred before the get’s atomic
read.

In order to make the illustration of the linearization of concurrent function calls as clear as possible, it
has been broken up into three tables — Table 1, Table 2, and Table 3 — detailing the possible values that
may be present at an arbitrary position in the hash table. Read operations performed on spine nodes are
omitted from the tables, because at no point does a position change from a spineNode to anything else.

27

The top left corner of each table contains the initial value held at the memory address that the threads
are operating on. The leftmost column contains one of the concurrent operations that is performed, this is
denoted by ‘o1’. The top row holds the action that the other operation performs, this is denoted by ‘o2’. The
cell at the intersection of a row and a column contains the point in o1’s code and the point in o2’s code where
o1’s actions and o2’s actions can be linearized.

The notation used in the table includes: ‘CAS(A,Vo,Vn)’ which denotes a compare- and-swap on a
memory location A, comparing the current value with the old value, Vo, replacing the current value with
the new value, Vn, if Vo equals the current value; ‘S’ which refers to adding a spineNode as opposed to
a dataNode; ‘Read(A),’ which is an atomic read on memory address A; and ‘Mark(A),’ which refers to
performing the atomic, bit-wise ‘and’ operation. Furthermore, the phrase “new phase” is used to describe
the case wherein an operation fails its CAS. In this scenario, the thread determines — as described in
Section 5.6 — if it still needs to perform its operation; if so, it increases its failCount and retries.

Below we provide a detailed explanation of the linearization points shown in Table 1, Table 2, and
Table 3.

Table 1: Linearization of concurrent operations on a position that is initially null.
Initial Value:

o2: get(k) o2: put(k,Vn2) o2: remove(k) o2: put(j,Vn2) o2:mark(A)
Vo=null

o1:put(k,Vn1)
o1: CAS(A,Vo,Vn1) o1: CAS(A,Vo,Vn1) o1: CAS (A,Vo,Vn1) o1: CAS(A,Vo,Vn1) o1: CAS(A,Vo,Vn1)

o2: Read(A) o2: CAS(A,Vo,Vn2) o2: Read(A) o2: CAS(A,Vo,Vn2) o2: Mark(A)
1 2 3 4 5

(1) If o1 completes its CAS before o2 completes its atomic read, then o1 occurred before o2. The result
of this is that o2 returns Vn1 as opposed to the initial value. If o2 completes its atomic read before o1
completes its CAS, then o2 occurred before o1. The result of this is that o2 returns the initial value, then
o1 updates the key.

(2) If o1 completes its CAS before o2 completes its CAS, then o2 fails its CAS operation. However, it is
considered that o2 occurs before o1, and that o1 immediately overwrote it. If o2 completes its CAS
before o1 completes its CAS, then o1 fails its CAS operation. However, it is considered that o1 occurs
before o2, and that o2 immediately overwrote it.

(3) If o1 completes its CAS before o2 completes its atomic read, then o1 occurred before o2. The result
of this is that o1 inserted its value into the hash table, then o2 read the value and proceeds to remove
it by invoking a CAS operation. If o2 completes its atomic read before o1 completes its CAS, then o2
occurred before o1. The result of this is that o2 attempted to remove a key that wasn’t in the table and
returned false, then o1 inserted that key.

(4) If o1 completes its CAS before o2 completes its CAS, then o1 occurred before o2. The result of this is
that o1 inserted its value into the hash table, then o2, upon failing the CAS, performs an atomic read, and
enters a new phase. If o2 completes its CAS before o1 completes its CAS, then o2 occurred before o1.
The result of this is that o2 inserted its value into the hash table, then o1, upon failing the CAS, performs
an atomic read, and enters a new phase. See Table 2 for more details.

(5) If o1 completes its CAS before o2 completes its atomic mark, then o1 occurred then o2 occursred. The
result of this is that o1 was inserted then it was marked. If o2 completes its atomic mark before o1
completes its CAS, then o2 occurred before o1. The result of this is that o2 marked the node, causing o1
to fail the CAS. Both operations upon reading a marked node calls expandTable.

