
Closures for coarse-grid simulation of fluidized gas-particle 

flows 
 

 

Final technical report 

 

 

 

Report Period:    Start date:  January 1, 2006 

     End date: June 30, 2010 

Principal Author:    Sankaran Sundaresan 

     Department of Chemical Engineering 

     Princeton University, Princeton, NJ 08544 

Report issued on:    July, 2010 

Submitting organization:  Princeton University, Princeton, NJ 08544 

 
DOE Topic/Area of Interest:  11 – Coarse-grid modeling 

     DE-PS26-05NT42472-11 

DOE-UCR Grant No:   DE-FG26-06NT42737 

  

i 
 



Disclaimer 
 This report was prepared as an account of work sponsored by an agency of the 

United States Government. Neither the United States Government nor any agency 

thereof, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government 

or any agency thereof. 
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Abstract 

Context: Gas-particle flows in fluidized beds and riser reactors are inherently unstable, 

and they manifest fluctuations over a wide range of length and time scales. Two-fluid 

models for such flows reveal unstable modes whose length scale is as small as ten 

particle diameters. Yet, because of limited computational resources, gas-particle flows in 

large fluidized beds are invariably simulated by solving discretized versions of the two-

fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not 

resolve the small-scale spatial structures which are known to affect the macroscale flow 

structures both qualitatively and quantitatively. Thus there is a need to develop filtered 

two-fluid models which are suitable for coarse-grid simulations and capturing the effect 

of the small-scale structures through closures in terms of the filtered variables. 

Project Overview: The overall objective of the project is to develop validated closures 

for filtered two-fluid models for gas-particle flows, with the transport gasifier as a 

primary, motivating example. In this project, highly resolved three-dimensional 

simulations of a kinetic theory based two-fluid model for gas-particle flows have been 

performed and the statistical information on structures in the 100-1000 particle diameters 

length scale has been extracted. Based on these results, closures for filtered two-fluid 

models have been constructed. The filtered model equations and closures have been 

validated against experimental data and the results obtained in highly resolved 

simulations of gas-particle flows. 

iii 
 



Broad Impact: The proposed project enables more accurate simulations of not only the 

transport gasifier, but also many other non-reacting and reacting gas-particle flows in a 

variety of chemical reactors. The results of this study are in the form of closures which 

can readily be incorporated into existing multi-phase flow codes such as MFIX 

(www.mfix.org). Therefore, the benefits of this study can be realized quickly. The 

training provided by this project has prepared a PhD student to enter research and 

development careers in DOE laboratories or chemicals/energy-related industries. 
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Project Milestones 

Milestone #  Description Status 
1  Demonstrate capability to gather region‐averaged statistics from 3‐D 

simulations of fluidization of uniformly sized particles in periodic 
domains 

achieved 

2  Complete the "sensitivity" runs and expose the robustness of the 
region‐averaged statistics against small changes in secondary model 
parameters. 

achieved 

3  Complete three 3‐D simulations and extract filtered (i.e. region‐
averaged) quantities for various filter sizes.  

achieved 

4  Complete two more highly resolved simulations. achieved 
5  Complete all the highly resolved simulations for the case of uniformly 

sized particles. 
achieved 

6  Complete the simulations of the filtered equations for at least two 
different grid resolutions.  

achieved 

7  Complete changes in the statistics gathering program to allow for the 
presence of the side walls.  

achieved 

8  Propose effective boundary conditions for the filtered equations at the 
side walls.  

achieved 

9  For the case of uniformly sized particles, complete validation of the 
filtered two‐fluid model against data from highly resolved simulations.  

achieved 

10  Complete at least one validation of the filtered two‐fluid model against 
experimental data. 

achieved 

 

Project Status: We have met the project milestones listed above.  In this report, we will present 

the results of this project in four main sections: 

1. Simulations in periodic domains to extract size dependent closures 

2. Wall corrections and verification of the filtered model 

3. General closure relations 

4. Validation simulations 

The details are given below. 
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1. Simulations in periodic domains to extract filter size dependent 
closures  

                

(Note:  In what follows in this section, we present only an overview of the problem 

addressed and highlight the main findings.  A detailed report that contains all the relevant 

figures, tables and equations can be found in Appendix A, which is a journal manuscript 

prepared as a part of this project.)  Chemical reactors that take the form of fluidized beds and 

circulating fluidized beds are widely used in energy-related and chemical process industries.1  

Gas-particle flows in these devices are inherently unstable; they manifest fluctuations over a 

wide range of length and time scales.  Analysis of the performance of large scale fluidized bed 

processes through computational simulations of hydrodynamics and energy/species transport is 

becoming increasingly common. In the present study, we are concerned with the development of 

hydrodynamic models which are useful for simulation of gas-particle flows in large scale 

fluidized processes. 

The number of particles present in most gas-particle flow systems is large, rendering 

detailed description of the motion of all the particles and fluid elements impractical.  Hence, two-

fluid model equations2-4 are commonly employed to probe the flow characteristics, and species 

and energy transport.  In this approach, the gas and particle phases are treated as inter-

penetrating continua, and locally-averaged quantities such as the volume fractions, velocities, 

species concentrations and temperatures of gas and particle phases appear as dependent field 

variables.  The averaging process leading to two-fluid model equations erases the details of flow 

at the level of individual particles; but their consequences appear in the averaged equations 

through terms for which one must develop constitutive relations.  For example, in the momentum 
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balance equations, constitutive relations are needed for the gas-particle interaction force and the 

effective stresses in the gas and particle phases. 

The general form of the two-fluid model equations is fairly standard and this has 

permitted the development of numerical algorithms for solving them.  For example, open-source 

packages such as MFIX4, 5 and commercial software (e.g., Fluent®) can readily be applied to 

perform transient integration (of the discretized forms) of the balance equations governing 

reactive and non-reactive multiphase flows.  The results generated through such simulations are 

dependent on the postulated constitutive models, and a major focus of research over the past few 

decades has been on the improvement of these constitutive models.  

Through a combination of experiments and computer simulations, constitutive relations 

have been developed in the literature for the fluid-particle interaction force and the effective 

stresses in the fluid and particle phases.  In gas-particle systems, the interaction force is 

predominantly due to the drag force.   An empirical drag law that bridges the results of Wen & 

Yu6 for dilute systems and the Ergun7 approach for dense systems is widely used in simulation 

studies.2  In the past decade, ab initio drag force models have also been developed via detailed 

simulations of fluid flow around assemblies of particles.8-14 

The Stokes number associated with the particles in many gas-particle mixtures is 

sufficiently large that particle-particle and particle-wall collisions do occur; furthermore, when 

the particle volume fraction is below ~ 0.5, the particle-particle interactions occur largely 

through binary collisions.  The particle phase stress in these systems is widely modeled through 

the kinetic theory of granular materials.2, 15, 16  This kinetic theory approach has also been 

extended to systems containing mixtures of different types of particles. 17-20 
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It is important to keep in mind that all these closures are derived from data or analysis of 

nearly homogeneous systems.  Henceforth, we will refer to the two-fluid model equations 

coupled with constitutive relations deduced from nearly homogeneous systems as the 

microscopic two-fluid model equations.  For example, the kinetic theory based model equations 

described and simulated in most of the literature references fall in this category.16-24,25-31 

A practical difficulty comes about when one tries to solve these microscopic two-fluid 

model equations for gas-particle flows.  Gas-particle flows in fluidized beds and riser reactors 

are inherently unstable, and they manifest inhomogeneous structures over a wide range of length 

and time scales.  There is a substantial body of literature where researchers have sought to 

capture these fluctuations through numerical simulation of microscopic two-fluid model 

equations.  Indeed, two-fluid models for such flows reveal unstable modes whose length scale is 

as small as ten particle diameters.30, 31  This can readily be ascertained by simple simulations, as 

illustrated in Figure 1 in Appendix A.  Transient simulations of a fluidized suspension of ambient 

air and typical Fluid Catalytic Cracking catalyst particles were performed (using MFIX4, 5) in a 

Cartesian, two-dimensional (2-D), periodic domain at different grid resolutions; these 

simulations employed kinetic theory based (microscopic) two-fluid model equations 

(summarized in Table 1 in Appendix A).  The relevant parameter values can be found in Table 2 

in Appendix A.  The simulations revealed that an initially homogeneous suspension gave way to 

an inhomogeneous state with persistent fluctuations.  Snapshots of the particle volume fraction 

fields obtained in simulations with different spatial grid resolution are shown in Figure 1 in 

Appendix A.  It is readily apparent that finer and finer structures are resolved as the spatial grid 

is refined.  Statistical quantities obtained by averaging over the whole domain were found to 

depend on the grid resolution employed in the simulations and they became nearly grid-size 
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independent only when grid sizes of the order of a few particle diameters were used (see 

Agrawal et al.30 for further discussion).  Thus, if one sets out to solve the microscopic two-fluid 

model equations for gas-particle flows, grid sizes of the order of a few particle diameters become 

necessary.   Moreover, such fine spatial resolution reduces the numerical time steps required, 

further increasing the computational effort. For most devices of practical (commercial) interest, 

such extremely fine spatial grids and small time steps are unaffordable.32  Indeed, gas-particle 

flows in large fluidized beds and risers are often simulated by solving discretized versions of the 

two-fluid model equations over a coarse spatial grid.  Such coarse grid simulations do not 

resolve the small-scale (i.e., sub-grid scale) spatial structures which, according to the 

microscopic two-fluid equations and experimental observation, do indeed exist.  The effect of 

these unresolved structures on the structures resolved in coarse-grid simulations must be 

accounted for through appropriate modifications to the closures – for example, the effective drag 

coefficient in the coarse-grid simulations will be smaller than that in the original two-fluid model 

to reflect the tendency of the gas to flow more easily around the unresolved clusters30, 31
 than 

through a homogenous distribution of these particles.  Qualitatively, this is equivalent to an 

effectively larger apparent size for the particles.  

One can readily pursue this line of thought and examine the influence of these unresolved 

structures on the effective inter-phase transfer and dispersion coefficients which should be used 

in coarse-grid simulations.  Inhomogeneous distribution of particles will promote bypassing of 

the gas around the particle-rich regions and this will necessarily decrease the effective inter-

phase mass and energy transfer rates.  Conversely, fluctuations associated with the small scale 

inhomogeneities will contribute to the dispersion of the particles and the gas, but this effect will 

be unaccounted for in the coarse-grid simulations of the microscopic two-fluid models. 
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Researchers have approached this problem of treating unresolved structures through 

various approximate schemes.  O’Brien & Syamlal33, Boemer et al.34 and Heynderickx et al.35 

pointed out the need to correct the drag coefficient to account for the consequence of clustering, 

and proposed a correction for the very dilute limit.  Some authors have used an apparent cluster 

size in an effective drag coefficient closure as a tuning parameter,36 others have deduced 

corrections to the drag coefficient using an Energy Minimization Multi-Scale approach.37  The 

concept of particle phase turbulence has also been explored to introduce the effect of the 

fluctuations associated with clusters and streamers on the particle phase stresses.38, 39  However, 

a systematic approach that combines the influence of the unresolved structures on the drag 

coefficient and the stresses has not yet emerged.  The effects of these unresolved structures on 

inter-phase transfer and dispersion coefficients remain unexplored.  

Agrawal et al.30 showed that the effective drag law and the effective stresses, obtained by 

averaging (the results gathered in highly resolved simulations of a set of microscopic two-fluid 

model equations) over the whole (periodic) domain, were very different from those used in the 

microscopic two-fluid model and that they depended on size of the periodic domain.  They also 

demonstrated that all the effects seen in the 2-D simulations persisted when simulations were 

repeated in three dimensions (3-D) and that both 2-D and 3-D simulations revealed the same 

qualitative trends.  Andrews et al.31 performed many highly resolved simulations of fluidized 

gas-particle mixtures in a 2-D periodic domain whose total size coincided with that of the grid 

size in an anticipated large-scale riser flow simulation.  Using these numerical results, they 

constructed ad hoc sub-grid models for the effects of the fine-scale flow structures on the drag 

force and the stresses, and examined the consequence of these sub-grid models on the outcome 

of the coarse-grid simulations of gas-particle flow in a large-scale vertical riser.  They 
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demonstrated that these sub-grid scale corrections affect the predicted large-scale flow patterns 

profoundly.31  

Thus, it is clear that one must carefully examine whether a microscopic two-fluid model 

must be modified to introduce the effects of unresolved structures before embarking on coarse-

grid simulations of gas-particle flows.  In the study by Andrews et al.31, the filtering was done 

simply by choosing the filter size to be the grid size in the coarse-grid simulation of the filtered 

equations.  Furthermore, the corrections accounting for the effects of the structures which would 

not be resolved in the coarse-grid simulations were extracted from highly resolved simulations 

performed in a periodic domain whose size was chosen to be the same as the filter size; this 

imposed periodicity necessarily limited the dynamics of the structures in the highly resolved 

structures and so the accuracy of using the sub-grid models deduced from such restrictive 

simulations is debatable. 

In the present study, we have further extended the filtering approach and presented a 

methodology where computational results obtained through highly resolved simulations (in a 

large periodic domain) of a given microscopic two-fluid model are filtered to deduce closures for 

the corresponding filtered two-fluid model equations.  (In this case, as the filter size is 

considerably smaller than the periodic domain size, the microstructures sampled in the filtered 

region are not constrained by the periodic boundary conditions.)   These filtered closures depend 

on the filter size and can readily be constructed for a range of filter sizes.  We found that, to a 

good approximation, the dimensionless filtered drag coefficient, particle phase pressure and 

particle phase viscosity can be treated as functions of only particle volume fraction and 

dimensionless filter size.  The effective drag coefficient to describe the inter-phase interaction 

force in the filtered equations shows two distinct regimes.  At particle volume fractions greater 
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than about 0.075, it follows an effective Richardson-Zaki relationship and the effective R-Z 

exponent and apparent terminal velocity have an understandable physical interpretation in terms 

of interactions between particle clusters instead of the individual particles.  At low particle 

volume fractions, the drag coefficient shows an anomalous behavior that is consistent with the 

formation of larger and denser clusters with increasing particle volume fraction.  

The velocity fluctuations associated with the very complicated inhomogeneous structures 

shown by the microscopic two-fluid simulations dictate the magnitudes of the filtered particle 

phase pressure and viscosity.  The contributions of the kinetic theory pressure and viscosity to 

these filtered quantities are negligibly small and so, for practically relevant filter sizes, one need 

not include the filtered granular energy equation in the analysis.  This, however, does not mean 

that the fluctuations at the level of the individual particles, which the kinetic theory strives to 

model, are not important at all; these fluctuations influence the inhomogeneous microstructure 

and their velocity fluctuations, and hence  the closures for the filtered equations.  

It should be emphasized that the present study does not challenge the validity of the 

microscopic two-fluid model equations such as the kinetic theory based equations.  Instead, it 

uses these microscopic equations as a starting point and seeks modifications to make them 

suitable for coarse-grid simulations.  (If a fine grid can be used to resolve all the structures 

contained in the microscopic two-fluid model equations, the present analysis is unnecessary; 

however, such high resolution is neither practical nor desirable for the analysis of the macro-

scale flow behavior.)  

In the present study, we have also demonstrated that filtering does indeed remove small 

scale structures that are afforded by the microscopic two-fluid models.  If filtering has been done 
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in a meaningful manner, the filtered equations should yield coarser structures than the 

microscopic two-fluid model (from which the filtered equations were derived) even when one 

uses fine spatial resolution.   We have demonstrated this through a 1-D linear stability analysis 

of the filtered two-fluid models based on various filter lengths. This analysis showed that 

filtering is indeed erasing the fine structure and only presenting coarser structures.  (All the 

details are presented in a journal manuscript attached as appendix A of this report.) 

It is clear from our simulation results (summarized in Appendix A) that there is a striking 

similarity between the 2-D and 3-D results.  Although there are quantitative differences between 

2-D and 3-D, the following characteristics were found to be common between them: 

a) The filtered drag coefficient decreased with increasing filter size, and 

b) The filtered particle phase pressure and viscosity increased with filter size. 

It seems reasonable to expect that the clusters will not grow beyond some critical size; if 

this is indeed the case, the filtered drag coefficient, and particle phase pressure and viscosity will 

become nearly independent of the filter size beyond some critical value.  It is important to 

understand if such saturation occurs and, if so, at what filter size.  It is also important to 

incorporate the effects of bounding walls on the filtered closures as comparison of the filtered 

model predictions with experimental data cannot be pursued until this issue is addressed.  These 

will be explored later in the next two sections of this report. Further details of the results 

obtained through simulations in periodic domains can be found in the AIChE journal 

manuscript40 attached in Appendix A. 
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2. Wall corrections and verification of the filtered model 

(Note:  In what follows in this section, we present only an overview of the problem 

addressed and highlight the main findings.  A detailed report that contains all the relevant 

figures, tables and equations can be found in Appendix B, which is a draft manuscript – to e 

submitted to a journal – prepared as a part of this project.)  It has now been conclusively 

established that clusters and streamers are formed in gas-particle flows in vertical risers and they 

are found more frequently near the tube walls so that on an average, particle concentration is 

larger near the wall region.  A consequence of such segregation is that the average velocity of 

particles and gas in the wall region can be downward even though the net flow is in the upward 

direction – a dilute rising core and a dense descending annular region.32, 41-45 Clusters at the wall 

of a riser have been observed to form, descend, break-up, travel laterally from the annulus to the 

core and then be re-entrained in the upward flowing core.  In this manner, they contribute to the 

internal solids mixing process within a riser.41  Consequently, it is important to incorporate the 

effects of bounding walls on the filtered closures as comparison of the filtered model predictions 

with experimental data cannot be pursued until this issue is addressed. 

Thus, it is clear that one must carefully examine if the closures for the filtered model 

equations should be modified to introduce the effects of the bounding walls before embarking on 

coarse-grid simulations of gas-particle flows.  In the present study, we have investigated the 

effect of the bounding walls on the closure relationships for the filtered two-fluid model 

equations through a set of 2-D (two-dimensional) flow simulations in a channel equipped with 

bounding walls and inlet and outlet regions.  The present study reveals that:  
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a. One should not use the closures from the core region of the suspension for the regions 

close to the wall; the filtered drag coefficient and particle phase stress terms must be 

allowed to depend not only on particle volume fraction and the filter size, but also on the 

distance from the wall.  However, the wall effect should not be measured as a fraction of 

the channel width; instead, it should be viewed in terms of the actual distance (or made 

dimensionless using a length scale other than the channel width) from the wall.  

b. The wall corrections to the filtered closures are nearly independent of the mean particle 

volume fraction in the filtering region. 

c. The wall corrections to the filtered closures are nearly independent of the filter lengths 

considered in this study. 

d. The simplest effective boundary condition for the filtered equations at the bounding walls 

is free-slip boundary condition.  

Incorporating the distance dependence of the filtered closures as wall corrections to these 

closures and comparing the results from simulations in 2-D channels for various grid lengths, we 

have established the grid resolution independence of the filtered model extracted with 4.112 

dimensionless unit-filters for grid lengths smaller than half of the filter length.  The results 

obtained from these filtered model simulations were also comparable to those predicted by 

highly-resolved kinetic theory based simulations.  (Here, it should be noted that kinetic theory 

manifested a heavy dependence on grid resolution in the same simulation geometry.) 

Additionally, detailed analysis of the wall correction to each term revealed that the corrections 

affected the results predicted by the filtered model simulations quantitatively (such as an increase 

or decrease in particle phase mass inventory in the bed) but did not affect the grid-resolution 
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independence of these results.  We have also observed that the same filtered model without wall 

corrections afforded grid size independence.  However, its quantitative accuracy was far from 

being satisfactory (particularly the particle mass inventory.) 

Another important observation is that, through simulations in a wider channel, we have 

established that the two filtered models extracted with different filter lengths (4.112 and 8.224) 

yielded comparable results.  It should also be noted that the filtered model extracted with the 

dimensionless filter length of 8.224 has essentially yielded grid-resolution independent results 

for grid lengths smaller than half of the filter length as well. 

Finally, we compared the CPU time required to run one simulation second with the 

filtered model equations and the highly-resolved kinetic theory model.  The filtered model 

consistently ran must faster than the kinetic theory based model.  Furthermore, larger the filter 

size, the faster the computations became.  (We expect that this effect will be even more 

pronounced in 3-D simulations and with larger filter lengths.)  Further details can be found in in 

Appendix B. 

3. General closure relations 
             

(Note:  In what follows in this section, we present only an overview of the problem 

addressed and highlight the main findings.  A detailed report that contains all the relevant 

figures, tables and equations can be found in Appendix C, which is a draft manuscript – to be 

submitted to a journal after further editing – prepared as a part of this project.)  In our earlier 

work (outlined in §1), we have presented a methodology where computational results obtained 

through highly resolved simulations (in a large periodic domain) of a given microscopic two-
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fluid model are filtered to deduce closures for the corresponding filtered two-fluid model 

equations that are appropriate for coarse-grid simulations of gas-particle flows of moderate 

particle volume fractions.   We have found that, to a good approximation, the dimensionless 

filtered drag coefficient, particle phase pressure and particle phase viscosity extracted from 2-D 

and 3-D simulations can be treated as functions of only particle volume fraction and 

dimensionless filter size.   

However, the closure relationships for the drag coefficient and the effective stresses 

presented in our earlier work did not capture the behavior in regions of very low concentrations 

well and did not include high particle concentrations ( 0.01sφ < ) ( )0.30sφ >  at all.  In this study, 

we have investigated the region-averaged statistics in these regimes as well.  We have also 

analyzed the extended data obtained over a wide range of filter sizes and captured them into 

correlations, thereby shedding some light on the asymptotic behavior at large filters.  Here, we 

have restricted our attention to closures for the filtered drag coefficient and particle phase stress 

terms in flow regions far away from solid boundaries and performed all our analyses in periodic 

domains.  (Wall correction has already been discussed in the previous section.)  A summary of 

our findings is given below. 

3.1. Filtered drag coefficient: 

Previously, the filtered drag coefficient to describe the inter-phase interaction force in the 

filtered equations was studied for 0.30sφ <  and shown to exhibit two distinct regimes.  For 

0.075 0.30sφ< < , it follows an effective Richardson-Zaki relationship, where the effective R-Z 

exponent and apparent terminal velocity have an understandable physical interpretation in terms 

of interactions between particle clusters instead of the individual particles.  At low particle 
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volume fractions, the filtered drag coefficient shows an anomalous behavior that is consistent 

with the formation of larger and denser clusters with increasing particle volume fraction.  In both 

regimes, the filtered drag coefficient decreased with increasing filter size.   

At extremely low particle volume fractions  (~ 10-4)  all the curves corresponding to 

various filter lengths approach the same value indicating that the filtered drag coefficient is 

essentially independent of filter length in this regime.  As the particle volume fraction increases, 

the filtered drag coefficient picks up a definite dependence on the filter size, manifesting a 

systematic decrease with increasing filter size.  

In the dense regions, we have seen the filtered drag coefficient cannot be captured with a 

Richardson-Zaki like model reasonably well.  However, the dependence of the filtered closures 

on filter length is still clearly observed for 0.590.30 sφ << .  At very high particle volume 

fractions (for 0.59sφ > ) all the curves corresponding to various filter lengths approach the same 

value indicating that the filtered closures are essentially independent of filter length in this 

regime.  Furthermore, the filtered drag coefficient (for all filter sizes) at very high particle 

concentrations correspond to those used in the microscopic model30, 40. 

We have sought an internally consistent closure that combines all these regimes in a 

compact manner (as a function of particle volume fraction and filter length).  To do this, we have 

analyzed the extended data obtained over a wide range of filter lengths and scaled them into 

correlations.  (See Table 2 for 2-D closure relations that should be used in 2D coarse-grid 

simulations.) 
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We have also extended such a study to three dimensions and constructed closure models 

to be used in 3D coarse grid simulations, see Table 3.   

3.2. Filtered particle phase pressure and viscosity: 

We have also analyzed filtered particle phase pressure and shear viscosity, whose 

magnitudes are dictated by the velocity fluctuations associated with the complex inhomogeneous 

structures shown by the 2-D and 3-D microscopic two-fluid model simulations, and have sought 

internally consistent constitutive relationships for these terms (as functions of particle volume 

fraction and filter length) for the entire particle phase volume fraction range.  The filtering effect 

on these terms depends on the particle concentration in the filtering region.  

The filtered particle phase pressure and shear viscosity increase with filter length for 

0.59sφ < , a direct consequence of the fact that the energy associated with the velocity 

fluctuations increases with filter length.  At higher sφ  values, the sub-filter-scale velocity 

fluctuations disappear (the physical oscillations of clusters get restricted), and only the 

microscopic (kinetic) model particle phase pressure and shear viscosity remains. Consequently, 

the filtered particle phase viscosity becomes independent of the filtered size at very high sφ

values.  The proposed 2-D and 3-D closure relations capturing the particle volume fraction and 

filter size dependence are summarized in Table 2 and 3, respectively.  Further details can be 

found in a draft journal manuscript attached in Appendix C. 
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4. Validation studies 

In this part of our studies, we have performed a set of 3-D computational simulations for 

validation of the filtered two-fluid model against the experimental data from the riser located at 

the PSRI experimental research facility in Chicago (www.psrichicago.com).   Note that a 

rigorous test of the kinetic theory model could not be done for this system due to computational 

limitations.  This study reveals that:  

a) The results obtained from the filtered model simulations are nearly axi-symmetric.  

b) The 3-D filtered model equations exhibit a small dependence on grid resolution for the 

resolutions considered in this study.  All the results presented correspond to a grid resolution 

of 10 x 284 x 16.  

c) The results predicted by the filtered models are nearly independent of the filter size.   

d) In §2, we studied the effect of wall correction to the closures for the filtered model and 

concluded that they are necessary for capturing the results predicted by the underlying kinetic 

theory based two-fluid model.  In the present study, we performed analogous analyses with 

3-D simulations.  It is found that wall corrections definitely affect the results predicted by the 

filtered model simulations quantitatively and qualitatively; they are necessary for capturing 

the experimental data. 

e) We have also compared the computational data for a second PSRI case (with the same mass 

flux but higher gas velocity) with the experimental data and found that the filtered model 

(with wall corrections) does a reasonable job of capturing the experimental profiles.  
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These trends are qualitatively similar to those obtained from the 2-D simulations.  Further 

details are given below. 

Simulation conditions  

The experimental data that we will use for validation was carefully generated in a 14.2 m 

tall circulating fluidized bed riser with a 0.2 m i.d. located at the PSRI experimental research 

facility in Chicago (www.psrichicago.com).46  The experimental data set was specifically 

designed for a benchmark modeling exercise at the Eighth International Fluidization conference 

held in France in May 1995.  Various research groups have studied the system and the detailed 

description of the experimental unit can be found elsewhere46-48.  Although the majority of the 

previous studies with this system utilized 2-D computational simulations, a 3-D geometry is 

more likely to capture the flow in the experimental riser.  Therefore, we have focused on 3-D 

simulations and used the simplified 3-D geometry recently published by Benyahia49 in our 

studies.   Figure 1 presents this 3-D geometry where the particles (solids) enter the unit from a 

0.1 m diameter inlet centered at an elevation of 0.15 m on the side wall.  The inlet extends 

azimuthally from π/5 to 4π/5.  The gas (air at 300 K) entered mainly from the bottom of the unit. 

Both particle and gas phases leave the unit from a 0.2 m diameter outlet located at an elevation 

of 14 m and extending azimuthally from π/4 to 3π/4.  It is important to note that the inlet and 

outlet regions have been idealized in our simulations and could therefore be partly responsible 

for the departure of the simulation results from the experimental data (see below). 

In the simulations, we have considered two sets of experimental data with different main 

gas (actual) velocities (from the bottom of the unit); 5.2 and 11 m/s.  In both cases, we used a 

particle phase mass flux of 489 kg/ (m2 s) and a particle volume fraction of 0.40 at the particles 
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inlet.  The flow is isothermal at an ambient temperature of 300 K.   Here, it should also be noted 

that the real system involved PSD but in the current study, we will only consider its mono-sized 

(76 µm particles) system.  Table 1 presents the physical properties of the particles and the gas 

used in our computational simulations.  We have performed our analyses in terms of 

dimensionless variables, and a filter size of 4.112 dimensionless units is equivalent to 2.660 cm 

for the 76 µm FCC particle –ambient air system.  In our simulations, we have used the 3-D 

filtered model equations with and without wall corrections to the constitutive models, which can 

be found in Table 3.  See Table 4 for the wall corrections.  

