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DISCLAIMER 
 
“This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.” 
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EXECUTIVE SUMMARY 
 

 
Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation 
systems is an important step in the quest for national energy security and minimized reliance on 
foreign oil.  This project aimed to, through materials research, develop a cost-effective advanced 
technology cogenerating hydrogen and electricity directly from distributed natural gas and/or 
coal-derived fuels.  This advanced technology was built upon a novel hybrid module composed 
of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both 
of which were in planar, anode-supported designs.  A SOFEC is an electrochemical device, in 
which an oxidizable fuel and steam are fed to the anode and cathode, respectively.  Steam on the 
cathode is split into oxygen ions that are transported through an oxygen ion-conducting 
electrolyte (i.e. YSZ) to oxidize the anode fuel.  The dissociated hydrogen and residual steam are 
exhausted from the SOFEC cathode and then separated by condensation of the steam to produce 
pure hydrogen.  The rationale was that in such an approach fuel provides a chemical potential 
replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide 
electrolysis cells).  A SOFC is similar to the SOFEC by replacing cathode steam with air for 
power generation.  To fulfill the cogeneration objective, a hybrid module comprising reversible 
SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded 
in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. 
natural gas or coal-derived fuel).  Hydrogen was produced by SOFECs and electricity was 
generated by SOFCs within the same hybrid system.  A stand-alone 5 kW system comprising 
three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant 
components (including a tailgas-fired steam generator and tailgas-fired process heaters), and 
electronic controls was designed, though an overall integrated system assembly was not 
completed because of limited resources.  An inexpensive metallic interconnects fabrication 
process was developed in-house.  BOP components were fabricated and evaluated under the 
forecasted operating conditions.  Proof-of-concept demonstration of cogenerating hydrogen and 
electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no 
significant degradation.  Cost analysis was performed for providing an economic assessment of 
the cost of hydrogen production using the targeted hybrid technology, and for guiding future 
research and development.  
 
The project accomplishments are briefly described below.  Details will be delineated within the 
body of this final technical report.   

1. Synthesized a p-type (La,Sr)(Cr,Mn)O3 (LSCM) cathode material and Sm-doped CeO2 
(SDC) and Gd-doped CeO2 (GDC) n-type cathode materials, and fabricated a 
composite material consisting of both p-type and n-type conductors. 

2. Explored other perovskites as n-type materials for SOFEC application, including 
(La,Sr)TiO3 (LST). 

3. Demonstrated redox stability of the LSCM-based composite cathode.  

4. Completed fabrication of defect-free anode-support SOFECs and SOFCs needed for 5 
kW hybrid cogeneration modules with optimized anode porosities and microstructure.  
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5. Developed testing protocols to evaluate the effects of porosity, composition, 
temperature, microstructure and physical dimension on the mechanical properties of the 
anode support, experimental results were used to optimiz the anode design for increased 
reliability and performance.  

6. Developed a finite element model to simulate the indentation processes on the anode 
substates and electrolyte structures. 

7. Identified alkaline earth silicate-based glass compositions with requisite thermal 
properties. 

8. Demonstrated stability and hermeticity of the glass seal materials for up to 100 days in 
air and in a wet reducing atmosphere, and over 30 thermal cycles. 

9. Developed new interconnect manifolds for the SOFEC-SOFC hybrid stack with heat 
transfer-enhancement and in-stack pressure drop reduction features. 

10. Developed an interconnect brazing system imparting significant cost-savings in 
materials, and completed fabrication of non-cell repeat stack units. 

11. Constructed and evaluated kW stacks operating respectively in SOFEC and SOFC 
modes for hydrogen production and power generation directly from syngas.  

12. Demonstrated SOFEC operational stability for 360 hours with no significant 
degradation.  

13. Constructed and demonstrated hybrid stack modules comprised of SOFECs and 
SOFECs co-generating hydrogen and electricity directly from hydrocarbon fuels, 
including syngas and methane.  

14. Completed the design of a stand-alone 5 kW co-generation system.   

15. Fabricated and evaluated major balance-of-plant (BOP) components.  
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Technical Objectives of the Proposed Work 

The objective of this project was to develop a solid oxide fuel-assisted electrolysis technique to 
generate both hydrogen and electricity directly from hydrocarbon fuels.  The objectives included: 

 Develop and optimize composite cathodes that were chemically and electrocatalytically 
stable under both reducing and oxidizing environments.  

 Evaluate the performance of the cathode materials by measuring the electrical 
conductivity and impedance spectrum as a function of temperature and oxygen activity. 

 Fabricate anode-supported solid oxide fuel cells (SOFCs) and solid oxide fuel-assisted 
electrolysis cells (SOFECs) with Ni-YSZ anode supports, thin film YSZ electrolytes, and 
composite cathodes.  

 Quantify the issues affecting the mechanical stability (particularly the strength) of the 
anode supports.  

 Evaluate the thermo-elastic properties of the anode support in both air and reducing 
atmospheres. 

 Characterize the structural properties, fracture mechanisms, creep behavior and residual 
stresses of the anode supports.  

 Develop glass-ceramic seal compositions that demonstrate hermeticity and material 
compatibility with stack components under SOFC-SOFEC operational conditions. 

 Demonstrate hbrid SOFC-SOFEC modules co-generating hydrogen and electricity 
directly from hydrocarbon fuels. 

 Design a 5 kW module-based SOFC-SOFEC co-generation system with improved 
thermal and fluid management. 

 Design, manufacture, and evaluate the balance-of-plant (BOP) components for the 5 kW 
system. 

 Construct and test the 5 kW system to demonstrate co-generation of hydrogen and 
electricity directly from syngas or natural gas.  

 Develop a cost analysis model for hydrogen production using the hybrid SOFC-SOFEC 
technology. 

 
Project Work Plan 

Task 1 Cathode Materials Development 

Task 2 Fabrication of Anode-supported, Thin Film YSZ-based Solid Oxide Electrochemical 
Cell 

Task 3 Anode Substrate Thermo-mechanical Properties Investigation 

Task 4 Hermetic Seal Development 

Task 5 Single Cell Testing and Characterization 

Task 6 Design of Hybrid SOFEC-SOFC Stacks and a 5 kW System 

Task 7 Proof-of-Concept Demonstration of the SOFEC-SOFC Hybrid Co-generating H2 and 
Electricity in Short Stacks of Anode-support Cells 

Task 8 Development and Testing of a 5 kW SOFEC-SOFC Hybrid System 

Task 9 Hydrogen Cost Analysis 

Task 10 Project Management and Reporting 
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Background 

Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation 
systems is an important step in the quest for national energy security and minimized reliance on 
foreign oil, and also promises the opportunity to reduce greenhouse gases emissions.  Hydrogen, 
as a secondary energy carrier, doesn’t exist in an elemental form in the environment to an 
appreciable extent; but can be produced by reacting a variety of widely available primary energy 
carriers, such as fossil fuels, wastes, biomass, or by using renewable energy sources, either 
directly or indirectly.  There are numerous processes to produce hydrogen, such as conventional 
electrolysis and the steam reforming of natural gas or coal on an industrial scale, and 
thermochemical water splitting, photoelectrochemical processes, and small scale biological 
processes.  As of yet, however, none of these technologies are sufficient to meet the needs of a 
hydrogen-based economy.  Conventional steam electrolysis using a solid-oxide electrolysis cell 
(SOEC) consumes 34.2 kWh to produce 1 kg of hydrogen when it operates at the thermo-neutral 
voltage (1.28V).  The cost of hydrogen produced by other conventional electrolyzers is typically 
about 53.4 kWh per kg hydrogen for alkaline or PEM-based electrolyzers.  These high electricity 
costs and low system efficiencies have made hydrogen production with the electrolysis 
technologies less competitive with other processes, such as steam reformation of natural gas or 
coal.  However, purification of the hydrogen stream, separation of the effluent carbon dioxide, 
and additional infrastructure (hydrogen storage, distribution pipeline build-up, supply chain, and 
transportation from hydrogen central production factory to hydrogen end user), add appreciable 
costs, and make steam reformation inappropriate for small-scale applications.   
 
The purpose of this program was to, through the materials research, enable the development of a 
cost-effective solid-oxide hybrid module cogenerating hydrogen and electricity directly from fuel 
(i.e., natural gas, coal-derived syngas, and/or bio-fuels) for distributed small-scale applications.  
The resultant innovative hybrid system used reversible solid-oxide fuel-assisted electrolysis cells 
(SOFECs) integrated with solid-oxide fuel cells (SOFCs), both of which were planar, anode-
supported solid oxide electrochemical cells.  A SOFEC is an electrochemical device which is 
similar to a SOFC, which generates electricity from a fuel on the anode and air on the cathode, 
but it replaces the air on the SOFC cathode with steam as an oxidant.  By doing so, the SOFEC 
produces hydrogen by electrochemically dissociating the steam into hydrogen and oxygen.  
Along with residual steam, the dissociated hydrogen exhausts from the SOFEC cathode and are 
then separated by condensation of the steam, leaving a pure hydrogen gas.  In the hybrid module, 
the SOFECs and SOFCs were manifolded in a stack such that the anodes of both the SOFECs 
and the SOFCs were fed the same fuel.  Hydrogen was produced by SOFECs and electricity was 
generated by SOFCs within the same hybrid system.  Because of the modular nature of the 
composite SOFEC-SOFC stack, it can be integrated with other renewable resources (i.e. 
biomass, solar and wind), and used for storing energy from those intermittent sources as 
hydrogen.  Hydrogen can then be distributed or used later to generate electricity (by running the 
stack as an SOFC, or as feedstock for PEM based fuel cells).   
 
The development efforts of this program were performed by a team led by Materials and 
Systems Research Inc., (MSRI), and supported by University of Alaska Fairbanks (UAF), 
Missouri University of Science and Technology (MS&T), and the University of Utah (Utah).  
Redox stable cathodes for the reversible SOFECs were studied, using composite cathodes 
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comprising p-type and n-type materials.  The performance of each composite was carefully 
evaluated as a cathode and suitable materials were selected and optimized.  Although the main 
factors influencing the solid-oxide hybrid design were electro-chemical in nature, the 
requirement to operate the components at elevated temperatures and the need for thermal cycling 
between room and operation temperature had made thermomechanical aspects of the components 
extremely important.  Robust NiO+YSZ-based anode supports were developed and substaintial 
investigations were performed to understand the effects of several factors, (i.e., microstructure, 
temperature, porosity, rapid thermal cycling, and anode layer thickness) on various mechanical 
properties of the anodes, including strength, elastic properties, fracture mechanisms, thermal 
expansion behavior, etc.  In order to achieve the high power densities for SOFC-SOFEC hybrid 
stacks, reliable hermetic sealing technologies were developed.  Previous knowledge and 
experience of system design, large stacks development, and key balance-of-plant components 
build were implemented to this program for the development of a 5 kW hybrid system.     
 
Work Accomplished 

Work completed in this program is described below. 
 
Task 1 Cathode Material Development 
 
Cathode materials development was a joint effort by MS&T and MSRI in which prospective 
cathode materials for the reversible SOFEC application were developed and characterized 
successfully.   
 