28

Table 2: Linearization of concurrent operations on a position that is initially a dataNode.
Initial Value:

o2: get(k) o2: put(k,Vn2) o2: remove(k) o2: put(j,Vn2) o2:mark(A)
dataNode with
Key k, Value Z

o1:put(k,Vn1)
o1: CAS(A,Vo,Vn1) o1: CAS(A,Vo,Vn1) o1: CAS (A,Vo,Vn1) o1: CAS(A,Vo,Vn1) o1: CAS(A,Vo,Vn1)

o2: Read(A) o2: CAS(A,Vo,Vn2) o2: CAS(A,Vo,null) o2: CAS(A,Vo,Sn2) o2: Mark (A)

1 2 6 7 5

o1: remove(k)
o1: CAS(A,Vo,null) o1: CAS(A,Vo,null) o1: CAS (A,Vo,null) o1: CAS(A,Vo,null) o1: CAS(A,Vo,null)

o2: Read(A) o2: CAS(A,Vo,Vn2) o2: CAS(A,Vo,null) o2: CAS(A,Vo,Sn2) o2: Mark (A)

8 9 10 11 12

(6) If o1 completes its CAS before o2, then o1 occurred before o2. The result of this is that o1’s value was
inserted, then o2, upon failing the CAS, performs an atomic read then remove the key. If o2 completes
its CAS before o1, then o2 occurred before o1. The result of this is that o2 removed the node, then o1,
upon failing the CAS, attempts to insert the node again.

(7) If o1 completes its CAS before o2, then o1 occurred before o2. The result of this is that o1’s value was
inserted, then o2, upon failing the CAS, performs an atomic read then call expandTable again. If o2
completes its CAS before o1, then o2 occurred before o1. The result of this is that o2 expanded the table,
then o1, upon failing the CAS, attempts to replace the node again.

(8) If o1 completes its CAS before o2 completes its atomic read, then o1 occurred before o2. The result of
this is that o1 has removed the node, then o2 has return null because the key was no longer in the table. If
o2 completes its atomic read before o1 completes its CAS, then o2 occurred before o1. The result of this
is that o2 has returned the current value associated with key k, then o1 has removed the node containing
key k.

(9) If o1 completes its CAS before o2 completes its CAS, then o2 occurred before o1. The result of this
is that o2 replaced the current node with a new node, then o1 immediately removed that node from the
table. If o2 completes its CAS before o1 completes its CAS, then o1 occurred before o2. The result of
this is that o1 removed the node containing the key k, but o2 immediately inserted a node containing key
k.

(10) If o1 completes its CAS before o2 completes its CAS, then o1 occurred before o2. The result of this is
that o1 removed the node containing key k from the table then o2 failed to remove the node, causing o2
to return. If o2 completes its CAS before o1 completes its CAS, then o2 has occurred before o1. The
result of this is that o1 removed the node containing key k from the table then o1 failed to remove the
node, causing o1 to return.

(11) If o1 completes its CAS before o2 completes its CAS, then o1 occurred before o2. The result of this
is that o1 removed the node containing key k, and o2 failed to expand the table because it failed CAS
a spine in. o2 enters a new phase where it reads a null value and acts accordingly. If o2 completes its
CAS before o1completes its CAS, then o2 has occurred before o1. The result of this is that o2 expanded
the table causing o2 fail its CAS. Both o1 and o2 enter a new phase where they read the current value at
memory address A and act accordingly.

(12) If o1 completes its CAS before o2 completes its marking of address A, then o1 has occured before o2.
The result of this is that o1 removed the node at A setting the value of that position to null, then o2
marked the null value (null is 0x0, and a mark would produce 0x1). o2 then enters a new phase where it
calls expandTable at memory address A. If o2 completes its marking of address A, before o1 completes
its CAS, then o2 has caused o1 to fail its CAS. o1 then performs an atomic read on A, which returns

29

either a marked node or a spineNode, and then enter a new phase. o2 also enters a new phase where it
calls expandTable at memory address A.

Table 3: Linearization of concurrent operations on a position that is initially a markedDataNode.

Initial Value:
o2: get(k)

o2: put(k,Vn2)
o2:mark(A)markedDataNode with Key k, Value Z o2: remove(k)

o2: put(j,Vn2)

o1: put(k,Vn1) o1: CAS(A,Vo,Sn1) o1: CAS(A,Vo,Sn1) o1: CAS(A,Vo,Sn1)
o1: remove(k) o2: Read(A) o2: CAS(A,Vo,Sn2) o2: Mark(A)

13 14 15

(13) If o1 completes its CAS before o2 completes its atomic read, then o1 has completed its expandTable
call before o2, as a result o2 read a spineNode and enter a new phase and o1 also enters a new phase,
where it attempts to complete its operation the spineNode it just inserted. If o2 completes its atomic read
before o1 completes its CAS, then o2 occurred before o1 completes its expandTable operation. As a
result o1 returns the current value, and o1 enters a new phase, where it attempts to complete its operation
the spine node it just inserted.