First, we examine the results predicted by the filtered model without wall corrections and 

demonstrate that the results are axi-symmetric.  (For these studies, we set the gas velocity at the 

inlet to be 5.2 m/s.)  Figure 2 presents the variation of the dimensionless time-averaged gas 

pressure gradient along the height of the 3-D riser taken near the wall at two different azimuthal 

locations. An azimuthally averaged profile is also included. The computational grid for the 

results presented in this figure consists of 10 cells along the radial direction (half the diameter), 

16 cells in azimuthal direction and 284 uniform cells along the axial direction.  (Thus, azimuthal 

grids 1 and 9 are located diametrically opposite from each other.)  The filtered model used in this 

simulation was extracted with a filter length of 4.112 dimensionless units.  Free-slip boundary 

condition was imposed for both phases at all walls.  It is readily apparent in Figure 2 that the gas 

pressure gradient profile is axi-symmetric. 

Similarly, Figure 3 (a) and (b) show the dimensionless time-averaged profiles of  particle 

volume fraction and axial particle mass flux at an elevation of 602.9 dimensionless units (= 3.9 

m) above the solids inlet obtained from two azimuthal locations (180° apart), respectively. 

Azimuthally averaged profiles are also shown. Both profiles are nearly axi-symmetric. 
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Therefore, we will only present the azimuthally averaged quantities for the rest of our studies. 

Here, it is important to note that, for the grid resolution of 10 x 284 x 16, after the gas-particle 

flow in the simulation domain reached its statistical steady state, the time-averaged data are 

collected for a period of 50-70 seconds at a frequency of 50 Hz.  (It takes about 11 days to 

collect the data for 50 seconds on a dual quad core Intel Xeon E5420 processor running at 

2.50GHz.)  The time-averaging period is judged sufficient when horizontal profiles of flow 

variables are nearly symmetric and axial profiles of gas pressure gradient are relatively smooth.  

Effect of grid resolution: 

To study the effect of grid resolution on the results predicted by the filtered model 

simulations, we have considered a case with three different spatial resolutions.  (For these 

studies, we set the gas velocity to 5.2 m/s at the inlet.)  Figure 4 presents the effect of grid 

resolution on the dimensionless time-averaged gas pressure gradient along the height of the 3-D 

riser.  Due to axi-symmetry presented earlier, azimuthally averaged profiles are used.  The 

filtered model used in this simulation was extracted with a filter length of 4.112 dimensionless 

units.  Free-slip boundary condition was imposed for both phases at all walls.  It is apparent in 

the figure that an increase in the axial (vertical) resolution (from 284 grids to 710 grids) does not 

affect the pressure gradient profile, whereas an increase in azimuthal resolution (from 16 to 32 

grids) slightly increases the pressure gradient at elevations < 950 (dimensionless units).  Note 

that the “higher resolution” cases exhibits more fluctuations in the gas pressure gradient profile 

due to shorter averaging period (due to computational time restriction) and are expected to 

smooth out with longer averaging periods.  
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The grid resolution effect on the dimensionless time-averaged profiles of particle volume 

fraction and axial particle mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) above 

the solids inlet are shown in Figure 5 (a) and (b).  It is apparent from these figures, as well as 

Figure 4, that 3-D filtered model equation extracted with a filter size of 4.112 (dimensionless 

units) exhibit a small dependence on grid resolution for the resolutions considered in this study; 

however, a grid resolution of 10 x 284 x 16 will be used for the rest of our validation studies for 

the sake of computational ease (and because of the fact that the change in predicted value with 

further grid refinement was only small).  

Effect of the filter size: 

A set of 3-D flow simulations of the filtered models extracted with dimensionless filter 

sizes of 4.112, 8.224 and 16.448 were performed with a grid resolution of 10 x 284 x 16. (For 

these studies, we set the gas velocity to 5.2 m/s at the inlet.)  Free-slip boundary condition was 

imposed for both phases at all walls.  Figure 6 illustrates the effect of the filter size on the 

dimensionless time-averaged gas pressure gradient along the height of the 3-D riser.  It is clearly 

seen that the gas pressure gradient is nearly independent of filter size for filter sizes of 4.112 and 

8.224. The filtered model extracted with 16.448 filters yields slightly lower values for lower 

elevations in the riser. Here, it is important to note that a filter size (length) of 16.446 

(dimensionless units) is equal to ~ 10.64 cm for the system in this study. This filter size is 

meaningless for this problem (with a tube radius of 10 cm), but perfectly realistic for larger 

systems.  We have included this filtered model in our studies to determine the upper limit for the 

filter length that can be used in simulations for a given cross-sectional width. Yet, it is 

remarkable that even for this system the 16.448 filter captures the results predicted by smaller 

filter sizes (4.112 and 8.224) reasonably well.  
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 Similarly, the radial profiles of the dimensionless time-averaged particle volume fraction 

and axial particle mass flux at an elevation of 602.9 dimensionless units (=3.9 m) above the 

solids inlet are nearly independent of the filter size used to extract the filtered model. 

Collectively, these results illustrate that the solution is nearly filter size independent for the 

physically meaningful filters!  

Inclusion of wall corrections to the closures for the filtered model equations: 

In our earlier studies, we have shown that in a 2-D riser, the wall corrections to the 

closures for the filtered model equations are necessary for capturing the results predicted by the 

underlying kinetic theory based two-fluid model.  In the present study, we performed analogous 

analyses with 3-D simulations.  

We have extracted the wall corrections to the constitutive models for the filtered drag 

coefficient, particle phase pressure and viscosity from a 3-D kinetic theory based simulation of a 

riser with a square cross-section (14.6 cm x 914 cm x 14.6 cm) and adapted them for risers with 

circular cross-sections.   We have seen that the wall corrections for the filtered drag, particle 

phase pressure and viscosity are similar.  Therefore, we will use the same correction for all three; 

see Figure 8 and Table 4 for the wall correction to the filtered model closures. 

Using the filtered model (corresponding to a filter size of 8.224 dimensionless units) and 

the wall corrections, we have studied the effect of the inclusion of the wall corrections to the 

filtered model closures.  Figure 9 shows a comparison of the dimensionless time-averaged gas 

pressure gradient profile obtained from simulations of the filtered model equations with and 

without wall corrections and the experimental data generated from the PSRI riser.  (For these 

studies, we set the gas velocity to 5.2 m/s at the inlet and used the corresponding experimental 

21 
 



data.)  The resolution is 10 x 284 x 16.  It is readily apparent that the inclusion of wall 

corrections affects the gas pressure gradient profile predicted by the filtered model simulations 

quantitatively; the filtered model with wall corrections predict higher gas pressure gradients at 

almost all elevations. The results predicted by the filtered model with wall corrections are 

comparable to the experimental data for elevations < 1000 (dimensionless units).  Near the top of 

the riser (over 1900 dimensionless units), the filtered models predict pressure gradients much 

higher than the experimental data.  Benyahia49 reported similar results with EMMS model in the 

same system and attributed this behavior to particles (solids) backmixing caused by the abrupt 

blind-tee used computationally instead of the smooth elbow exit design used experimentally. 

The dimensionless time-averaged radial profiles of particle volume fraction and axial 

particle mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) above the solids inlet 

obtained with the filtered closures (8.224) with and w/o wall corrections are presented in Figure 

10(a) and (b), respectively.  The experimental data are also shown for comparison.  In Figure 

10(a), we can clearly see that inclusion of wall correction dramatically increases the particle 

phase concentration in the vicinity of the side wall, and it also increases the particle 

concentration slightly in the core region.  In the core region, the filtered model without wall 

correction predicts the experimental data better than the model with wall correction; whereas in 

the wall region, the latter yields a better prediction.  As for the radial profile of axial particle 

mass flux (see Figure 10(b)), the filtered model with wall correction predicts the experimental 

data better than the filtered model without wall corrections although the downward flux has not 

been captured by either model.  This could be a consequence of the free-slip wall condition we 

have used in our studies and should be further investigated.  Although no experimental data is 

available for the radial superficial gas velocity profile, we have compared the results predicted 
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by the filtered model with and without wall corrections (see Figure 10(c)); inclusion of wall 

corrections result in higher superficial gas velocities in the core and lower velocities in the 

vicinity of the wall. 

To summarize, the inclusion of wall corrections affects the results predicted by the 

filtered model simulations quantitatively and qualitatively and is necessary for capturing the 

experimental data.  

A comparison with a second set of experimental data: 

We have also compared the computational data predicted by the filtered model with wall 

corrections for a second PSRI case (with the same mass flux but with a higher gas velocity at the 

inlet, 11 m/s) with the experimental data.  The filtered model was extracted with a filter size of 

8.224 dimensionless units.  Figure 11 presents a comparison of the dimensionless time-averaged 

gas pressure gradient profile obtained from the simulation of the filtered model equations with 

wall corrections and the experimental data generated from the PSRI riser.  The spatial resolution 

is 10 x 284 x 16.  It is readily apparent that the results predicted by the filtered model with wall 

corrections are comparable to the experimental data for elevations < 700 (dimensionless units). 

However, the filtered model predicts lower pressure gradients at lower elevations.  As noted 

earlier, near the top of the riser (over 1900 dimensionless units), the filtered model predicts 

pressure gradients much higher than the experimental data, which is believed to be due to abrupt 

blind-tee outlet used in simulations.   

The dimensionless time-averaged radial profiles of particle volume fraction and axial 

particle mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) above the solids inlet 

obtained with the filtered closures (8.224) and the experimental data are presented in Figure 
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12(a) and (b), respectively.  The filtered model yielded a radial particle volume fraction profile 

comparable to the experimental profile close to the wall but slightly underpredicted the particle 

concentration in the core region. As for the radial profile of axial particle mass flux (see Figure 

12 (b)), the filtered model with wall correction captured the experimental finding that the 

maximum mass flux was not in the core region, however, the location of maximum flux, at the 

wall, is different from the experimental one, which is slightly away from the wall. We suspect 

that this might have caused by the free-slip BC we assumed in our studies. As mentioned earlier, 

this needs to be further investigated. 

5. Summary 

We have performed a set of 3-D computational simulations for validation of the filtered 

two-fluid model against the experimental data from the PSRI riser.  This study has revealed that 

the 3-D filtered model equations exhibit a small dependence on grid resolution for the resolutions 

considered in this study; however, a grid resolution of 10 x 284 x 16 was used for most of our 

studies for the sake of computational ease.  We have shown that the results predicted by the 

filtered models are nearly filter size independent and that wall corrections definitely affect the 

results predicted by the filtered model simulations quantitatively and qualitatively and are 

necessary for capturing the experimental data.  We have also compared the computational data 

for a second PSRI case (with the same mass flux but higher gas velocity) with the experimental 

data and shown that the filtered model (with wall corrections) has the capability to capture the 

experimental profiles.  
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6. Project participant  

Ms. Yesim Igci (graduate student at Princeton University) worked with the PI on this project.  

All the code development and analysis of results were performed by her.  She will be completing 

her PhD shortly. 

7. Published articles  

Y. Igci, A. T. Andrews IV, S. Pannala, T. O’Brien & S. Sundaresan, Filtered two-fluid models 

for fluidized gas-particle suspensions. AIChE J., 54, 1431-1448 (2008).   See Appendix A. 

8. Articles in preparation  

The manuscript listed as Appendix B has been submitted for publication.  The draft manuscript 

included as Appendix C will be revised and submitted for publication shortly.  Finally, a 

manuscript based on the validation results discussed in the main text of this report is also under 

preparation.  
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9. Conference presentations  

1. S. Sundaresan, A. T. Andrews IV & Y. Igci, “Coarse-graining two-fluid models for 

fluidized gas particle suspensions,” The 231st ACS National Meeting, Atlanta, GA, 

March 28, 2006.  

2. S. Sundaresan, A. T. Andrews IV, Y. Igci, S. Pannala & T. O’Brien, “Coarse-graining 

two-fluid models for fluidized gas particle suspensions,” Fifth World Congress on 

Particle Technology, Orlando, FL, April 24, 2006.  

3. S. Sundaresan, , Y. Igci, A. T. Andrews IV, T. O’Brien & S. Pannala, “Filtered Two-

Fluid Models for Gas-Particles Flows,” The AIChE Annual Meeting, San Francisco, CA 

November 11-13, 2006.  

4. Y. Igci, S. Sundaresan, S. Pannala, T. O’Brien & R. Breault, “Coarse-graining two-fluid 

models for fluidized gas particle suspensions,” Fifth International Conference on CFD in 

the Process Industry, CSIRO, Melbourne, Australia, Dec 13-15, 2006. (Includes a 

Proceedings manuscript.)  

5. Y. Igci & S. Sundaresan, “Closures for filtered two-fluid models for gas-particle flows,” 

paper presented at the AICHE Annual Meeting, November 4-9, 2007, Salt Lake City, UT.  

6. Y. Igci & S. Sundaresan, “Coarse-grid simulation of fluidized gas-particle flows,” paper 

presented at the AICHE Annual Meeting, November 16-21, 2008, Philadelphia, PA. 

7. Y. Igci & S. Sundaresan, “Filtered two-fluid models for fluidized gas-particle flows,” 

paper presented at the AICHE Annual Meeting, November 8-13, 2009, Nashville, TN. 
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10. Other Presentations  

A presentation based on this work was made at the UCR-HBCU conference in Pittsburgh, June 

2007. This work was also the topic of D.B. Robinson Distinguished lecture that SS presented in 

the Chemical Engineering Department, University of Alberta (April 2007) and seminars 

presented by SS in the Mechanical Engineering Department, California Institute of Technology 

(May 2007) and the Chemical Engineering Department, University of Florida (October 2007). 

This work was also in the theme of the 2009 Burgers Lecture that SS delivered at The Burgers 

Centre in the Netherlands (Jan 2009). SS delivered a seminar at the Chemical Engineering 

Department of the University of Minnesota on this topic (February 2009), a keynote lecture at 

the World Congress in Montreal (August 2009) and the 5th Sino-US Conference on Chemical 

Engineering in Beijing (October 2009). The Neal R. Amundson Lecture presented at the 

University of Houston (Jan 2010) featured the results of this project. 
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Table 1: Physical properties of gas and solids 

            _______________________________________________ 

pd  Particle diameter  7.6 x 10-6 m 

sρ   Particle density   1712 kg/m3 

gρ  Gas density   Computed using  
ideal gas law (~1.3 kg/m3) 

gμ  Gas viscosity   1.8 x 10-5 kg/m⋅s  
g Gravitational acceleration 9.80665 m/s2 

tv  Terminal settling velocity 0.251875m/s 
2
tv

g
 Characteristic length  0.00646918m 

tv
g

 Characteristic time  0.0256841 s 

2
s tvρ  Characteristic stress  108.611 kg/m.s2 

            _______________________________________________ 
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Table 2: 2-D Filtered closures without wall corrections 

1 2vFilter (region) length:  f f tFr g− = Δ
 

2-D Filtered drag coefficient: 
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exp Function 1
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s s s
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( )total dense-moderate dilute microscopic diluteFunction Function 1 Functionfactor factor= − +
 (T2.2) 

( )dense-moderate moderate dense microscopic denseFunction Function Function 1factor factor= + −
 (T2.3) 
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moderate asymptotic microscopicFunction Function 1 Function 1 0.606 1 sa a φ= + − − −  (T2.4) 

( ) ( )t
asymptotic

v
Function ln 4.19ln 1 1.73 for 0.05 0.30

1
asymptotic

s
s s sg
β

φ
ρ φ φ

⎛ ⎞
= = − − − <⎜ ⎟⎜ ⎟−⎝ ⎠

sφ <  (T2.5) 

2 1 1

1

0.0350 0.300 ,  4.00

1.44 1.00,  4.00
f f f

f f

Fr Fr Fr
a

Fr Fr

− − −

−

⎧− + <⎪= ⎨
− + ≥⎪⎩

   (T2.6) 

( )dense 15.54

1
1 1.23 10 1 s

factor
φ −−

=
+ × −

  (T2.7) 

( )dilute 1 b

sfactor φ= −
  (T2.8) 

( )

1 1

1

1

292 ,  0.500
1440 ,  0.500

1 exp 0.560 2.47

f f

f

f

Fr Fr
b Fr

Fr

− −

−

−

<⎧
⎪

= ⎨ ≥⎪ + − +⎩

  (T2.9) 

Functionmicroscopic corresponds to the filtered drag coefficient extracted with a filter length equal to the grid 
length used in the 2-D kinetic theory based simulations with Wen-Yu drag; the grid length is 0.257 (dimensionless 
unit). The equations given below are the simplest fits that capture the curve in Figure 2 (a) truthfully. 
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Table 2 - continued 

( )

( ) ( )
( ) ( )

( )( ) ( )

t

76.6 9770

10.6 800

2

v
Function ln

1

0.230 1 0.0914 1 ,  0.001

                          0.180 1 0.0720 1 , 0.001 0.03

0.550 ln 1 2.82ln 1 0.162,  0.03

microscopic
microscopic

s s s

s s s

s s

s s s

g
β
ρ φ φ

φ φ φ

φ φ

φ φ φ

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠
⎧ − + − <

= − + − ≤ <

− − − + ≥
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⎪
⎪⎩

sφ

 (T2.10) 

2-D Filtered particle phase pressure: 

( ), 2 3
, _2

t,
2
t ,

, _12
t

1 11 10.9 ,  
v

v
,  

v

s kinetic
ps s s s s s s critical

ss filtered

s s kinetic
s s critical

s

p
Factor

p

p

φ φ φ φ φ φ
ρ

ρ
φ φ

ρ

⎧
+ + − + ≤⎪

⎪= ⎨
⎪ >⎪
⎩

1

_1

 (T2.11) 

where ,s criticalφ is defined as: 

( )2 3
,1 11 10.9 0 at ps s s s s s s criticalFactor φ φ φ φ φ φ+ − + = = _1  (T2.12) 

2 1 1

0.881 1

0.0300 0.250 ,  4.80

0.438 0.138,  4.80
f f f

f f

ps

Fr Fr Fr

Fr Fr
Factor

− − −

− −

+ <⎧⎪
⎨

+ ≥⎪⎩
=   (T2.13) 

The kinetic model term in these models can be taken care of in two ways: 

1. Also solve the granular energy equation 
2. Simply add the curve fit for the kinetic particle phase pressure. 
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3 2
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2
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3 2
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Table 2 - continued 

2-D Filtered particle phase (shear) viscosity: 

( ), 2 3
, _3

t,
3
t ,

, _ 23
t

1 1.7 9 6 ,  
v

v
,  

v

s kinetic
s s s s s s s critical
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φ φ
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 (T2.15) 

where , _s criticalφ is defined as: 

( )2 3
, _1 1.7 9 6 0 at 2s s s s s s s criticalFactorμ φ φ φ φ φ φ+ − + = =  (T2.16) 

1.250.192s fFactor Frμ
−=

  (T2.17) 

The kinetic model term in these models can be taken care of in two ways: 

1. Also solve the granular energy equation. 
2. Simply add the curve fit for the kinetic particle phase viscosity. 

 
4 3 2

4 3 2
,

3 3 2
t

2

1720 215 9.81 0.207 0.00254,  0.0200

2.72 1.55 0.329 0.0296 0.00136,  0.0200 0.200
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 (T2.18) 
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Table 3: 3-D Filtered closures (without wall corrections) 

3-D Filtered drag coefficient: 

( )( ) ( )total

t

exp Function 1
v

s s s

filtered

gρ φ φ
β

−
=   (T3.1) 

where 

( )total dense-moderate dilute microscopic diluteFunction Function 1 Functionfactor factor= − +
 (T3.2) 

( )dense-moderate moderate dense microscopic denseFunction Function Function 1factor factor= + −
 (T3.3) 

( )( ( ) 0.200
moderate asymptotic microscopicFunction Function 1 Function 1 sa a φ −= + − ) −  (T3.4) 

( )
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2

v
Function ln

(1 )
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⎝ ⎠
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2 1 1
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Fr Fr
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  (T3.6) 

dense 9 35.0

1
1 1.38 10 (1 )s

factor
φ− −

=
+ × −

  (T3.7) 

( )dilute 1 b

sfactor φ= −
  (T3.8) 

( )( )1120 1 exp 0.716 0.000588fb Fr−= − − +   (T3.9) 

Functionmicroscopic corresponds to the filtered drag coefficient obtained with a filter size equal to the grid size 
used in the 3-D kinetic theory based simulations with Wen-Yu drag; the grid size is 0.257 dimensionless units. The 
equations given below are the simplest fits that capture the curve in Figure 14 (a) truthfully. 
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3-D Filtered particle phase pressure: 

( ), 2 3 4
, _2

t,
2
t ,

, _12
t

1 4.35 10 14.5 7.9 ,  
v

v
,  

v

s kinetic
ps s s s s s s s critical
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φ φ φ φ φ φ φ
ρ

ρ
φ φ

ρ

⎧
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1
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 (T3.11) 

where ,s criticalφ is defined as: 

( )2 3 4
,1 4.35 10 14.5 7.9 0 at ps s s s s s s s criticalFactor φ φ φ φ φ φ φ− + − + = = _1  (T3.12) 

2 1 1
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  (T3.13) 

The kinetic model term can be taken care of in two ways: 

1. Also solve the granular energy equation 
2. Simply add the curve fit for the kinetic particle phase pressure. 
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3-D Filtered particle phase (shear) viscosity: 

( ), 2 3 4
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where , _s criticalφ is defined as: 

( )2 3 4
, _1 4 27 72 54.8 0 at 2s s s s s s s s criticalFactorμ φ φ φ φ φ φ φ− + − + = =  (T3.16) 
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The kinetic model term in these models can be taken care of in two ways: 

1. Also solve the granular energy equation 
2. Simply add the curve fit for the kinetic particle phase viscosity 
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Table 4: 3-D wall corrections to the filtered drag coefficient, particle phase pressure and viscosity 
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Dimensionless distance from the wall of a riser with a circular cross-section (for cylindrical coordinates): 

2 v
2
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d t
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1. Filtered drag coefficient: 
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2. Filtered particle phase pressure: 
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3. Filtered particle phase shear viscosity: 
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Figure 1: The 3-D computational domain used for simulations to capture the experimental data obtained 
from the PSRI riser. This set-up and the schematic were adapted from Benyahia49. In this set-up, the gas 
enters the domain uniformly at the bottom whereas the particles enter from the inlet located on the side 
wall. The gas and particles are allowed to leave through exit region located on the side wall (0.1 m below 
the splash plate located over entire top area of the riser). The details of the exit and outlet geometries and 
the simulation conditions are given in the main text. The physical conditions corresponding to this 
simulation is listed in Table 1. 
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Azimuthal grid: 1
Azimuthal grid: 9
Azimuthally averaged

Resolution: 10 x 284 x 16

 

Figure 2: The variation of the dimensionless time-averaged gas pressure gradient along the height of the 
3-D riser with azimuthal location (grid). An azimuthally averaged profile is also included. The filtered 
model used in this simulation was extracted with a filter length of 4.112 dimensionless units. Free-slip 
boundary condition was imposed for both phases at all walls. Note that azimuthal grids 1 and 9 are 180° 
apart.  Resolution: 10 x 284 x 16. For these studies, we set the gas (actual) velocity to 5.2 m/s at the inlet. 
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Azimuthally averaged

Grid resolution: 10 x 284 x 16

b) 

 

Figure 3:  Dimensionless time-averaged profiles of  (a) particle volume fraction and (b) axial particle 
mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) above the particles inlet were obtained 
from two azimuthal locations shown in the figure legend (180° apart). Azimuthally averaged profiles are 
also included. Everything else is the same as in Figure 2. 
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Resolution: 10 x 710 x 32
Resolution: 10 x 284 x 32
Resolution: 10 x 284 x 16
Experimental data

 

Figure 4:  The effect of grid resolution on the dimensionless time-averaged gas pressure gradient along 
the height of the 3-D riser. Azimuthally averaged profiles are used. The experimental data are also 
included for comparison. The filtered model used in this simulation was extracted with a filter length of 
4.112 dimensionless units. Free-slip boundary condition was imposed for both phases at all walls. For 
these studies, we set the gas (actual) velocity to 5.2 m/s at the inlet. 
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Figure 5: The effect of grid resolution on the dimensionless time-averaged profiles of  (a) particle 
volume fraction and (b) axial particle mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) 
above the solids inlet. Azimuthally averaged profiles are used. The experimental data are also included 
for comparison. Everything else is the same as in Figure 4. 
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Filter length: 4.112
Filter length: 8.224
Filter length: 16.448
Experimental data

Resolution: 10 x 284 x 16

 

Figure 6: The effect of the filter size (used to extract the filtered models) on the dimensionless time-
averaged gas pressure gradient along the height of the 3-D riser. Free-slip boundary condition was 
imposed for both phases at all walls. Resolution: 10 x 284 x 16. For these studies, we set the gas (actual) 
velocity to 5.2 m/s at the inlet. The experimental data are also included for comparison. 
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Experimental data
Filter length: 4.112
Filter length: 8.224
Filter length: 16.446

Resolution: 10 x 284 x 16
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b) 

Figure 7: The effect of the filter size (used to extract the filtered models) on the dimensionless time-
averaged profiles of (a) particle volume fraction and (b) axial particle mass flux at an elevation of 602.9 
dimensionless units (= 3.9 m) above the solids inlet. Wall corrections were included in the filtered models 
given in the figure legend.   The experimental data are also included for comparison. Everything else is 
the same as in Figure 6. 
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Figure 8: The wall corrections to the constitutive models for the filtered drag coefficient, particle phase 
pressure and viscosity were extracted from a 3-D kinetic theory based simulation of a riser with a square 
cross-section (14.6 cm x 914 cm x 14.6 cm) and adapted for a riser with a circular cross-section (e.g. the 
PSRI riser used in our studies).  We have seen that the wall corrections for the filtered drag, particle phase 
pressure and viscosity are similar. Therefore, we have used the same correction for all three. See Table 4 
for the correlations capturing the wall correction shown in this figure. 
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Filtered model with wall corrections
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Figure 9: Dimensionless time-averaged gas pressure gradient profiles plotted along the height of the 3-D 
riser. Numerical predictions obtained with the filtered model closures with and without wall corrections 
(extracted with a filter length of 8.224 dimensionless units) are compared with the experimental data. 
Resolution: 10 x 284 x 16. For these studies, we set the gas (actual) velocity to 5.2 m/s at the inlet. 
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Experimental data
Filtered model with wall corrections
Filtered model w/o wall corrections
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Figure 10: Dimensionless time-averaged radial profiles of (a) particle volume fraction, (b) axial particle 
mass flux and (c) axial superficial gas velocity at an elevation of 602.9 dimensionless units (= 3.9 m) 
above the solids inlet obtained with the filtered closures (8.224) with and w/o wall corrections. The 
experimental data are also shown for comparison. Everything else is the same as in Figure 9. 
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Filtered model with wall corrections
Experimental data

Resolution: 10 x 284 x 16

 

Figure 11: Dimensionless time-averaged gas pressure gradient profiles plotted along the height of the 3-
D riser. Numerical predictions obtained with the filtered model closures with wall corrections (extracted 
with a filter size of 8.224 dimensionless units) are compared with the experimental data. Resolution: 10 x 
284 x 16. For these studies, we set the gas (actual) velocity to 11 m/s at the inlet. 
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Figure 12: Dimensionless time-averaged profiles of (a) particle volume fraction and (b) axial particle 
mass flux at an elevation of 602.9 dimensionless units (= 3.9 m) above the solids inlet obtained with the 
filtered closures (8.224) with and w/o wall corrections. The experimental data are also shown for 
comparison. Everything else is the same as in Figure 11. 
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Abstract 

Starting from a kinetic theory based two-fluid model for gas-particle flows, we 

first construct filtered two-fluid model equations that average over small scale 

inhomogeneities which we do not wish to resolve in numerical simulations. We then 

outline a procedure to extract constitutive models for these filtered two-fluid models 

through highly resolved simulations of the kinetic theory based model equations in 

periodic domains. We demonstrate through two- and three- dimensional simulations that 

the closure relations for the filtered two-fluid models manifest a definite and systematic 

dependence on the filter size, which is examined in detail. In order to demonstrate that 

filtering does indeed remove small scale structures that are afforded by the microscopic 

two-fluid models, we performed 1D linear stability analyses of the filtered two-fluid 

model equations. These analyses show that filtering is indeed erasing the fine structure 

and only presenting coarser structures  



1. Introduction 

Chemical reactors that take the form of fluidized beds and circulating fluidized beds are 

widely used in energy-related and chemical process industries.1 Gas-particle flows in these 

devices are inherently unstable; they manifest fluctuations over a wide range of length and time 

scales. Analysis of the performance of large scale fluidized bed processes through computational 

simulations of hydrodynamics and energy/species transport is becoming increasingly common. 