Cathode materials considerations:  The cathode materials used in reversible SOFECs must 
possess good electronic and ionic conductivity and maintain sufficiently low area-specific 
resistance (ASR) to be useful in both oxidizing (SOFC mode) and reducing (SOFEC mode) gas 
atmospheres.  At the present time, there are no known materials which completely satisfy these 
aforementioned criteria.  P-type perovskites, such as LSM, LSCF, LSCr and LSCM are known to 
be stable materials at high temperatures, and have been extensively investigated at MS&T.  N-
type materials such as (LaSr)TiO3 (LST) and Gd- or Sm- doped ceria (GDC or SDC) are also 
known to be stable materials in a reducing atmosphere.  The key goal of this research was to 
develop composite cathode materials which possess the p-type and n-type conductivity at the 
same time to offer satisfactory performance during both SOFEC and SOFC application.  The 
cathodes made from the composites of an ionic conductor (i.e. SDC and GDC), a p-type 
conductor (i.e. LSCr, LSM and LSCM), and an n-type conductor (i.e. LST) were investigated.  
Upon the development of the cathode materials, the cell performance was evaluated. 
 
Task 1.1 Characterization of p-type perovskites (LSCr, LSM and LSCM) 

Electrical conductivity measurement of LSCr, LSM and LSCM:  The oxygen activity limits 
before a chemical/mechanical breakdown of LSM (La0.84Sr0.15MnO3), LSCr (La0.8Sr0.2CrO3), and 
LSCM (La0.75Sr0.25Cr0.5Mn0.5O3) were investigated by measuring the electrical conductivity as a 
function of oxygen activity and temperature.  The density of a sintered sample was measured to 
be ~ 64% of the theoretical value for LSM and LSCr, and 80% for LSCM.  All the cathode 
samples were sintered at 1400ºC for 5 hours in air.   
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The electrical conductivity measurement was conducted in a controlled environment with 
oxygen activity varying from 1 to 10-30 atmospheres.  The sample temperature also varied from 
500ºC to 800ºC.  Even though the electrical conductivity measurement didn’t represent the actual 
value due to a relatively high porosity of the cathode samples, the electrical conductivity as a 
function of oxygen activity was independent of the density of the specimen.  Figure 1 shows the 
results of the electrical conductivity measurements of LSCr, LSM, and LSCM as a function of 
oxygen activity at 800ºC.  As shown in Figure 1, the oxygen activity at which the electrical 
conductivity starts to decrease is composition dependent, with LSCr being the most stable, LSM 
the least stable, and LSCM in between.  The LSM was found to dissociate at an oxygen activity 
of ~ 10-20 atm.  However, LSCr and LSCM remained single phase with the oxygen activity as 
low as 10-23 atm.  These results suggested that the addition of Cr to LSM gave the material 
sufficient stability for use in the oxygen activity range of 10-20 ~ 10-15 atm which fits the SOFEC 
operational requirements. 
 

 
Figure 1.  Electrical conductivity of LSCr, LSM and LSCM as a function of oxygen activity measured at 
800ºC 
 
Electrical conductivities were also measured at various temperatures in air.  Measurements 
showed that the electrical conductivities of LSCr, LSM and LSCM were about 4 ~ 10, 49 ~ 56 
and 13 ~ 15 S/cm at temperatures ranging from 500ºC to 800ºC, respectively.  When a LSCM 
sample with 95% of the theoretical density was prepared by sintering in argon environment at 
1500ºC, the electrical conductivity increased to 27.1 S/cm at 800ºC in air which closely matched 
the conductivity value reported.  
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The electrical conductivities of LSM and LSCM were measured and plotted in Figure 2 and 
Figure 3, as a function of oxygen activity and temperature, respectively.  Figure 2 shows the 
electrical conductivity of LSM.  As shown in the figure, all the measurements were reversible at 
the temperatures between 500 and 800ºC as a function of oxygen activity, indicating that LSM 
was chemically and mechanically stable and fully reversible at least in terms of electrical 
conductivity in the operation conditions (in air and 50% CO bal. CO2, which are equivalent to 
the oxygen activity range between 0.21 atm and 8x10-30 ~ 4x10-19 atm, respectively).  Therefore, 
this conductivity study suggested that LSM would have sufficient stability as a cathode for the 
proposed reversible electrolysis cell application. 
 

 
Figure 2.  Electrical conductivity of LSM as a function of oxygen activity and temperatures 

 
As shown in Figure 1, comparing with LSM and LSCr, the electrical conducitiviy of LSCM is 
about 27 S/cm in air, suggesting that the LSCM was more stable than LSM, though it was not 
proven.  However, as shown in Figure 1, the conductivity of LSCM leveled off, exhibiting that 
LSCM had the tendency of having higher conductivity than LSCr below oxygen activity of 
4.6x10-21 atm.  Therefore, LSCM could be the best fitting material as a SOFEC cathode.  This 
electrical conductivity also appeared to be reversible when cycled between air and 90% CO bal. 
CO2 at 800ºC, corresponding to oxygen activity between 0.21 and 4.6x10-21 atm, respectively, as 
shown in Figure 3.  
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Figure 3.  Electrical conductivity of LSCM as a function of oxygen activity and temperatures 
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applications 
 
Symmetric cells were constructed with YSZ electrolyte sandwiched between two LSCM 
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working temperatures.  Figure 4 shows representative impedance spectra of a symmetrical cell 
tested at temperatures from 650ºC to 800ºC.  As shown in the figure, the overpotential of the 
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the temperature decreased to 650oC.   
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Figure 4.  Impedance spectroscopy of LSCM in air 

 
Degradation of a LSCM electrode at 800oC was evaluated by subjecting the electrode to a dry 
gas comprising 10%H2 bal. N2 (corresponding to oxygen activity ~10-23 – 10-25 atm) followed by 
impedance measurement in air.  Figure 5 shows the impedance results.  At 800ºC, the ohmic 
resistance and overpotential respectively increased to 3.4Ω and 4.7Ω.  Post-test analysis showed 
that the degradation was caused by a weak contact between LSCM and the current collector.   
 

 
Figure 5.  Impedance spectroscopy of LSCM-Ag in air after redox process 
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Fuel cell tests were performed at different temperatures from 650ºC to 800ºC with dry 10%H2 
bal. N2 gas as the fuel and air as the oxidant.  Figure 6 shows the electrochemical impedance 
spectroscopy of a symmetric cell.  Large overpotentials were observed in a low frequency range.   
 

 
Figure 6.  Impedance spectroscopy of LSCM-Ag during fuel cell test 

 

 
Figure 7.  Impedance spectroscopy of LSCM-Ag after fuel cell test 
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suggested that the degradation might not be fully recovered after the oxidation process.  Analysis 
of a microstructure of the cell after the redox test and testing at high oxygen activities which are 
closer to those expected to occur in the electrolyzer needs to be performed to determine the most 
likely location of failure under use conditions. 
 

 
Figure 8.  Impedance spectroscopy of LSCrM with Pt current collector in air 

 
V-I characteristics and power density were measured on a Pt/LSCM/YSZ/LSCM/Ag 
symmetrical cell.  The open circuit voltage was about 1.2 volts at all temperatures and the current 
density at short circuit was about 1.3 A/cm2 at 800oC, as shown in Figure 9, when a dry 10%H2 
bal. 90%N2 gas was used as fuel.  The maximum power density reached 320mW/cm2 at 800oC, 
as shown in Figure 10.   
 

 
Figure 9.  I-V charge profile of LSCM with Pt collector 
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Figure 10.  The power density of a symmetric cell printed with LSCM cathode and Pt collector 

 
Task 1.3 Long-term stability test of LSCM electrodes 
 

 
Figure 11.  Impedance spectroscopy of LSCM in both air and wet 10% H2 at 800ºC 

 
Another symmetrical cell (LSCM/YSZ/LSCM) was constructed and tested over a couple of 
hundred hours in both oxidizing and reducing atmosperes.  Impedance Spectroscopy was carried 
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out at scheduled times during the 200-hour tests.  Figure 11 shows the impedance measurement 
at 800ºC.  As shown in the figure, the ohmic ASR, defined as the intersection between the 
semicircle and the Z’-axis (at a high frequency range), was at an initial value of 0.35 Ωcm2 (1st 
test).  After 150 hours, the ASR increased to 0.48 Ωcm2, which corresponds to over 35% 
degradation.  A platinum current collector was re-applied to the LSCM electrode surface before 
the last impedance test (6th test), after which the ASR returned to 0.35 Ωcm2, suggesting that the 
source of degradation was actually from contact between the current collector and electrode. 
 
Task 1.4 Characterization of a mixture of LSCM (p-type) and LST (n-type) perovskites 

As mentioned above, the SOFEC cathode material must be chemically stable under its working 
environment and possesses good electronic and ionic conductivity with good electrocatalytic 
properties.  To pursue this objective, in this subtask, a mixture of p-type and n-type oxides was 
selected and their powders were prepared using the water based chemical solution process to 
fabricate non-agglomerated but well dispersed nano powders.  The oxide systems, LST 
(La0.8Sr0.2TiO3) and LSCM (La0.8Sr0.2Cr0.5Mn0.5O3) were selected in the study as the n-type and 
p-type materials, respectively.  The prepared oxides were mixed, pressed and sintered at various 
temperatures.  XRD and optical microscopy studies were performed on the prepared powders 
and SEM analysis was done on the sintered samples. 
 
Powder preparation:  Photomicrographs and X-ray diffraction patterns of the prepared LST and 
LSCM powders are shown from Figure 12 to Figure 15.  As seen in Figure 14 and Figure 15, 
both XRD patterns are similar, suggesting that both oxides are single phase.  The objective of the 
powder preparation was to find the optimum solution chemistry to fabricate the powders as small 
and soft as possible, thus allowing preparation of well-dispersed nano sized powders.  More than 
20 chemical solution combinations were tried to find the optimum solution chemistry for LST 
and LSCM.  As can be seen in Figure 12 and Figure 13, the large agglomerated particles with the 
size of about 20 – 100µm (as shown in Figure 12-a and Figure 13-a) became nano sized particles 
after ball-milling with zirconia balls for 48 hours (Figure 12-b and Figure 13-b).   
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Figure 14.  XRD of LST, LSCM and 50wt%LST – 50wt%LSCM mixture annealed at 600, 1000 and 
1200ºC, respectively.  
 

 
Figure 15.  XRD of 50wt%LST – 50wt%LSCM sintered at 1200, 1300 and 1400ºC 

 
SEM micrographs of LST/LSCM mixture:  After powder preparation, a mixture of n-type and p-
type oxides was prepared by mixing LST and LSCM powders 50% by weight.  Discs were 
pressed and sintered at 900ºC, 1000ºC, 1100ºC, 1200ºC, 1300ºC and 1400ºC in air to investigate 
a plausible sintering temperature at which there was minimum inter-diffusion between the two 
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As shown in the figure, LST and LSCM remained as separate particles if the sintering 
temperature was below 1000ºC.  The densification or inter-diffusion process commenced at 
temperatures above 1100ºC, though distinct LST and LSCM phases remained at temperatures up 
to 1200ºC.  Significant inter-diffusion between LST and LSCM was observed as the sintering 
temperature neared 1300ºC and continued up to 1400ºC.  The degree of inter-diffusion at each 
sintering temperature will be discussed below.  Grain growth and well-defined grains/grain 
boundaries were observed at 1200ºC and growth increased as the temperature increased to 
1400ºC.  The space between two phases (such as LST and LSCM) due to low sintering 
temperature at 900 and 1000ºC became large pores at 1100ºC.  The size of pores decreased to 2 
micron at 1200ºC and about 1 micron at 1300ºC as densification progressed.  The pores 
completely disappeared at 1400ºC. 
 
Electrical conductivity of LST/LSCM mixture:  The electrical conductivities of the corresponding 
samples were measured as a function of oxygen activity at 900ºC.  As shown in Figure 17, the 
electrical conductivity of LST/LSCM (50/50 by weight) exhibited p-type characteristics in the 
high oxygen activity regime (10-1 – 10-10 atm) and n-type behavior in the low oxygen activity 
regime below 10-10 atm.  The electrical conductivity of LSCM was p-type and didn’t exhibit any 
n-type behavior even at very low oxygen activity below 10-20 atm, as shown Figure 1.  Therefore, 
the n-type conductivity in the low oxygen activity area resulted from the LST phase.  In fact, the 
overall characteristics of the composite were dominated by the low electrical conductivity of the 
LST.   
 