(14) If o1 or o2 completes its CAS operation then the other fails their CAS operation, the failing thread
performs an atomic read which would return a spineNode pointer. Both operations enters a new phase
based on this pointer.

(15) If o1 completes its CAS before o2 completes its atomic mark operation, then o2 has completed its
expansion operation, the the result of this is that o2 marks the spineNode, then both operations enters
a new phase based on this spineNode. A mark on a spineNode point has no affect because of the way
the algorithm interprets spineNode pointers. If o2 completes its mark of address A before o1 completes
its CAS then o1 fails its CAS and enter a new phase where it reads the current value. Any operation
reading of a marked node calls expandTable, then enter a new phase.

5.8 Performance Evaluation

We tested several algorithms against our wait-free implementation (Wait-Free). As there are no other wait-
free algorithms we chose several lock-free algorithms as well as some standard locking algorithms. The
lock-free algorithms that we compare against are Split-Ordered Lists (Split Lists) [46] and Michael’s lock-
free hash table (Michael) [37]. The standard locking solutions include two data structures with global locks,
these are the standard template library hash table (STL) [28] and the Boost unordered map (Boost) [1].
We also compare against the industry standard — the best available locking solution — Intel’s Threading
Building Blocks concurrent hash map (TBB) [27].

All tests were run on an HP Z600 workstation with an Intel X5670 hex-core processor running at 2.93
GHz and six gigabytes of RAM that is running 64-bit Ubuntu Linux version 11.04. The testing variables
for the graph presented below include creating a hash table that has an initial capacity of 218 = 262,144
elements. This number of elements is chosen because it is the closest power of two to five percent of
the expected number of inserted elements. This table was filled to one percent of its capacity and then
50,000,000 operations were performed. The Boost random number generator was used to avoid the locking
version in the standard C++ implementation. Each thread then used this random number generator to select

30

what type of operation it should perform, where each operation was assigned an arbitrary yet consistent
opcode. We tested a variety of scenarios and our hash table consistently outperforms the rest with a variety
of distributions of the executed operations. Here we show just one scenario from our evaluation tests. We
selected a distribution of operations that contained 88% get, 10% put, and 2% remove operations. This
distribution was selected because it was reported to be typical for use of this data structure [46]. We have
executed a large variety of scenarios and observed results that indicate that our algorithm scales well with
the number of threads.

A graph, Figure 5, was produced to illustrate the performance of these algorithms under these conditions.
When considering the graph note the logarithmic scale and the fact that a higher number of clock ticks
signifies lower performance. Also, the STL and Boost tables scale similarly and the lines that depict their
performance overlap almost exactly. Our implementation is represented by the line at the bottom of the
graph, using the fewest clock ticks, and showing the best performance of all algorithms considered, in the
aforementioned environment. Similar results can be observed for up to 128 threads in Figure 6. We present

Figure 5: The average number of clock ticks, per thread, used by each algorithm when running the specified total
number of threads.

another performance graph that was tested in the same environment — same machine and same variables
— as the previously presented results with only the number of threads changed.

5.9 Relevance

We believe that a lock- and wait-free hash table allows significant performance increases across any parallel
architecture. Our design of a wait-free hash table is critical for a large number of applications, such as:
computational biology[35]; simulation [42], [57]; discrete event simulation [30]; and search-indexing [59].
The application and availability of a wait-free design for a hash table data structure helps improve the
performance and scalability of such existing and future applications. Specifically, our data structure could
be used in biological research where both search and computation can involve retrieving and processing vast
libraries of information [54]. The same data is also often accessed by different users with varied goals and
it would be ideal if their work did not interfere with that of another.