In the present study, we are concerned with the development of hydrodynamic models which are 

useful for simulation of gas-particle flows in large scale fluidized processes. 

The number of particles present in most gas-particle flow systems is large, rendering 

detailed description of the motion of all the particles and fluid elements impractical. Hence, two-

fluid model equations2-4 are commonly employed to probe the flow characteristics, and species 

and energy transport. In this approach, the gas and particle phases are treated as inter-penetrating 

continua, and locally-averaged quantities such as the volume fractions, velocities, species 

concentrations and temperatures of gas and particle phases appear as dependent field variables. 

The averaging process leading to two-fluid model equations erases the details of flow at the level 

of individual particles; but their consequences appear in the averaged equations through terms 

for which one must develop constitutive relations. For example, in the momentum balance 

equations, constitutive relations are needed for the gas-particle interaction force and the effective 

stresses in the gas and particle phases. 

The general form of the two-fluid model equations is fairly standard and this has 

permitted the development of numerical algorithms for solving them. For example, open-source 

packages such as MFIX4,5 and commercial software (e.g., Fluent®) can readily be applied to 



perform transient integration (of the discretized forms) of the balance equations governing 

reactive and non-reactive multiphase flows. The results generated through such simulations are 

dependent on the postulated constitutive models, and a major focus of research over the past few 

decades has been on the improvement of these constitutive models.  

Through a combination of experiments and computer simulations, constitutive relations 

have been developed in the literature for the fluid-particle interaction force and the effective 

stresses in the fluid and particle phases. In gas-particle systems, the interaction force is 

predominantly due to the drag force.  An empirical drag law that bridges the results of Wen & 

Yu6 for dilute systems and the Ergun7 approach for dense systems is widely used in simulation 

studies.2 In the past decade, ab initio drag force models have also been developed via detailed 

simulations of fluid flow around assemblies of particles.8-14  

The Stokes number associated with the particles in many gas-particle mixtures is 

sufficiently large that particle-particle and particle-wall collisions do occur; furthermore, when 

the particle volume fraction is below ~ 0.5, the particle-particle interactions occur largely 

through binary collisions. The particle phase stress in these systems is widely modeled through 

the kinetic theory of granular materials.2,15,16 This kinetic theory approach has also been extended 

to systems containing mixtures of different types of particles.2,17-20  

It is important to keep in mind that all these closures are derived from data or analysis of 

nearly homogeneous systems. Henceforth, we will refer to the two-fluid model equations 

coupled with constitutive relations deduced from nearly homogeneous systems as the 

microscopic two-fluid model equations. For example, the kinetic theory based model equations 

described and simulated in most of the literature references fall in this category.2,16-31 



A practical difficulty comes about when one tries to solve these microscopic two-fluid 

model equations for gas-particle flows. Gas-particle flows in fluidized beds and riser reactors are 

inherently unstable, and they manifest inhomogeneous structures over a wide range of length and 

time scales. There is a substantial body of literature where researchers have sought to capture 

these fluctuations through numerical simulation of microscopic two-fluid model equations. 

Indeed, two-fluid models for such flows reveal unstable modes whose length scale is as small as 

ten particle diameters.30,31 This can readily be ascertained by simple simulations, as illustrated in 

Figure 1. Transient simulations of a fluidized suspension of ambient air and typical Fluid 

Catalytic Cracking catalyst particles were performed (using MFIX4,5) in a Cartesian, two-

dimensional (2-D), periodic domain at different grid resolutions; these simulations employed 

kinetic theory based (microscopic) two-fluid model equations (summarized in Table 1 and 

briefly discussed in §2 below). The relevant parameter values can be found in Table 2. The 

simulations revealed that an initially homogeneous suspension gave way to an inhomogeneous 

state with persistent fluctuations. Snapshots of the particle volume fraction fields obtained in 

simulations with different spatial grid resolution are shown in Figure 1. It is readily apparent that 

finer and finer structures are resolved as the spatial grid is refined. Statistical quantities obtained 

by averaging over the whole domain were found to depend on the grid resolution employed in 

the simulations and they became nearly grid-size independent only when grid sizes of the order 

of a few particle diameters were used (see Agrawal et al.30 for further discussion). Thus, if one 

sets out to solve the microscopic two-fluid model equations for gas-particle flows, grid sizes of 

the order of a few particle diameters become necessary.  Moreover, such fine spatial resolution 

reduces the numerical time steps required, further increasing the computational effort. For most 

devices of practical (commercial) interest, such extremely fine spatial grids and small time steps 



are unaffordable.32 Indeed, gas-particle flows in large fluidized beds and risers are often 

simulated by solving discretized versions of the two-fluid model equations over a coarse spatial 

grid. Such coarse grid simulations do not resolve the small-scale (i.e., sub-grid scale) spatial 

structures which, according to the microscopic two-fluid equations and experimental 

observation, do indeed exist. The effect of these unresolved structures on the structures resolved 

in coarse-grid simulations must be accounted for through appropriate modifications to the 

closures – for example, the effective drag coefficient in the coarse-grid simulations will be 

smaller than that in the original two-fluid model to reflect the tendency of the gas to flow more 

easily around the unresolved clusters30,31
 than through a homogenous distribution of these 

particles. Qualitatively, this is equivalent to an effectively larger apparent size for the particles.  

One can readily pursue this line of thought and examine the influence of these unresolved 

structures on the effective inter-phase transfer and dispersion coefficients which should be used 

in coarse-grid simulations. Inhomogeneous distribution of particles will promote bypassing of 

the gas around the particle-rich regions and this will necessarily decrease the effective inter-

phase mass and energy transfer rates. Conversely, fluctuations associated with the small scale 

inhomogeneities will contribute to the dispersion of the particles and the gas, but this effect will 

be unaccounted for in the coarse-grid simulations of the microscopic two-fluid models. 

Researchers have approached this problem of treating unresolved structures through 

various approximate schemes. O’Brien & Syamlal33, Boemer et al.34 and Heynderickx et al.35 

pointed out the need to correct the drag coefficient to account for the consequence of clustering, 

and proposed a correction for the very dilute limit. Some authors have used an apparent cluster 

size in an effective drag coefficient closure as a tuning parameter,36 others have deduced 

corrections to the drag coefficient using an Energy Minimization Multi-Scale approach.37 The 



concept of particle phase turbulence has also been explored to introduce the effect of the 

fluctuations associated with clusters and streamers on the particle phase stresses.38,39 However, a 

systematic approach that combines the influence of the unresolved structures on the drag 

coefficient and the stresses has not yet emerged. The effects of these unresolved structures on 

inter-phase transfer and dispersion coefficients remain unexplored.  

Agrawal et al.30 showed that the effective drag law and the effective stresses, obtained by 

averaging (the results gathered in highly resolved simulations of a set of microscopic two-fluid 

model equations) over the whole (periodic) domain, were very different from those used in the 

microscopic two-fluid model and that they depended on size of the periodic domain. They also 

demonstrated that all the effects seen in the 2-D simulations persisted when simulations were 

repeated in three dimensions (3-D) and that both 2-D and 3-D simulations revealed the same 

qualitative trends. Andrews et al.31 performed many highly resolved simulations of fluidized gas-

particle mixtures in a 2-D periodic domain whose total size coincided with that of the grid size in 

an anticipated large-scale riser flow simulation.  Using these numerical results, they constructed 

ad hoc sub-grid models for the effects of the fine-scale flow structures on the drag force and the 

stresses, and examined the consequence of these sub-grid models on the outcome of the coarse-

grid simulations of gas-particle flow in a large-scale vertical riser. They demonstrated that these 

sub-grid scale corrections affect the predicted large-scale flow patterns profoundly.31  

Thus, it is clear that one must carefully examine whether a microscopic two-fluid model 

must be modified to introduce the effects of unresolved structures before embarking on coarse-

grid simulations of gas-particle flows. In the study by Andrews et al.31, the filtering was done 

simply by choosing the filter size to be the grid size in the coarse-grid simulation of the filtered 

equations. Furthermore, the corrections accounting for the effects of the structures which would 



not be resolved in the coarse-grid simulations were extracted from highly resolved simulations 

performed in a periodic domain whose size was chosen to be the same as the filter size; this 

imposed periodicity necessarily limited the dynamics of the structures in the highly resolved 

structures and so the accuracy of using the sub-grid models deduced from such restrictive 

simulations is debatable. 

The first objective of the present study is to develop a systematic filtering approach and 

construct closure relationships for the drag coefficient and the effective stresses in the gas and 

particle phases that are appropriate for coarse-grid simulations gas-particle flows. Briefly, we 

have performed highly resolved simulations of a kinetic theory based two-fluid model in a large 

periodic domain, and analyzed the results using different filter sizes. In this case, as the filter size 

is considerably smaller than the periodic domain size, the microstructures sampled in the filtered 

region are not constrained by the periodic boundary conditions. The present approach also 

exposes nicely the filter size dependence of various quantities.   

It should be emphasized that the present study does not challenge the validity of the 

microscopic two-fluid model equations such as the kinetic theory based equations. Instead, it 

uses these microscopic equations as a starting point and seeks modifications to make them 

suitable for coarse-grid simulations. (If a fine grid can be used to resolve all the structures 

contained in the microscopic two-fluid model equations, the present analysis is unnecessary; 

however, such high resolution is neither practical nor desirable for the analysis of the macroscale 

flow behavior.)  

The second objective of the present study is to demonstrate that filtering does indeed 

remove small scale structures that are afforded by the microscopic two-fluid models. If filtering 



has been done in a meaningful manner, the filtered equations should yield coarser structures than 

the microscopic two-fluid model (from which the filtered equations were derived) even when one 

uses fine spatial resolution.  We will demonstrate that this is indeed the case. 

In the body of the paper, the microscopic two-fluid model equations employed in our 

simulations are briefly discussed in §2. The coarse-grained two-fluid model equations are 

presented in §3. The closure relations for the filtered model equations, obtained by filtering the 

computational data generated via highly resolved simulations of the microscopic two-fluid model 

equations, are examined in §4. The 1D liner stability analyses of the filtered two-fluid models are 

given in §5 and the findings of this study are summarized in §6. 

2. Microscopic Two-fluid Model Equations 

The general form of the two-fluid model equations for gas-particle flows is fairly 

standard. However, several choices have been discussed and analyzed in the literature for the 

constitutive relations for the fluid-particle drag force and the effective stresses.2,3,12 We consider 

a system consisting of uniformly sized particles and focus on the situation where the particles 

interact only through binary collisions. In the kinetic theory approach, the continuity and 

momentum equations for the gas and particle phases are supplemented by an equation describing 

the evolution of the fluctuation energy (a.k.a. granular energy) associated with the particles, 

which is used to compute the local granular temperature; the particle phase stress is then 

expressed in terms of the local particle volume fraction, granular temperature, rate of 

deformation and particle properties. There are several different closures for the terms appearing 

in the granular energy equation as well. Thus, it must be emphasized that while the general forms 

of the continuity, momentum and granular energy equations are common among most of the 



microscopic two-fluid models discussed in the literature, there are variations in the closure 

relations. Thus, the exact form of the closures for the microscopic two-fluid model is still 

evolving. Nevertheless, the microscopic two-fluid models are robust in the sense that when they 

are augmented with physically reasonable closures, they do yield all the known instabilities in 

gas-particle flows, which in turn lead to persistent fluctuations that take the form of bubble-like 

voids in dense fluidized beds and clusters and streamers in dilute systems.2,3,30,32,40-46 Thus, all 

sets of constitutive relations which capture these small scale instabilities can be expected to lead 

to similar conclusions regarding the structure of the closures for the filtered equations. With this 

in mind, we have selected one set of closures for the kinetic theory based microscopic equations 

(see Table 1). Further discussion of these equations and an extensive review of the relevant 

literature can be found in Agrawal et al.30. As the closures for the microscopic two-fluid models 

improve, one can easily repeat the analysis described here and refine the filtered closures.  

3. Filtered Two-fluid Model Equations 

We coarse-grain the two-fluid model equations through a filtering operation which 

amounts to spatial averaging over some chosen filter length scale.  In these filtered (a.k.a. coarse-

grained) equations, the consequences of the flow structures occurring on a scale smaller than a 

chosen filter size appear through residual correlations for which one must derive or postulate 

constitutive models.  If constructed properly, and if the several assumptions innate to the filtering 

methodology hold true, the filtered equations should produce a solution with the same 

macroscopic features as the finely resolved kinetic theory model solution; however obtaining 

this solution should come at less computational cost.   



Let ( ),s tφ y  denote the particle volume fraction at location y  and time t obtained by 

solving the microscopic two-fluid model. We can define a filtered particle volume fraction 

( ,s tφ x ) as 

( ) ( ) ( ), , ,s s
V

t G tφ φ
∞

= ∫x x y y dy

)

 

where ( ,G x y  is a weight function that depends on x – y and V∞  denotes the region over which 

the gas-particle flow occurs. The weight function satisfies ( ), d 1
V∞

G =∫ x y y . By choosing how 

rapidly ( ,G x )y  decays with distance measured from x, one can change the filter size. We define 

the fluctuation in particle volume fraction as  

    ( ) ( ) ( ), ,s s st tφ φ φ′ = −y y y, t . 

Filtered phase velocities are defined according to 

( ) ( ) ( ) ( ) ( ), , , , , ds s
V

t t G t tφ φ
∞

= ∫x v x x y y v y y  

and 

( )( ) ( ) ( ) ( )( ) ( )1 , , , 1 , ,s s
V

t t G t tφ φ
∞

− = −∫x u x x dy y u y y  

Here, u and v denote local gas and particle phase velocities appearing in the microscopic two-

fluid model. We then define the fluctuating velocities as: 

 ( ) ( ) ( ), ,t t′ = −v y v y v y, t   and  ( ) ( ) ( ), ,t t′ = −u y u y u y, t . 



 Applying such a filter to the continuity equations (1 and 2) in Table 1, we obtain 
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as the filtered continuity equations, where we have assumed that the gas density does not vary 

appreciably over the representative region of the filter. These are identical in form to the 

microscopic continuity equations in Table 1. Repeating this analysis with the two microscopic 

momentum balance equations (3 and 4 in Table 1), we obtain the following filtered momentum 

balances: 
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 Here 

  s ss s s s s s sρ φ ρ φ ρ φ ′ ′= + − = +σ vv vv σ v v∑         (17) 

     s gφ′= − ∇⋅F f σ′        (18) 



The filtered momentum balance equations are nearly identical (in form) to the microscopic 

momentum balances in Table 1. One exception is that the filtered gas phase momentum balance 

now contains an additional term, ( )(1 )g sρ φ ′ ′∇ ⋅ − u u . In the class of problems we consider here 

the contribution of this term is much weaker than the first and third terms on the right hand side 

of the gas phase momentum balance equation (as ( )1s s g sρ φ ρ φ>> −  in most of the flow domain 

in the problem considered here).  

The effective particle phase stress, s∑ , includes the filtered microscopic stress sσ  and a 

Reynolds stress-like contribution coming from the particle phase velocity fluctuations, see 

equation (17). As noted by Agrawal et al.30 and Andrews et al.31, the contribution due to the 

velocity fluctuations dwarf the microscopic particle phase stress even for modestly large filter 

sizes and this will be seen clearly in the results presented below. Thus, when realistically large 

filter sizes (of the order of 100 particle diameters or more) are employed, one can neglect the sσ

contribution for all practical purposes for the particle volume fraction range analyzed in this 

study. Therefore, at least as a first approximation, it is not necessary to include a filtered granular 

energy equation in the analysis.31 This statement, however, does not imply that the granular 

energy equation (see (5) in Table 1) is not important in gas-particle flows. The granular energy 

equation and the parameters (such as the coefficient of restitution) contained in it can certainly 

be expected to influence the details of the small scale structures, which in turn affect the velocity 

fluctuation term in the filtered particle phase stress.  

The filtered gas-particle interaction force F  includes a filtered gas-particle drag force f

and a term representing correlated fluctuations in particle volume fraction and the (microscopic 

two-fluid model) gas phase stress gradient, see equation (18).  



Before one can analyze the filtered two-fluid model equations, constitutive relations are 

needed for the residual correlations F , s∑  and gσ  in terms of filtered particle volume fraction, 

velocities and pressure. Furthermore, as these are filtered quantities, the constitutive relations 

capturing them will necessarily depend on the details of the fluctuations being averaged, but 

these details will depend on the location in the process vessel. For example, one can anticipate 

that fluctuations in the vicinity of solid boundaries will be different from those away from such 

boundaries. Accordingly, it is entirely reasonable to expect that the constitutive models for these 

residual correlations should include some dependence on distance from boundaries. (This is well 

known in single phase turbulent flows.) In the present study, we do not address the boundary 

effect, but focus on constitutive models that are applicable in regions away from boundaries as it 

is an easier first problem to address. It is assumed that the constitutive relations for the residual 

correlations will depend on local filtered variables and their gradients. 

In rapid gas-particle flows with ( )1s s g sρ φ ρ φ>> − , it is invariably the case that 

(1 )g s s sρ φ ρ φ′ ′ ′ ′− <<u u v v , and we simplify the filtered gas phase stress as: 

gpg ≈ −σ I       (19) 

We express F  as  

( )   s g eφ β′ ′= − ∇ ⋅ = −F f σ u v    (20) 

where eβ  is a filtered drag coefficient to be found. The    s gφ′ ′∇ ⋅σ  term in equation (20) can also 

add a dynamic part, resembling an apparent added mass force40-42; however, as Andrews43 found 



such a dynamic part to be of much smaller than the drag force term in equation (20), we will 

limit ourselves to equation (20).  

 We begin our analysis by postulating the following filtered particle phase stress model: 

( ) ( ) ( )T 2
3s se be sep μ μ ⎛ ⎞= − ∇ ⋅ − ∇ + ∇ − ∇ ⋅⎜ ⎟

⎝ ⎠
I v I v v v∑ I    (21) 

where ( x x y y z z
1 v v v v v v
3se s s s s s s sp p ρ φ ρ φ ρ φ⎛ ⎞′ ′ ′ ′ ′ ′= + + +⎜ ⎟

⎝ ⎠
)  is the filtered particle phase pressure; seμ  

and beμ  are the filtered particle phase shear and bulk viscosity, respectively. As our simulations 

described below do not permit an evaluation of beμ , we do not consider this term in the present 

analysis and we simplify equation (21) as 

( ) ( )T 2
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I v v v∑ ⎞
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The filtered particle phase shear viscosity is defined as 
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We now seek closure relations for eβ , sep and seμ  by filtering computational data gathered from 

highly resolved simulations of the microscopic two-fluid model equations. 

4. Detailed solution of microscopic two-fluid model equations 

As already noted in §1, we restrict our attention to closures for eβ , sep and seμ  in flow 

regions far away from solid boundaries. A simple and effective manner by which solid 

boundaries can be avoided is to consider flows in periodic domains. The filtering operation does 



not require a periodic domain; however, as each location in a periodic domain is statistically 

equivalent to any other location, statistical averages can be gathered much faster when 

simulations are done in periodic domains. With this in mind, all the analyses described here have 

been performed in periodic domains. Agrawal et al.30 have already shown that the results 

obtained from 2-D and 3-D periodic domains are qualitatively similar, but differ somewhat 

quantitatively; therefore, we have focused first on 2-D simulations in the present study to bring 

forward the filter size dependence of the closures for the residual correlations, as 2-D simulations 

are computationally less expensive. We will present several 3-D simulation results at the end to 

bring forth the differences between 2-D and 3-D closures.  

4.1. Two-dimensional simulations 

We have performed many sets of highly resolved simulations (of the set of microscopic 

two-fluid model equations for a fluidized suspension of particles presented in Table 1) in large 2-

D periodic domains. All of our simulations were performed using the open-source software 

MFIX5. These simulations are identical to those described by Agrawal et al.30, except that our 

simulations are now done for much larger domain sizes. Agrawal et al.30 averaged the residual 

correlations over the entire domain (i.e., the filter size is the same as their domain size), but as 

our simulation domains are much larger, the computationally generated “data” can now be 

averaged using a range of filter sizes that are smaller than the domain size. 

After an initial transient period which depends on the initial conditions, persistent, time-

dependent and spatially inhomogeneous structures develop. Figure 2 shows an instantaneous 

snapshot of the particle volume fraction field in one such 2-D simulation and the cells (i.e., fine 

grids) used in the simulations. One can then select any region of desired size (illustrated in the 



figure as gray squares of different sizes) and average any quantity of interest over all the cells 

inside that region; we refer to such results as region-average (or filtered) values. (Such region 

averaging is equivalent to setting the weight function to an appropriate non-zero constant 

everywhere inside the region and to zero outside.) Note that one can choose a large number of 

different regions of the same size inside the overall domain and thus many region-averaged 

values can be extracted from each instantaneous snapshot. When the system is in a statistical 

steady state, one can construct tens of thousands of such averages by repeating the analysis at 

various time instants.  

Returning to figure 2, note that the averages over different regions at any given time are 

not equivalent; for example, at the given instant, different regions (even of the same size) will 

correspond to different region-averaged particle volume fractions, particle and fluid velocities. 

Thus, one cannot simply lump the results obtained over all the regions; instead, we must group 

them into bins based on various markers and perform statistical averages within each bin to 

extract useful information. Our 2-D simulations revealed that the single most important marker 

for a region is its average particle volume fraction. Therefore, we divided the permissible range 

of filtered particle volume fraction ( ),max0 s sφ φ≤ < = 0.65  into 1300 bins (so that each bin 

represented a volume fraction window of 0.0005) and classified the filtered data in these bins. 

(Strictly speaking, one would expect to use two-dimensional bins, involving sφ  and a Reynolds 

number based on slip velocity, to classify the filtered drag coefficient; however, we found the 

Reynolds number dependence to be rather weak for the cases investigated in this study.) For each 

snapshot of the flow field in the statistical steady state, we considered a filtering region around 

each grid point in the domain and determined the filtered particle volume fraction sφ , filtered 



slip velocity ( −u v) , filtered fluid-particle interaction force, etc. This combination of filtered 

quantities represents one realization and it was placed in the appropriate filtered particle volume 

fraction bin, determined by its volume fraction value. In this manner a large number of 

realizations could be generated from each snapshot.  This procedure was repeated for many 

snapshots. The many realizations within each bin were then averaged to determine ensemble-

averaged values for each filtered quantity. From such bin statistics, we calculated the filtered 

drag coefficient, the filtered particle phase normal stresses and filtered particle phase viscosity as 

functions of filtered particle volume fraction. For example, the filtered drag coefficient is taken 

to be the ratio of the filtered drag force and the filtered slip velocity, each of which has been 

determined in terms of the volume fraction. All the results are presented as dimensionless 

variables, with sρ , and g representing characteristic density, velocity and acceleration. tv

Figure 3 shows the variation of the dimensionless filtered drag coefficient, 

( ), ve d eβ β= t s gρ  as a function of sφ  for one particular filter size. Even though all the results 

are presented in terms of dimensionless units, it is instructive to consider some dimensional 

quantities to help visualize the physical problem better.  Most of the 2-D filtered results 

presented in this manuscript are based on computational data gathered in a 131.584 x 131.584 

(dimensionless units) square periodic domain; this domain size translates to 0.64 m x 0.64 m for 

the FCC particles (whose physical properties are given in Table 2). The dimensionless filter size 

of 8.224 used in figure 3 corresponds to a filter size of 0.04 m for the FCC particles. Thus, one 

can readily appreciate that this filter size is quite small compared to the macroscopic dimensions 

of typical process vessels.  The various symbols in this figure refer to computational data 

obtained by solving the microscopic two-fluid model equations at different resolution levels. 



Simulations were performed using different domain-average particle volume fractions so that 

every (filtered) volume fraction shown here would have many realizations. This figure indicates 

that at a sufficiently high resolution the results did become nearly independent of the grid size 

used in the simulations to generate the computational data. Typically, when the grid size was 

smaller than the filter size by a factor of four or more (so that there were at least 16 grids inside 

the filtering region in 2-D simulations), the filtered results were found to be essentially 

independent of the grid resolution. 

The effect of (periodic) domain size on the filtered drag coefficient was explored by 

performing simulations with two different domain sizes. Figure 4 presents the dimensionless 

filtered drag coefficient for two different filter sizes and two different domain sizes. It is clear 

that for both filter sizes the results are essentially independent of domain size. In general, we 

found that the filtered results were independent of the domain size as long as the filter size was 

smaller than 1/4th of the domain size. (The filter size dependence seen in this figure is discussed 

below.) 

The results presented in figures 3 and 4, and in many of the figures below, were 

generated by combining results obtained from simulations with many different specified domain-

average particle volume fractions. Figure 5 shows the variation of the filtered drag coefficient 

with filtered particle volume fraction, with results obtained from simulations with different 

domain-average particle volume fractions indicated with different symbols. Although the 

domain-average particle volume fraction affects the filtered drag coefficient slightly (particularly 

for volume fractions above ~ 0.20), this effect is clearly much smaller than that of the filter size. 

Physically, this implies that the filter size dependence manifested in this and other figures largely 

stems from the inhomogeneous microstructure inside the filtering region and the filtered drag 



coefficients are either independent of or only weakly dependent on the conditions prevailing 

outside the filtered region (at least over the range of particle volume fractions over which the 

data were collected). 

Figure 6a shows the variation of the (dimensionless) filtered drag coefficient, as a 

function of filtered particle volume fraction for various filter sizes. The results for the two 

smallest filter sizes are likely to decrease somewhat if simulations could be done at higher 

resolutions, but as noted earlier in the context of figure 3 the results for all larger filter sizes are 

essentially independent of grid size. It is clear that the filtered drag coefficient decreases 

substantially with increasing filter size, and this can readily be rationalized. As we increase the 

filter size, averaging is being performed over larger and larger clusters – larger clusters allow 

greater bypassing of the gas resulting in lower apparent drag coefficient. The uppermost curve in 

figure 6a is the intrinsic drag law; the filter size here is simply the grid size used in the 

simulations of the microscopic two-fluid model equations (which is equivalent to no filtering at 

all). For typical FCC particles (see Table 2), a dimensionless filter size of 2.056 is equivalent to 

0.01 m, and so even at small filter sizes (from an engineering viewpoint) an appreciable 

reduction occurs in the effective drag coefficient.  

An alternative presentation of the filtered drag coefficient is given in Figure 6b. It is clear 

that in figure 6a the variation of the filtered drag coefficient with particle volume fraction is 

dictated by that of the microscopic drag coefficient. Figure 6b shows how the ratio of the filtered 

drag coefficient to the microscopic drag coefficient changes with particle volume fraction for 

several filter lengths. Our major observation from the figure is that this ratio is weakly dependent 

on the particle volume fraction for the range of 0.03 0.30sφ< < . The ratio within this range can 



be represented as a function of the filter length only.  It can be given in a simple algebraic form 

as  
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Intuitively, one can expect that the clusters will not grow beyond some critical size and 

that at sufficiently large filter sizes the filtered drag coefficient will become essentially 

independent of the filter size. It is clear from Figure 6a and 6b that this critical filter size is 

definitely larger than the largest filter size shown there. Simulations using much larger domains 

are needed to identify this critical size, but we have not pursued this issue in the present study; 

instead, we have focused on a qualitative understanding as to how the filtered quantities depend 

on filter size for modest filter sizes. 