 
Figure 17.  Conductivities of LST(0.8/0.2/1)/LSCM(0.8/0.2/0.5/0.5) sintered at 1000-1400ºC were 
measured as a function of oxygen activity at 900ºC 
 
It is important to notice that even though the electrical conductivity of LSCM in air was 25 S/cm 
at 800ºC, the conductivity of the LST/LSCM composite was between about 0.1 S/cm in the 
highest oxygen activity area and 0.25 S/cm in the lowest oxygen activity area.  Figure 18 shows 
the LST electrical conductivity measurement as a function of oxygen activity at 900ºC.  The LST 
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sample was sintered at 1200ºC in air.  As shown in the figure, at 900ºC the electrical 
conductivity of LST was only 5x10-4 S/cm at the highest oxygen activity and 0.9 S/cm at the 
lowest oxygen activity, indicating that LST was not a suitable cathode for the SOFEC 
applications, and leading to the consideration of other n-type oxides.  
 

 
Figure 18.  Electrical conductivity of LST(0.8/0.2/1) sintered at 1200ºC as a function of oxygen activity at 
900ºC 
 
Chemical Analysis of LST/LSCM using SEM-EDAX:  Chemical analyses of LST/LSCM were 
carried out using SEM-EDAX (Hitachi S4700 FE-SEM).  Even though SEM-EDAX did not 
provide precise information as to the material’s composition, it provided information regarding 
the compositional variation on the desired area of materials.  According to the conductivity data 
shown in Figure 17, LST/LSCM sintered at 1100 and 1200ºC were of interest because the 
mixture exhibited distinct p-type to n-type transition characteristics and had higher conductivities 
than those sintered at other temperatures.  The characteristics proved that the LST/LSCM 
performed as an n-type conductor in a low oxygen activity regime as well as a p-type conductor 
in a high oxygen activity regime.  Therefore, in addition to the results from the electrical 
conductivity and microstructural analysis, the results from the chemical analyses could be very 
helpful to determine the optimum sintering temperature of LST/LSCM for minimizing the inter-
diffusion process and maximizing the electrical conductivity.  Figure 19 shows that the chemical 
analysis of the LST/LSCM samples sintered at 1100ºC and 1200ºC.  The chemical analyses were 
performed at the light and dark-colored areas of the LST/LSCM sintered at 1100ºC, as shown in 
Figure 19 (a) and (b), because the grain boundary was not fully developed to distinguish grains 
and grain boundaries at this level of sintering temperature.  On the other hand, the grains and 
grain boundaries were fully developed at 1200ºC.  Therefore, as shown in Figure 19 (c) and (d), 
the chemical analysis was carried out on the grains and grain boundaries for the LST/LSCM 
sintered at 1200ºC. 
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As shown in the Figure 19 (a) and (b), the area with light-color was rich in LST while the area 
with dark color was rich in LSCM, suggesting that a diffusion process between LST and LSCM 
was limited or slow at 1100ºC.  As shown in Figure 19 (c) and (d), the LST/LSCM sintered at 
1200ºC had no significant composition variation between grain and grain boundary.  Therefore, 
the active diffusion process seemed to start around 1100 ~ 1200ºC.  The apparent density of 
LST/LSCM sintered at 1200ºC was also much higher than that sintered at 1100ºC.  Since the 
electrical conductivity of LST/LSM sintered at 1200ºC was higher than that of sintered at 
1100ºC, it could be possibly attributed to (1) a higher density when sintering at 1200ºC; (2) a 
relatively early stage of active inter-diffusion process at which n-type LST and p-type LSCM co-
existed without losing the original material properties completely.  The electrical conductivity of 
LST/LSCM sintered at the temperatures higher than 1200ºC was much lower than that of 
LST/LSCM sintered at 1200ºC, suggesting that once the inter-diffusion process was progressed, 
the overall conductivity was dominated by the LST which had a low electrical conductivity.  
Therefore, a sintering temperature higher than 1200ºC was not recommended.  
 
Task 1.5 Characterization of SDC- and GDC- based n-type perovskites 
 
In addition to LST, Gd- and Sm- doped ceria (GDC and SDC respecitvely) were also 
investigated as potential n-type candidates, and samples (both dense and porous) were made for 
electrical conductivity study as a function of temperature and oxygen activity.  The chemical and 
mechanical stabilities of the GDC and SDC were evaluated via the electrical conductivity 
measurements during reduction/oxidation processes from 500ºC and 800ºC.  
 
Electrical conductivity of Gd doped Ceria (GDC):  The electrical conductivity measurements of 
Gd-doped Ceria (Gd0.2Ce0.8O2) were carried out to investigate whether the GDC can be a 
candidate material for a redox stable cathode.  The GDC powder used in this experiment was 
prepared by Praxair (purity: 99.9%) using the combustion spray pyrolysis method.  GDC 
powders were pressed (10 kpsi) and sintered respectively at 1100ºC and 1400ºC for porous and 
dense pellets in air over 4 hours before the electrical conductivity measurement.  A four-probe 
method was used to measure the GDC electrical conductivity.  The prepared porous and dense 
GDC samples had ~ 75% and >90% of theoretical density, respectively.  Figure 20 shows the 
electrical conductivities of the porous and dense GDC pellets as a function of temperatures.  The 
conductivity of the dense GDC samples was higher than the porous one by a factor of two.  In a 
low temperature range (300 – 500ºC), the conduction activation energies of the porous and dense 
GDC’s were found ~ 0.86 eV and 0.74 eV, respectively, while in a high temperature range (600 
– 900ºC), both activation energies were about 0.68 eV.  The activation energy differences 
between the porous and dense samples were related to a grain boundary resistance increase in the 
lower temperature range, and impedance spectroscopy was used for the investigation. 
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Figure 20.  Conductivity of Gd0.2Ce0.8O2-δ discs sintered at 1100ºC and 1400ºC (~ 75 and >90% of 
theoretical density, respectively) measured as a function of temperature in air 
 

 
Figure 21.  Conductivity of a porous Gd0.2Ce0.8O2-δ pellet (sintered at 1100ºC, ~ 75% of theoretical 
density) as a function of oxygen activity at 800ºC 
 
The electrical conductivity of porous GDC discs was also measured as a function of oxygen 
activity at 800ºC.  As mentioned above, the porous ceramic samples were used because they 
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equilibrated to changes in temperature and oxygen activity much faster than that in the case of 
dense samples.  This was especially true at lower temperatures and in a reducing atmosphere.  As 
shown in Figure 21, the electrical conductivity was about 0.04 S/cm in air and did not change 
significantly until the oxygen activity reduced to 1x10-12 atm.  Beyond that point, the electrical 
conductivity began to increase, which was due to the reduction of the ceria and reached about 
0.35 S/cm at 1x10-20 atm.  
 
Impedance Spectroscopy of SDC:  Impedance spectroscopy was measured as a function of 
temperature and frequency (1 to 1x106 Hz).  SDC powder was purchased from DKKK Co., Ltd 
(Japan).  After pressing and sintering at 1400ºC, a typical thickness of a dense SDC disc was 
around 220 m with a density > 95% of the theoretical density.  Silver (Ag) paint was used as 
the electrode and current collector on both sides.  The results were plotted in Figure 22 (a) – (h) 
for the temperatures from 100ºC to 800ºC.  As shown in Figure 20 (a) – (e), the impedance 
spectra in the low temperature range from 100ºC to 400ºC exhibited distinct grain and grain 
boundary contributions to the electrical conductivity (first two semi-circles from the high 
frequency range).  However, when the temperature increased above 400ºC, the relative grain and 
grain boundary contributions to the electrical conductivity were no longer distinguishable.  
Above 500ºC, the total conductivity was determined at the intersection between impedance 
spectrum and x-axis at high frequency range.  The impedance spectrum associated with the low 
frequency range for temperatures between 200ºC – 500ºC and the only spectrum observed for 
temperatures higher than 600ºC were assumed to be resulted from the contact and interfacial 
resistance between the Ag electrode and SDC.   
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(c) at 250ºC      (d) at 300ºC 

   
(e) at 400ºC      (f) at 500ºC 

   
(g) at 600ºC      (h) at 800ºC 

Figure 22.  Impedance spectroscopy of SDC discs as a function of temperature with frequency range 
between 1 – 1e6 Hz (surface area of the electrode was 0.5 cm2) 
 
Activation Energy of SDC:  The SDC electrical conductivities were calculated using the 
impedance spectroscopy measurements as a function of temperature, and shown in Figure 23.  It 
was observed that the SDC conductivity was limited by the grain boundaries when the 
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shown in Figure 23.  When the temperature was below 400oC, the activation energy was about 
0.9 eV for the grain boundary and 0.8 eV for the grain of the SDC.  The activation energy for the 
total conduction was also about 0.9 eV which agreed well with the activation energy of the grain 
boundary below 400oC.  This again suggested that the total conductivity was limited by the grain 
boundary below 400oC.  However, above 400oC the activation energy for grain conduction was 
about 0.6 eV, and about 0.7 eV for the total conduction (includes grain and grain boundary), 
suggesting that for the operation temperature above 400oC, the total conductivity of SDC was 
limited by the conductivity of the grain.  When the activation energy of SDC was compared with 
that of the reference values of SDC (about 0.6 eV), the cells have higher activation energy by 0.1 
eV than that of the reference values.   
 

 
Figure 23.  Activation energy of SDC discs as a function of temperature. 

 
Redox stability of GDC and SDC:  The redox stability of porous GDC and SDC sintered at 
1100ºC and 1200ºC was tested in air and wet-forming gas (10%H2 bal. N2) at various 
temperatures.  Figure 24 and Figure 25 show the redox stability test results of GDC and SDC, 
respectively.  As shown in the figures, reversible redox characteristics were observed for both 
materials.  In another redox stability test (as shown in the Figure 25), the SDC sample was 
redox-cycled at 100oC intervals, starting from 500oC to 800oC.  Although the sample was 
subjected to several redox cycles at each temperature, it exhibited great redox stability.  From the 
studies above, doped-ceria (both SDC and GDC) exhibited good conductivity in 
reducing/oxidizing atmopsheres and good redox stability, and ceria was thus choosen for the 
reversible SOFEC/SOFC application.   
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Figure 24.  Redox stability of GDC tested in air and wet-forming gas (10%H2 bal. N2) at 800oC 
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Figure 25.  Redox stability of SDC tested in air and wet-forming gas (10%H2 bal. N2) between 500 and 
800oC 
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Task 1.6 Composite LSCM and SDC cathode development 
 
Doped-ceria (GDC & SDC) and LSCM have been separately investigated above as n-type and p-
type materials, and sufficient experimental results showed that their conductivity and chemical 
stability in reducing atmospheres ensured their use as the cathode.  Figure 26 shows the 
conductivity of the SDC and LSCM composite as a function of oxygen activity.  The ratio of 
LSCM/SDC and the optimum sintering temperature maintaining both SDC and LSCM phases 
separately without inter-diffusion were investigated.  Mixtures of LSCM 
(La0.75Sr0.25Cr0.5Mn0.5O3) and SDC (Sm0.2Ce0.8O2) were prepared with LSCM compositing 
varying from 10 wt% to 50wt%.  The mixtures were sintered in air at 1300ºC over 2 hours.  The 
chemical and structural analyses of the mixtures were carried out using XRD to verify if SDC 
and LSCM phases were separately synthesized.  As shown in Figure 27, the XRD results verified 
that no evidence of 2nd phases formation was detected for both mixtures.  According to the XRD 
peaks, the LSCM phase was not observed in 10wt% of LSCM – 90wt% of SDC mixture.  
However, the LSCM phase was clearly observed in 20wt% of LSCM – 80wt% of SDC sample.  
This implied that the n-type SDC and p-type LSCM phases were separately formed when LSCM 
was over 20 wt%.  Electrical conductivity measurements were carried out as a function of 
oxygen activity, and showed that the composite LSCM/SDC had the best performance 
characteristics.  
 