6 Conclusions and Future Work

We presented the first wait-free hash table implementation. Our implementation provides the progress guar-
antee of wait-freedom with a performance improvement over the best available locking solution and all

31

Figure 6: The average number of clock ticks, per thread, used by each algorithm when running the specified total
number of threads.

tested lock-free solutions. We discussed the relevance of this work and its applicability in the real-world.
We are currently developing a project that applies advanced program analysis provided by POET [58] to

automaticallly replace TBB’s concurrent hash map with our wait-free hash table in real-world applications
and a number of benchmarks such as PARSEC [3]. Furthermore, we plan to perform a formal validation
using a model checker, such as SPIN to exhaustively test all possible thread interleavings [56].

References

[1] Boost c++ libraries. http://www.boost.org/, January 2012.

[2] T.-H. Ahn, D. Dechev, H. Lin, H. Adalsteinsson, and C. Janssen. Evaluating Performance Optimiza-
tions of Large-Scale Genomic Sequence Search Applications Using SST/macro. In Proceedings of the
1st International Conference on Simulation and Modeling Methodologies, Technologies and Applica-
tions, SIMULTECH 2011, 2011.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, January 2011.

[4] Cliff Click. A lock-free hash table (http://www.azulsystems.com/events/javaone_2007/
2007_LockFreeHash.pdf). Retrieved 12/12/2011.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[6] A. Dakshinamurthy and D. Dechev. Automatic Extraction of SST/macro Skeleton Models. In Pro-
ceedings of the 25th ACM International Conference on Supercomputing, 2011.

[7] Damian Dechev. A Concurrency and Time Centered Framework for Autonomous Space Systems. LAP
LAMBERT Academic Publishing, August 2010.

[8] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free Dynamically Resizable Arrays. In A. A.
Shvartsman, editor, OPODIS, volume 4305 of Lecture Notes in Computer Science, pages 142–156.
Springer, 2006.

32

[9] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dynamically resizable arrays. In M. Shvarts-
man, editor, Principles of Distributed Systems, volume 4305 of Lecture Notes in Computer Science,
pages 142–156. Springer Berlin / Heidelberg, 2006.

[10] D. Dechev, N. Rouquette, P. Pirkelbauer, and B. Stroustrup. Programming and Validation Techniques
for Reliable Goal-driven Autonomic Software, Book Chapter in Autonomic Communication. Springer,
Reading, Massachusetts, 2009.

[11] D. Dechev and B. Stroustrup. Reliable and Efficient Concurrent Synchronization for Embedded Real-
Time Software. In Proceedings of 3rd IEEE International Conference on Space Mission Challenges
for Information Technology (IEEE SMC-IT 2009), 2009.

[12] D. Dechev and B. Stroustrup. Scalable Nonblocking Concurrent Objects for Mission Critical Code. In
OOPSLA ’09: Proceedings of the ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, 2009.

[13] D. Dechev and B. Stroustrup. Scalable nonblocking concurrent objects for mission critical code. In
Proceeding of the 24th ACM SIGPLAN conference companion on Object oriented programming sys-
tems languages and applications, OOPSLA ’09, pages 597–612, New York, NY, USA, 2009. ACM.

[14] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing - a fast access method for
dynamic files. ACM Trans. Database Syst., 4:315–344, September 1979.

[15] S. Feldman, P. LaBorde, and D. Dechev. Facilitating Efficient Parallelization of Information Stor-
age and Retrieval on Large Data Sets. In Proceedings of the 25th ACM International Conference on
Supercomputing, 2011.

[16] K. Fraser. Practical lock-freedom. In Computer Laboratory, Cambridge Univ, 2004.

[17] K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans. Comput. Syst., 25(2):5,
2007.

[18] H. Gao, J. F. Groote, and W. H. Hesselink. Almost wait-free resizable hashtable. In IPDPS, 2004.

[19] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing, DISC ’01, pages 300–314, London, UK, 2001.
Springer- Verlag.

[20] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. J. Parallel Distrib.
Comput., 70:1–12, January 2010.

[21] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory management support for
dynamic-sized data structures. ACM Trans. Comput. Syst., 23:146–196, May 2005.

[22] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, March 2008.

[23] M. Hsu and W.-P. Yang. Concurrent operations in extendible hashing. In Proceedings of the 12th
International Conference on Very Large Data Bases, VLDB ’86, pages 241–247, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc.

[24] I. Gartner. Grand Challenges for IT (http://www.gartner.com/it/page.jsp?id=643117). Retrieved
12/11/2011.