It was seen earlier, Eq. (18), that the filtered drag force includes contributions from two 

terms. The second term is essentially equal to   gpφ′ ′− ∇  as the deviatoric stress in the gas phase 

is quite small. The contribution from this term to the filtered drag coefficient is presented in 

Figure 7, while the total contribution due to both terms was shown earlier in Figure 6a. While the 

overall filtered drag coefficient decreases with increasing filter size (Figure 6a), the contribution 

from   gpφ′ ′− ∇  first increases with the filter size and then decreases (Figure 7). However,  

  gpφ′ ′− ∇  contributes no more than 25% of the overall filtered drag coefficient. So, over this 

range of filter sizes, the primary contribution to F  comes from f .  

The results presented in Figure 6a are plotted in Figure 8 on a logarithmic scale which 

shows: (a) the typical Richardson-Zaki44 form for sφ  not too close to zero, and (b) at small sφ  



values, a clear departure from this trend. The uppermost curve in this figure corresponds to the 

intrinsic drag expression extracted simply using a filter size equal to the grid size of the 

simulations. The two obvious regions manifested by this uppermost curve can be traced to a 

Reynolds number ( Reg ) effect present in the Wen and Yu6 drag expression used in the 

simulations. The filtered slip velocity in the vertical direction, as a function of sφ , is shown in 

Figure 9 for various filter sizes. Here the bottommost curve is for the case where the filter size is 

the same as the grid size; the inverse relationship between the local slip velocity and the particle 

volume fraction is clear. It can be seen from Equation (7) that � increases with sφ  and Reg ; in 

the uppermost curve in figure 8, the effect of sφ  dominates at high sφ  values while the Reg effect 

leads to a reversal of trend at very small sφ  values. To establish this point, we carried out 

simulations where the intrinsic drag coefficient expression (see Equation 7) was modified by 

setting DC 24 Reg=  (so that only the Stokes drag remained). Figure 10 shows the results 

obtained from these simulations, cf. Figure 8. The uppermost curve in Figure 10 does not show 

the reversal of trend at very small sφ  values, establishing Reynolds number effect as the reason 

for the difference between the shapes of the uppermost curves in Figures 8 and 10. 

Let us now consider the other curves in both Figures 8 and 10, which are for filter sizes 

larger than grid size. All of these curves exhibit a Richardson-Zaki like behavior at high volume 

fractions and a reversal of trend at very low particle volume fractions. This behavior is not due to 

an Reg  effect in the intrinsic drag law, as Figure 10 does not have any such dependence, and so 

one has to seek an alternate explanation. The results presented in Figure 9 indicate that one 

cannot capture this effect through a Reynolds number term involving the filtered slip velocity. 



Note that for large filter sizes, the slip velocity manifests a peak at some intermediate sφ ; for sφ  

values to the left of this peak, the filtered slip velocity decreases as  sφ  is decreased, while the 

quantity plotted in figures 8 and 10 increase with decreasing sφ . Thus, if we seek to capture the 

data in Figures 8 and 10 in the low sφ region through a Reynolds number dependence (based on 

the filtered slip velocity), it will involve a negative order dependence, which makes no physical 

sense. Therefore we attribute the trend reversal seen in Figures 8 and 10 at small sφ  values to 

just the inhomogeneous microstructure inside the filter region. At low sφ  values, an increase in 

sφ  increases both the cluster size and particle volume fraction in the clusters; the gas flows 

around these clusters and the resistance offered by these clusters decreases with increasing 

cluster size. Large filter sizes average over larger clusters and so the extent of drag reduction 

observed increases with filter size. At sufficiently large sφ  values, the clusters begin to interact 

and hindered drag sets in. This behavior is clearly reflected in the vertical slip velocity 

corresponding to large filter sizes, see Figure 9. The slip velocity increases with sφ  at small sφ

values, consistent with larger and/or denser clusters; it then decreases with increasing sφ  when 

the clusters begin interact with each other. 

It is interesting to note in Figure 9 that the dimensionless slip velocity, in the limit of zero 

particle volume fraction ( 0sφ → ), differs from unity. In our simulations with various domain-

average particle volume fractions, regions with 0sφ → appeared in the dilute phase surrounding 

the clusters; here the slip velocity was almost always larger than the terminal velocity.   This 

implies that the gas in the dilute phase was constantly engaged in accelerating the particles 



upward. This can happen only if the clusters are dynamic in nature with active, continual 

exchange of particles between the clusters and the dilute phase.  

Linear fits of the data in Figure 8 over the particle volume fraction range (

0.10 0.30sφ≤ ≤ ) were used to estimate dimensionless apparent terminal velocity and an 

apparent Richardson-Zaki exponent, . 
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The variation of  and with dimensionless filter size, ,t appV ,RZ appN 1
tvf fFr g− = Δ 2 , are shown in 

Figures 11a (diamonds) and 11b, respectively. Here fΔ  denotes the filter size. Both increase 

with filter size. 

Figure 12a shows the variation with sφ of the dimensionless filtered kinetic theory 

pressure, 2
, vs d s sp p ρ= t , for the simulations discussed earlier in connection with Figures 4 and 

8. At very low sφ  values the filtered kinetic theory pressure is essentially independent of filter 

size, but at larger sφ  values distinct filter size dependence becomes clear. Figure 12b shows the 

dimensionless total particle phase pressure 2
, vse d se sp p tρ=  as a function of sφ for various filter 

sizes. Here the filtered particle phase pressure includes the pressure arising from the streaming 

and collisional parts captured by the kinetic theory and the sub-filter-scale Reynolds-stress like 

velocity fluctuations (see text below Equation 21). Comparing Figures 12a and 12b, we see that 

the contributions resulting from the sub-filter-scale velocity fluctuations swamp the kinetic 

theory pressure indicating that, at the coarse-grid scale, one can ignore the kinetic theory 



contributions to the pressure. It is also clear from Figure 12b that the filtered pressure increases 

with filter size, a direct consequence of the fact that the energy associated with the velocity 

fluctuations increases with filter length (as in single phase turbulence). Once again, results 

obtained from simulations with different domain-average particle volume fractions collapse on to 

the same curves (as earlier in Figures 5 and 6 for the filtered drag coefficient), confirming that 

the filtered quantities largely depend on quantities inside the filtering region. The data presented 

in Figure 12b could be captured by an expression of the form (1 )s sa bφ φ− with . The 

parameter a increases with filter size, see Figure 12c. 

~ 1.80b

 Figures 13a and 13b show the variation with sφ  of dimensionless filtered kinetic theory 

viscosity, 3
, tvs d s sgμ μ ρ= , and the (dimensionless) filtered particle phase shear viscosity, 

3
, vse d se sg tμ μ ρ= .  The latter includes the streaming and collisional parts captured by the kinetic 

theory (shown in Figure 13a) and that associated with the sub-filter-scale velocity fluctuations. It 

is readily seen that for large filter sizes, the contribution from the sub-filter scale velocity 

fluctuations dominate, and the filtered particle phase viscosity increases appreciably with filter 

size.  Once again, results from simulations with different domain-average particle volume 

fractions collapse on the same curves, adding further support to the viability of the filtering 

approach. The data presented in Figure 13b could be captured by an expression of the form 

(1 )s sc dφ φ− with . The parameter c increases with filter size, see Figure 13c. ~ 0.86d

It is mentioned in passing that we have studied the robustness of the filtered statistics 

against small changes in the secondary model parameters (namely, the coefficient of restitution, 

density ratio, etc.) and found that they are much less important than the dimensionless filter size; 



so, capturing the effect of the dimensionless filter size on the dimensionless filtered drag 

coefficient is indeed the most important challenge.  

Agrawal et al.30 and Andrews et al.31 determined domain-averaged drag coefficient, 

particle phase pressure and viscosity by averaging their kinetic theory simulation results over the 

entire periodic domain. In contrast, we have performed the averaging over regions that are much 

smaller than the periodic domain, so that the filtered statistics are not affected by the periodic 

boundary conditions. It is interesting to observe that the filter size dependences of all these 

filtered quantities obtained in our study are qualitatively identical to those reported in the studies 

of Agrawal et al.30 and Andrews et al.30 This further confirms that the robustness of the role 

played by filter size. 

 

4.2. Three-dimensional simulations 

 Figure 14 shows a snapshot of the particle volume fraction field in a 3-D periodic 

domain, and the presence of particle-rich strands is readily visible. Figure 15 shows the effect of 

grid resolution on the filtered drag coefficient. As seen earlier in Figure 3 for 2-D simulations, 

the dependence of the filtered drag coefficient on grid resolution becomes weaker as the filter 

size increases. At the lower grid resolution, the filter size of 1.028 is the same as the grid size and 

when the grid resolution is increased, the filtered drag coefficient changes appreciably. For a 

filter size of 4.112, there are 512 and 4096 grids inside the filter volume in the two simulations; 

these are quite large and so the filtered drag coefficient manifests only a weak dependence on 

resolution. 



 Figure 16 displays the variation of filtered drag coefficient with particle volume fraction 

for different filter sizes. As the grid size used in these simulations is 0.257 dimensionless units, 

the uppermost curve corresponds to using no filter at all. The next curve corresponding to the 

filter size of 0.514 has only 8 grids inside the filtering volume and so is likely to change if 

simulations with greater resolutions are performed. The results for other, larger filter sizes are 

expected to be nearly independent of grid resolution. It is clear from Figure 16 that the filter size 

dependence of the filter drag coefficient seen earlier in the 2-D simulations persist in 3-D as 

well. 

 As in the case of 2-D simulations, the filtered drag coefficient obtained from 3-D 

simulations at different domain-average particle volume fractions collapse onto the same curve 

(over the range of volume fractions displayed), see Figure 17. Furthermore, Figure 18 illustrates 

the filtered drag coefficient is indeed independent of the domain size. These suggest that the 

filtered drag coefficient is largely determined by the inhomogeneous microstructure inside the 

filtering volume. The results presented in Figure 16 are plotted on a natural logarithmic scale in 

Figure 19. Richardson-Zaki like behavior at high particle volume fractions and a reversal of the 

trend at lower volume fractions, seen earlier in 2-D simulations (see Figure 8), persist in 3-D as 

well. Filter size dependence of the apparent terminal velocity and the exponent in the 

Richardson-Zaki regime, are shown in Figures 11a and 11c. The apparent terminal velocity 

increases with filter size, just as it did for 2-D simulations; however, the Richardson-Zaki 

exponent shows a slight decline with increasing filter size, in marked contrast to 2-D simulations 

(see Figure 11b). Thus, there are definite quantitative differences between 2-D and 3-D results; 

however, it is clear from Figures 8 and 19 that both 2-D and 3-D results are strikingly similar. 



 Figures 20 and 21 present filtered particle phase pressure and viscosity extracted from 3-

D simulations and can be compared to Figures 12b and 13b, respectively. The strong filter size 

dependence of these quantities is clearly present in both two- and three- dimensions.  

5. Sample solution of the filtered two-fluid model equations 

 Although a fundamentally based, quantitative model for the dependence of eβ , sep and

seμ  on filter size and sφ  presented above remains elusive at the present time, one can interrogate 

whether the filtered two-fluid model approach is scientifically sound. Ultimately, models should 

be validated against experimental data; however, such a comparison is not the correct first test to 

establish the soundness of the filtering approach. The rigor of the filtered equations approach 

should be established by comparing the predictions of the filtered model against the underlying 

microscopic two-fluid model. Only after establishing this fidelity should comparisons with 

experiments be undertaken, so that one can validate the microscopic two-fluid models (using the 

filtered equations to facilitate the computations).  

 Here we consider the first question that one would ask in establishing the usefulness of 

the filtered model equations. If the filtering process and the general form of the filtered 

constitutive models are meaningful, one would expect that the filtered model equations should 

afford considerably coarser structures than the microscopic two-fluid models would, even when 

we use very high spatial resolution in the simulations. We now demonstrate that this is indeed 

the case. 

It is well known that according to the two-fluid model equations the state of uniform 

fluidization is most unstable to 1-D (vertical) disturbances that have no horizontal structure. 

Accordingly, we have focused our initial attention on a 1-D linear stability analysis (LSA). The 



LSA reveals that the state of uniform fluidization is stable to disturbances above a critical 

wavenumber where a Hopf bifurcation occurs. For wavenumbers smaller than this critical 

wavenumber ( ), unstable modes that take the form of traveling waves (that rise through the 

fluidized bed) obtain. Larger the value of , finer the structure of the inhomogeneities observed 

in the gas-particle suspension will be.  

HBk

HBk

Our 1-D LSA with the filtered models revealed the following trend. In Figures 22a and 

22b, it is shown how the growth rates of disturbances vary with the wave number of the 

disturbances for several filtered two-fluid models. The filtered two-fluid models, given in Table 

3, were constructed for the curves presented in Figures 8, 12b and 13b. It is readily clear from 

the figures that the effective  is a function of the filter size; in particular, the effective  

decreased as the filter size increased. This is reassuring, as it shows that filtering is indeed 

erasing the fine structure and only presenting coarser structures. In addition, as the filter size 

increases the structures get progressively coarser. Thus, the filtering operation has indeed 

averages over the fine structures and generates equations and constitutive models that are 

suitable for integration over coarser grids. 

HBk HBk

 6. Summary 

We have presented a methodology where computational results obtained through highly 

resolved simulations (in a large periodic domain) of a given microscopic two-fluid model are 

filtered to deduce closures for the corresponding filtered two-fluid model equations. These 

filtered closures depend on the filter size and can readily be constructed for a range of filter sizes.  

We found that, to a good approximation, the dimensionless filtered drag coefficient, particle 

phase pressure and particle phase viscosity can be treated as functions of only particle volume 



fraction and dimensionless filter size.  The effective drag coefficient to describe the inter-phase 

interaction force in the filtered equations shows two distinct regimes. At particle volume 

fractions greater than about 0.075, it follows an effective Richardson-Zaki relationship and the 

effective R-Z exponent and apparent terminal velocity have an understandable physical 

interpretation in terms of interactions between particle clusters instead of the individual particles. 

At low particle volume fractions, the drag coefficient shows an anomalous behavior that is 

consistent with the formation of larger and denser clusters with increasing particle volume 

fraction.  

The velocity fluctuations associated with the very complicated inhomogeneous structures 

shown by the microscopic two-fluid simulations dictate the magnitudes of the filtered particle 

phase pressure and viscosity. The contributions of the kinetic theory pressure and viscosity to 

these filtered quantities are negligibly small and so, for practically relevant filter sizes, one need 

not include the filtered granular energy equation in the analysis. This, however, does not mean 

that the fluctuations at the level of the individual particles, which the kinetic theory strives to 

model, are not important at all; these fluctuations influence the inhomogeneous microstructure 

and their velocity fluctuations, and hence  the closures for the filtered equations.  

The filtered two-fluid models based on seven filter lengths were compared in a 1D linear 

stability analysis. This analysis showed that filtering is indeed erasing the fine structure and only 

presenting coarser structures.    

It is clear from our simulation results that there is a striking similarity between the 2-D 

and 3-D results. Although there are quantitative differences between 2-D and 3-D, the following 

characteristics were found to be common between them: 



a) The filtered drag coefficient decreased with increasing filter size, and 

b) The filtered particle phase pressure and viscosity increased with filter size. 

It seems reasonable to expect that the clusters will not grow beyond some critical size; if 

this is indeed the case, the filtered drag coefficient, and particle phase pressure and viscosity will 

become nearly independent of the filter size beyond some critical value. It is important to 

understand if such saturation occurs and, if so, at what filter size. It is also important to 

incorporate the effects of bounding walls on the filtered closures as comparison of the filtered 

model predictions with experimental data cannot be pursued until this issue is addressed. These 

are fertile problems for further research. 

In the present study, we have absorbed the   gpφ′ ′− ∇  term into the filtered the drag 

force. Zhang and VanderHeyden40 and de Wilde41,42 argue that   gpφ′ ′− ∇  should also include a 

dynamic part (namely, an added mass force). Andrews43 found in his simulation study that the 

principal contribution of   gpφ′ ′− ∇  was to a filtered drag force term, which we have included in 

our study. A more thorough investigation of the dynamic contribution would also be of interest.   
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Nomenclature 

DC  Single particle drag coefficient 

d  Particle diameter (m) 

pe  Coefficient of restitution for particle-particle collisions 

f  Inter-phase interaction force per unit volume in the microscopic two-fluid model 

(kg/m2.s2) 

f  Filtered value of f (kg/m2.s2) 

F  Inter-phase interaction force per unit volume in the filtered two-fluid model 

(kg/m2.s2) 

fFr  Froude number based on filter size = 2
tv fgΔ  

g , g  Acceleration due to gravity (m/s2) 

og  value of radial distribution function at contact (see expression in Table 1) 

( ),G x y  Weight function (m-3) 

collJ  Rate of dissipation of granular energy per unit volume by collisions between 

particles (kg/m.s3) 

visJ  Rate of dissipation of granular energy per unit volume by the relative motion 

between gas and particles (kg/m.s3) 

,RZ appN  Apparent Richardson-Zaki exponent 

gp , sp  Gas and particle phase pressures in the microscopic two-fluid model, respectively 

(kg/m.s2) 

gp , sp  Filtered value of gp and sp , respectively (kg/m.s2) 

,s dp  sp  made dimensionless; 2
, tvs d s sp p ρ=  

sep  Filtered particle phase pressure (kg/m.s2) 

,se dp  sep  made dimensionless; 2
, tvse d se sp p ρ=  

q  Flux of granular energy (kg/s3) 

Reg  Single particle Reynolds number 



t Time (s) 

T Granular temperature (m2/s2) 

,u v  Gas and particle phase velocities in the microscopic two-fluid model, respectively 

(m/s) 

u , v  Filtered gas and particle phase velocities, respectively (m/s) 

′u ,  Fluctuations in gas and particle phase velocities, respectively (m/s) ′v

tv  Terminal settling velocity (m/s) 

,t appV  Dimensionless apparent terminal velocity 

,x y  Position vectors (m)  

 

Greek Symbols 

β  Drag coefficient in the microscopic two-fluid model (kg/m3.s) 

eβ  Filtered drag coefficient (kg/m3.s) 

,e dβ  Dimensionless filtered drag coefficient = tve s gβ ρ  

sφ , gφ  Particle and gas phase volume fractions, respectively 

sφ , gφ  Filtered particle and gas phase volume fractions, respectively 

sφ′  Fluctuation in particle phase volume fraction 

,sφ  Domain-average particle volume fraction 

s,maxφ  Maximum particle volume fraction 

sρ , gρ  Particle and gas densities, respectively (kg/m3) 

fΔ  Filter size (m) 

sσ , gσ  Particle and gas phase stress tensors in the microscopic two-fluid model, 

respectively (kg/m.s2) 

sσ , gσ  Filtered values of sσ and gσ , respectively (kg/m.s2) 

s∑  Filtered total particle phase stress (kg/m.s2) 

slipΓ  Rate of generation of granular energy per unit volume by gas-particle slip 

(kg/m.s3) 



η ,α ,λ ,μ  Quantities defined in Table 1  
*λ , *μ  Quantities defined in Table 1 

sλ  Granular thermal conductivity (kg/m.s) 

gμ  Gas phase viscosity (kg/m.s) 

ˆ gμ  Effective gas phase viscosity appearing in the microscopic two-fluid model (taken 

to be equal to gμ  itself in our simulations) (kg/m.s) 

bμ , sμ  Bulk and shear viscosities of the particle phase appearing in the kinetic theory 

model (kg/m.s) 

,s dμ  sμ  made dimensionless; 3
, tvs d s sgμ μ ρ=  

beμ , seμ  Bulk and shear viscosities of the particle phase appearing in the filtered two-fluid 

model (kg/m.s) 

,se dμ  seμ  made dimensionless; 3
, tvse d se sgμ μ ρ=  
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Table 1: Model equations for gas-particle flows 
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Table 1 – continued 

Kinetic theory model for particle phase stress 
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Table 1 – continued 

Kinetic theory model for rate of dissipation of pseudo-thermal energy through collisions 
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Table 2: Physical properties of gas and solids 
______________________________________ 

d  particle diameter    7.5 x 10‐6 m 

sρ   particle density      1500 kg/m3   

gρ   Gas density      1.3 kg/m3 

μg  Gas viscosity      1.8 x 10
‐5
 kg/m⋅s  

pe

tv

  Coefficient of restitution      0.9    

  Terminal settling velocity  0.2184 m/s 

2
tv
  Characteristic length    0.00487 m 

g

vt

2
t

g

sv

  Characteristic time    0.0223 s 

ρ   Characteristic stress    71.55 kg/m.s2 

______________________________________ 

 



Table 3: Filtered closures  

______________________________________ 

Filter region size:  1 2vf f tFr g− = Δ = 1.028 
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Table 3 – continued 

Filter region size:  1 2vf f tFr g− = Δ = 4.112 
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Figures: 

 

Figure 1: Snapshots of the particle volume fraction field in a large periodic domain of size 131.584 x 
131.584 dimensionless units are displayed.  The physical conditions corresponding to this simulation are 
listed in Table 2. The domain-average particle volume fraction, 0.05.sφ =  Simulations were performed 

with different resolutions: (a) 64 x 64 grids;  (b) 128 x 128 grids;  (c) 256 x 256 grids;  (d) 512 x 512 
grids.  The gray scale axis ranges from 0.0sφ =  (white) to 0.25sφ = (black). 

  



 

 

Figure 2: Snapshot of the particle volume fraction field in a large periodic domain of size 131.584 x 
131.584 dimensionless units are displayed. Simulations were performed with 512 x 512 grid points. 
Overlaid is a pictorial representation of region averaging, where regions of varying size are isolated and 
treated as individual realizations. Regions (filters) having dimensionless lengths of 4.112, 8.224, 16.448, 
and 32.896 are shown as shaded subsections. 



 

Figure 3: The variation of the dimensionless filtered drag coefficient with particle volume fraction, 
determined by filtering the computational data gathered from simulations in a large periodic domain of 
size 131.584 x 131.584 dimensionless units, is presented. The dimensionless filter length = 8.224. The 
filtered drag coefficient includes contributions from the drag force and the pressure fluctuation force.  
Data used for filtering were generated by running simulations for domain-average particle volume 
fractions of 0.05, 0.15, 0.25, and 0.35. The figure shows results obtained by filtering data generated at 
different grid resolutions as marked in the legend. The top curve corresponds to result obtained with 256 x 
256 grids. 



 

Figure 4: The effect of domain size on the dimensionless filtered drag coefficient is displayed. Data used 
for filtering were generated by running simulations at domain-average particle volume fractions of 0.02, 
0.05, 0.10, 0.15, 0.20, 0.25, and 0.35 for two different square periodic domains of sizes: 131.584 x 
131.584 dimensionless units (512 x 512 grids) and  32.896 x 32.896 dimensionless units (128 x 128 
grids). The top two curves correspond to a dimensionless filter length of 2.056, while the bottom two are 
for a dimensionless filter length of 4.112. 



 

Figure 5: The effect of domain-average particle volume fraction on the dimensionless filtered drag 
coefficient is displayed. Simulations were performed in a square domain of size 131.584 x 131.584 
dimensionless units and 512 x 512 grid points and domain-average particle volume fractions of 0.05, 
0.10, 0.15, 0.20, 0.25, and 0.35 (shown by different symbols in each curve). Results are presented for 
dimensionless filter lengths of 2.056 (top curve), 4.112 (middle curve) and 8.224 (bottom curve). 

  



 

 

Figure 6a: The variation of the dimensionless filtered drag coefficient with particle volume fraction for 
various filter sizes (listed in the legend in dimensionless units) is shown. Simulations were performed in a 
square periodic domain of size 131.584 x 131.584 dimensionless units and using 512 x 512 grid points. 
Data used for filtering were generated by running simulations for domain-average particle volume 
fractions of 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35. The dimensionless filter 
lengths are shown in the legend. 



 

Figure 6b: An alternative representation of the filtered drag coefficient. The variation of the 
dimensionless filtered drag coefficient with particle volume fraction for various filter sizes (listed in the 
legend in dimensionless units) is shown. All conditions are as in Figure 6a. 

 

 



 

Figure 7: The contribution of the (dimensionless) pressure fluctuation term to the dimensionless filtered 
drag coefficient shown earlier in Figure 6a is presented. All conditions are as in Figure 6a. The 
dimensionless filter lengths are shown in the legend. 

 



 

Figure 8: The results shown earlier in Figure 6a are plotted on a natural logarithmic scale. Here d

s g

Q β
φ φ

=

, where dβ is the dimensionless filtered drag coefficient, sφ is particle volume fraction, and gφ = 1 – sφ is 

the gas volume fraction. The dimensionless filter lengths are shown in the legend. 



 

Figure 9: The variation of filtered dimensionless slip velocity with filtered particle volume fraction is 
shown for various dimensionless filter lengths shown in the legend.  These results were generated from 
the same set of simulation data that led to Figure 6a.  



 

Figure 10: These results are analogous to those shown earlier in Figure 8, with the only difference being 
that the intrinsic drag force model used in the simulations which led to the present figure did not include a 
Reynolds number dependence. The dimensionless filter lengths are shown in the legend. 



 

Figure 11a: Dimensionless apparent terminal velocity for different dimensionless filter lengths, extracted 
from results in Figure 8 (2D) for the range 0.075 0.30sφ≤ ≤  and those extracted from results in Figure 

19 (3D) for the range 0.075 0.25sφ≤ ≤ .  The solid line in Figure 8 for a filter length of 2.056 is based on 

the apparent terminal velocity shown here and the apparent Richardson-Zaki exponent in Figure 11b.  



 

Figure 11b: Apparent Richardson-Zaki exponent for different dimensionless filter lengths, extracted from 
results in Figure 8 (2D) for the range 0.075 0.30sφ≤ ≤ . The solid line in Figure 8 for a filter length of 

2.056 is based on this apparent terminal velocity in Figure 11a and the apparent Richardson-Zaki 
exponent shown here. 



 

Figure 11c: Apparent Richardson-Zaki exponent for different dimensionless filter lengths, extracted from 
results in Figure 19 (3D) for the range 0.075 0.25sφ≤ ≤ . 



 

Figure 12a: The variation of the dimensionless filtered kinetic theory pressure with particle volume 
fraction is presented for different dimensionless filter lengths. The results were extracted from simulations 
mentioned in the caption for Figure 6a. The dimensionless filter lengths are shown in the legend. 



 

Figure 12b: The variation of the dimensionless filtered particle phase pressure with particle volume 
fraction is presented for different dimensionless filter lengths. The results were extracted from simulations 
mentioned in the caption for Figure 6a. The dimensionless filter lengths are shown in the legend. 



 

Figure 12c: The coefficient “a” of the dimensionless filtered particle phase pressure in Figure 12b 
represented as (1 )s sa bφ φ−  (for 0.30sφ ≤ ) is plotted against the dimensionless filter length.  for 

all filters.  
~ 1.80b



 

Figure 13a: The variation of the dimensionless filtered kinetic theory viscosity with particle volume 
fraction is presented for different dimensionless filter lengths. The results were extracted from simulations 
mentioned in the caption for Figure 6a. The dimensionless filter lengths from the top curve to the bottom 
curve are shown in the legend. 



 

Figure 13b: The variation of the dimensionless filtered particle phase viscosity with particle volume 
fraction is presented for different dimensionless filter lengths. The results were extracted from simulations 
mentioned in the caption for Figure 6a. The dimensionless filter lengths are shown in the legend. 



 

Figure 13c: The coefficient “c” of the dimensionless filtered particle phase viscosity in Figure 13b 
represented as (1 )s sc dφ φ−  (for 0.30sφ ≤ ) is plotted against the dimensionless filter length.  

for all filters.  
~ 0.86d



 

Figure 14: A snapshot of the particle volume fraction field in a large periodic domain of size 16.448 x 
16.448 x 16.448 dimensionless units is shown. Simulation was performed using 64 x 64 x 64 grid points. 
The domain-average particle volume fraction, 0.05.sφ =  



 

Figure 15: The effect of grid resolution on the dimensionless filtered drag coefficient is presented. 
Simulations were performed in a cubic periodic domain of size 16.448 x 16.448 x 16.448 dimensionless 
units and at two different grid resolutions. The filtered drag coefficients were calculated for dimensionless 
filter lengths of 1.028 and 4.112.  Data used for filtering were generated by running simulations for 
domain-average particle volume fractions of 0.05, 0.10, 0.15, 0.20 and 0.35.   