 
Figure 26.  Conductivity of a mixture of n-type Sm0.2Ce0.8O2 and p-type La0.75Sr0.25Cr0.5Mn0.5O3 as a 
function of oxygen activities at 800ºC 
 

-30 -25 -20 -15 -10 -5 0

Expected  Ceria

 (S/cm)

Log Po
2

 LSCM
 Ceria

Expected Conductivity
of Mixture of Ceria and LSCM

1~10

Expected  LSCM



MSRI DE-FG36-05GO15194_GT 

33 of 150 

 
Figure 27.  XRD pattern of a mixture of 50wt% of Sm0.2Ce0.8O2 and 50wt% of La0.75Sr0.25Cr0.5Mn0.5O3 
sintered at 1300ºC 
 
 
Task 2 Fabrication of Anode-Supported, Thin Film YSZ-based Solid Oxide 

Electrochemical Cell 
 
MSRI has been developing and optimizing anode-supported solid-oxide devices for many years, 
and has made significant strides in increasing longevity and performance, with the anode-
supported SOFCs developed by MSRI showing exceptionally high power density.  The tape-
casting method, extensively used in the ceramic industry, was used in this project to fabricate 
anode-supported SOFECs/SOFCs with large active areas and flat substrates.  The method uses a 
mixture of NiO and YSZ powders with binders and solvents, which is ball-milled to form a 
slurry.  The slurry is then cast over a precision casting surface, forming a tape with desired 
thickness.  The tape is then cut into the preferred shape by a laser machine after an air drying 
process, following a bisquing process, graded anode functional layers and electrolyte layer are 
applied by a spray-coating technique.  After co-sintering the multiple layers, cells have a cathode 
functional layer and a cathode current collecting layer deposited by screen-printing.  Figure 28 
shows MSRI’s testing vehicles varying from button-sized cells to square cells with per-cell 
active area of 400 cm2.  
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additives), fabrication process modifications (milling ratio, substrate bisquing and sintering 
profiles, etc.).    
 
NiO and YSZ ratio consideration:  A composition of 80% NiO and 20% YSZ by weight (80/20 
cell) was typically used to make the anode substrates as the standard cells.  In process, the 
powder mixture was milled to fine microstructures.  This resulted in a strong anode with a high 
level of mechanical toughness, the drawbacks to this composition being the reduction of NiO to 
Ni results in porosity of only about 33% (about 10% lower than desired) and with submicron 
pores size of very high tortuosity.  Both of these led to high anode polarization losses.  Much 
work was done so far on determining the ideal level of NiO and also finding a pore former that 
led to low anode polarization.  Figure 29 provided a calculation matrix for the NiO-YSZ system 
as a guideline to develop the anode substrate with desired porosity and composition.  Based on 
the percolation theory, at least 30% Ni by volume would be required to maintain a good 
electrical conductivity.  Consequently, a value of 67% NiO and 33% YSZ by volume (or 70/30 
by weight, or called as 70/30 cells) was selected to increase the YSZ level, meanwhile the 
substructure of YSZ was continuous, as indicated in Figure 29.  As was studied previously, 80/20 
did not provide this characteristic, because the anode strength and mechanical toughness of the 
80/20 cells was provided only by Ni metal (after reduction) with the YSZ precipitated 
throughout.  Upon reduction, such 80/20 cells only had 22% YSZ and trended to change their 
shapes and/cambers. Figure 30 and Figure 31 are SEM micrographs of the 80/20 cells and 70/30 
cells, respectively, exhibiting distinct microstructure characteristics between the two.  Both cells 
were fabricated by the tape-casting method.  Batches of 67/33 cells were provided to UAF for 
the thermo-mechanical property investigations.     
 

 

Figure 29.  Porosity and composite matrix for the NiO-YSZ system 
 

Porosity and Composition Calculations for the NiO-YSZ System

Pore Former weight % 3.5
After Reduction
No P.F. Volume % With P. F. Volume %

Densities: NiO YSZ NiO YSZ Ni YSZ Porosity Ni YSZ Porosity
YSZ 5.9 80 20 81.9% 18.1% 47.1% 20.0% 32.9% 33.3% 14.1% 52.6%
NiO 6.67 79 21 81.0% 19.0% 46.5% 21.0% 32.5% 32.9% 14.8% 52.3%
Ni 8.91 Original 80/20 Tape 78 22 80.0% 20.0% 45.9% 22.0% 32.1% 32.5% 15.6% 52.0%
Pore former 1.1 77 23 79.1% 20.9% 45.3% 23.0% 31.7% 32.1% 16.3% 51.7%

76 24 78.2% 21.8% 44.7% 24.0% 31.3% 31.6% 17.0% 51.4%
pf-pore.fitting 2 Fits measured Porosity 75 25 77.2% 22.8% 44.1% 25.0% 30.9% 31.2% 17.7% 51.1%

to pore former 74 26 76.3% 23.7% 43.5% 26.0% 30.5% 30.8% 18.4% 50.7%
Molecular Weights: 73 27 75.3% 24.7% 42.9% 27.0% 30.1% 30.4% 19.1% 50.4%
Ni 58.69 72 28 74.4% 25.6% 42.4% 28.0% 29.6% 30.0% 19.8% 50.1%
O 16 71 29 73.5% 26.5% 41.8% 29.0% 29.2% 29.6% 20.6% 49.8%
Zr 91.22 70 30 72.5% 27.5% 41.2% 30.0% 28.8% 29.2% 21.3% 49.5%

69 31 71.6% 28.4% 40.6% 31.0% 28.4% 28.8% 22.0% 49.2%
68 32 70.6% 29.4% 40.0% 32.0% 28.0% 28.4% 22.7% 48.9%

Compositon of P.F. # A 67 33 69.7% 30.3% 39.4% 33.0% 27.6% 28.0% 23.4% 48.6%
66 34 68.7% 31.3% 38.8% 34.0% 27.2% 27.6% 24.2% 48.3%
65 35 67.7% 32.3% 38.2% 35.0% 26.8% 27.2% 24.9% 48.0%
64 36 66.8% 33.2% 37.6% 36.0% 26.4% 26.8% 25.6% 47.6%
63 37 65.8% 34.2% 37.1% 37.0% 25.9% 26.4% 26.3% 47.3%

P.F. # B with Unitec Tape and Current Study 62.2 37.8 65.0% 35.0% 36.6% 37.8% 25.6% 26.0% 26.9% 47.1%

Volume % Weight %
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Table 1. Samples studied and characterized 

Sample dimensions Anode Electrolyte 

Button cells (1” diameter) 

Rectangular cells (4” x 4”)---
Batch I (600 µm thick) 

Rectangular cells (4” x 4”)---
Batch II (900 µm thick) 

NiO + 4 mol% Y2O3 stabilized 
ZrO2 (4YSZ) (70/30) 
NiO + 8 mol% Y2O3 stabilized 
ZrO2 (8YSZ) (70/30) 
NiO + 8 mol% Y2O3 stabilized 
ZrO2 (8YSZ) (70/30) 

4 mol% Y2O3 stabilized ZrO2 
(4YSZ) 
8 mol% Y2O3 stabilized ZrO2 
(8YSZ) 
8 mol% Y2O3 stabilized ZrO2 
(8YSZ) 

 
A number of the as-received samples from MSRI were cut into suitable sizes and exposed to 
elevated temperatures (800, 1000, 1250 and 1500ºC for 60 minutes) and the effect of temperature 
on the microstructure, hardness and the fracture toughness was evaluated.  Vickers micro 
hardness method was used to estimate the hardness and to calculate the fracture toughness from 
originated cracks.  The samples were carefully polished prior to the indentation experiments with 
diamond pastes without destroying the layers involved.  The electrolyte was polished with 6 and 
3 µm diamond pastes while the anode layer was polished using SiC (400 grade) paper prior to 
the diamond polishing.  The fracture toughness values (KIC) were calculated using the following 
formula suggested by Evans and Charles9, 
 

KIC = 0.16 Hv a
1/2(c/a)-3/2      (1) 

 where,   

KIC = Mode I critical stress intensity factor (MPa.m1/2) 

Hv = Vickers hardness (GPa) 

c = radius of the surface crack (median) (m) and  

a = half diagonal of the Vicker’s indent (m) 
 
More of the as-received NiO-8YSZ samples (Batch I & II) were cut into suitable sizes and 
reduced in a gas mixture of 5% H2 – 95% Ar at 800ºC.  The reduction reaction was carried out in 
an autoclave set-up, where the samples were kept at the above temperature for 1 h prior to the 
reduction so that they could attain thermal equilibrium before the reaction started.  Then the gas 
mixture was introduced in the chamber at a constant flow rate of 3.2 SLPM and the temperature-
chemical environment condition was maintained for selected time periods of 10 min, 30 min, 1 h, 
2 h and 8 h.  After that the samples were cooled down to room temperature without any changes 
in the reducing environment. 
 
The porosity and density values in the as-received and the reduced half-cell samples were 
estimated by Archimedes principle as given in ASTM Standard C20-00.  Since the electrolyte 
layer was very thin in comparison to the anode, these values were near approximation of the true 
values of porosity/density in the anode.  The fraction of NiO reduced in the samples was 
determined by thermogravimetric analysis (TGA) carried out in air with Perkin-Elmer model 
DT-40, Shimadzu Co., Japan.  The crystal structure of the as-received and the reduced samples 

                                                 
9 Evans, A. G. and Charles, E. A., Fracture toughness determination by indentation. J. Am. Ceram. Soc., 1976, 59, 
371-372 
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were analyzed using X-ray diffraction (XRD), using a Rigaku diffractometer and 0.15418 nm Cu 
K radiation.  The microstructures were also studied using a JEOL JSM-7000 scanning electron 
microscope (SEM), an accelerating voltage of 10 kV was used to resolve the images of the Ni-
YSZ cermet structure. Hardness of the samples was measured by Vickers indentation method on 
the anode surface with a load of 500 gm for 15s.  Thermal expansion behavior of the as-received 
NiO-8YSZ samples was evaluated in air up to 1000ºC with a NETZSCH DIL 402 PC 
dilatometer at a heating/cooling rate of 3 K/min.  The correction runs for the sample support and 
the push rods were done prior to the actual experiment with a standard sapphire sample.  Elastic 
properties (Young’s and shear moduli) of the as-received, partially and fully reduced samples at 
elevated temperatures were determined by the impulse excitation technique using the Buzz-o-
sonic software (BuzzMac, Glendale, WI) by measuring the fundamental vibration frequencies 
and a custom made experimental design, as shown in Figure 38.  A cylindrical alumina base was 
used as a stage on which the test specimen (50 x 15 x 0.6/0.9mm) was suspended on a thin wire 
support.  An impulse tool was used to give mechanical impulse at the bottom of the rectangular 
bar and the vibration frequencies were transferred to a microphone through a sound guide.  
Delivery of the mechanical impulse in a definite time interval (1 min) and the data acquisition 
was managed by the software and the entire experimental design was housed inside a furnace 
and the temperature was controlled by a programmable controller. 
 