[25] IBM Corporation. System/370 Principles of Operation. 1983.

33

[26] Intel. IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
Santa Clara, CA, 2004.

[27] Intel Corporation. Reference for Intel Threading Building Blocks
(http://threadingbuildingblocks.org/). Retrieved 12/12/2011.

[28] ISO/IEC 14882 Standard for Programming Language C++. Programming languages C++. American
National Standards Institute, September 2011.

[29] C. L. Janssen, H. Adalsteinsson, S. Cranford, D. Dechev, J. P. Kenny, N. Lemaster, J. Mayo, A. Pinar,
and D. A. Evensky. Exascale Co-design with Sandia’s Structural Simulation Toolkit (SST) Coarse-
grained Components. In In Proceedings of 1st International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems (PMBS 2010), Supercomput-
ing (SC 2010), 2010.

[30] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny. Using simulation to design extremescale applications
and architectures: programming model exploration. SIGMETRICS Perform. Eval. Rev., 38:4–8, March
2011.

[31] J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Property models: from incidental al-
gorithms to reusable components. In GPCE ’08: Proceedings of the 7th international conference
on Generative programming and component engineering, pages 89–98, New York, NY, USA, 2008.
ACM.

[32] L. Lamport. How to make a multiprocessor computer that correctly executes programs, IEEE Trans.
Comput., September 1979.

[33] Lockless Inc. Technical specifications for the lockless inc. memory allocator. http://locklessinc.
com/technical_allocator.shtml, December 2011.

[34] M. R. Lowry. Software Construction and Analysis Tools for Future Space Missions. In J.-P. Katoen and
P. Stevens, editors, TACAS, volume 2280 of Lecture Notes in Computer Science, pages 1–19. Springer,
2002.

[35] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel counting of occurrences
of k-mers. Bioinformatics, 27(6):764–770, 2011.

[36] M. Michael. CAS-Based Lock-Free Algorithm for Shared Deques. In Euro-Par 2003: The Ninth
Euro-Par Conference on Parallel Processing, LNCS volume 2790, pages 651–660, 2003.

[37] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In SPAA ’02:
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures, pages
73–82, New York, NY, USA, 2002. ACM Press.

[38] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst., 15:491–504, June 2004.

[39] Microsoft. System.collections.concurrent namespace. http://msdn.microsoft.com/en-us/
library/system.collections.concurrent.aspx, 2011. .NET Framework 4.

[40] M. Moir and N. Shavit. Handbook of Data Structures and Applications, chapter Concurrent Data
Structures, pages 47–1–47–30. Chapman and Hall/CRC Press, 2007.

34

[41] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded asynchronous graph traversal for in-memory
and semi-external memory. In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC,
USA, 2010. IEEE Computer Society.

[42] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of parallelism in algorithms. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI ’11, pages 12–25, New York, NY, USA, 2011. ACM.

[43] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and system-level concrete execution for testing nasa soft-
ware. In Proceedings of the 2008 international symposium on Software testing and analysis, ISSTA
’08, pages 15–26, New York, NY, USA, 2008. ACM.

[44] Sandia Nationional Labs. SST/macro (http://sst.sandia.gov/using sstmacro.html). Retrieved
10/22/2011.

[45] Sandia Nationional Labs. Mantevo (https://software.sandia.gov/mantevo). Retrieved 10/22/2011.

[46] O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash tables. In PODC ’03: Proceed-
ings of the twenty-second annual symposium on Principles of distributed computing, pages 102–111,
New York, NY, USA, 2003. ACM Press.

[47] N. Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84, 2011.

[48] N. Shavit. Data structures in the multicore age. Commun. ACM, 54:76–84, Mar. 2011.

[49] A. Stepanov and P. McJones. Elements of Programming. Addison-Wesley Professional, 1st edition,
2009.

[50] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[51] B. Stroustrup. About C++ and few more things. In The Software Developer’s Journal, 2011.

[52] H. Sundell. Wait-free reference counting and memory management. In Parallel and Distributed Pro-
cessing Symposium, 2005. Proceedings. 19th IEEE International, page 24b, april 2005.

[53] H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J. Parallel Distrib. Comput.,
68:1008–1020, July 2008.

[54] O. Trelles, P. Prins, M. Snir, and R. C. Jansen. Big data, but are we ready? Nature Reviews Genetics,
12(3):224–224, March 2011.