 

Figure 16: The variation of the dimensionless filtered drag coefficient with particle volume fraction for 
various filter sizes (listed in the legend in dimensionless units) is shown. Simulations were in a square 
domain of size 16.448 x 16.448 x 16.448 dimensionless units, using 64 x 64 x 64 grid points. Data used 
for filtering were generated by running simulations for domain-average particle volume fractions of 0.01, 
0.02, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.35. The dimensionless filter lengths from the top curve to the 
bottom curve are shown in the legend. 



 

Figure 17: The effect of the domain-average particle volume fraction on the dimensionless filtered drag 
coefficient is presented. Simulations were performed in a cubic domain of size 16.448 x 16.448 x 16.448 
dimensionless units using 64 x 64 x 64 grid points.  The filtered drag coefficients were calculated for 
dimensionless filter lengths of 1.028 (top curve) and 2.056 (bottom curve).  Data used for filtering were 
generated by running simulations for domain-average particle volume fractions of 0.05, 0.10, 0.15, 0.20 
and 0.25 (shown by different symbols in each curve).  



 

Figure 18: The effect of domain size on the dimensionless filtered drag coefficient is presented for a 
dimensionless filter length of 2.056. Simulations were performed at domain-average particle volume 
fractions of 0.05, 0.15, 0.25, and 0.35 in two different cubic periodic domains of sizes: 16.448 x 16.448 x 
16.448 dimensionless units (64 x 64 x 64 grids) and 8.224 x 8.224 x 8.224 dimensionless units (32 x 32 x 
32). 



 

Figure 19: The results shown earlier in Figure 16 are plotted on a natural logarithmic scale. Here 

d

s g

Q β
φ φ

= , where dβ is the dimensionless filtered drag coefficient, sφ is particle volume fraction, and gφ

= 1 – sφ is the gas volume fraction. The dimensionless filter lengths are shown in the legend.  



 

Figure 20: Dimensionless filtered particle phase pressure for different dimensionless filter lengths, 
extracted from simulations mentioned in the caption for Figure 16. The dimensionless filter lengths are 
shown in the legend.  



 

Figure 21: Dimensionless filtered particle phase viscosity for different dimensionless filter lengths, 
extracted from simulations mentioned in the caption for Figure 16. The dimensionless filter lengths are 
shown in the legend. 

  



 

 

 

Figure 22a-b: 1D Linear stability analysis (LSA) of the filtered equations extracted from the 2D 
simulations for various dimensionless filter length shown in the legend.   0.15.sφ =   Part (b) is a closer 

snapshot of part (a). 
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Abstract: 

To investigate the effect of solid boundaries on the closure relationships for the filtered 

two-fluid models (applicable in the particle volume fraction range typical of riser flows), we 

have performed a set of the highly-resolved kinetic theory based two-fluid model simulations in 

2D channels equipped with bounding walls and inlet and outlet and extracted filtered closures. 

The closures for the filtered drag coefficient and particle phase stress are found to depend not 

only on particle volume fraction and the filter length, but also on the distance from the wall.  The 

wall corrections to the filtered closures are nearly independent of the filter length and particle 

volume fraction.  Simulations of filtered model equations were found to yield grid length 

independent solutions when the grid length is ~ half the filter length or smaller.  It is 

demonstrated that the coarse statistical results obtained by solving the filtered models with 

different filter lengths were the same and corresponded to those from highly resolved simulations 

of the kinetic theory model, which was used to construct the filtered models, thus verifying the 

fidelity of the filtered modeling approach.  

 

 

 

 

 

 

 

 

 

 



Introduction 

Gas-particle flows in bubbling and circulating fluidized beds are inherently unstable, and 

they manifest fluctuations in velocities and local suspension density over a wide range of length 

and time scales.1, 2  In riser flows, these fluctuations are associated with the random motion of the 

individual particles (typically characterized through the granular temperature) and with the 

chaotic motion of particle clusters, which play a major role in axial dispersions of particles, 

radial distribution of particles, chemical reaction rates, erosion, and heat transfer at the wall; in 

short, they affect the overall performance of circulating fluidized beds.3-9  Although two-fluid 

(Euler-Euler) models2, 10, 11 are able to capture these clusters in a robust manner, prohibitively 

expensive spatial and temporal resolutions are often needed to resolve the clusters at all length 

scales.12-14  Due to computing limitations, the grid sizes used in simulating industrial scale gas-

particle flows are invariably much larger than the length scales of the (finer) particle clusters.  

Such coarse-grid simulations for industrial scale gas-particle flows will clearly not resolve the 

structures which exist on sub-grid length scales; however, these small-scale unresolved structures 

are known to affect the resolved flow characteristics.14-16  

Researchers have approached this problem of treating unresolved structures through 

various approximate schemes.  O’Brien & Syamlal,17 Boemer et al.,18 and Heynderickx et al.19 

noted the need to correct the drag coefficient to account for the consequence of clustering and 

proposed corrections for the very dilute limit.  Some authors have used an apparent cluster size 

in an effective drag coefficient closure as a tuning parameter;20 others have deduced corrections 

to the drag coefficient using an Energy Minimization Multi-Scale approach (EMMS).21-23 Some 

researchers have modified the drag coefficients for homogeneous systems using a bubble- 

emulsion model, where the bubble and emulsion phases are described as two interpenetrating 



phases (to capture bed-expansion characteristics in bubbling fluidized beds with coarse grid 

simulations).24, 25  The concept of particle phase turbulence has also been explored to introduce 

the effect of the fluctuations associated with clusters and streamers on the particle phase 

stresses.26, 27  

Agrawal et al.12 performed highly resolved simulations of kinetic-theory based two-fluid 

model (henceforth referred to as microscopic two fluid model) equations for gas-particles flow in 

periodic domains, determined the domain-averaged effective drag and effective stresses, and 

demonstrated that these effective quantities were not only quantitatively very different from 

those used in the microscopic two-fluid model, but also depended on size of the periodic domain.  

They also found that both 2D and 3D simulations revealed the same qualitative trends.  Andrews 

et al.28 performed highly resolved simulations of fluidized gas-particle mixtures in a 2D periodic 

domain whose total size coincided with that of the grid size in an anticipated large-scale riser 

flow simulation and constructed ad hoc sub-grid models for the effects of the fine-scale flow 

structures on the drag force and the stresses, and examined the consequence of these sub-grid 

models on the outcome of the coarse-grid simulations of gas-particle flow in a large-scale 

vertical riser. They found that these sub-grid scale corrections affect the predicted large-scale 

flow patterns profoundly.28  In our earlier work29, we presented a systematic filtering approach to 

construct closure relationships for the drag coefficient and the effective stresses in the gas and 

particle phases.  Briefly, we performed highly resolved simulations of a kinetic theory based 

two-fluid model with Wen & Yu drag for uniformly sized particles2, 12, 28-30 in a large periodic 

domain (considerably larger than the filter length) and filtered the results using different filter 

lengths.  We showed that the closure relationships for the drag coefficient and the effective 

stresses in the gas and particle phases (that appear in the filtered two-fluid model) manifested a 



definite and systematic dependence on the filter length.  However, these filtered closures did not 

include the possible effect of bounding walls and are therefore likely to be restricted to flow 

regions far away from solid boundaries. 

An alternate approach based on the aforementioned EMMS method has been developed 

by Li, Kwauk, and coworkers.31-35 Such an approach is reported to have good success in 

capturing experimental data.22, 36 Unlike the present study where the corrections to the drag force 

depend on filter size, the EMMS model prescribes a fixed modification to the drag force and it 

may perhaps be viewed as the large filter length limit. Some authors13, 37-42 have combined 

EMMS model (which assumes that some of the particles reside in a clustered state) for drag with 

kinetic theory model for stresses (which assumes that individual particles move chaotically); in 

contrast, the approach pursued in our studies mentioned above and in the present study filters the 

stresses and the drag in a consistent manner. 

It is now generally accepted that clusters and streamers are formed in gas-particle flows 

in vertical risers and they are found more frequently near the tube walls so that on an average, 

particle volume fraction is larger near the wall region.  A consequence of such segregation is that 

the average velocity of particles and gas in the wall region can be downward even though the net 

flow is in the upward direction – a dilute rising core and a dense descending annular region.5, 6, 9, 

15, 43, 44 Clusters at the wall of a riser have been observed to form, descend, break-up, travel 

laterally from the annulus to the core and then be re-entrained in the upward flowing core.  In 

this manner, they contribute to the internal solids mixing process within a riser.7, 8 Consequently, 

it is important to incorporate the effects of bounding walls on the filtered closures before 

attempting a comparison of the filtered model predictions with experimental data. 



The first objective of the present study is to investigate of the effect of the bounding walls 

on the closure relationships for the filtered two-fluid model equations and to incorporate these 

effects as wall corrections to the filtered drag coefficient and particle phase stresses that are 

appropriate for coarse-grid simulations of gas-particle flows in risers (of circulating fluidized 

beds).  To address this point, we have performed a set of highly resolved simulations of a 

kinetic-theory based two-fluid model in 2D channels equipped with bounding walls and inlet and 

outlet regions, and analyzed the variation of the filtered closures with distance from the bounding 

walls using different filter lengths.  The present analysis reveals that the filtered quantities must 

be allowed to depend not only on particle volume fraction, but also on the distance from the 

wall. 

The second objective of the present study is to demonstrate the fidelity of the filtered two-

fluid models. This entails several tests: (a) the filtered two-fluid models must yield grid-length 

independent coarse statistical quantities once the grid length has become sufficiently smaller than 

the filter length;  (b) these coarse statistical quantities obtained with different filter lengths 

should be the same, at least for a range of filter lengths; and (c) the coarse statistical quantities 

obtained by solving the filtered model must match those obtained by through highly resolved 

solution of the microscopic two-fluid model (which was used to generate the filtered two-fluid 

model).  It will be demonstrated in this study that all of these requirements are indeed met 

satisfactorily, thus establishing the viability of this approach.  Finally, we will also present some 

results on the CPU requirements for computations using the filtered model and contrast it with 

those for highly resolved simulations of the microscopic two-fluid model. 

 

 



The effect of bounding walls on closures for filtered two-fluid model equations 

To probe the effect of solid boundaries on the closure relations, we simulated the flow of 

a mixture of uniformly sized particles and gas through vertical 2D channels equipped with 

bounding walls and inlet and outlet regions (see Figure 1).  The kinetic theory based two-fluid 

model equations and the associated constitutive relations used in these simulations can be found 

in Agrawal et al.12 Partial-slip boundary conditions developed by Johnson and Jackson45 were 

used for the tangential velocities and granular temperature ( sΘ ) of the uniformly-sized particle 

phase at all walls. These boundary conditions are as follows: 
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Here, ϕ  represents the specularity coefficient, which is a measure of the fraction of collisions 

transferring tangential momentum to the wall and varies between zero (for smooth walls) and 

unity (for rough walls).46, 47  (Values ranging between 0.0001 and 0.6 have been reported to 

capture the macroscopic flow patterns in the literature48-51.)  In this study, we have performed 

simulations for a number of different specularity coefficients between zero and one.  For the gas 

phase, free-slip boundary condition was used at all walls.  (It has already been shown that the 

gas/particle flow patterns in a riser are only weakly dependent on the gas phase boundary 

conditions.48)  All the simulations were done using the open-domain software MFIX.11   

Although all the results will be presented as dimensionless variables, with sρ , , and 

as the characteristic density, velocity, and acceleration, it is instructive to consider a typical set of 

tv g



dimensional quantities to help visualize a representative physical system better. (See Table 1 and 

the nomenclature for the non-dimensionalization.)  Most of the 2D filtered results with wall 

corrections presented in this manuscript are based on computational data gathered in a 2D 

channel with width and height of 102.8 and 1028 dimensionless units, respectively.  This domain 

size corresponds to 0.5 m x 5.0 m for the 7.5 x 10-5 m FCC particles and ambient air (whose 

properties are given in Table 1). (Henceforth “dimensionless units” will be referred to as “du”.)  

In our simulations, the gas and particles enter the channel uniformly at the bottom.  The 

dimensionless (dimensional) inlet gas and particle phase superficial velocities are 4.259 (0.93 

m/s) and 0.109 (0.0238 m/s), respectively.  The inlet particle phase volume fraction is 0.07.  A 

splash plate is located over the entire width at the top.  The gas and particles are allowed to leave 

through exit regions located on either side (just below the splash plate).  The height of this 

opening is one-half the width of the system.  This geometry is similar to the one employed in 

Andrews et al.28, although the dimensions of the channel are now smaller to make highly 

resolved simulations affordable. 

In each simulation, after an initial transient period that depended on the initial conditions, 

persistent, time-dependent and spatially inhomogeneous structures developed (henceforth 

referred to as statistical steady state, SSS).  Figures 2a and 2b show instantaneous snapshots of 

the particle phase volume fraction field in the SSS for simulations with wall specularity 

coefficients of 0.0001 and 0.6, respectively.  By analyzing thousands of such snapshots, the 

closure relations for the filtered models were obtained with various filter lengths.  The procedure 

to extract the filtered closure relations is similar to that used in our earlier study of flows in 

periodic domains, but also has an important difference.  When simulations are done in a periodic 

domain, all the cells are statistically equivalent, and therefore no distinction needs to be made 



about the location; the same is not true in a riser flow simulation.  Therefore, the filtered results 

extracted by post-processing a riser flow simulation were classified in terms of the distance from 

the boundaries as well as in terms of the average particle phase volume fraction inside the 

filtering region.  Further discussion of the procedure to extract filtered closure relations can be 

found in our earlier study,29 Agrawal et al.,12 and Andrews et al.28 

In the present study, these kinetic-theory based two-fluid model simulations were 

performed with a grid length of 0.514 du as anything finer was beyond our resources. Therefore, 

we used the data obtained at this resolution to do the filtering and all the filtered closure relations 

presented here are based on this grid resolution; there are minor quantitative, but not qualitative, 

differences between the closures obtained with 0.514 du grids and that presented in our earlier 

manuscript29 for 0.257 du, but this difference is insignificant when the filter length is 

considerably larger than the grid length.  

Figures 3a to 3c show the effect of the bounding walls on the filtered drag coefficient, 

particle phase horizontal normal stress and the particle phase shear viscosity, respectively, for 4 

different particle volume fractions inside the filtering region and a filter length of 2.056 du.  (We 

examine the horizontal normal stress as it is the most relevant normal stress component for the 

development of lateral segregation of particles in riser flows.  The horizontal normal stress 

includes both the kinetic theory contribution and that arising from the mesoscale fluctuations.)   

All the quantities in these figures have been scaled with the corresponding values extracted from 

the core region (plateau values) of the channel.  The filtered drag coefficient and horizontal 

normal stress extracted in the core were found to be very nearly the same as those obtained in 

periodic domain simulations at the same grid resolution, while the shear viscosity in the core was 

about 15% higher than that estimated in periodic domain simulations.  These confirm that 



periodic domain simulations capture to a good accuracy the mesoscale structures in the core.  In 

these figures, the results are shown for one-half of the channel width, and the distance is 

measured from the wall.  It is readily seen that all 3 filtered quantities are significantly different 

in the core and the wall regions; for example, the filtered drag coefficient from the core region of 

the suspension is about ~5 times larger than the filtered drag coefficient at the wall.  The error 

bars showing the uncertainty in wall corrections are larger than the difference between the curves 

corresponding to four different particle concentrations (inside filtering regions); therefore, we 

can conclude that the pattern seen in this figure is essentially independent of the mean particle 

phase volume fraction in a filtering region.  It can also be inferred that conditions outside the 

filtering region do not affect the statistical averages of consequences resulting from the 

mesoscale structures inside the filtering region; as a result, simple algebraic closure models for 

the drag coefficient, particle phase horizontal normal stress and shear viscosity suffice. 

The dependence of the filtered closures on the distance from the walls may be 

rationalized as follows: it is entirely reasonable that fluctuations will be dampened in the vicinity 

of solid boundaries, and as a result the filtered horizontal normal stress should be diminished 

near the boundaries (just as in single phase turbulent flows52).  (As the fluctuations associated 

with the mesoscale structures contribute to breakup of clusters, diminished fluctuations near the 

boundaries result in larger clusters and hence lower drag coefficient.   The wall effect seen in the 

filtered horizontal normal stress and drag coefficient appear to extend to approximately the same 

distance away from the wall, while that for the shear viscosity effect is seen to persist for a little 

further away from the wall.   

Having ascertained that the wall corrections to the filtered closures are nearly 

independent of the mean volume fraction in the filtering region, we performed the rest of the 



analysis by aggregating the results obtained at various filtered particle phase volume fractions.  

The effect of the filter length on the wall corrections to the filtered drag coefficient, filtered 

particle phase horizontal normal stress and shear viscosity are shown in Figures 4a-c, 

respectively, for three filter lengths (2.056, 4.112, and 8.224 du).  All three quantities have been 

scaled by the respective values in the core region, which depends systematically on filter length; 

however, the scaled quantities presented in these figures are nearly independent of filter length 

(to within the error bars shown).  In other words, the filter length dependence of the filtered 

closures is essentially independent of the distance from the wall.  

 Figure 5a to 5c display the variation of the filtered drag coefficient, particle phase 

horizontal normal stress and shear viscosity with the distance from the wall, extracted from the 

kinetic theory model simulations for three different channel widths, given in the figure legend. 

(For each width, the results are shown for one-half of the channel width.)  All the filtered 

quantities have been scaled with the corresponding quantities extracted from the core region 

(which were found to be nearly the same for all three channel widths).  The results obtained with 

different channel widths nearly collapse (to within the confidence limit indicated by the error 

bars), clearly indicating that the wall effect should not be measured as a fraction of the channel 

width; instead it should be viewed in terms of actual distance (or made dimensionless using a 

length scale other than the channel width) from the wall. 

In the figures presented above, we scaled the distance with 2vt g , which is the same scale 

we used to make filter length dimensionless.  To ascertain that this scaling is appropriate, we 

performed simulations with two different particle diameters (75 and 100 µm).  The lines in 

Figure 5a to 5c were generated using the 75 µm particles, while the squares were obtained for 



100 µm particles. For both sets, the variation of the filtered closures with distance from the 

channel wall collapsed onto the same curves confirming that the scaling is indeed appropriate.  

We then investigated the effect of flow conditions, such as particle mass flux and gas 

velocity, and the wall boundary conditions (particle-wall restitution coefficient and specularity 

coefficient for the Johnson and Jackson boundary condition) on the wall corrections to the 

filtered quantities. Among these, only wall-particle specularity coefficient had a measurably 

significant effect (in the 2D system studied here).  

To study the sensitivity of the wall corrections to the specularity coefficientϕ , we carried 

out simulations for 5 different values of ϕ : 0, 0.0001, 0.3, 0.6 and 1 in a channel with a width of 

102.8 du.  Snapshots of the particle phase volume fraction field extracted from two of these 

simulations (for ϕ  = 0.0001 and 0.6) are shown in Figure 2.  It has been reported that ϕ   has a 

significant effect on the particle concentration near the wall; more specifically, a lower 

specularity coefficient yields higher particle concentration near the wall. 46, 47, 49 This is indeed 

what we see in these snapshots; particles tend to accumulate more and more as the specularity 

coefficient reaches free slip limit.  It is also apparent that strands and clusters in the wall vicinity 

orient themselves in the vertical direction more for the lower specularity coefficient values.  

Figures 6a to 6c display the variation of scaled filtered drag coefficient, particle phase horizontal 

normal stress and shear viscosity with the distance from the wall for various ϕ  values.  It is clear 

that the value of ϕ  has a quantitative effect on the wall corrections, but the dependence on ϕ  

nearly vanishes for 0.6.ϕ >    

The correlations summarized in Table 2 capture the results on wall corrections to the 

filtered model closures and the specularity coefficient dependence described above. 



Wall boundary conditions for the filtered equations 

It is generally believed that in high-velocity flows of densely loaded gas-particle mixtures 

through large risers the vertical pressure gradient is largely due to the particle hold-up and the 

wall shear is only weakly relevant.53 To test this, we calculated wall shear stress per unit height 

(under SSS conditions) from highly-resolved kinetic theory based two-fluid model simulations 

(with 0.6ϕ = ) for two different channel widths, 61.68 and 102.8 du and found that wall shear 

supported  ~3% and ~1% of the weight of the particles, respectively.  When ϕ  was lowered to 

0.0001 in the 61.68 du wide channel, the wall shear stress supported only 0.003% of the weight 

of the particles.  These comparisons confirm that the wall shear stress is considerably small 

compared to the weight of the particles in the channel and that the primary role of the wall is the 

“no penetration condition.”  With this in mind, we have set in the remainder of this study the 

wall boundary condition (BC) for the filtered equations at the bounding walls in 2D systems as 

free slip for the particle phase.  The observation from Figure 4c that the filtered shear viscosity in 

the immediate vicinity of the walls is considerably smaller than that for the bulk region (at a 

comparable particle volume fraction) provides further support for such simple BCs.   

One can readily extrapolate the above analysis for the particle phase to the gas phase. We 

simply note here that the effective BC for the gas phase approaches free slip as the filter length 

increases, just as in the case of the particle phase.  Thus, for modestly large filters (of the order of 

a few cms for the FCC particles mentioned in Table 1), one can use free slip BC for both phases 

as a good first approximation in 2D simulations.  Here, it should be noted that if the tube 

diameter (or channel width) is small, the wall effect is expected to become more important and 

free slip BC may not be a good choice for wall boundaries. However, the filtered models will not 

be necessary for these computationally affordable simulations. 



Grid resolution dependence of channel flow simulations 

Figures 7a to 7c show snapshots in the SSS for kinetic theory simulations (of gas-particle 

flows in a 2D channel as in Figure 1) at three different grid resolutions, while figures 7d to 7f 

show simulations with a filtered model corresponding to a filter length of 4.112 du (and 

including wall corrections).  It is readily apparent that finer and finer structures got resolved with 

increasing grid resolution for the kinetic theory cases, while this was not the case with filtered 

model simulations.   

Figure 8 shows the variation of the time-averaged (scaled) particle phase mass inventory 

with grid resolution, determined from the simulations with the kinetic theory and the filtered 

model with and without wall corrections.  (Although we had established that wall corrections to 

the closures in filtered model are appreciable, we performed filtered model simulations with and 

without wall corrections to learn more about the extent of influence brought about by the wall 

corrections.)  The particle mass inventory was scaled with the product of the particle density and 

the volume of the bed. The grid resolution increases from left to right.  It is readily seen that the 

particle mass inventory predicted by the kinetic theory model, indicated with light gray squares, 

became only grid resolution independent when the grid length was smaller than 1.028 du.  

However, an inspection of the lateral particle volume fraction and mass flux profiles (not shown) 

revealed that this grid length was not sufficient to obtain grid resolution independent results and 

that the kinetic theory model did not show any concrete evidence of converging even at the 

highest resolution affordable. 

In the case of filtered model simulations with wall corrections, represented by black 

diamond-shaped symbols in Figure 8, as the grid resolution was increased, the particle phase 



mass inventory increased initially, but essentially became grid resolution independent once the 

grid length became smaller or equal to ~ 2.056 du, which is one-half of the filter length.  

Figure 9a compares the variation of temporally and laterally averaged particle volume 

fraction (in the SSS) with the elevation in the 2D channel obtained from simulations of the 

filtered model (including wall corrections) for four grid resolutions.  At the bottom of the riser and 

near the top, the particle volume fraction changes rapidly, indicating strong entrance and end 

effects; however, in the middle region, the variation is gradual; the average particle phase 

volume fractions decreases with increasing elevation.  The variation pattern is similar for all grid 

resolutions at all elevations.  It is clear from the figure that the two uppermost curves, 

representing the average particle volume fraction profile determined with grid lengths of 1.028 

and 2.056 du, essentially overlap.  Figures 9b to 9d show the corresponding variations of the 

time-averaged particle phase volume fraction, particle mass flux and gas velocity (respectively) 

with dimensionless distance from the bounding wall at an elevation of 616.8 du for three 

different dimensionless grid lengths.  At all three resolutions, particles accumulate in the vicinity 

of the walls, and a dilute core region is observed. It is clear from these figures that lateral profiles 

are nearly identical for grid lengths of 1.028 and 2.056 du.  Similar results were obtained at other 

elevations away from the entrance and exit effects.  Figure 9c includes the time-averaged particle 

mass flux results obtained from the most highly resolved kinetic theory model simulations done 

in this study.  The agreement between the filtered and kinetic theory models is good, clearly 

indicating the filtered model solutions do indeed correspond to the kinetic theory model from 

which they were developed.  This is required of a successful filtered model and it serves as a 

verification of the filtered model approach.  Additional such verifications are provided later in 

this manuscript. 



In the above examples, we employed free slip BCs for the gas and particle phases at all 

bounding walls.  If one replaces the free slip conditions with no-slip for both phases, the mass 

holdup predicted by the filtered model decreased by ~ 30% (see figure 8).  These two extremes 

(free slip and no slip) serve as bounds and thus give an idea about the extent of the changes in the 

mean flow characteristics that can come about altering the boundary conditions.  In this example, 

the free slip boundary conditions led to better match with the kinetic theory results, for reasons 

discussed earlier. 

Figure 8 also shows the results obtained when the wall corrections were turned off in the 

filtered model (while using free slip BCs).  Nearly grid resolution independent solution was still 

achieved as when the wall corrections were included; however, a much smaller mass inventory 

was predicted without wall corrections leading to quantitatively very different results from that 

obtained with the highly resolved kinetic theory model simulation. This illustrates that wall 

corrections are important for quantitative accuracy.  (We also explored the effect of including the 

wall corrections to the filtered drag coefficient, particle phase horizontal normal stress and shear 

viscosity one at a time or two at a time on the predictions of the filtered model equations. This 

analysis revealed that the corrections affected the results predicted by the filtered model 

simulations quantitatively – namely, increase or decrease particle phase mass inventory in the 

channel,  but did not affect the grid resolution independence of these results.  Quantitative 

comparison with the kinetic theory results were obtained only when all three corrections were 

included.) 

 

 



Grid resolution requirement for filtered models 

As the closures for the filtered model were derived by averaging over structures smaller 

than a chosen filter length, fΔ , it is reasonable to demand that solution of the filtered model 

should not yield fine structures much smaller than the filter length; if it did, it suggests weakness 

in the model formulation.  Thus, for a satisfactorily constructed filtered model, the grid length,

gΔ , required for grid-independent solutions should scale with the filter length.  The results 

presented in Figures 8 and 9 suggest that ~ 0.5g fΔ Δ

~ 0.3 0.

is essentially adequate.  With this in mind, 

we propose that the grid length be set as 5g fΔ − Δ   in filtered model simulations  

Addition of a particle phase bulk viscosity term to the filtered model  

In the filtered model, the particle phase stress was modeled as follows: 
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where ,s filteredμ  and ,b filteredμ are the shear and bulk viscosities, respectively.  As we did not 

determine ,b filteredμ  by filtering the results from highly resolved kinetic theory model simulations, 

we had set it to zero in the examples presented above.  We repeated the simulations in Figure 9 

while setting the filtered bulk viscosity to be the same as the filtered shear viscosity, and found 

virtually no change.  It is therefore reasonable to conclude that a bulk viscosity term in the 

filtered model is not important for channel flows.  We also studied the effect of adding a 

mesoscale viscosity term to the gas phase filtered model equations and found it to have a very 

weak effect (if any) on the channel flow results predicted by the filtered model simulations. 

 



The effect of filter size on predictions of the filtered models  

Snapshots of particle volume fraction fields in the SSS for gas-particle flow in vertical 

2D channel (whose width is 102.8 du) obtained by solving filtered models with filter lengths of 

4.112 and 8.224 du are shown in Figures 10a and 10b, respectively. The simulation with coarser 

filter yielded slightly coarser structures, as expected.   