 
Figure 38.  Schematic diagram of the experimental design used for evaluating Young’s modulus as a 
function of temperature 
 
Flexural and equibiaxial strength of the as-received, partially and fully reduced NiO-8YSZ half-
cell samples (Batch I & II) was determined at ambient and elevated temperatures.  A four point 
fixture was used to determine the flexural strength of the samples.  A concentric ring-on-ring 
configuration was fabricated using alumina and used to determine in-plane biaxial strength 
according to ASTM C1499-05.  In this configuration, test specimens with diameter (D) of ≈ 26 
mm were spaced concentrically between a loading ring with a diameter (DL) of 5.5 mm and a 
supporting ring with a diameter (DS) of 20 mm.  The load was applied to the samples at a 
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constant cross-head displacement rate of 1.2 mm/min and equibiaxial strength was calculated 
using the following equation: 
 












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L

SLS
f

D

D

D
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2
)1(

2
.3

2

22

2 


                                         (2) 

 
where, F, h and ν are failure load (N), sample thickness (mm) and Poisson’s ratio, respectively.  
For a rectangular test specimen, the value of D for calculations with Eq. 2 is: 
 

    D = 0.54 (l1 + l2)                                                             (3) 
 
where, l1 and l2 are the lengths of the edges. The edge lengths should be within 0.98  l1/ l2 
1.02.  Since the test specimen thickness was unchangable, the values for DS and DL were chosen 
according to the following condition: 
 

122 



h

DD S                                                              (4) 

 
The load was applied from direction of electrolyte and the anode was kept in the tensile side. 
Graphite sheets were used as compliant layers and the whole specimen arrangement is shown 
schematically in Figure 39.  At least six specimens were tested and average of the strength values 
was reported.  The post fracture microstructure analysis was carried out using SEM to study the 
fracture originating flaws.    
 

 
Figure 39. A schematic of the specimen and loading configuration in the ring-on-ring test 

 
The failure probability (P) of as-received samples at room temperature and fully reduced samples 
(8h reduced) at 800ºC in H2 atmosphere were estimated and the resulting data was fitted to the 
two-parameter Weibull equation to determine the Weibull parameter (m) and characteristic 
strength (σo).  The fractured surfaces were examined with SEM. 
 
The as-received NiO-8YSZ (batch II) samples were cut into suitable sizes for the thermal cycling 
studies in a high temperature thermal cycling set-up of Carbolite Inc.  The thermal cycling tests 
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It is essential to know the mechanical properties and microstructure of the electrolyte in order to 
understand the mechanical properties of the bi-layer structure.  Since, the thickness of the 
electrolyte layer was less ( 10 µm), it was polished with great care.  Figure 42 shows the optical 
micrographs of the electrolyte surfaces of as-received and heat treated NiO-8YSZ samples 
(Batch I).  It was observed that the polishing has removed the electrolyte layer in some places 
and has exposed the porous anode layer.  Particularly, in Figure 42 e & f, the anode layers were 
visible.  The heat treatment or the exposure to the high temperature facilitated the grain growth 
in the YSZ electrolyte as can be seen in Figure 42 e.  The grain growth was largely uniform as 
shown in the grain size distribution in Figure 43 which plots the grain size distribution in 8YSZ 
electrolytes (Batch I) after heat treating at 1500ºC.  The average grain size was about 10 µm.  It 
was interesting to note that the grain growth in the anode at 1500ºC was comparatively less than 
in the electrolyte.  This could be due to the presence of Ni in the anode or the porosity or both. 
Figure 42 f shows a pore in the electrolyte through which the anode was visible.  The grains in 
the anode were comparatively smaller than the electrolyte.  It can be observed in Figure 42 e that 
the grain boundaries of YSZ were widened or cleaved.  It may be due to the tensile forces acting 
on the YSZ grains as the shrinkage of the anode was comparatively higher.  This differential 
shrinkage exerted a tensile force on the YSZ grains and formed the grain boundary cleavages.  It 
also caused delamination of the layers when the SOFC was exposed to high temperatures or 
generate new flaws which would reduce the mechanical reliability of the cells. 
 

 
Figure 43.  Grain size distribution in 8YSZ electrolytes (Batch I) after heat treating at 1500ºC. The 
average grain size was ~10 µm. 
 
The processes of the hydrogen oxidation reaction in Ni-YSZ cermet electrodes have been 
investigated by many researchers and the results revealed that the reaction was indeed limited by 
the length of the TPB region12,13.  The possible electrochemical process in the hydrogen/water 
                                                 
12 Jiang, S. P. and Badwal, S. P. S., Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal 
zirconia electrolyte. J. Electrochem. Soc., 1997, 144, 3777-3784 
13 Kim, S. J., Lee, W., Lee, W. J., Park, S. D. and Song, J. S., Preparation of nanocrystalline nickel oxide-yttria-
stabilized zirconia composite powder by solution combustion with ignition of glycine fuel. J. Mater. Res., 2001, 16, 
3621-3627 
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The as-received anode was relatively dense and the pores were not interconnected.  The exposure 
to the reducing conditions for 10 min or 30 min formed a layer of Ni on the NiO particles. The 
formation of Ni layers was distinguishably visible in the back scattered SEM images in Figure 
52.  Further exposure to the reducing conditions has reduced the volume of the NiO 
considerably, leading to the development of the desired microstructure with interconnected pores 
and Ni particles.  
 
Task 3.2.3 Evaluation of porosity and crystalline phase in the as-received and reduced half-

cell samples 
 
Bulk density and apparent porosity values in the as-received and the reduced half-cell samples 
were estimated using Archimedes principle as given in ASTM standard C20-00. The samples 
were cut into small pieces and their dry weights were measured.  Then the sample pieces were 
boiled in distilled water for 2 h and kept immersed in water for 12 h to cool to room temperature 
before weighing.  The suspended weights of the samples were measured.  The samples were then 
taken out and all drops of water from the surfaces were cleaned with a moistened smooth linen or 
wet cloth.  Then the water saturated weights of the samples were measured.  Density and 
porosity values of the samples were calculated from the different weights of the samples.  The 
results obtained in the as-received NiO-YSZ samples are given in Table 2.  Since the electrolyte 
layer was very thin comparing to the anode, these values were near approximation of the true 
values of porosity/density in the anode. 
 

Table 2.  Bulk density and apparent porosity of the as-received half-cell samples 

Samples Apparent 
porosity, P 

(%) 

Density, B 
(g/cc) 

Average P 
(%) 

Average B 
(g/cc) 

NiO-4YSZ 
button cells 
 
 
NiO-8YSZ 
(Batch I, 
600 µm 
thick) 

 
NiO-4YSZ 
(electrolyte 

portion 
removed) 

36.7866 
35.4974 
36.1573 

 
11.8753 
11.6563 
12.4701 

 
 

39.0547 
38.0802 
39.1220 

3.9986 
4.0161 
3.9891 

 
5.4706 
5.4755 
5.4543 

 
 

3.7985 
3.9821 
3.9980 

 
36.1471 

 
 

12.0006 
 
 
 

 
38.7523 

 
4.0013 

 
 
 

5.4668 
 
 

 
3.9262 

 
 

 
The NiO-4YSZ cells had a porosity of 36.15 % with a bulk density of 4.0 g/cc, while the NiO-
8YSZ (Batch I) cells had a lower value of average porosity of 12.0 % and an enhanced density of 
5.47 g/cc.  The major contribution to the porosity of the samples was from the thick layer of the 
anode.  In order to have an idea of the porosity in the anode portions only, the porosity of the 
anode was measured exclusively.  These samples were made by simply removing the electrolyte 
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portion of the cells by polishing in a BUELER grinder using 240 grade SiC paper for 1 min. at 
150 rpm.  The average porosity and density measured in the NiO-4YSZ anode were found to be 
38.75 % and 3.93 g/cc, respectively.   
 

 
Figure 53.  X-ray diffractograms of (a) electrolyte and (b) anode of a NiO-4YSZ button cell. “*” denotes 
NiO peaks. 
 
X-ray diffraction studies of both the anode and electrolyte surfaces of the as-received NiO-4YSZ 
and NiO-8YSZ cells were performed in order to study their crystalline structure.  Figure 53 
shows typical X-ray diffractograms in (a) electrolyte and (b) anode surfaces of the as-received 
NiO-4YSZ cells.  The electrolyte, composed of 4YSZ, showed well resolved strong peaks 
(Figure 53a) of ZrO2 in the O15

4h: P42/nmc tetragonal (t) phase with lattice parameters a = 0.3655 
nm and c = 0.5195 nm and a lattice volume Vo = 0.0694 nm3.  In contrast, the anode which 
consisted of heavily doped NiO in 4YSZ (70/30) showed strong reflection peaks (Figure 53b) 
from cubic NiO (a = 0.4185 nm and Vo = 0.0733 nm3) and relatively weaker peaks from t-ZrO2 
planes with a = 0.3620 nm, c = 0.5212 nm and Vo = 0.0683 nm3.  Nevertheless, t-ZrO2 in both 
electrolyte and anode, showed the most intense peak from the (101) reflections, with the second 
and third most intense peaks in the (112) and (103) reflections, respectively.   
 

 
Figure 54.  X-ray diffractograms of (a) electrolyte and (b) anode of a NiO-8YSZ cell (Batch I, 600 µm 
thick). “**” and “*” denoted t-ZrO2 and NiO peaks respectively.  
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Similarly, Figure 54 shows the X-ray diffractograms in the (a) electrolyte and (b) anode surfaces 
of the as-received NiO-8YSZ cells (Batch I).  The electrolyte showed strong peaks of ZrO2 in the 
O5

h : Fm3m cubic (c) fluorite phase with a small peak from (102) planes of t-ZrO2, confirming 
the presence of a minute amount of t-ZrO2.  However, according to the phase diagram, 8YSZ is 
in the cubic phase.  The c-ZrO2 involved a value Vo = 0.1378 nm3 with a = 0.5165 nm and the 
tetragonal peak revealed a Vo value of 0.0674 nm3 with a = 0.3615 nm and c = 0.5160 nm.  The 
XRD pattern of the anode showed strong peaks of NiO with a =  0.4183 nm (Vo = 0.0732 nm3) 
and relatively weaker peaks from c-ZrO2 with a = 0.5140 nm and Vo = 0.1358 nm3.  No peak 
from t-ZrO2 was observed in the anode.  
 
As shown in Figure 55, the relative porosity values in the batch I samples (600 µm thick) after 
reduction increased (with an obvious decreased in density) with the reduction time, i.e., with the 
fraction of reduced NiO.  The porosity increased from 12% (density,  = 5.47 g/cc) in the as-
received samples to 36.68% ( = 4.69 g/cc) for the 8 h reduced samples.  This type of behavior 
was expected, since, the specific volume of metallic Ni was significantly smaller than that of 
NiO.  Earlier studies of the NiO reduction with shrinking core models [27] have shown good 
correlation with experimental results which suggested that YSZ had little effect on the reduction 
process at that temperature and the change in mass was assumed to be only from the reduction of 
NiO to Ni14.  
 

 
Figure 55.  Measured values of (a) porosity and (b) density in the reduced NiO-8YSZ (Batch I) half-cell 
samples as a function of reduction time 
 

                                                 
14 Radovic, M. and Lara-Curzio, E., Mechanical properties of tape cast nickel-based anode materials for solid oxide 
fuel cells before and after reduction in hydrogen. Acta Mater., 2004, 52, 5747-5756. 
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The high temperature sintering (generally, 1100ºC to 1500ºC) of the green anode precursor 
structure after its deposition resulted in the essential densification and neck formation between 
the particles in the anode, which is necessary for the formation of percolation paths.  The NiO 
phase which contracted  25 vol% after the reduction to Ni, didn’t wet YSZ very well with a 
wetting angle of  12015.  Moreover, Ni had high surface mobility at higher temperature with a 
strong propensity to agglomerate16.  As a result, the performance and durability of the anode 
highly depended on the sintering of a well-packed green structure to obtain a rigid YSZ network 
capable of restricting the Ni phase from agglomeration.  It was observed that the fracture strength 
of electrolyte-supported cells decreased with the increased sintering temperature of the deposited 
NiO-YSZ anode precursor due to the formation of channel cracks in the electrode layers, 
originating in a mismatch in the thermal expansion coefficient between the layers. 
 