[55] P. Tsigas and Y. Zhang. The non-blocking programming paradigm in large scale scientific computa-
tions. In PPAM, pages 1114–1124, 2003.

[56] M. Vechev, E. Yahav, and G. Yorsh. Experience with model checking linearizability. In C. Pasareanu,
editor, Model Checking Software, volume 5578 of Lecture Notes in Computer Science, pages 261–278.
Springer Berlin / Heidelberg, 2009.

35

[57] J. R. Williams, D. Holmes, and P. Tilke. Parallel computation particle methods for multi-phase fluid
flow with application oil reservoir characterization. In E. Oate and R. Owen, editors, Particle-Based
Methods, volume 25 of Computational Methods in Applied Sciences, pages 113–134. Springer Nether-
lands, 2011.

[58] Q. Yi. Poet: A scripting language for applying parameterized source-to-source program transforma-
tions. Software: Practice and Experience, 2011.

[59] Y. Zhao, H. Tang, and Y. Ye. Rapsearch2: A fast and memory-efficient protein similarity search tool
for next generation sequencing data. Bioinformatics, 2011.

A Supporting Functions

In this section we briefly introduce several supporting functions that are important for the effective wait-free
implementation of the hash table’s main operations.

A.1 Algorithm 5 - getNode (local, pos)

This is a wrapper function for atomic read operation and it returns the memory address of the node stored at
pos on local’s memory array. The function also clears any bit mark that another thread may have placed (line
1). The get function is the only function that calls getNode, and since the get function does not perform
any table modifications, it ignores bit marks; which are used by threads that modify the table.

Algorithm 5 getNode local, pos
1: return (local[pos]) AND NOT 2;

A.2 Algorithm 6 - getNodeRaw (local, pos)

This functions is similar to getNode. It is a wrapper function for atomic read operation and it returns the
memory address at pos on local’s memory array. The difference is that this function does not ignore bit
marks.

Algorithm 6 getNodeRaw local, pos
1: return (local[pos]);

A.3 Algorithm 7 - inUse (hash, threadID)

This function takes a hash value and searches the watchList for a match. If a match is found, then that
implies that a thread is performing an operation using that hash value. If a match is found then the function
returns true, otherwise, it returns false. Please see the section titled “Memory Management” for more
details on how this function is used.

Algorithm 7 inUse hash, threadID
1: for int i=0; i<numThreads;i++ do
2: if hash==threadWatch[i] AND threadID! = i then
3: return true;
4: return false;

36

A.4 Algorithm 8 - markDataNode (local, pos)

This function is a wrapper function for atomic or operation, it is used to atomically bit-mark the value stored
at pos in the array local.

Algorithm 8 markedDataNode local, pos
1: AtomicOR(local[pos],2);

A.5 Algorithm 9 - unmark (node)

This function takes a pointer value, and returns the unmarked pointer value.

Algorithm 9 unmark node
1: return ((unsigned long)node AND NOT 2);

A.6 Algorithm 10 - isMarked (node)

This function returns true or false depending on whether or not it is a markedDataNode.

Algorithm 10 isMarked node
1: return ((unsigned long)node AND 2);

A.7 Algorithm 11 - isSpine (node)

This function returns true or false depending on whether or not it is a spineNode.

A.8 Algorithm 12 - expandTable
(threadID, local, pos, node, right)

This function is used to expand the table when there is a hash collision or a high amount of contention on
a single memory location. If the current value at pos in local is marked, it is guaranteed that when the
function returns, the contents at pos in local is a spineNode. This function simply returns the state after
a single CAS operation; therefore, it is bounded by the fifteen steps enumerated in the algorithm as there
are no loops. First, the function calculates the position that the current node belongs in on the new spine
(line 1). Then, it checks to make sure that the node still resides at the position, returning the current value
if it does not (Lines 2-3). There is no reason to attempt a CAS if the thread knows that it fails, because
the current value no longer equals the expected value. Then, the thread checks to see if it has a spineNode
in its reuseSpineStack, if not, it allocates a new spineNode (Lines 4-8); otherwise, it uses the spineNode
from its stack. After inserting the node, into the spineNode’s memory array, the thread attempts to replace
the current node with the spineNode (line 10). If it succeeds, it returns the spine. Otherwise, it returns the
current node, after placing the spine in its reuseSpineStack.