The variation of temporally and laterally averaged particle volume fraction with elevation 

in the channel, obtained in the SSS of these two simulations is presented in Figure 11(a).  It is 

apparent that both filtered models yielded nearly identical results. The average particle phase 

mass inventory scaled with the product of the channel volume and particle density was computed 

to be 0.135 and 0.136 for the filtered models with filter lengths of 4.112 and 8.224 du, 

respectively. 

Figures 11b to 11d present the variation of the time-averaged particle phase volume 

fraction, axial particle phase mass flux, and axial superficial gas velocity with the distance from 

the wall at two elevations, obtained from the two filtered models; once again the agreement is 

good.  In all the results presented in Figures 10 and 11 we have used the same grid length of 

2.056 du, which is one half the size of the smaller filter used in the comparison.  We simply note 

that when the filtered model with the larger filter was repeated using a grid length of 4.112 du, 

virtually the same results were obtained; so the grid length recommendation made earlier still 

applies. 

These observations that filtered models corresponding to two different filter lengths 

(4.112 and 8.224 du) yielded comparable results provide support for the soundness of the 

approach.  



Further verification of the filtered model 

Earlier in this manuscript, we provided one comparison between the results obtained with 

a filtered two-fluid model and (highly resolved simulations of) the kinetic theory based two-fluid 

model, for the case of a very bumpy wall (with 0.6ϕ = ).  We now consider the case of a much 

smoother wall with 0.0001ϕ = .  Snapshots of the particle volume fraction field (in the SSS) 

from the kinetic model simulations with grid lengths of 0.514, 1.028, and 4.112 du and the 

filtered model simulation (with filter and grid lengths of 4.112 du and 1.028 du, respectively) are 

shown in Figures 12a to 12d.  As shown earlier in Figure 7, the kinetic theory model simulations 

yielded finer and finer structures as the grid length decreased.  

Figure 13 compares the variation of temporally and laterally averaged particle volume 

fraction with the elevation in the 2D channel obtained from simulations of the kinetic theory 

model for four grid resolutions and that from the filtered model simulations with a grid length of 

1.028 du.  The grid resolution dependence of the kinetic theory model is clearly seen in the 

figure.  The filtered model profile is slightly above the kinetic model simulation with 0.514 (du) 

grids and appears to provide an asymptotic value for the results that would be predicted by the 

kinetic theory model (at an even finer resolution).  

The variation of the time-averaged particle phase volume fraction, dimensionless axial 

particle phase mass flux and superficial gas velocity (predicted by both models) with the 

dimensionless distance from one of the vertical bounding walls are presented in Figures 14 to 16, 

respectively, with panels a and b in each figure corresponding to two different elevations.  These 

figures clearly show the grid resolution dependence of the results predicted by the kinetic theory 

model. It is also apparent in the figures that the results predicted by the filtered model and the 

kinetic model (with 0.514 du grids) are comparable. (The results obtained with the filtered model 



for a grid length of 2.056 du are very close to that reported in these figures and hence are not 

shown.)  These figures lend further credence to the filtered model approach to obtaining 

solutions for such flow problems.  

CPU time comparison 

Figure 17 shows the CPU times required to compute one second of flow for the kinetic 

theory based two-fluid (gray squares) and the filtered model with a filter length of 4.112 du 

(black circles) at various grid resolutions.  All the simulation conditions are described in the 

figure caption (and in Figure 7).  The simulations reported in this were performed on Dual quad 

core Intel Xeon E5420 processors running at 2.50GHz.  The filtered-model based simulation 

with a grid length of 1.028 du ran ~4 times faster than the kinetic theory based simulation at the 

same resolution.  This can be attributed to the finer structures contained in the kinetic theory 

model, see Figure 7.  Note that one does not need to use such a small 1.028 du grid length with 

the filtered model; when the grid length in the filtered model simulation is increased to 2.056 du, 

it ran ~ 30 and 300 times faster than the kinetic theory based two-fluid model with grid lengths 

of 1.028 and 0.514 du, respectively.   When the specularity coefficient was changed to 0.0001, 

the filtered-model simulation with filter and grid lengths of 4.112 and 1.028 du (respectively) ran 

~5 and 40 times faster than the kinetic theory based simulation with grid lengths of 1.028 du and 

0.514 du, respectively. (Once again, a grid length of 2.056 du would have sufficed for this 

filtered model, which would have lowered the computational time for the filtered model by a 

factor of ~7.5.)  

Next, we compared the simulation times (for flow in the 102.8 du-wide channel) for 

filtered models with two different filter lengths and a grid size of 2.056 du.  The model with a 

filter length of 8.224 du ran 3 times faster than that with a filter length of 4.112 du.  This can be 



attributed to the finer structures contained in the latter model.  Note that one does not need to use 

a grid length of 2.056 du for a model with a filter length of 8.224 du; the filtered model with a 

filter length of 8.224 du and grid lengths of 2.570 and 4.112 ran ~7 and 25 times faster than the 

filtered model with a filter length of 4.112 du and a grid length of 2.056 du.   Combining this 

example with the one in the previous paragraph, we project that a filtered model with a filter 

length of 8.224 du (and 4.112 du grids) will yield solution ~7500 times faster than the kinetic 

theory model with a grid length of 0.514 du (which was seen to be necessary to get nearly grid 

independent solution). 

For the 75 μm particles in Table 1, a filter length of 8.224 du translates to a filter length 

of 4 cm.  In large scale processes, one typically uses even larger grids and so one would use even 

larger filters and correspondingly faster simulations (when compared to highly resolved kinetic 

theory model simulations whose required grid resolution is not likely to change with process 

vessel size).   Finally, when one considers 3D simulations, the difference between filtered and 

well-resolved kinetic theory models is expected to be even larger.  

In summary, filtered models allow us to study the large structures in gas-particle flows 

without having to resolve smaller structures and in a computationally affordable and faster 

manner.  

Summary 

We have investigated the effect of the bounding walls on the closure relationships for the 

filtered two-fluid model equations through a set of 2D flow simulations in a channel equipped 

with bounding walls and inlet and outlet regions. The present study, which is valid for the 

particle volume fraction range typical of gas-particle flows in risers, reveals that:  



a. Closures for the filtered drag coefficient and particle phase stress depend not only on 

particle volume fraction and the filter length, but also on the distance from the wall.  

b. The wall effect should not be measured as a fraction of the channel width; instead, it 

should be viewed in terms of the actual distance from the wall. The characteristic length 

to scale the distance from the wall is the same as that used to scale the filter length. 

c. The wall corrections to the filtered closures are nearly independent of the mean particle 

volume fraction in the filtering region. 

d. The wall corrections to the filtered closures are nearly independent of the filter lengths 

considered in this study. 

e. The simplest effective BC for the filtered equations at the bounding walls is free slip BC.  

Filtered model simulations performed in this study revealed the following: 

a. Grid resolution independent solutions resulted when the grid length is ~ half the filter 

length or smaller.   

b. Filtered models did indeed yield the same coarse statistical results as highly resolved 

simulations of kinetic theory based two-fluid model (which was used to derive the 

filtered models). 

c. Filtered models with two different filter lengths were shown to afford the same coarse 

statistical results. 

d. Filtered model simulations required significantly less computational time when compared 

to highly resolved kinetic theory model simulations. 



The present study establishes the fidelity of the filtered model, but two important tasks 

remain: (a) It would be useful to establish general closures for the filtered model in terms of 

particle volume fraction and filter size so that they can be broadly used by researchers; (b) The 

filtered model predictions should be compared against experimental data.  These will be 

described in future publications.  
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Nomenclature 

pd  Particle diameter (m) 

pe  Coefficient of restitution for particle-particle collisions 

we  Coefficient of restitution for wall-particle collisions 

fFr  Froude number based on filter length = 2
tv fgΔ  

gFr  Froude number based on grid length = 2
tv ggΔ  

g ,  Acceleration due to gravity (m/s2) g

og   Value of radial distribution function at contact 

,s filteredp  Filtered particle phase pressure (kg/m.s2) 

, ,s filtered dp  , ,s filtered dp  made dimensionless; 2
, , , vs filtered d s filtered sp p ρ= t  

, ,xs filteredp x  Filtered particle phase horizontal normal stress (kg/m.s2) 

, ,xx,s filtered corep       , ,xs filteredp x extracted from the core region of the 2D channel (kg/m.s2) 

, ,xx,s filtered periodicp   , ,xs filteredp x extracted from periodic BC simulations (kg/m.s2) 

, ,xx,s filtered dp  , ,xx,s filtered dp  made dimensionless; 2
, ,xx, , ,xx vs filtered d s filtered sp p tρ=  

, ,xx,s filtered scaledp  , ,xs filteredp x  scaled with , ,xx,s filtered corep ; , ,xx, , ,xx , ,xx,s filtered scaled s filtered s filtered corep p p=  

,s kineticp  Filtered value of particle phase pressures in the kinetic theory model (kg/m.s2) 

q     Flux of granular energy (kg/s3) 

tv  Terminal settling velocity (m/s) 

v  Particle phase velocity in the microscopic two-fluid model (m/s) 

v  Filtered particle phase velocity (m/s) 



′v  Fluctuations in particle phase velocity (m/s) 

,x y  Position vectors (m)  

xd  Dimensionless distance from the west (left) wall  

 

Greek Symbols 

filteredβ   Filtered drag coefficient (kg/m3.s) 

,filtered coreβ   filteredβ  extracted from the core region of the 2D channel (kg/m3.s) 

,filtered periodicβ   filteredβ  extracted from periodic BC simulations (kg/m3.s) 

,filtered dβ   Dimensionless filtered drag coefficient = tvfiltered s gβ ρ  

,filtered scaledβ   filteredβ scaled with ,filtered coreβ ; , ,filtered scaled filtered filtered coreβ β β=  

sφ , gφ   Particle and gas phase volume fractions, respectively 

s,maxφ     Maximum particle volume fraction 

sφ , gφ   Filtered particle and gas phase volume fractions, respectively 

sρ , gρ   Particle and gas densities, respectively (kg/m3) 

fΔ   Filter length (m) 

gΔ  Grid length (m) 

σs  Particle phase stress tensor in the kinetic theory model (kg/m.s2) 

s∑   Filtered total particle phase stress (kg/m.s2) 



sλ  Granular thermal conductivity (kg/m.s) 

gμ  Gas phase viscosity (kg/m.s) 

sμ  Shear viscosity of the particle phase appearing in the kinetic theory model 

(kg/m.s) 

,b filteredμ , ,s filteredμ  Bulk and shear viscosities of the particle phase appearing in the filtered     

two-fluid model (kg/m.s) 

, ,s filtered dμ   ,s filteredμ  made dimensionless; 3
, , , tvs filtered d s filtered sgμ μ ρ=  

, ,s filtered coreμ   ,s filteredμ  extracted from the core region of the 2D channel (kg/m.s) 

, ,s filtered periodicμ   ,s filteredμ  extracted from periodic BC simulations (kg/m.s) 

, ,s filtered scaledμ  ,s filteredμ  scaled with , ,s filtered coreμ ; , , , , ,s filtered scaled s filtered s filtered coreμ μ μ=  

sΘ  Granular temperature (m2/s2) 

ϕ  Wall specularity coefficient 
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Figures and Captions: 

 

Figure 1: Schematic diagram of the 2D computational domain. In this set-up, the gas and 

particles enter the domain uniformly at the bottom. A splash plate is located over the entire width 

at the top. The gas and particles are allowed to leave through exit regions located on either side 

(just below the splash plate). The height of this opening is one-half the width of the system. 

 

 

 

 

 

 

 



 

 

 
 



Figure 2: Snapshots of the particle phase volume fraction field extracted from the 2D simulation 

of the kinetic theory model equations in a 2-D domain with partial slip (Johnson and Jackson45) 

BC with (a) 0.0001ϕ =  and (b) 0.6ϕ =  for the particle phase and free slip BC for the gas phase at 

all walls. Simulation conditions: The dimensionless inlet gas and particle phase superficial 

velocities are 4.259 and 0.109, respectively. The physical conditions corresponding to this 

simulation are listed in Table 1. The inlet particle phase volume fraction is 0.07. Channel width 

and height are 102.8 and 1028 du, respectively. The gray scale axis ranges from sφ = 0.00 (white) 

to sφ = 0.45 (black). 
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Figure 3: (a) The filtered drag coefficient, (b) the filtered horizontal particle phase normal stress, 

and (c) the filtered particle phase viscosity extracted from kinetic theory model based 

simulations in a channel shown in Figure 1. Error bars at four locations are also included. Results 

are shown for four different particle phase volume fractions inside the filtered region, illustrating 

that the wall correction is essentially independent of particle volume fraction.  Grid length: 0.514 

du. Filter length: 2.056 du. The filtered drag coefficient is scaled with that extracted from the 

core region. The results are shown for one-half of the channel width and the distance is measured 

from the wall. Channel width and height are 102.80 and 1028 du, respectively. The 

dimensionless inlet gas and particle phase superficial velocities are 4.259 and 0.109, 

respectively. The inlet particle phase volume fraction is 0.07. ϕ : 0.6. The remaining physical 

conditions corresponding to this simulation are listed in Table 1. 
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Figure 4: (a) Filtered drag coefficient, (b) filtered horizontal particle phase normal stress, and (c) 

filtered particle phase viscosity as functions of distance from the wall, extracted from kinetic 

theory model based simulations in the channel shown in Figure 1 for three filter lengths. Error 

bars at four locations are also included. Grid length: 0.514 du. The filtered drag coefficient is 

scaled with that extracted from the core region. The results are shown for one-half of the channel 

width and the distance is measured from the wall. See caption for Figure 3 for additional details.   
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Figure 5: (a) Filtered drag coefficient, (b) filtered horizontal particle phase normal stress, and (c) 

filtered particle phase viscosity as functions of distance from the wall, extracted from kinetic 

theory model based simulations in the channel shown in Figure 1 for three different channel 

widths. Error bars at four locations are also included. Filter length: 2.056 du. Grid length: 0.514 

du. All filtered quantities were scaled with the corresponding quantities extracted from the core 

region (which were found to be the same for all three channel widths). See caption for Figure 3 

for additional details. The figure also includes three data points (with error bars) from 

simulations with 100 µm diameter particles.  
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Figure 6: (a) Filtered drag coefficient, (b) filtered horizontal particle phase normal stress, and (c) 

filtered particle phase viscosity as functions of distance from the wall, extracted from kinetic 

theory model based simulations in the channel shown in Figure 1 for specularity coefficients of 

0, 0.0001, 0.3, 0.6 and 1. Error bars at four locations are also included. Filter length: 4.112 du. 

Grid length: 0.514 du. Channel height: 1028 du. All filtered quantities were scaled with the 

corresponding quantities extracted from the core region. See caption for Figure 3 for additional 

details. 

 

 

 

 

 

 
 



 

 

 

 
 



Figure 7: Snapshots of the particle phase volume fraction field extracted from the 2D simulation 

of (a) the kinetic theory model equations with 0.514 du grids, (b) the kinetic theory model 

equations with 1.028 du grids, (c) the kinetic theory model equations with 2.056 du grids, (d) the 

filtered model equation with 0.514 du grids, (e) the filtered model equation with 1.028 du grids, 

(f) the filtered model equation with 2.056 du grids. Wall corrections (extracted from kinetic 

theory simulations with 0.6ϕ = ) were included in the closures for the filtered model equations. 

Simulation conditions: The dimensionless inlet gas and particle phase superficial velocities are 

4.259 and 0.109, respectively. The physical conditions corresponding to this simulation are listed 

in Table 1. The inlet particle phase volume fraction is 0.07.  Free slip BC was imposed for both 

phases at all walls for simulations of the filtered models, whereas in the kinetic theory-based 

simulations, partial slip BC for the particle phase ( 0.6ϕ = ) and free slip BC for the gas phase 

were used. Channel width and height are 61.68 and 1028 du, respectively. The gray scale axis 

ranges from sφ = 0.00 (white) to sφ = 0.45 (black). 
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Figure 8: The variation of the particle mass inventory with grid resolution in the channel, 

determined from simulations of the kinetic theory based model and the filtered model 

(corresponding to a filter length of 4.112 du) with and without wall corrections. The particle 

mass inventory was scaled by the particle density times the volume of the bed. Note that the 

resolution increases from left to right.  One data point (for a grid length of 2.056 du) obtained 

from the filtered model simulations with wall corrections and no slip BC for both phases was 

also included. See caption of Figure 7 for the simulation conditions. 

 

 

 

 

 

 
 



a) 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Dimensionless elevation

A
ve

ra
ge

 p
ar

tic
le

 p
ha

se
 v

ol
um

e 
fra

ct
io

n

 

 
Grid length: 1.028
Grid length: 2.056
Grid length: 2.570
Grid length: 5.140

b) 

 

0 10 20 30 40 50 60

0.1

0.15

0.2

0.25

0.3

Dimensionless distance from the wall

P
ar

tic
le

 p
ha

se
 v

ol
um

e 
fra

ct
io

n

 

 
Grid length: 1.028
Grid length: 2.056
Grid length: 2.570

Elevation: 616.8

 
 



c) 

 

0 10 20 30 40 50 60

-4

-3

-2

-1

0

1

Dimensionless distance from the wall

D
im

en
si

on
le

ss
 p

ar
tic

le
 p

ha
se

 m
as

s 
flu

x

 

 

Kinetic  model; Grid length: 0.514
Filtered model; Grid length: 1.028
Filtered model; Grid length: 2.056
Filtered model; Grid length: 2.570

Elevation: 616.8

d) 

 

0 10 20 30 40 50 60
-15

-10

-5

0

5

10

15

Dimensionless distance from the wall

D
im

en
si

on
le

ss
 s

up
er

fic
ia

l g
as

 v
el

oc
ity

 

 

Filtered model; Grid length: 1.028
Filtered model; Grid length: 2.056
Filtered model; Grid length: 2.570

Elevation: 616.8

 
 



Figure 9: (a) The variation of temporally and laterally averaged particle phase volume fraction 

with the elevation in the 2D channel.  The variation of time-averaged (b) particle phase volume 

fraction, (c) axial particle phase mass flux, and (c) axial superficial gas velocity with the 

dimensionless distance from the wall at an elevation of 616.6 du.  Results were obtained from 

simulations of a filtered model with a filter length of 4.112 du (including wall corrections) and 

different grid lengths, shown in the figure legends.  See caption of Figure 7 for the simulation 

conditions. The circles in Figure 9(b) were obtained by solving the kinetic theory based model 

using a grid length of 0.514 du.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

Figure 10: Snapshots of the particle phase volume fraction field extracted from the 2D simulation 

of the filtered model equations extracted with a filter length of (a) 4.112 du and (b) 8.224 du. 

Simulation conditions: The dimensionless inlet gas and particle phase superficial velocities are 

4.259 and 0.109, respectively. The physical conditions corresponding to this simulation are listed 

in Table 1. The inlet particle phase volume fraction is 0.07. Grid length: 2.056 du. Free slip BC 

was used for both phases at all walls.  Wall corrections (extracted from kinetic theory 

simulations with 0.6ϕ = ) are included.  Channel width and height are 102.8 and 1028 du, 

respectively. The gray scale axis ranges from sφ = 0.00 (white) to sφ = 0.45 (black). 
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Figure 11: (a) The variation of temporally and laterally averaged particle volume fraction with 

the elevation in the 2D channel, determined from simulations of filtered models with filter 

lengths of 4.112- and 8.224 du. The variation of time-averaged (b) particle phase volume 

fraction, (c) axial particle phase mass flux, and (c) axial superficial gas velocity with the 

dimensionless distance from the wall at two elevations (616.8 and 822.4 du). Grid length: 2.056 

du.  See caption of Figure 10 for the simulation conditions.  

 

 

 

 

 

 
 



 

 

 
 



Figure 12: Snapshot of the particle phase volume fraction field extracted from the 2D simulation 

of (a) the kinetic theory model equations with 0.514 du grids, (b) the kinetic theory model 

equations with 1.028 du grids, (c) the kinetic theory model equations with 2.056 du grids, (d) the 

filtered model equation with 1.028 du grids. Wall corrections (extracted from kinetic theory 

simulations with 0.0001ϕ = ) were included in the closures for the filtered model equations. 

Simulation conditions: The dimensionless inlet gas and particle phase superficial velocities are 

4.259 and 0.109, respectively. The physical conditions corresponding to this simulation are listed 

in Table 1. The inlet particle phase volume fraction is 0.07.  Free slip BC was imposed for both 

phases at all walls for simulations of the filtered models, whereas in the kinetic theory-based 

simulations, partial slip BC for the particle phase ( 0.0001ϕ = ) and free slip BC for the gas phase 

were used. Channel width and height are 61.68 and 1028 du, respectively. The gray scale axis 

ranges from sφ = 0.00 (white) to sφ = 0.45 (black). 
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Figure 13: The variation of temporally and radially averaged particle volume fraction with the 

elevation in the 2D channel, whose snapshots are shown in Figure 12. Results were obtained 

from simulations of a filtered model with a filter length of 4.112 du (including wall corrections) 

and different grid sizes.  Results shown as lines were obtained from simulations of kinetic theory 

based model with different grid lengths, shown in the figure legend.  The circles were obtained 

by solving the filtered model (filter length: 4.112 du) using a grid length of 1.028 du. See caption 

of Figure 12 for the simulation conditions. 
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Figure 14: The variation of dimensionless time-averaged particle phase volume fraction with the 

dimensionless distance from the west (left) wall at two elevations (a) 616.8 du; (b) 822.4 du.  

Results shown as lines were obtained from simulations of kinetic theory based model with 

different grid lengths, shown in the figure legends.  See caption of Figure 12 for the simulation 

conditions. The circles were obtained by solving the filtered model (filter length: 4.112 du) using 

a grid length of 1.028 du. 
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Figure 15: The variation of dimensionless time-averaged particle phase mass flux with the 

dimensionless distance from the west (left) wall at two elevations (a) 616.8 du; (b) 822.4 du.  

Results shown as lines were obtained from simulations of kinetic theory based model with 

different grid lengths, shown in the figure legends.  See caption of Figure 12 for the simulation 

conditions. The circles were obtained by solving the filtered model (filter length: 4.112 du) using 

a grid length of 1.028 du.  

 
 



a) 

0 10 20 30 40 50 60
-25

-20

-15

-10

-5

0

5

10

15

20

Dimensionless distance from the wall

D
im

en
si

on
le

ss
 s

up
er

fic
ia

l g
as

 v
el

oc
ity

 

 

Kinetic model; Grid length: 4.112
Kinetic model; Grid length: 2.056
Kinetic model; Grid length: 1.028
Kinetic model; Grid length: 0.514
Filtered model; Grid length: 1.028

Elevation: 616.8

 

b) 

0 10 20 30 40 50 60
-25

-20

-15

-10

-5

0

5

10

15

20

Dimensionless distance from the wall

D
im

en
si

on
le

ss
 s

up
er

fic
ia

l g
as

 v
el

oc
ity

 

 

Kinetic model; Grid length: 4.112
Kinetic model; Grid length: 2.056
Kinetic model; Grid length: 1.028
Kinetic model; Grid length: 0.514
Filtered model; Grid length: 1.028

Elevation: 822.4

 

Figure 16: The variation of dimensionless time-averaged axial superficial gas velocity with the 

dimensionless distance from the west (left) wall at two elevations (a) 616.8 du; (b) 822.4 du.  

Results shown as lines were obtained from simulations of kinetic theory based model with 

different grid lengths, shown in the figure legends.  See caption of Figure 12 for the simulation 

conditions. The circles were obtained by solving the filtered model (filter length: 4.112 du) using 

a grid length of 1.028 du. 
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Figure 17: CPU times required to run one simulation second for the kinetic theory based two-

fluid model and a filtered model with a filter length of 4.112 du at different grid resolutions. 

Note that the resolution increases from left to right. See caption of Figure 7 for the simulation 

conditions. The simulations were performed on Dual quad core Intel Xeon E5420 processors 

running at 2.50GHz. 

 

 

 

 

 

 

 

 

 

 

 
 



TABLES: 

                          Table 1: Sample physical properties of the gas and particles 

________________________________________________________ 

pd

s

  Particle diameter   7.5 x 10-6 m 

ρ   Particle density    1500 kg/m3 

gρ   Gas density    1.3 kg/m3 

gμ   Gas viscosity    1.8 x 10-5 kg/m⋅s  

pe   Coefficient of restitution     0.9    

we      for particle-wall collisions             0.9 e
 g  Gravitational acceleration  9.80665 m/s2 

tv   Terminal settling velocity  0.2184 m/s 
2vt

g
  Characteristic length   0.00487 m 

tv
g

  Characteristic time   0.0223 s 

2
s tvρ    Characteristic stress   71.55 kg/ m⋅s2 

s tvρ       Characteristic mass flux                 327.6 kg/ m2⋅s  
_________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Table 2: Wall corrections to the filtered drag coefficient, horizontal particle phase normal stress, and  
shear viscosity: 

Dimensionless distance from the wall (see Figure 1): 2x  xd tg= v  

1. Filtered drag coefficient: 

, scaled
, 2

,  x
1 6.00exp( x )( )filtered d

dfiltered core s a
β

β φ
= = ≤

+ −
 ( , x ) 1filtered s d channel widthβ φ

 

, ,( ) ( )filtered core s filtered periodic sβ φ β φ=
 

where “a” is a function of the wall specularity coefficient (ϕ ) and is defined as: 

( ) 20.036 0.162 0.295a ϕ ϕ ϕ= + +  

2. Filtered particle phase horizontal normal stress: 

(free slip): For 0.0ϕ =

, ,xx
xx,

, ,xx,

 ( , x ) 1 ,  x
1 9.14exp( 0.345x ) 2( )

s filtered s d
s caled d

ds filtered core s

channel widthp
p

p
φ

φ
= = ≤

+ −
 , ,filtered s

For : 0.6ϕ =

, ,xx
xx,

, ,xx,

2

 

2

( , x )
( )

0.00267x 0.0926x 0.180 , x 14.5 
                  

(1 25.4) (1 exp( 0.450x )) 25.4 , 14.5<x  

s filtered s d
s caled

s filtered core s

d d d

d d
channel width

p
p

p
φ

φ
=

⎧− + + ≤
⎪= ⎨

+ − − − ≤⎪⎩

, ,filtered s

 

, ,xx, , ,xx,( ) ( )s filtered core s s filtered periodic sp pφ φ=

1

 

For 0 ϕ< ≤ , we can capture the effect of ϕ  on the wall corrections with the correlation given below: 

( ), , , 0.6 , , , 0

, ,

, , , 0.6

1
,  0< 0.6

.6 

s filtered scaled s filtered scaled

s filtered scaled

s filtered scaled

p c p
p c

p

ϕ ϕ

ϕ

ϕ

ϕ

= =

=

⎧ + −
≤⎪

= ⎨
⎪
⎩

 

,  0>

Here, “c” is defined as 0.6 /ϕ . For instance, c=2 for . 0.3ϕ =

 
 



3. Filtered particle phase shear viscosity: 

For 0.0001ϕ = (free slip): 

,
, ,

, ,

 

2

( , x ) 1 ,  x
1 5.69exp( 0.228x )( )

s filtered s d
s filtered scaled d

ds filtered core s

channel widthμ φ
μ

μ φ
= = ≤

+ −
 

For 0.6ϕ = : 

,
, ,

, ,

 

2

( , x )
(1 0.130) (1 exp( 0.123x )) 0.130,  x

( )
s filtered s d

s filtered scaled d d
s filtered core s

channel widthμ φ
μ

μ φ
= = − − − + ≤

 

, , , ,( ) 1.15 ( )s ss filtered core s filtered periodicμ φ μ= φ

1

 

For 0 ϕ< ≤ , we can capture the effect of ϕ  on the wall corrections with the correlation given below: 

( ), , , 0.6 , , , 0
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1
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Here, “c” is defined as 0.6 ϕ . For instance, c=2 for
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Abstract 

In our earlier work, we have presented a methodology where computational results 

obtained through highly resolved simulations (in a large periodic domain) of a given microscopic 

two-fluid model are filtered to deduce closures for the corresponding filtered two-fluid model 

equations that are appropriate for coarse-grid simulations of gas-particle flows of moderate 

particle volume fractions.  We have found that, to a good approximation, the dimensionless 

filtered drag coefficient, particle phase pressure and particle phase viscosity extracted from two- 

and three- dimensional simulations can be treated as functions of only particle volume fraction 

and dimensionless filter size.   