 
Figure 56.  TG thermograms, showing the oxidation of Ni in the NiO-8YSZ (Batch I) samples reduced for 
(b) 10 min, (c) 30 min, (d) 2 h and (e) 8 h when subjected to a temperature profile (a) in air. 
 
Since the half-cells had an electrolyte layer, it was difficult to estimate the remaining mass of 
NiO in the partially reduced anodes from the weight of the test samples.  Hence, a TGA study, as 
shown in Figure 56, was carried out in air in order to determine the fraction of reduced NiO in 
the half-cell samples reduced for various time periods.  From the weight gain due to the 
oxidation of the reduced Ni in the samples, the initial fractions of reduced NiO (%) in the 
samples were calculated as shown in Figure 57.  It appeared that the first few hours in reducing 
the NiO in the anode were decisive as 2 h of exposure to the reducing conditions (800ºC in 5% 
H2 environment) was enough to reduce ~ 80% of NiO.  Further exposure to the reducing 
conditions could only cause a very marginal increase in the reduced amount of NiO.  The amount 
of reduced NiO after 8 h of exposure to the reducing conditions was ~ 81.3%. 
 

                                                 
15 Nikolopoulos, P. and Sotiropoulou, D., Wettability between zirconia ceramics and the liquid metals copper, 
nickel, and cobalt. J. Mater. Sci. Lett., 1996, 6, 1429-30 
16 Murphy, M. M., Van herle, J., McEvoy, A. J. and Thampi, K. R., Electroless deposition of electrodes in solid-
oxide fuel cells. J. Electrochem. Soc., 1994, 141, L94-L96 
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Figure 57.  The fraction of reduced NiO (%) in the NiO-8YSZ (Batch I) samples as a function of 
reduction time.  The inset figure showed the x-ray diffractograms in the anode surface of the as-received 
and the reduced samples. 
 
The inset figure compared the x-ray diffractograms in the anode surface of the as-received NiO-
8YSZ (Batch I) half-cells with that of the samples reduced for 10 min, 30 min, 2 h and 8 h, 
respectively.  The as-received sample showed strong peaks of NiO with lattice parameter, a = 
0.4183 nm (lattice volume, Vo = 0.0732 nm3) and relatively weaker peaks of cubic-ZrO2 with a = 
0.5140 nm and Vo = 0.1358 nm3.  Upon reduction, the NiO transformed to cubic Ni with a = 
0.3516 nm (Vo = 0.0435 nm3).  The NiO peaks gradually diminished with the increase in 
reduction time with a modified value of a = 0.4170 nm (Vo = 0.0725 nm3) in the samples 
reduced for 10 or 30 minutes, however, the lattice parameter of Ni remained more or less 
unchanged with reduction time.  Although, as par TGA measurements a part of NiO remained 
unreduced in the samples even after reduction for 8 h, no NiO peaks were observed in their x-ray 
diffractograms.  Furthermore, a very slow scan XRD studies (0.01 step size, 2 s dwell time) 
after pulverizing the half-cells have been done in order to trace any residual NiO peak, as shown 
in Figure 58.  As expected, the relative intensity of the YSZ peaks increased due to contributions 
from the electrolyte part; however, there was no trace of NiO in the samples reduced for  2 h or 
any Ni in the as-received samples.  
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Figure 58.  X-ray diffractograms of pulverized half-cell samples of (a) as-received NiO-8YSZ (Batch I) 
and after reducing at 800 0C in 5% H2 – 95% Ar atmosphere for (b) 10 min, (c) 30 min, (d) 2 h and (e) 8 
h. 
 
Similarly, the porosity/density and crystal structure of the reduced NiO-8YSZ (Batch II) samples 
have been analyzed.  As observed in Batch I samples, the relative porosity value in the reduced 
samples increased (with decrease in density) with the reduction time, i.e., with the fraction of 
reduced NiO, as shown in Figure 59.  The porosity increased from 11.76% ( = 5.24 g/cc) in the 
as-received samples to 39.66% ( = 4.50 g/cc) after 8 h reduction.  
 

 
Figure 59.  Measured values of (a) porosity and (b) density in the reduced NiO-8YSZ (Batch II) half-cell 
samples as a function of reduction time 
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Figure 60a shows the total weight loss in the half-cell samples as a result of the reduction.  As 
discussed earlier, due to the presence of the electrolyte layer in the half-cells, it was difficult to 
estimate the remaining mass (%) of NiO in the partially reduced anodes from the weight loss of 
the test samples.  However, the weight loss was solely attributed to the reduction of NiO to Ni 
since YSZ had little effect on the reduction process at that temperature.  Similar to the Batch I 
samples, the reduced amount of NiO (%) was estimated using TGA analysis and plotted in 
Figure 60b.  

 
Figure 60.  (a) Weight loss (%) and (b) reduced NiO (%) observed in the reduced NiO-8YSZ (Batch II, 
900 µm thick) half-cell samples as a function of reduction time.  
 

 
Figure 61.  X-ray diffractograms of the anode surface of (a) as-received (900 µm thick, batch II) half-cells 
and the samples reduced for (b) 10 min, (c) 30 min, (d) 1 h, (e) 2 h, (f) 8 h and the samples (g) boiled in 
water for 2 h after reducing for 8 h. 
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As observed in the Batch I samples, the first few hours in reducing the NiO in the anode were 
decisive as 2 h of exposure to the reducing condition (800ºC in 5% H2 environment) was enough 
to generate ~ 10.70% mass loss (79.29% reduced NiO).  Further exposure to the reducing 
conditions only introduced a very marginal increase in the reduced amount of NiO.  The amount 
of mass loss after 8 h of exposure to the reducing conditions was ~14.68% (82.24% reduced 
NiO).  Figure 61 compared the x-ray diffractograms of the anode surface of the as-received half-
cells with samples reduced for 10 min, 30 min, 1 h, 2 h and 8 h, respectively.  The measured 
values of lattice parameter, a and lattice volume, Vo in the as-received and reduced samples were 
given in Table 3 below.   
 
Table 3  Lattice parameters and lattice volumes observed in as-received and reduced NiO-8YSZ (Batch 
II) samples. 

Samples NiO Ni YSZ 
a (nm) Vo (nm3) a (nm) Vo (nm3) a (nm) Vo(nm3)

As-received 
10 min reduced 
30 min reduced 

1 h reduced 
2 h reduced 
8 h reduced 

8 h reduced and 
boiled for 2 h 

0.4170 
0.4165 
0.4162 

- 
- 
- 
 
- 

0.0725 
0.0723 
0.0721 

- 
- 
- 
 
- 

- 
0.3516 
0.3515 
0.3517 
0.3518 
0.3515 

 
0.3515 

- 
0.0435 
0.0434 
0.0435 
0.0435 
0.0434 

 
0.0434 

0.5126 
0.5123 
0.5123 
0.5126 
0.5128 
0.5122 

 
0.5122 

0.1347 
0.1345 
0.1345 
0.1347 
0.1348 
0.1344 

 
0.1344 

 

 

Figure 62.  XRD patterns of pulverized (a) as-received and (b) 8 h reduced NiO-8YSZ (900 m thick, 
Batch II) half-cell samples. 
 
The as-received NiO-8YSZ (900 µm thick batch II) samples showed strong peaks of NiO with a 
= 0.4170 nm (Vo = 0.0725 nm3) and relatively weaker peaks of cubic-ZrO2 with a = 0.5126 nm 
and Vo = 0.1347 nm3.  upon reduction, the NiO transformed to cubic Ni with a = 0.3516 nm (Vo 
= 0.0435 nm3).  The NiO peaks gradually diminished with the increase in reduction time with a 
modified value of a = 0.4162 nm (Vo = 0.0721 nm3) in the samples reduced for 30 minutes, 
however, the lattice parameter of Ni remained more or less unchanged with reduction time. No 
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peaks of NiO were observed in the samples reduced for  1 h.  In order to study the crystalline 
stability, the 8 h reduced samples were boiled in water for 2 h.  XRD pattern of the boiled 
samples, as shown in Figure 61g, was identical with that of the un-boiled 8 h reduced samples.  
Furthermore, a very slow scan (0.01 step size, 2s dwell time) XRD study, as shown in Figure 62, 
after pulverizing the half-cells, left no trace of NiO in the samples reduced for 8 h or any Ni in 
the as-received samples.  
 
Task 3.2.4 Mechanical properties of as-received, heat treated and reduced NiO-YSZ half-cell 

samples 
 
Task 3.2.4.1 Evaluation of hardness and elastic moduli in as-received, heat treated and reduced 

NiO-YSZ samples at room temperature 
 
Hardness of as-received, heat treated and the reduced NiO-YSZ half-cells was estimated using 
Vickers indenter.  Since the samples had high interconnected porosity, the preparation of 
samples for an indentation test was critical.  Heat treatment was done prior to grinding and 
polishing of the heat treated samples.  
 

 
Figure 63.  Hardness values measured in the anode surface of the heat treated NiO-4YSZ samples. 

 
Figure 63 shows the effect of heat treatment on the hardness of the anode of the NiO-4YSZ cells.  
A reduction in the hardness values was observed with increasing indentation loads for all the 
three samples.  The reduction in the hardness values was attributed to the underlying porosity of 
the anode.  The high scattering in the hardness values at lower loads was also due to the high 
porosity of the anode.  It was not possible to get a reasonable fracture toughness value from the 
indentation method due to the high porosity levels of the anodes.  
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Figure 64.  The effect of heat treatment on the hardness of the NiO-8YSZ anode. 

 

 
Figure 65.  The effect of heat treatment on the hardness of the electrolyte. 

 
Figure 64 shows the hardness values measured from the anode surface of the heat-treated NiO-
8YSZ (Batch I) samples.  Similar to the NiO-4YSZ samples, the hardness values decreased with 
increasing indentation load.  In general, for all the heat-treated anodes, the hardness decreased 
with an increasing indentation load.  The porosity of the anode contributed more to this 
phenomenon.  A closer observation of Figure 64 revealed that the hardness of the anodes which 
were heat treated at 800-1250ºC was inferior in comparison to as-received anodes.  It was 
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attributed to the possible changes in the residual stresses in the half-cells caused by the heat 
treatment.  Figure 65 shows the effect of heat treatment on the hardness of the 8YSZ electrolytes 
(600 µm thick, batch I samples).  The electrolyte heat treated at 1500ºC exhibited a consistent 
value of hardness at higher loads.  This confirms the densification of anode was at 1500ºC.  The 
hardness values for the loads less than 50 gm were significantly higher.  This may be due to 
some artifact rather than the material property.  
 
Fracture toughness of the NiO-8YSZ (600 µm thick) anodes heat treated at various temperatures 
is plotted in Figure 66.  The fracture toughness value was above 1.8 MPa.m1/2 for all the anodes.  
The sharp increase in the KIC for the 1500ºC heat treated sample was due to the densification or 
crack deflection caused by the weak grain boundaries resulted by the differential shrinkage.  
 

 
Figure 66.  The effect of heat treatment on the fracture toughness of the NiO-8YSZ anodes. 