A.9 Algorithm 13 - allocateNode
(value, hash, threadID)

This function returns a pointer to a node that can be used to store a key-value pair. First, the thread checks
its reuseDataNodeStack to see if it has any nodes that it can reuse, if it does, it pops the top element (Lines

37

Algorithm 11 isSpine node
1: return ((unsigned long)p & 1);

Algorithm 12 expandTable threadID, local, pos,node,right
1: ipos=(node->hash >> (right + spinePow))&(spineSize-1);
2: if local[pos]! = node then
3: return local[pos];
4: if reuseSpineStack[threadID]==null then
5: spine=malloc(sizeof(Spine));
6: else
7: spine=reuseSpineStack[threadID];
8: reuseSpineStack[threadID]=null;
9: spine[ipos]=node;

10: if CAS(local[pos]), node, spine) then
11: return spine;
12: else
13: spine[ipos]=null;
14: reuseSpineStack[threadID]=spine;
15: return getNodeRaw(local,pos);

1-3). Otherwise, it checks its reuseDataNodeArray for any nodes that were in use, but are no longer in use
(Lines 5-9). If no node is available for reuse, then the thread allocates a new node (line 11). Then, the hash
and the value are assigned to the node and a pointer to the node is returned (Lines 12-14). The bound of this
algorithm is determined by the memory allocator which is outside of the scope of this algorithm.

Algorithm 13 allocateNode value,hash,T/∗ threadID∗/
1: node=ThreadPoolStack[T];
2: if node!=null then
3: ThreadPoolStack[T]=node->next;
4: else
5: for int i=1; i < T hreadPoolVector[T][0]; i++ do
6: node=ThreadPoolVector[T][i];
7: if node! = null && !inUse(node->hash,T) then
8: ThreadPoolVector[T][i]=null;
9: break;

10: if node==null then
11: node=malloc(sizeof(DataNode));
12: node->value=value;
13: node->hash=hash;
14: return node;

A.10 Algorithm 14 - freeNode
(value, hash, threadID)

This function is used to recycle a node that is removed from the table, so that it can be reused later. First,
it checks to see if any thread is performing an operation with the same hash as the node that was removed,
if not, then the node can be placed on the dataNode stack for immediate reuse (Lines 1-4). Otherwise,
the thread searches its own reuseDataNodeArray for a slot to place the node, if it comes across an empty
position, it places the node there (Lines 8-9). If it comes across a position with a node that is not in use, then
it places that node into its reuseDataNodeStack and place the original node in that position (Lines 10-13).
In the rare case that no valid slot can be found, the thread reallocates the array and place the node in the last
position (Lines 17-19). This function is bounded by T + S where T is the number of threads and S is the size
of the reuseDataNodeArray; this constant bounds the possible number of steps that this operation could
attempt before successful completion.

38

Algorithm 14 freeNode node,T/∗ threadID∗/
1: if !inUse(node,T) then
2: node->next=ThreadPoolStack[T];
3: ThreadPoolStack[T]=node;
4: return ;
5: else
6: size=ThreadPoolVector[T][0][
7: for int i=1; i < size; i++ do
8: D=ThreadPoolVector[T][i];
9: if D==null then

10: ThreadPoolVector[T][i]=node;
11: return ;
12: else if !inUse(D,threadID) then
13: D->next=ThreadPoolStack[T];
14: ThreadPoolStack[T]=D;
15: ThreadPoolVector[T][i]=node;
16: return ;
17: ThreadPoolVector[T]=realloc(ThreadPoolVector[T],size+1);
18: ThreadPoolVector[T][0]=size+1;
19: ThreadPoolVector[T][size]=node;
20: return ;

A.11 Algorithm 15 - freeNodeStack
(node, threadID)

This function is used to recycle a node that was never in the table, so that it can be reused later. Since this
node was never in the table, it can be placed in the reuseDataNodeStack without concern, because no
other thread could possibly hold a reference to it. This function simply returns the state after a single CAS
operation; therefore, it is bounded by the two steps enumerated in the algorithm as there are no loops.

Algorithm 15 freeNodeStack node, threadID
1: node->next=ThreadPoolStack[threadID];
2: ThreadPoolStack[threadID]=node;
3: return ;

39

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)