However, the closure relationships for the drag coefficient and the effective stresses 

presented in our earlier work did not capture the behavior in regions of very low concentrations 

well and did not include high particle concentrations ( 0.01sφ < ) ( )0.30sφ >  at all. In this study, we 

have investigated the region-averaged statistics in these regimes as well. We have also analyzed 

the extended data obtained over a wide range of filter sizes and scaled them into correlations, 

thereby shedding some light on the asymptotic behavior at large filters .  

 

 

 

 

 

 

 

 

 
 



Introduction: 

In our earlier studies40, we outlined a systemic filtering approach and constructed closure 

relationships for the drag coefficient and the effective stresses in the gas and particle phases that 

are appropriate for coarse-grid simulations of gas-particle flows of moderate particle volume 

fractions. Briefly, we performed highly resolved simulations of a kinetic theory based two-fluid 

model with Wen & Yu drag for uniformly sized particles2, 30, 31, 40, 50 in a large periodic domain 

(considerably larger than the filter size) and analyzed the results -obtained through a filtering 

operation which amounts to spatial averaging over some chosen filter length scale- using 

different filter lengths. In these filtered (a.k.a. coarse-grained) equations, the consequences of the 

flow structures occurring on a scale smaller than a chosen filter size appeared through residual 

correlations for which one must derive or postulate closure relations.  We showed that the 

closure relationships for the drag coefficient and the effective stresses in the gas and particle 

phases manifested a definite and systematic dependence on the filter length (considerably smaller 

than the periodic domain size). Moreover, through a linear stability analysis of the filtered two-

fluid model equations, we showed that filtering did indeed remove small scale structures that 

were afforded by the highly resolved simulations of the kinetic theory based two-fluid model. 

However, the closure relationships for the drag coefficient and the effective stresses presented in 

our earlier work did not capture the regions of very low concentrations well and did 

not include high particle concentrations 

( 0.01sφ < )

( )0.30sφ >  at all. In this study, we have investigated the 

region-averaged statistics in these phases as well. We have also analyzed the extended data 

obtained over a wide range of filter sizes and scaled them into correlations, thereby shedding 

some light on the asymptotic behavior at large filters .  

 
 



As noted in our earlier work40, we restrict our attention to closures for filteredβ , ,s filteredp and

,s filteredμ  in flow regions far away from solid boundaries. A simple and effective manner by 

which solid boundaries can be avoided is to consider flows in periodic domains. The filtering 

operation does not require a periodic domain; however, as each location in a periodic domain is 

statistically equivalent to any other location, statistical averages can be gathered much faster 

when simulations are done in periodic domains. With this in mind, all the analyses described 

here have been performed in periodic domains. In our earlier work, we have already have already 

shown that the results obtained from 2-D and 3-D periodic domains are qualitatively similar, but 

differ somewhat quantitatively; therefore, we have focused first on 2-D simulations in the present 

study to bring forward the filter size dependence of the closures for the residual correlations, as 

2-D simulations are computationally less expensive. We will present several 3-D simulation 

results at the end to bring forth the differences between 2-D and 3-D closures for the entire 

particle volume fraction range ( ,max0 s sφ φ< < ). 

Two-dimensional (2-D) simulations: 

To extract the constitutive relationships for 2-D filtered model equations for various filter 

lengths, we have performed many sets of highly resolved simulations of the set of microscopic 

two-fluid model equations30, 40 in a 131.584 x 131.584 (dimensionless units) square periodic 

domain using the open-source software MFIX5; this domain size translates 0.64 m x 0.64 m for 

the FCC particles (whose physical properties are given Table1). (Also, note that a dimensionless 

filter length of 2.056 corresponds to a filter length of 0.01 m. In this case, the filter size is 2.056 

x 2.056 (dimensionless units).)  

 

 
 



1. 2­D Filtered drag coefficient: 
 

Figure 1(a) shows the variation of the dimensionless filtered drag coefficient, 

(, tvfiltered d filtered s gβ β= )ρ  as a function of particle volume fraction, sφ  for various filter lengths 

for the entire particle volume fraction range ( ,max0 s sφ φ< < ). (In all of our studies, ,max 0.65sφ = .) 

The uppermost curve in Figure 1(a) is the intrinsic drag law; the filter length here is simply the 

grid length used in the simulations of the microscopic two-fluid model equations (which is 

equivalent to no filtering at all). For typical FCC particles (whose physical properties are given 

in Table 1), a dimensionless filter length of 2.056 is equivalent to 0.01 m. It is apparent in Figure 

1(a) that the filter length (or size) effect on the filtered drag coefficient depends on the particle 

concentration of a region.  

To illustrate this effect more clearly, the results presented in Figure 1(a) are plotted in 

Figure 2(a) on a natural logarithmic scale.  The figure clearly shows the effect of filter size on 

the filtered drag coefficient (from right to left) (a) at small sφ  values, (b) the typical Richardson-

Zaki44 form for sφ  not too close to zero, presented in our earlier work40,  (c) at high sφ  values, a 

clear departure from this trend, and (d) at extremely high sφ  values, where filter size dependence 

disappears. (The uppermost curve in this figure corresponds to the intrinsic drag expression as in 

Figure 2(a). (We will turn back to this figure later for more discussion.) 

To recap the results presented in our earlier manuscript, let us first focus our attention on 

the regions with 0.30sφ < , shown in Figure 1(b) (also in Figure 2 (b) on a natural logarithmic 

scale). In this region, the filtered drag coefficient decreases substantially with increasing filter 

size, even at small filter sizes (from an engineering viewpoint). Here, we should note that the 

 
 



results for the two smallest filter sizes are likely to decrease somewhat if simulations could be 

done at higher resolutions, but as noted in our previous studies40; the results for all larger filter 

sizes are essentially independent of grid size.  

The reduction in filtered drag coefficient with increasing filter size can be readily 

rationalized.  As the filter size is increased, the averaging is being performed over larger and 

larger clusters – larger clusters allow greater bypassing of the gas resulting in lower apparent 

drag coefficient.  

Turning our attention back to Figures 2(b), we can readily see that all of the curves 

exhibit a Richardson-Zaki like behavior at moderate volume fractions and a reversal of trend at 

very low particle volume fractions. Linear fits of the data in Figure 2 (b) over the “moderate” 

particle volume fraction range ( 0.05 0.30sφ< < ) were used to estimate dimensionless apparent 

terminal velocity and an apparent Richardson-Zaki exponent, ,Vt app ,RZ appN . and,Vt app ,RZ appN are 

estimated from the y-intercept (at abscissa = 0) and the slope of the straight line fit of the data on 

Figure 2 (a-b) (between abscissa values of -0.35 and -0.05), respectively.  

 
( ) ( ) ( ) ( ) (t ,

,,

v
ln ln 1 ln 1 ln V

1 1
filtered filtered d

s t appRZ app
s s s s s

N
g
β β

φ
ρ φ φ φ φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = − − − −
− − )   (19) 

The variation of  and ,Vt app ,RZ appN with dimensionless filter length, ( )1
tvf fFr g− = Δ 2 , are shown 

in  Figure 3 (a) (diamonds) and 3(b), respectively. Here fΔ  denotes the filter length. An 

identical analysis was presented in our earlier work and details will not be repeated here. 

However, it is important to note that there are some qualitative differences between the results 

presented in our earlier work and the current one. These differences result from the fact that we 

 
 



have collected more data in an extended particle concentration range and improved the 

constitutive relationships for the filtered quantities in this study. 

Now focusing our attention on low particle concentration regions (this corresponds to the 

right-most region in the figure), we can readily notice that the Richarson-Zaki like model 

(represented with solid lines in Figure 2(b)) for the filtered drag coefficient does not capture the 

region of low particle concentration (typical of freeboard region a turbulent bed) and a 

qualitatively different dependence of the filtered drag coefficient on particle volume fraction is 

obtained.  The variation of the (dimensionless) filtered drag coefficient as a function of filtered 

(i.e. region-averaged) particle volume fraction for various filter lengths in the dilute region is 

illustrated in Figure 1(c). This figure reveals two interesting trends: 

a) At extremely low particle volume fractions all the curves corresponding to 

various filter sizes approach the same asymptotic behavior indicating that the filtered 

drag coefficient is essentially independent of filter size in this region. 

b) As the particle volume fraction increases, the filtered drag coefficient picks up a 

definite dependence on the filter size, manifesting a systematic decrease with increasing 

filter size. 

It is apparent from the figure that one has to go down to extremely low particle volume 

fractions (~ 10-4) before the filter size dependence becomes really weak. Thus, for practical 

purposes, the filter size dependence can be taken as persistent at regions of low particle 

concentration as well.  

In our earlier work40, we have investigated the reason behind the qualitatively different 

dependence of the filtered drag coefficient on particle volume fraction in the regions with low 

 
 



particle concentrations. We have concluded that this behavior is not due to an Re g  effect in the 

intrinsic drag law and have sought an alternate explanation. We have attributed the trend reversal 

seen in Figures 2(a) and 2(b) at small sφ  values to just the inhomogeneous microstructure inside 

the filter region. At low sφ  values, an increase in sφ  increases both the cluster size and particle 

volume fraction in the clusters; the gas flows around these clusters and the resistance offered by 

these clusters decreases with increasing cluster size. Large filter sizes average over larger 

clusters and so the extent of drag reduction observed increases with filter size. At sufficiently 

large sφ  values, the clusters begin to interact and hindered drag sets in. This behavior is clearly 

reflected in the vertical slip velocity corresponding to large filter sizes, see Figure 4. The slip 

velocity increases with sφ  at small sφ values, consistent with larger and/or denser clusters; it then 

decreases with increasing sφ  when the clusters begin interact with each other. 

Next, focusing our attention on the region of high particle volume fraction ( 0.30sφ > ) in 

Figure 2(a) (this corresponds to the left-most region in the figure), we can readily see that the 

filtered drag coefficient in this region also shows a clear departure from the Richardson-Zaki like 

behavior. (The 2-D dimensionless filtered drag coefficient is presented in Figure 1(a)). Figure 

2(a) reveals some interesting trends: 

a) For 0.30sφ > , the 2-D filtered drag coefficient cannot be captured with a Richarson-Zaki 

like model. However, the dependence of the filtered closures on filter length is still 

clearly observed for 0.590.30 sφ << . Note that 0.30sφ value coincides with the 

transition of the meso-scale structures from clusters and strands (elongated structures of 

high particle concentration) to voids (bubbles). 

 
 



b) At extremely high particle volume fractions (for 0.59sφ > ) all the curves corresponding 

to various filter sizes approach the same value indicating that the filtered closures are 

essentially independent of filter length in this region.  

c) The filtered drag coefficient (for all filter lengths) value at extremely high particle 

concentrations correspond to those used in the microscopic model30, 40. 

As noted earlier, at sufficiently large sφ  values, the clusters begin to interact and hindered 

drag sets in.  At 0.30sφ ≈ , the interaction between the meso-scale structures leads to a transition 

from clusters and strands (elongated structures of high particle concentration) to voids (bubbles). 

This turbulent state is suspected to cause the departure from the Richarson-Zaki like behavior. 

The effect of filtering remains unchanged for 0.30 0.40sφ< < . However, for 0.40sφ > , the effect of 

filtering starts to decrease as particle concentration increases (leading to more interaction 

between structures). Finally, at very high ( 0.59)sφ >  values (close to sφ at maximum packing),   

most regions with such high particle concentrations are devoid of voids (bubbles) and behave as 

nearly homogeneous systems close to maximum packing limit, which are captured by the 

microscopic model. This behavior is also reflected in the vertical slip velocity corresponding to 

high sφ  values, see Figure 4. (At at high sφ  values, all filtered vertical slip velocity curves 

overlap with the curve obtained from a filter length equal to the grid length used in the highly-

resolved kinetic theory simulations.)  

Before we proceed any further with modeling the filtered drag coefficient, we should note 

that we have extracted various scaling characteristics through an analysis of the data (for 

0 0.s 65φ≤ < ) obtained over a wide range of filter sizes; such an analysis has shed some light on 

the asymptotic behavior at large filter sizes (as discussed below). 

 
 



Scaling behavior of the filtered drag coefficient: 

From the dimensionless results presented in Figures 1(a-c), one can extract various 

scaling characteristics. In all our studies, the dimensionless filter length is defined as

1 2
tvf fFr g− = Δ . For , the filtered drag coefficient was found to vary roughly as1 4.112fFr− ≥

 n
fm Fr

fFr
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜
⎝⎛ ⎞

⎜ ⎟
⎝ ⎠

⎟
⎠ .  Here, “m” and “n” are functions of particle volume fraction and are given in 

Figure 5. Using the 2-D filtered drag coefficient for a filter length of 4.112 and this scaling 

correlation, we have obtained the filtered drag coefficients for various large filter lengths which 

cannot be obtained with the simulation domain used in these studies. For instance, to obtain the 

filtered drag coefficient for a dimensionless filter length of 16.448 ( 1, 16.448ffiltered Frβ
− = ), we have 

used the following relationship: 

 
1 1, 16.448 , 4.112

 16.448  4.112
16.448 4.112
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m m

β β
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− −

− −

= =

− −
=
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One can expect that the clusters will not grow beyond some critical size and that at 

sufficiently large filter sizes the filtered drag coefficient will become essentially independent of 

the filter size. The current scaling analysis predicts the asymptotic value of the filtered drag 

coefficient at large filter sizes. We will use this asymptotic value in modeling the filtered drag 

coefficient in an internally consistent manner. Details will be given later. 

Similarly, we have also found that for , the filtered particle phase pressure 

and viscosity varied as 

1 4.112fFr− ≥

( ) p
fFr and ( )q

fFr , respectively. The variation of exponents “p” and “q” 

 
 



with particle volume fraction are shown in Figure 6.  Using these scaling correlations and the 

filtered stress terms extracted with a filtered size of 4.112, we obtained the 2-D filtered stress 

terms for various large filter sizes that cannot be obtained with the simulation domain used in 

these studies. We will use these results in the next section, where we will discuss the 2-D filtered 

particle phase stresses. 

One weakness of this type of scaling is that it cannot capture the 2-D filtered model 

closures for . In addition, to be internally consistent, the filtered model closures 

must approach the microscopic model closures as . In order to remedy this weakness, 

we have sought a slightly different scaling. This new scaling utilizes the results obtained from 

the scaling described above for large filter sizes.  

1 4.112fFr− <

1 0fFr− →

Turning our attention to the filtered drag coefficient in the regions with 0.01 0.30sφ< < , 

we have sought a scaling correlation in the form of an arithmetic weighted sum of the models 

capturing the asymptotic value of R-Z like region ( ) and that used in the 

microscopic model ( ) (multiplied with an additional factor to extend the fit to 

low volume fraction region): 

Functionasymptotic

Functionmicroscopic

( )( ) ( )( )125
moderate asymptotic microscopicFunction Function 1 Function 1 0.606 1 sa a φ= + − − −   (21) 

( ) ( )t
asymptotic

v
Function ln 4.19ln 1 1.73 for 0.05 0.30

1
asymptotic

s s
s s sg
β

φ φ
ρ φ φ

⎛ ⎞
= = − − − <⎜ ⎟⎜ ⎟−⎝ ⎠

<   (22) 

where “a” is the weighting function and is shown in Figure 7 (a), as a function of dimensionless 

filter length. “a” takes values between zero and one. When “a” is equal to zero, the model 

 
 



captures the microscopic model, and when it is equal to one, it captures the asymptotic model for 

large filters. The asymptotic value was obtained through the scaling studies described earlier. (It 

should be noted that the value of “a” is expected to increase slightly with resolution for filter 

sizes smaller than 1.028 dimensionless units.) As noted earlier, the filtered drag coefficient 

decreases with increasing filter size; this behavior is captured with filter size dependence of “a”, 

which can be modeled as:  

    (23) 
2 1 1
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Functionmicroscopic corresponds to natural logarithmic value of the filtered drag coefficient 

extracted with a filter size equal to the grid size used in the 2D kinetic theory based simulations 

with Wen-Yu drag; the grid length is 0.257 dimensionless units. The equations given below are 

the simplest fits that capture the curve reasonably well for the rest of our studies. 
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Next, we will focus on modeling the dense region ( 0.30sφ > ) in the form of a function 

which combines the moderate and high particle volume fraction regions (in Figure 2 (a)). Here, 

we have modeled ln(Q) (
( )

,

1
filtered d

s s

Q
β
φ φ

=
−

) as an arithmetic weighted sum of the models capturing 

 
 



the moderate (Functionmoderate) and extremely high volume fraction regions, which corresponds to 

that used in the microscopic model (Functionmicroscopic): 

( )moderate-dense moderate dense microscopic denseFunction Function Function 1factor factor= + −   (25) 

where factordense is the weighting function and is defined as:  

 
( )dense 15.54

1
1 1.23 10 1 s

factor
φ −−

=
+ × −

  (26) 

Lastly, we have investigated a model for the filtered drag coefficient in the very low 

volume fraction region (which was discussed earlier) and tied it to the rest through a function of 

the form: 

( )
( )

,
total

dense-moderate dilute microscopic dilute

Function ln
1

                  Function 1 Function

filtered d

s s

factor factor

β
φ φ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠
= − +

  (27) 

Functiontotal is an arithmetic weighted sum of the functions capturing the Richardson-Zaki 

like region and that for the microscopic model (Functionmicroscopic). factordilute is the weighting 

function: 

  ( )
dilute

1 b
sfactor φ= −   (28) 

A function in this form would ensure that as 0sφ → , all the curves would tend to the 

same asymptote (Functionmicroscopic). Here, the exponent “b” will depend on the dimensionless 

filter length. The systematic variation of the exponent “b” with filter length is shown in Figure 

7(b). It is clearly seen that “b” first increases with the filter length and then reaches an 

 
 



asymptotic value of 1440 at large filters.  It is also important to note that Functiontotal is equal to 

Functionmicroscopic when “b” is zero. “b” can be modeled with the function given below 

(represented by a dashed line in Figure 7(b)): 
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  (29) 

Figures  8(a) and 8(b) present comparisons of the fits in the form of Functiontotal with the 

computational data on a logarithmic scale for the entire particle volume fraction range and only 

in the dilute region, respectively. It is apparent from the figures expression of the form given by 

Functiontotal does indeed capture the filtered drag coefficient data reasonably well.  

The proposed constitutive relationships for the 2-D filtered drag coefficient that cover the 

entire range of particle volume fractions observed are summarized in Table 2. Using these 

constitutive relationships, one can easily obtain the filtered drag coefficient for any filter size as 

defined below: 

 
( )( ) ( )total

t

exp Function 1
v

s s s

filtered

ρ φ φ
β

−
=   (30) 

2. 2­D Filtered particle phase pressure and viscosity: 
 

The filtered particle phase pressure ( ),s filteredp  and shear viscosity ( ),s filteredμ  include the stress 

terms arising from the streaming and collisional parts captured by the kinetic theory and the sub-

filter-scale Reynolds-stress like velocity fluctuations . In this section, we will seek closure 

relations for ,s filteredp and ,s filteredμ as a function of particle volume fraction and filter length.   

 
 



Modeling the filtered particle phase pressure: 

The dimensionless filtered particle phase pressure was defined as

( ) 2
, , , x x y y z z t

1 v v v v v v v
3s filtered d s kinetic s s s s s s sp p ρ φ ρ φ ρ φ ρ⎛ ⎞⎛ ⎞′ ′ ′ ′ ′ ′= + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. Here, ,s kineticp is the filtered 

pressure arising from the streaming and collisional parts captured by the kinetic theory. Figure 9 

(a) shows the variation with sφ of ( )2
, , , tvs kinetic d s kinetic sp p ρ=  over the entire particle volume 

fraction range (0 0.s 65φ< < ), for the simulations discussed earlier in connection with Figure 

1(a-c).  To show the effect of filtering more clearly in the regions with moderate particle 

concentration, we have also included Figure 9(b), showing the same plot for 0.59sφ < . At very 

low sφ  values the filtered kinetic theory pressure is essentially independent of filter length, but at 

moderate sφ  values filter length dependence becomes clear. However, the filter size dependence 

disappears at high sφ values ( )0.50sφ > . 

 It is important to note that filtered kinetic theory model pressure initially increases with 

particle concentration and reaches a local maximum value (at 0.30sφ ≈ ). Then, it starts to 

decrease with increasing particle concentration until it reaches a local minimum value at 0.59sφ ≈  

After this point, the kinetic theory pressure increases rapidly because of the radial distribution 

term for the particle phase, which diverges as sφ increases.  

Figure 10 (a) shows the dimensionless total filtered particle phase pressure  as a function 

of sφ for various filter sizes over the entire particle volume fraction range (0 0.s 65φ< < ). Here the 

filtered particle phase pressure includes the filtered kinetic theory model pressure and the sub-

filter-scale Reynolds-stress like velocity fluctuations. (The filtered particle phase pressure for a 

 
 



filter length equal to the grid length corresponds to the kinetic theory pressure.) Comparing 

Figures 9 (a) and Figure 10(a), it readily becomes apparent that the contributions resulting from 

the sub-filter-scale velocity fluctuations swamp the kinetic theory pressure for 0.59sφ <

indicating that, at the coarse-grid scale, one can ignore the kinetic theory contributions to the 

filtered particle phase pressure for 0.59sφ < . At higher sφ  values, the filtered kinetic theory 

contributions becomes the dominant term. We will explain this behavior at high sφ values later in 

this section. 

It is readily seen in Figure 10 (a) that the filtered particle phase pressure increases with 

filter length for 0.59sφ < , a direct consequence of the fact that the energy associated with the 

velocity fluctuations increases with filter length (as in single phase turbulence). And, for a given 

filter length, the filtered particle phase pressure increases with particle volume fraction within the 

particle volume fraction range of 0 0.s 28φ≤ <

0.28s

. The physical explanation for this trend is that that 

the greater the solid concentration is the larger the velocity fluctuations are. As discussed earlier, 

the contributions resulting from the sub-filter-scale velocity fluctuations swamp the kinetic 

theory pressure in this region. Forφ >

0.59s

, the behavior of the 2-D filtered particle phase 

pressure as a function of particle volume fraction and filter size can be divided into two main 

regions. In the first region, for 0.28 φ< < , the filtered particle phase pressure increases with 

filter length. However, for a given filter length, it decreases as the particle volume fraction in a 

region increases. This trend is the opposite of what occurs in regions with 0.280≤ sφ < . The 

physical explanation for this behavior is that, over a certain limit of particle concentration (about 

0.28), greater particle concentration starts to restrict velocity fluctuations in a region instead of 

increasing it. Eventually, for 0.59sφ > , the physical oscillations of clusters get restricted to the 

 
 



point that both meso-scale stress terms disappear, and only the kinetic model particle stress terms 

remain. Consequently, for 0.59sφ > , both filtered quantities are nearly independent of the filtered 

length. 

We have sought an internally consistent model that combines the three regions, namely 

the region with low, moderate, and high particle volume fractions, in a compact manner (as a 

function of particle volume fraction and filter length). We have modeled the 2-D dimensionless 

filtered particle phase pressure as: 
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where ( ), _1 0.59s criticalφ ≈ is defined as: 

  ( ) , _
2 3 0 at 1 10.9 s11 1s criticalps s sFactor φ φφ φ = =+s sφ φ+ −
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  (32) 

Figure 10(b) shows the variation of Factorps as a function of dimensionless filter size. It 

is readily seen that Factorps increases with filter size and does not reach any asymptotic values. 

The data presented in Figure 10(b) can be curve-fitted as 

    (33) 
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This model is internally consistent; it will approach the kinetic model particle phase stress terms 

as . The kinetic model term in these expressions can be taken care of in two ways: 1 0fFr − →

1. Also solve the granular energy equation (which is granular temperature dependent). 

 
 



2. Simply add the curve fit (given below) for the kinetic particle phase pressure.  
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This curve-fit model for the kinetic theory pressure is a granular temperature independent 

approximation and does not require solving the full kinetic theory based two-fluid model. In 

these expressions, we have ignored the effect of filtering on the kinetic model pressure, which is 

negligible compared to the effect on the Reynolds-like terms and used the filtered kinetic theory 

pressure obtained with a filter length equal to the grid length. 

As noted earlier, using these correlations, one can easily obtain the filtered particle phase 

pressure for any filter length. Figure 10 (a) also includes the model described above for various 

filter lengths.  A comparison of these fits with the computational data reveals that the model 

captures the filtered particle phase pressure reasonably well. (The proposed constitutive 

relationships that cover the entire range of particle volume fractions observed are summarized in 

Table 2). 

Modeling the filtered particle phase shear viscosity: 

Analogous to the modeling studies of the filtered particle phase pressure, we have defined 

that the dimensionless (total) filtered particle phase shear viscosity as 

yx
x x, ,

vvv vs ss filtered s kinetic y x
ρ φμ μ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂∂′ ′+ +
∂ ∂

= . Here ,s kineticμ is the filtered viscosity arising from the 

streaming and collisional parts captured by the kinetic theory.  Figure 11 (a) shows the variation 

 
 



with sφ of ( )3

0 0.65

t, , , vss kinetic d s kinetic ρμ μ=  over the entire particle volume fraction range (

sφ< < ), for the simulations discussed earlier in connection with Figure 1(a-c).  To show 

the effect of filtering more clearly in the regions with moderate particle concentration, we have 

also included a figure showing the same plot for 0.30sφ < . See Figure 11 (b). At all sφ  values 

, ,s kinetic dμ can be considered to be independent of filter length although a slight dependence on sφ

is observed at moderate sφ  values.  As noted previously in the results for the kinetic theory 

pressure term, the kinetic theory viscosity increases rapidly at high sφ values because of the 

radial distribution term for the particle phase, which diverges as sφ increases.  

Figure 12 (a) shows the dimensionless total filtered particle phase shear viscosity, 

( )3
tv, ,red d , ss filtered ρμ μ=s filte , as a function of sφ for various filter sizes over the entire particle 

volume fraction range ( 0 0.65sφ≤ < ). Here the filtered particle phase viscosity includes the 

filtered kinetic theory model viscosity and the sub-filter-scale Reynolds-stress like velocity 

fluctuations. (The filtered particle phase viscosity for a filter size equal to the grid size 

corresponds to the kinetic theory viscosity.) Analogous to what we have discussed in modeling 

the filtered particle phase pressure, a comparison of Figure 11 (a) and Figure 12 (a) reveals that 

the contributions resulting from the sub-filter-scale velocity fluctuations dominate and the 

filtered particle phase viscosity increases appreciably with filter size for 0.59sφ < indicating that, 

at the coarse-grid scale, one can ignore the kinetic theory contributions to the filtered particle 

phase viscosity for 0.59sφ < . At higher sφ  values, the sub-filter-scale velocity fluctuations 

disappear (the physical oscillations of clusters get restricted), and only the kinetic model 

 
 



viscosity remains. As a result, the filtered particle phase viscosity becomes independent of the 

filtered size at extremely high sφ values.  

The variation of the filtered particle phase viscosity with increasing sφ for a given filter 

size (larger than the grid size) is essentially the same as that of the filtered particle phase 

pressure. Therefore, we will not repeat it here. Based on this similarity, we have used similar 

constitutive relationships to capture the filtered particle phase shear viscosity and the filtered 

particle phase pressure. The constitutive relationships for the filtered particle phase pressure 

were discussed earlier, and those for the filtered particle phase shear viscosity are summarized in 

Table 2.  A comparison of the fits for various filter lengths with the computational data reveals 

that the model captures the filtered particle phase pressure reasonably well; see Figure 12 (a). 