 
Figure 67 shows the Vickers hardness values of as-received and the reduced NiO-8YSZ (600 µm 
thick) anode samples at room temperature plotted as a function of porosity.  The as-received 
precursor sample which had a high density (5.47 g/cc) and low porosity (12%) showed a 
hardness value of 5.5 GPa.  After reduction, the hardness value reduced to less than 1 GPa in the 
8 h reduced samples with an increased porosity of 37%.  The increase in porosity as a result of 
the reduction severely affected the hardness of the anode.  It was interesting to note that the 
scattering in the hardness values also decreased with increasing porosity.  Even though they were 
highly porous, the 2 h or 8 h reduced anode samples had negligible scattering in their hardness 
values in comparison to the as-received samples.  This type of behavior was attributed to the 
higher metal content present in the highly reduced porous anodes. 
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Figure 67.  Hardness values plotted as a function of porosity in the as-received and the reduced NiO-
8YSZ (600 µm thick, batch I) samples.    
 
Similarly, Figure 68 shows the room temperature Vickers hardness values of as-received and the 
reduced NiO-8YSZ (900 µm thick, batch II) anode samples plotted as a function of porosity.  
The as-received precursor sample which had a low porosity (11.76%) showed a hardness value 
of 3.13 GPa.  After reduction, the hardness value has reduced to 0.40 GPa in the 8 h reduced 
samples having as high as 39.66% porosity.  
 

 
Figure 68.  Hardness values plotted as a function of porosity in the as-received and the reduced NiO-
8YSZ (900 m thick, batch II) anode samples. 
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Figure 69.  Room temperature Young’s and shear moduli values plotted as a function of porosity in the 
as-received and the reduced NiO-8YSZ (Batch I) anode samples. 
 
In Figure 69, the Young’s (E) and shear (G) moduli of as-received and the reduced NiO-8YSZ 
(Batch I) anodes, characterized with the impulse excitation technique at room temperature, are 
plotted as a function of volume fraction of porosity in the samples.  The measured values of 
Young’s and shear moduli in the as-received samples were found to be 119.2 and 48.8 GPa, 
respectively.  The elastic moduli values diminished significantly with the increase in the volume 
fraction of porosity.  The observed decrease in elastic moduli was evidently a result of changes 
in the composition of the anode and/or increase in porosity.  Since the elastic moduli of fully 
dense Ni (E = 200 GPa and G = 77 GPa)17, NiO (E = 220 GPa and G = 84 GPa) and 8YSZ (E = 
220 GPa and G = 83.3 GPa)18 were comparable to each other, the changes in the chemical 
composition of the anode after reduction was expected to have trivial effects on the magnitude of 
the effective elastic moduli of the anode material.  Therefore, the observed decrease of  38% in 
the Young’s modulus ( 33% in shear modulus) after 8 h of reduction of the anode samples was 
predominantly due to the significant increase in porosity in the samples.  
 
The room temperature Young’s and shear moduli of as-received and the reduced NiO-8YSZ 
(Batch II) anodes are plotted as a function of volume fraction of porosity in Figure 70.  The 
measured values of Young’s and shear moduli in the un-reduced NiO-8YSZ samples were found 
to be 107.1 and 74.2 GPa, respectively.  Similar to the Batch I samples, the elastic moduli values 
decreased significantly with the increase in the volume fraction of porosity.  As explained before, 
the observed decrease of 52% in the Young’s modulus (54% in shear modulus) after 8 h of 

                                                 
17 Liu, C., Lebrun, J. L. and Huntz, A. M., Origin and development of residual stresses in Ni-NiO system : In-situ 
studies at high temperature by x-ray diffraction. Mater. Sci. Eng. A, 1993, 160, 113-126 
18 Selcuk, A. and Atkinson, A., Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J. Eur. 
Ceram. Soc., 1997, 17, 1523-1532 
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reduction of the anode samples was predominantly due to the significant increase in porosity in 
the samples.  
 

 
Figure 70.  Room temperature (a) Young’s and (b) shear moduli values plotted as a function of porosity in 
the as-received and the reduced NiO-8YSZ (Batch II) anode samples.    
 
Selcuk and Atkinson18 reported a similar type of porosity dependence of elastic moduli at room 
temperature in 75 mol% NiO-YSZ anode samples with as much as 14% initial porosity.  They 
found that the Young’s modulus of fully dense NiO-YSZ (E = 205-218 GPa) decreased 
significantly with the increase in the volume fraction of porosity.  Analogous results were also 
obtained by Radovic and Lara-Curzio19 in 75 mol. % NiO-YSZ samples (23% porosity) with a 
lower value of E and G in the range of 93.6-103.3 GPa and 36.2-40.3 GPa, respectively.  Based 
on their proposed empirical model, they predicted that the difference in the elastic moduli 
between hypothetical fully dense NiO-YSZ and Ni-YSZ was ~ 4%.  Therefore, the observed 
large decrease in elastic moduli was primarily due to the significant increase in porosity with the 
reduction of NiO.  
 
From the comparison of hardness and elastic properties in the two sets of NiO-8YSZ samples, it 
could be stated that, with microstructure and porosity approximately the same, a 50% increase in 
the anode layer thickness would significantly reduce the hardness and Young’s modulus of the 
samples.  However, the shear moduli values remained approximately the same in the fully 
reduced samples irrespective of their thickness.  The changes in hardness and elastic moduli after 
reduction in this type of Ni-based anode materials resulted in a re-distribution in the residual 
stresses in the SOFC component layers.  A detail analysis of the effects in correlation with 
microstructure was necessary in order to predict the conditions for optimal performance and 
reliability of the SOFCs. 
 
Task 3.2.4.2 Evaluation of thermal expansion coefficient and Young’s modulus of as-received 

and the reduced NiO-8YSZ samples at elevated temperatures 
 

                                                 
19 Radovic, M. and Lara-Curzio, E., Elastic properties of nickel-based anodes for solid oxide fuel cells as a function 
of the fraction of reduced NiO. J. Am. Ceram. Soc., 2004, 87, 2242-2246. 
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Figure 71.  The variation of the total expansion coefficients of as-received NiO-8YSZ (600 µm thick, 
batch I) samples on heating (a) and cooling (b) in air at 3 K/min.  The insert showed the change in thermal 
expansion behavior at the vicinity of the temperature at which structural/magnetic transition of NiO 
occurs during heating and cooling. 
 

 
Figure 72.  The thermal expansion coefficient values of as-received NiO-8YSZ (900 µm thick, batch II) 
samples on (a) heating and (b) cooling in air at 3 K/min. 
 
In addition to porosity, the high operating temperature significantly influenced the elastic moduli 
of the Ni-8YSZ anodes.  At elevated temperatures, the onset of oxidation in the Ni-8YSZ 
cermets changed the elastic moduli considerably.  Although there were few reports in the 
published literature on the effects of porosity on elastic properties of the anodes, no information 
was available on the elastic properties of NiO-8YSZ anodes as a function of temperature.  Along 
with the other material properties such as density, the TEC of the anode played an essential role 
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in determining the elastic moduli as a function of temperature.  Here, we reported the thermal 
expansion behavior and temperature dependent elastic properties of as-received and the reduced 
NiO-8YSZ anodes evaluated in ambient air environment.  Figure 71 shows the measured TEC in 
the as-received NiO-8YSZ (600 µm thick, Batch I) samples.  A TEC value of 14.4 x 10-6 K-1 was 
determined at 1000ºC in air for the samples.  This value was used to calculate the Young’s 
modulus at elevated temperatures. 
 
Figure 72 shows the measured TEC in the as-received NiO-8YSZ (900 µm thick, batch II) 
samples.  The expansion behavior during heating was monotonic in nature and reaches a value of 
~14.4 x 10-6 K-1 at 295ºC and remains nearly constant up to 1000ºC.  However, during cooling, 
the TEC slightly increased and reached a value of 15.1 x 10-6 K-1 at 265ºC.  This increment in the 
TEC value around 250ºC was also observed in the Batch I samples, as shown in Figure 71.  This 
small hump in the TEC curve was related to the structural transition of NiO from distorted face-
centered rhombohedral to cubic rock salt structure near its Neel temperature of 250ºC20,21.  
Below that temperature, it started decreasing and attained a value of 13.6 x 10-6 K-1 at 100ºC.   
 

 
Figure 73.  Young’s moduli values plotted as a function of temperature in the as-received and the reduced 
NiO-8YSZ (600 µm thick, batch I) anode samples 
 
Figure 73 shows the Young’s moduli values of as-received and the reduced NiO-8YSZ anode 
samples (600 µm thick, batch I) as a function of temperature in air.  The temperature dependence 
of Young’s modulus in air could be discussed based on the composition of the half cells.  The 

                                                 
20 Samuel Smart, J. and Greenwald, S., Crystal structure transitions in antiferromagnetic compounds at the Currie 
temperature. Phys. Rev., 1951, 82, 113-114 
21 Toussaint, C. J., A high-temperature X-ray diffraction study of the NiO-Li2O system. J. Appl. Cryst., 1971, 4, 
293-297 
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half cells which had NiO as one of the major constituents (as-received, 10 or 30 min reduced) 
showed a distinctively different elastic behavior throughout the temperature profile from the 
cermets which had no or negligible amount of NiO (2 h or 8 h reduced samples).  At the outset, 
the high NiO containing half cells had significantly higher moduli at room temperature since 
they had comparatively less porosity than the reduced Ni-YSZ cermets.  As temperature 
increased, an increase in moduli was observed over the temperature range 200-500ºC, with a 
maximum value at around 325ºC.  This well-defined peak in the Young’s modulus vs. 
temperature curve at ~ 325ºC moght be related to the structural transition of NiO from 
rhombohedral to cubic or magnetic transition of NiO at this temperature.  These 
structural/magnetic transitions affected several material properties of NiO including the thermal 
expansion coefficient.  A change in the thermal expansion data at around 250ºC was revealed in 
the as-received half cells during heating as well as cooling and shown in Figure 71.  Therefore, it 
was highly necessary to study the structural transition-assisted stresses in the whole cell or in the 
membrane electrolyte assembly.   
 
No such structural/magnetic transition assisted change in the modulus curve was observed in 
other partially or fully reduced cermets (2 h or 8 h reduced) that had no or very negligible 
amount of NiO in their composition.  The observed behavior was rather different and could be 
divided into three separate regions.  From room temperature to 250ºC, Young’s moduli values 
decreased slowly, and then more strongly from 250 to 550ºC, finally the values increased 
monotonically with the increase in temperature.  The decrease in Young’s moduli values with 
temperature up to 550ºC was presumably as a result of the mechanical losses due to enhanced 
atomic motion22,23.  The mechanical losses were often responsible for large scattering in E values 
at higher temperatures.  
 
These effects were also present in the as-received NiO-8YSZ samples, but the overlapping of the 
effects due to the structural transition of NiO made them dormant.  Above 500ºC, the decreasing 
moduli of the NiO rich half cells reached a steady state and remain almost unchanged till 
1000ºC.  However, the reason for the observed sharp decrease after 800ºC in the 30 min 
reduced batch I samples was not yet clear.  In contrast, the Ni-rich reduced cermets showed a 
monotonically increasing tendency in the elastic moduli values above 550ºC.  This was 
reasonably due to the oxidation of Ni in air atmosphere.  The formation of NiO scales over the 
Ni grains increased the elastic modulus of the anode samples.  TGA studies of pure Ni revealed 
that the oxidation started at 600ºC in air.  However, in actual operations of SOFCs with 
hydrogen fuels, the Ni-8YSZ cermet anodes didn’t undergo the oxidation reaction.  
 