Three-dimensional (3-D) simulations: 

The analysis presented so far was restricted to two dimensions. To be of practical value, this type 

of analysis must be carried out in three dimensions. The 3-D filtered results presented in this 

section are based on computational data gathered in a 16.448 x 16.448 x16.448 (dimensionless 

units) cubic periodic domain; this domain size translates to 0.08 m x 0.08 m x 0.08 m for the 

FCC particles (whose physical properties are given Table1).  Although the length of the domain 

is much smaller than that used in 2-D simulations (due to computational limitations), as we will 

show later, the domain size did not affect the filtered quantities as long as the filter length is 

much smaller than the domain dimensions. A dimensionless filter length of 2.056 corresponds to 

a filter length of 0.01 m for the 75 µm FCC particles in ambient air.  

1. 3­D Filtered Drag Coefficient: 
 

 
 



Figure 13(a) presents the variation of the (dimensionless) filtered drag coefficient, as a 

function of filtered particle volume fraction for various filter lengths over the entire particle 

volume fraction range ( 0 0.65sφ< < ) observed in the simulations. As in 2-D simulations, it is 

clearly seen that the filter size effect on the filtered drag coefficient depends on the particle 

concentration of a region.  

To illustrate this effect more clearly, as in the 2-D case, the results presented in Figures 

13 (a-b) are plotted on a logarithmic scale in Figure 14 (a-b). The figures clearly show that the 

overall trend is qualitatively similar to that in 2-D. To illustrate the difference and similarities 

between the filtered drag coefficients extracted from the 2-D and 3-D simulations more 

explicitly, we have compared them for a filter size of 2.056 (dimensionless units) on the same 

figure. Figure 15 (a) compares ( )( , 1s sfiltered dQ )β φ φ= − (on a logarithmic scale) extracted from 2-

D simulations (represented by grey filled triangles) with that extracted from 3-D simulations 

(represented by black stars). The overall trend in both 2-D and 3-D simulations is qualitatively 

similar. However, there are definite quantitative differences between 2-D and 3-D results. At 

moderate sφ values, the filtered drag coefficient from the 3-D simulations is lower than that 

extracted from the 2-D simulations. This result was expected since 3-D inhomogeneous 

structures, in the form of 3-D globular and filaments allow the gas bypass these structures more 

than the 2-D clusters and streamers, which take the form of cylinders and sheets if extended to 3-

D. However, the difference diminishes at very low and high particle volume fractions; the 2-D 

and 3-D filtered drag coefficients appear to converge.  

Scaling behavior of the 3‐D filtered drag coefficient: 

 
 



We have extracted various scaling characteristics for the 3-D filtered quantities through 

an analysis of the data (for 0 0.65sφ≤ < ) obtained over a wide range of filter sizes. This analysis 

is analogous to that described earlier in 2-D simulation results. Here, we will not get into details, 

but briefly state that such an analysis has shed some light on the asymptotic behavior at large 

filters. Figure 15 (b) presents a comparison of the asymptotic value of ( )( ), 1s sfiltered dQ β φ φ= − (on 

a logarithmic scale) (for large filter sizes) extracted from 2-D simulations (represented with a 

solid grey line) with that extracted from 3-D simulations (represented with a dashed black line). 

The overall trend in both 2-D and 3-D simulations is qualitatively similar. However, the 2-D 

asymptotic value filtered drag coefficient is lower than the 3-D one for 0.20sφ < . This is exactly 

opposite of what we have observed with smaller filter sizes. We suspect that this change in 

behavior stems from that, at large filter sizes, the 3-D large meso-scale structures interact and 

hinder the gas bypassing the structures more than the 2-D clusters (consider one large cluster 

being surrounded by larger clusters like itself in three directions rather than in two directions.)  

Utilizing the asymptotic value for the filtered drag coefficient, we have modeled the 

dimensionless 3-D filtered drag coefficient in the same way that we have modeled the 2-D 

filtered drag coefficient. The proposed constitutive models for the 3-D filtered drag coefficient 

are summarized in Table 3. Figures 16 (a) and (b) show the weighting function for the dense 

region, “a”, and the exponential of the weighting function for the dilute region, “b”, respectively.  

Using these constitutive relationships, one can easily obtain the filtered drag coefficient 

for any filter size. Figures 17(a) and (b) present comparisons of the fits in the form of 

Functiontotal with the computational data on a logarithmic scale for the entire particle volume 

fraction range and only in the dilute region, respectively. It is readily apparent from the figures 

 
 



that a constitutive relationship of the form given by Functiontotal does indeed capture the 3-D 

filtered drag coefficient data reasonably well; see Table 3.  

An alternate approach based on the aforementioned Energy Minimization Multi-Scale 

(EMMS) model (which assumes that the particles reside in a clustered state) has been developed 

by Li, Kwauk, and coworkers.51-55 The EMMS model and its extension (to cope with transient 

flow), EMMS/matrix56, are reported to have good success in capturing experimental data.57, 58 

Unlike the present study where the corrections to the drag force depend on filter length, the 

EMMS and EMMS/matrix models prescribe a fixed modification to the drag force, and it may 

perhaps be viewed as the large filter length limit. To illustrate this, we have compared the 

heterogeneity index, (  & D Wen YueffectiveH β β= ) , from EMMS/matrix model and from the 

asymptotic value for 3-D filtered drag coefficient (for very large filters). See Figure 18. Here, we 

have used Figure 1 from Lu et al.59 , which shows the projected area plot of DH (a function of sφ

and slipv ) from the EMMS/matrix model (Model M) , DH from the previous version of EMMS 

model (Model Y), and that from the Ergun/Wen-Yu (Model G) and  incorporated our filtered 3-

D model in the figure for comparison. Wen and Yu drag coefficient was used as the standard 

drag coefficient, and the remaining models were scaled with it to get the corresponding DH .  Lu 

et al.59 state that DH from the EMMS/matrix model is a function of a function of sφ and slipv  , and 

higher slip velocity generally results in higher values of DH . The area plot shown in Figure 18 

covers a range of .  In our 3-D simulations, the vertical slip velocity 

decreases from 1.0 m/s to 0.40 m/s as the particle volume fraction increases from 0.01 to 0.30.  

Within this particle concentration and slip velocity range, the particle volume fraction 

0.001 15.2 m/sslipV< <

 
 



dependence of DH  from the EMMS/matrix model is qualitatively similar to that from 3-D 

filtered drag coefficient.  

Some authors56, 59-64 have combined EMMS model and its derivative EMMS/matrix 

model for drag with kinetic theory model for stresses65 (which assumes that individual particles 

move chaotically),2, 15 which appear to us to be incompatible; in contrast, the approach pursued 

in our studies filters the stresses and the drag in a systematic and consistent manner. 

2. 3­D Filtered particle phase pressure and viscosity: 
 

We will now present the effect of the filter size and particle volume fraction on the 3-D 

filtered particle phase pressure and shear viscosity and derive constitutive relationships which 

capture these effects. The effect of filtering on the dimensionless filtered particle phase pressure 

and shear viscosity in the particle volume fraction range of 0 0.6s 5φ< <  are illustrated in Figure 

19 (a) and Figure 20 (a), respectively. The trends are qualitatively similar to those obtained from 

the 2-D simulations. 

To illustrate the difference and similarities between the 2-D and 3-D results more 

explicitly, we have compared them for a filter length of 2.056 (dimensionless units) on the same 

figure. Figure 21 (a) compares the filtered particle phase pressure extracted from 2-D simulations 

(represented with grey filled triangles) with that extracted from 3-D simulations (represented 

with black stars). As noted earlier, the strong filter size dependence of these quantities is clearly 

present in both 2-D and 3-D. However, for 0.2sφ < , the filtered drag coefficient from the 3-D 

simulations is slightly larger than that extracted from the 2-D simulations.  This trend is reversed 

at higher particle concentrations, which means the 2-D pressure is larger than that extracted from 

 
 



3-D simulations. This reversal in difference originates from the fact that 3-D vertical pressure is 

much larger than that in 2-D at 0.2sφ < . As for the horizontal components, the 3-D lateral 

pressure is noticeably lower than that in 2-D for the entire particle volume range. The difference 

is more pronounced for larger filters.  

Similarly, Figure 21 (b) compares the filtered particle phase shear viscosity extracted 

from 2-D simulations (represented by grey filled triangles) with that extracted from 3-D 

simulations (represented by black stars). It is clearly seen that the 2-D result is much higher than 

that from 3-D simulations. The difference is pronounced for larger filters. Here, it is important to 

note that the sub-filter-scale velocity fluctuations disappear at a lower sφ value in 3-D 

simulations than they did in 2-D simulations.  We attribute the difference between the filtered 

stress terms extracted from the 2-D and 3-D simulations to that the physical oscillations of 

clusters get more restricted in 3-D systems, particularly at higher particle volume concentrations.  

 Finally, we have sought internally consistent constitutive relationships for the 3-D 

filtered particle phase pressure and shear viscosity (as a function of particle volume fraction and 

filter size) which capture the trends discussed above. We have followed the same methodology 

that we used for the 2-D simulation results and modeled the stress terms in a similar way. The 

resulting constitutive relationships for the filtered particle phase pressure and shear viscosity are 

summarized in Table 3 and are included in Figure 19 (a) and Figure 20 (a), respectively. It is 

clearly seen that the proposed relationships capture the computational data reasonably well. 

Summary: 

In our earlier work, we have presented a methodology where computational results 

obtained through highly resolved simulations (in a large periodic domain) of a given microscopic 

 
 



two-fluid model are filtered to deduce closures for the corresponding filtered two-fluid model 

equations.  We have found that, to a good approximation, the dimensionless filtered drag 

coefficient, particle phase pressure and particle phase (shear) viscosity can be treated as 

functions of only particle volume fraction and dimensionless filter size.   

Previously, the filtered drag coefficient to describe the inter-phase interaction force in the 

filtered equations was studied for 0.30sφ <  and shown to exhibit two distinct regimes. For 

0.075 0.30sφ< < , it follows an effective Richardson-Zaki relationship and the effective R-Z 

exponent and apparent terminal velocity have an understandable physical interpretation in terms 

of interactions between particle clusters instead of the individual particles. At low particle 

volume fractions, the drag coefficient shows an anomalous behavior that is consistent with the 

formation of larger and denser clusters with increasing particle volume fraction. In both regimes, 

the filtered drag coefficient decreased with increasing filter size.  

However, the closure relationships for the drag coefficient presented in our earlier work 

did not capture the regions of very low concentrations ( )0.01sφ < well and did not include high 

particle concentrations ( )0.30sφ >  at all. In this study, we have investigated the region-averaged 

statistics in these regimes as well.  

At extremely low particle volume fractions  (~ 10-4)  all the curves corresponding to 

various filter lengths approach the same value indicating that the filtered drag coefficient is 

essentially independent of filter length in this regime. As the particle volume fraction increases, 

the filtered drag coefficient picks up a definite dependence on the filter size, manifesting a 

systematic decrease with increasing filter size.  

 
 



In the dense regions, we have seen the filtered drag coefficient cannot be captured with a 

Richardson-Zaki like model reasonably well. However, the dependence of the filtered closures 

on filter length is still clearly observed for 0.590.30 sφ << . At extremely high particle volume 

fractions (for 0.59sφ > ) all the curves corresponding to various filter lengths approach the same 

value indicating that the filtered closures are essentially independent of filter length in this 

regime. Furthermore, the filtered drag coefficient (for all filter sizes) at extremely high particle 

concentrations correspond to those used in the microscopic model30, 40. 

We have sought an internally consistent model that combines all these regimes in a 

compact manner (as a function of particle volume fraction and filter length). To do this, we have 

analyzed the extended data obtained over a wide range of filter lengths and scaled them into 

correlations, thereby shedding some light on the asymptotic behavior at large filters. (See Table 

2.) 

We have presented several 3-D simulation results at the end to bring forth the differences 

between 2-D and 3-D closures flow and concluded that they are qualitatively similar. Therefore, 

we have modeled the 3-D filtered drag coefficient with constitutive relationships similar to those 

used for the 2-D filtered drag coefficient, see Table 3.   

We have also closely studied the effect of filtering on the filtered particle phase pressure 

and shear viscosity, whose magnitudes are dictated by the velocity fluctuations associated with 

the very complicated inhomogeneous structures shown by the 2-D and 3-D microscopic two-

fluid model simulations, and have sought internally consistent constitutive relationships for these 

terms (as a function of particle volume fraction and filter length) for the entire particle phase 

 
 



volume fraction range. The filtering effect on these terms depends on the particle concentration 

in the filtering region.  

The filtered particle phase pressure and shear viscosity increase with filter length for 

0.59sφ < , a direct consequence of the fact that the energy associated with the velocity 

fluctuations increases with filter length (as in single phase turbulence). At higher sφ  values, the 

sub-filter-scale velocity fluctuations disappear (the physical oscillations of clusters get 

restricted), and only the microscopic (kinetic) model particle phase pressure and shear viscosity 

remains. Consequently, the filtered particle phase viscosity becomes independent of the filtered 

size at extremely high sφ values. The proposed 2-D and 3-D constitutive relationships capturing 

the particle volume fraction and filter size dependence are summarized in Table 2 and 3, 

respectively. 
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Nomenclature 

a  Weighting function (for filtered drag coefficient modeling) 

b  Exponent of the weighting function for the dilute region (for filtered drag 
coefficient modeling) 

pd  Particle diameter (m) 

pe  Coefficient of restitution for particle-particle collisions 

 
 



densefactor  Weighting function for the dense region (for filtered drag coefficient modeling)  

dilutefactor  Weighting function for the dilute region (for filtered drag coefficient modeling) 

psFactor  Coefficient used in modeling the filtered particle phase pressure 

sFactorμ  Coefficient used in modeling the filtered particle phase shear viscosity 

fFr  Froude number based on filter length = 2
tv fgΔ  

gFr  Froude number based on grid length = 2
tv ggΔ  

totalFunction  An arithmetic weighted sum of the functions capturing the R-Z like region and 
that for the microscopic model 

microscopicFunction  Natural logarithmic value of the microscopic drag coefficient 

asymptoticFunction  The asymptotic value of R-Z like region  

g , g  Acceleration due to gravity (m/s2) 

DH  The heterogeneity index 

,  m n  Exponential coefficients used for scaling the filtered drag coefficient 

,RZ appN  Apparent Richardson-Zaki exponent 

,  p q  Exponents used for scaling the filtered particle stress terms 

,s filteredp  Filtered particle phase pressure (kg/m.s2) 

, ,s filtered dp  , ,s filtered dp  made dimensionless; 2
, , , vs filtered d s filtered sp p ρ= t  

,s kineticp  Filtered value of particle phase pressures in the kinetic theory model (kg/m.s2) 

tv  Terminal settling velocity (m/s) 

v  Particle phase velocity in the microscopic two-fluid model (m/s) 

v  Filtered particle phase velocity (m/s) 

 
 



′v  Fluctuations in particle phase velocity (m/s) 

,x y  Position vectors (m)  

slipV  Vertical slip velocity (m/s) 

,t appV  Dimensionless apparent terminal velocity 

 

Greek Symbols 

filteredβ   Filtered drag coefficient (kg/m3.s) 

asymptoticβ   Asymptotic value of the filtered drag coefficient (kg/m3.s) 

microscopicβ   Microscopic filtered drag coefficient (kg/m3.s) 

,filtered dβ   Dimensionless filtered drag coefficient = tvfiltered s gβ ρ  

sφ , gφ   Particle and gas phase volume fractions, respectively 

s,maxφ     Maximum particle volume fraction 

sφ , gφ   Filtered particle and gas phase volume fractions, respectively 

sρ , gρ   Particle and gas densities, respectively (kg/m3) 

fΔ   Filter length (m) 

gΔ  Grid length (m) 

σs  Particle phase stress tensor in the kinetic theory model (kg/m.s2) 

gμ  Gas phase viscosity (kg/m.s) 

 
 



sμ  Shear viscosity of the particle phase appearing in the kinetic theory model 

(kg/m.s) 

,s filteredμ  Shear viscosity of the particle phase appearing in the filtered two-fluid 

model (kg/m.s) 

, ,s filtered dμ   ,s filteredμ  made dimensionless; 3
, , , vs filtered d s filtered sg tμ μ ρ= . 
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See the references section of the main text of this report for the references cited in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



                   Table 2: Sample physical properties of the gas and particles 

________________________________________________________ 

pd   Particle diameter   7.5 x 10-6 m 

sρ   Particle density    1500 kg/m3 

gρ   Gas density    1.3 kg/m3 

gμ   Gas viscosity    1.8 x 10-5 kg/m⋅s  

pe   Coefficient of restitution     0.9    
 g  Gravitational acceleration  9.80665 m/s2 

tv   Terminal settling velocity  0.2184 m/s 
2
tv

g
  Characteristic length   0.00487 m 

tv
g

  Characteristic time   0.0223 s 

2
s tvρ    Characteristic stress   71.55 kg/ m⋅s2 

_________________________________________________________ 
 

 

Table 2: 2-D Filtered closures 

See Table 2 in the main text of this report. 

Table 3: 3-D Filtered closures 

See Table 3 in the main text of this report. 

 

 

 
 



FIGURES and CAPTIONS: 
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Figure 1: The variation of the dimensionless filtered drag coefficient with particle volume fraction for 
various filter lengths (listed in the legend in dimensionless units) is shown. Simulations were performed 
in a square periodic domain of size 131.584 x 131.584 dimensionless units and using 512 x 512 grid 
points. Data used for filtering were generated by running simulations for domain-average particle volume 
fractions of .01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 30, 0.35, 0.40, 0.45, 0.50, 0.55 and 0.58. The 
dimensionless filter lengths are shown in the legend. (a) The entire particle volume fraction range (
0 0.s 65φ≤ < ); (b) for 0 0.s 30φ≤ < (to show the filtering effect more clearly in the regions of moderate 

particle concentration); (c) for the dilute volume fraction region ( 0 0.009sφ≤ < ). 
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Figure 2: The results shown earlier in Figures 1 (a-b) are plotted on a natural logarithmic scale. Here

( )
,

1
filtered d

s s

Q
β
φ φ

=
−

, where ,filtered dβ is the dimensionless filtered drag coefficient, sφ is particle phase volume 

fraction, The dimensionless filter lengths are shown in the legend. (a) For 0 0.65sφ≤ <  (the entire particle 

volume fraction range); (b) for 0 0s .30φ≤ <  (to show the filtering effect more clearly in the regions of 
moderate particle concentration).  
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Figure 3: (a) Dimensionless apparent terminal velocity ( ) for various dimensionless filter lengths, 

extracted from results in 
,t appV

Figure 2 (a-b) (2D) for the particle volume fraction range 0.05 0.30sφ< <  and 

those extracted from results in Figure 2 (a-b) (3D) for the range 0.075 0.25.sφ< <   The solid lines in 

Figure 2 (a-b) for a filter length of 2.056 is based on V shown here and the apparent Richardson-Zaki 

exponent (
,t app

,RZ appN ) in Figure 3 (b).  (b) ,RZ apN

0.05
p for various dimensionless filter lengths, extracted from 

results in Figure 2(a-b) (2D) for the range 0.s 30φ< < . (c) ,RZ appN

0.075 0.25s

 for various dimensionless filter 

lengths, extracted from results in Figure 2 (a-b) (3D) for the range φ< < . 
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Figure 4: The variation of dimensionless filtered slip velocity with filtered particle volume fraction is 

shown for various dimensionless filter lengths shown in the legend.  These results were generated from 

the same set of simulation data that led to Figure 1(a-c).   
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Figure 5: The variation of exponential coefficients “m” and “n” for scaling filtered drag coefficient with 

particle volume fraction.  For , the filtered drag coefficient was found to vary roughly as1 4.112fFr − ≥

( ) ( )nfm Fr
fFr .  Here, 1 2

tvf fFr g− = Δ .  See the main text for the details. 
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Figure 6:  The effect of particle volume fraction on exponents “p” and “q” for scaling the 2-D filtered 

particle phase stress terms.  For , the filtered particle phase pressure and shear viscosity were 

found to vary roughly as (

1 4.112fFr − ≥

) p

fFr and ( )q

fFr , respectively. 1
tvf fFr g− = Δ 2 .  See the main text for the 

details. 
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Figure 7: (a) The variation of the 2-D weighting function “a” (see Equation 3 in the main text) with 

dimensionless filter size. “a” can be modeled with Equation 5 in the main text (represented by a dashed 

line). (b) The variation of the exponent “b” for the dilute region (see Equation 10 in the main text) 

extracted from the results in Figure 2 (a-b), as a function of dimensionless filter length. The dash-dotted 

line represents the function fitting for the data; see Equation 11 in the main text.  
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Figure 8: The results (ln(Q)) shown in Figure 2(a-b) are re-plotted to present a comparison of the 

simulation data with the constitutive model shown in Equation 9 (in the main text) for (a) 0 0.s 65φ≤ <  

and (b) 0.05sφ < . The bottom line indicates asymptotic value of ln(Q) for large filters, which was 

obtained from scaling studies.  
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Figure 9: The variation of the dimensionless filtered kinetic theory pressure with particle volume fraction 

is presented for various dimensionless filter lengths. The results were extracted from simulations 

mentioned in the caption for Figure 1(a-c). The dimensionless filter lengths are shown in the legend. (a) 

For 0 0.s 65φ≤ <  ; (b) for 0 0.5s 9φ≤ <  (to show the filtering effect more clearly).  
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Figure 10: (a) The effect of particle phase volume fraction on the dimensionless filtered particle phase 

pressure for the dimensionless filter lengths shown in the figure legend. The results were extracted from 

simulations mentioned in the caption for Figure 1(a-c). The figure also includes the constitutive 

relationships (as a function of particle volume fraction and filter size) given in Equation 14. (b) The 

coefficient “Factorps” in Equation 14 is plotted against the dimensionless filter length. “Factorps” can be 

modeled as shown in Equation 16 (represented by the dashed line). 
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Figure 11: The variation of the dimensionless filtered kinetic theory viscosity with particle volume 

fraction is presented for the seven dimensionless filter lengths shown in the figure legend. The results 

were extracted from simulations mentioned in the caption for Figure 1(a-c). (a) For 0 0.s 65φ≤ < ; (b) for 

0 0.s 59φ≤ <  (to show the filtering effect more clearly). 
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Figure 12: (a) The variation of the dimensionless (total) filtered particle phase shear viscosity with 

particle volume fraction is presented for seven different dimensionless filter lengths. The results were 

extracted from simulations mentioned in the caption for Figure 1(a-c). The dimensionless filter lengths 

are shown in the legend. The figure also includes the constitutive relationship (as a function of particle 

volume fraction and filter size) given in Equation T2.15 (in Table 2). (b) The coefficient “Factorµs” in 

Equation T2.15 is plotted against the dimensionless filter length. “Factorµs” can be modeled as shown in 

Equation T2.17 (represented by the dashed line). 
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Figure 13: The variation of the dimensionless 3-D filtered drag coefficient with particle volume fraction 

for various filter lengths (listed in the legend in dimensionless units) is shown. Simulations were in a 

cubic domain of size 16.448 x 16.448 x 16.448 dimensionless units, using 64 x 64 x 64 grid points. The 

dimensionless filtered drag coefficient includes contributions from the drag force and the pressure 

fluctuation force. Data used for filtering were generated by running simulations for domain-average 

particle volume fractions of 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 30, 0.35, 0.40, 0.45, 0.50, 0.55 and 

0.58. (a) The entire particle volume fraction range ( 0 0.6s 5φ≤ < ); (b) for 0 0.s 25φ≤ < (to show the 

filtering effect more clearly in the regions of moderate particle concentration); (c) for the dilute volume 

fraction region ( 0 0.0s 1φ≤ < ). 

 

 

 

 

 

 

 

 
 



 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

ln(1-φs)

ln
(Q

)

0.257
0.514
1.028
2.056
4.112
0.514 RZ fit
1.028 RZ fit
2.056 RZ fit
4.112 RZ fit

a) 

 

-0.25 -0.2 -0.15 -0.1 -0.05 0
-1.5

-1

-0.5

0

0.5

1

1.5

2

 

 

ln(1-φs)

ln
(Q

)

0.257
0.514
1.028
2.056
4.112
0.514 RZ fit
1.028 RZ fit
2.056 RZ fit
4.112 RZ fit

b) 

 

 

 

 
 



Figure 14: The results shown earlier in Figure 13(a-b) are plotted on a natural logarithmic scale. Here,

( )
,

1
filtered d

s s

Q
β
φ φ

=
−

, where ,filtered dβ is the dimensionless filtered drag coefficient, sφ is particle volume 

fraction. The dimensionless filter lengths are shown in the legend. (a) For the entire particle volume 

fraction range ( 0 0.6s 5φ≤ < ). (b) For 0.25sφ < (in order to show the filtering effect more clearly). A 

Richardson-Zaki (RZ) like behavior at moderate particle volume fraction is readily apparent, and these 

fits are also shown in the figure. However, the behavior in low and dense particle volume fraction regions 

is dramatically different and cannot be captured with this type of modeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



   

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

ln(1-φs)

ln
(Q

)

 

 
2-D -- 2.056
3-D -- 2.056

a) 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-2

-1

0

1

2

3

4

ln(1-φs)

ln
(Q

)

 

 

Asymptotic value -- 3-D
Asymptotic value -- 2-D

b) 

 

Figure 15: The comparison of ( ), 1filtered d s sQ β φ φ= −  (on a natural logarithmic scale) extracted from 2-

D and 3-D simulations for (a) a filter length of 2.056 dimensionless units; (b) large filters (asymptotic 

value).  
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Figure 16: The variation of (a) the 3-D weighting function “a”; (b) the 3D weighting function exponent 

“b” with dimensionless filter length. “a” and “b” can be modeled as shown in Equation T3.6 (represented 

with the dash-dotted line) and Equation T3.9 (represented with the dashed line), respectively. See Table 3.  
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Figure 17: The results (ln(Q)) shown in Figure 13 are re-plotted to present a comparison with the 

constitutive  model  (as a function of particle volume fraction and filter length) shown in Equation T3.2 in 

Table 3. The bottom line indicates asymptotic value of ln(Q), which was obtained from scaling studies. 

(a) For the entire particle volume fraction range ( 0 0.65sφ≤ < 0.25sφ <). (b) For (in order to show the 

filtering effect more clearly). 

 

 

 

 

 

 

 

 

 

 

 
 



 

Figure 18: A comparison of the heterogeneity index, (  & D Wen YueffectiveH β β= )

0

, from the asymptotic 

value for 3-D filtered drag coefficient (for very large filters) with that from the EMMS/matrix model is 

presented.  Here, we have used Figure 1 from Lu et al.15, which shows the projected area plot of (a 

function of and ) from the EMMS/matrix model (Model M) , from the previous version of 

EMMS model (Model Y), and that from the Ergun/Wen-Yu (Model G) and  incorporated our filtered 3-D 

model in the figure for comparison. Wen and Yu drag coefficient was used as the standard drag 

coefficient, and the remaining models were scaled with it to get the corresponding .  The area plot 

shown in this figure covers a range of .   
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Figure 19: (a) The variation of the dimensionless 3-D filtered particle phase pressure with particle volume 

fraction is presented for various dimensionless filter lengths shown in the legend. The figure includes the 

constitutive relationships that capture the filtered particle phase pressure, see Equation T3.11. (b) The 

coefficient “Factorps” in Equation T3.11 is plotted against the dimensionless filter length. “Factorps” can 

be represented by Equation T3.13 in Table 3 (shown with the dashed line). 
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Figure 20: (a) The variation of the dimensionless 3-D filtered particle phase viscosity with particle 

volume fraction is presented for various dimensionless filter lengths. The results were extracted from 

simulations mentioned in the caption for Figure 13 (a-c). The dimensionless filter lengths are shown in 

the legend. This figure also includes the constitutive relationships that capture the filtered particle phase 

viscosity, see Equation T3.15. (b) The coefficient “Factorµs” in Equation T3.15 is plotted against the 

dimensionless filter length. “Factorµs” can be represented by Equation T3.17 in Table 3 (shown with the 

dashed line). 
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Figure 21: The comparison of (a) the filtered particle phase pressure (b) the filtered particle phase shear 

viscosity extracted from 2-D and 3-D simulations for a filter length of 2.056 dimensionless units.  
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