                                                 
22 Shimada, M., Matsushita, K., Kuratani, S., Okamoto, T., Koizumi, M., Tsukuma, K. and Tsukidate, T., 
Temperature dependence of Young’s modulus and internal friction in alumina, silicon nitride, and partially 
stabilized zirconia ceramics. J. Am. Ceram. Soc., 1984, 67, C23-C24 
23 Lakki, A., Herzog, R., Weller, M., Schubert, H., Reetz, C., Gorke, O., Kilo, M. and Borchardt, G., Mechanical 
loss, creep, diffusion and ionic conductivity of ZrO2-8 mol. % Y2O3 polycrystals. J. Eur. Ceram. Soc., 2000, 20, 
285-296 
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Figure 74.  The variation of Young’s modulus with temperature in (a) as-received, (b) 10 min, (c) 30 min, 
(d) 1 h, (e) 2 h and (f) 8 h reduced NiO-8YSZ (900 m thick, batch II) samples. 
 
Figure 74 shows the temperature dependent variations in the Young’s moduli values of (a) as-
received, (b) 10 min, (c) 30 min, (d) 1 h, (e) 2 h and (f) 8 h reduced NiO-8YSZ (900 µm thick, 
batch II) samples.  The as-received samples showed a Young’s modulus value of 108 GPa at 
room temperature.  The changes in the Young’s moduli values at the elevated temperatures in air 
were almost similar to the Batch I half-cells in general.  After heating in air, an increase in the 
value was observed over 200-500ºC with a peak value of 119 GPa at 336ºC due to the structural 
transition in NiO.  It was interesting to note that the 1 h reduced half-cells showed no peak 
around 300ºC which implied that the half-cells reduced for 1 h at 5% H2 were left with no or 
negligible amount of NiO.  The cermets (2 h and 8 h reduced half cells) underwent an oxidation 
around 600ºC that caused an increment in their Young’s moduli values with temperature.  
 
Task 3.2.4.3 Effects of reducing atmosphere on the Young’s modulus of the fully reduced half-

cells 
 
In order to characterize the effects of reducing atmosphere on the elastic properties of the 
reduced Ni-8YSZ anodes at elevated temperatures, we further analyzed the samples (both 
batches) in 5% H2-95% Ar environment.  The Young’s moduli of the anodes were dependent on 
the initial porosity, composition and thickness of the half-cells.  Figure 75 shows the effects of 
reducing atmosphere on the Young’s moduli of the half-cells at elevated temperatures.  The 
Young’s modulus of the 8 h reduced Ni-8YSZ batch I, half-cells (600 µm thick) at room 
temperature was ~ 73 GPa, as shown in Figure 75a.  This was significantly higher than the 
Young’s modulus of the batch II, half-cells (900 µm thick) which was 52 GPa at the same 
temperature, as shown in Figure 75b.  
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Figure 75.  Young’s moduli values of the as-received and 8 h reduced Ni-8YSZ half-cells as a function of 
temperature.  
 
For both cells the modulus decreased as the temperature increased.  The 600 µm thick samples 
exhibited a sharp decrease in the modulus values as the temperature increased from 200 to 
1000ºC whereas in the 900 µm thick half-cells, this avalanche in the modulus values reached a 
plateau at 550ºC and remained stable up to 800ºC.  Then a sharp decrease in the modulus was 
observed till the temperature reached 1000ºC.   
 
The total decrease in the Young’s modulus as the temperature increased from room temperature 
to 1000ºC in reducing atmosphere was  44% for 600 µm thick batch I, half-cells and  40% for 
900 µm thick batch II, half-cells, respectively, as shown in Figure 75c.  It was interesting to note 
that the unreduced half-cells exhibited no significant change in the modulus as the temperature 
increased after 450ºC in air whereas the fully reduced half-cells exhibited continuous decrease in 
the modulus.  The weights of the half-cells were measured after the evaluation of Young’s 
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Figure 77.  Effect of reduction on the biaxial strength (measured at room temperature in ambient air) and 
development of porosity in the 900 µm thick, batch II samples.  
 
Figure 78 shows the effect of reduction and porosity on the strength of the 600 µm thick half-
cells (batch I) at room temperature.  The strength value increased to 530 MPa after 2 h of 
reduction and remained constant thereafter.  Similar to the batch II samples, the high value of 
porosity in the reduced samples didn’t reduce the strength of the samples.    
 

 
Figure 78.  Effect of reduction on the equibiaxial strength of the reduced NiO-8YSZ (batch I) half-cells at 
room temperature.  The influence of reduction on porosity was also given for comparison. 
 
Fractured surfaces were also studied using SEM and the fracture origin was identified.  In most 
of the cases the fracture originating flaws were volume flaws.  The micrographs are shown in 
Figure 79.  Fracture origins wer either agglomerates of YSZ (a) or the agglomerates of NiO (b) 
or cavities formed during casting (c, d, e and f).  
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Figure 87.  Hardness values in the anode surface of the thermal cycled NiO-8YSZ samples. 

 
Figure 88 shows the reduction in the Young’s and shear moduli values in the NiO-8YSZ samples 
with the increase in the number of thermal cycles.  The Young’s and shear moduli values of 
107.1 and 74.2 GPa in the as-received samples became 94.5 and 63.7 GPa, respectively after 250 
cycles.  
 

 
Figure 88.  Room temperature Young’s and shear moduli values in the NiO-8YSZ samples plotted as a 
function of the number of thermal cycles treated. 
 
Task 3.3 Finite element analyses of stress fields in Vickers indentation on NiO-8YSZ 

anode/8YSZ electrolyte structures 
 
In this section, we presented a finite element model to simulate the indentation processes in the 
NiO-8YSZ anode /8YSZ electrolyte bi-layer structures for solid oxide fuel cell applications.  The 
model focused on the study of mechanical integrity of the structure when subjected to a 
mechanical load.  Simulations showed that brittle cracks start to form within the anode due to 
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the requisite thermal properties for seals have been developed, but questions about long-term 
property stability, deleterious interfacial reactivity, and component volatility madd the 
development of new, reliable sealing materials a priority.  
 
Task 4.1 Thermo-mechanical stability and electrical conductivity 
 
The glasses developed at MS&T had relatively low silica contents (<45 mole%) and possessed 
molecular-level structures that were much less connected than conventional silicate glasses.  
These depolymerized structures contributed to desirably low viscosities at the sealing 
temperatures (850-900ºC), and led to the formation of crystalline phases that possessed relatively 
high CTEs and good thermal stabilities when the seals were crystallized to form glass-ceramics.  
Two compositions, called glass #50 and G#81, were promising compositions that possessed the 
requisite thermal properties for SOFC seals.  Glasses G#50 and G#81 formed a CaSrSiO4 and 
Sr2SiO4-based glass-ceramic, respectively, that could be sealed at 850ºC-900ºC, typically for one 
hour.  Figure 96 shows that the CTE of glasses #50 and #81 remains around 11- 11.5 x 10-6/ºC 
after four months at 800ºC.  Figure 97 shows the electrical conductivity measurement of G#81 
sealing glass-ceramics as a function of time in air and H2 at 800ºC.  The electrical conductivity 
for glasses #5025 and G#81 likewise didn’t change with time under SOFC operational conditions.  
These glass compositions were intended to crystallize during sealing to form glass-ceramics with 
the requisite thermal and chemical properties.   
 

 
Figure 96.  Thermal expansion coefficient for sealing glass compositions after heating to 800ºC in air for 
over an extended period 
 

                                                 
25 Yang, S. B., “Silicate based bioactive glass fiber scaffolds for bone tissue regeneration”, Masters’ Thesis in 
Ceramic Engineering, University of Missouri-Rolla, 2007C. S. Ray, T. Zhang, S. T. Reis, and R. K. Brow, 
“Determining Kinetic Parameters for Isothermal Crystallization of Glasses,” Journal of the American Ceramic 
Society, 90[3], 769-773 (2007). 
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Figure 98 shows differential thermal analyses (DTA) of different particle sizes of a 
commercially-provided glass #50, collected at 10ºC/min.  The glass transition temperature (Tg), 
the temperature of the onset of crystallization, Tx, and the crystallization peak temperature, Tp, 
were indicated in the figure for particle size of 2.3µm.  Table 5 summarizes the particle-size 
dependence of these characteristic temperatures.  The parameter ∆Tx=(Tx Tg) was an indication 
of glass stability against crystallization, as shown in Table 5; larger particle sizes had greater 
values of ∆Tx, indicating a greater resistance to immediate crystallization26.  The effect of 
particle size on crystallization behavior was also characterized using a hot-stage microscopic 
technique described in reference26.  In this technique, glass powder compacts were heated and 
the densification processes were monitored using a camera to record changes in sample profiles.  
Table 6 summarizes the experiments on glass #50 powders with different particle sizes.  In this 
table the parameter SC meant the competition between sintering and crystallization of glass 
powders of different particle sizes during the heating.  Negative values for SC for glass powders 
with average particle sizes of 2.3 and 10 µm indicated that crystallization could impede the 
sintering process, leading to poorly sintered and porous materials. 
 

Table 5.  Characteristic temperature for G#50 glasses with different particle sizes 

Glass ID Particle size (µm) Tg±3 Tx±4 Tp±4 ∆Tx 

  2.3 697 768 789 - 862 - 923 71 

G50-06110170127 10 697 779 806- 876 - 926 82 

  45 - 53 690 792 815 - 936 102 

 

Table 6.  DTA and HSM data for G#50 with different average particle sizes, at heating rate of 5oC/min. 

Particle 
size, m 

TMS TX TX-TMS 
(SC) 

2.3 770 756 -14 
10 790 779 -11 
45 790 798 8 

Tg: glass transition temperature from DTA; 

TFS: first shrinkage temperature from HSM; 

TMS: maximum shrinkage temperature from HSM; 

TX: onset of crystallization from DTA ; 

SC: (TX-TMS ): parameter for sinterability; 

TD: softening Temperature from (HSM); 

THB: Half ball Temperature from (HSM); 

TF: flow Temperature from (HSM) 
 
Task 4.3 Tape-casting and hermetic seals 
 

                                                 
26 C. Lara, M.J. Pascual, and A. Duran, J. Non-Crystalline Solids, 348, 149-155 (2004). 
27 Glass prepared by a commercial vendor. 
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Figure 102.  Performance comparison for anode support cells with LSM cathode and tested in SOFC 
mode with H2 fuel at 800oC.  Four types of anode substrates: NiO/8YSZ at 80/20 ratio, NiO/8YSZ at 
67/33 ratio with Type A pore former, NiO/8YSZ at 65/35 ratio with Type B pore former, and NiO/8YSZ 
using Unitec powder at 65/35 ratio with Type B pore former.   
 
Cells made of Tosoh powder and Unitec Powder were also evaluated.  As shown in Figure 103, 
shwn screen-printed with the same type of cathode material, LSM, the button-cell with Unitec 
powder achieves 1.7 W/cm2 of power density, which was more than 21% increase comparing to 
the cell made of Tosoh powder.  In order to simplify the cathoding process, various deposition 
methods were explored.  Button cells made of Unitec powder were cathoded by the spraying and 
screen-printing methods.  The test results, also plotted in Figure 103, showed that the cell 
cathoded with the screen-printing method had much higher performance than the cell cathoded 
with the spraying method.  We suspected that the spraying approach may densify the cathode, 
resulting in high concentration overpotential, as indicated in the V-I curve.  More work will be 
needed to engineer the spraying method for depositing a porous cathode in future development 
efforts.  
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Figure 103.  Performance comparisons for anode substrates made of Tosoh powder and Unitec powder.  
Type B pore former were used in both cases.  Cells were tested in SOFC mode at 800oC.  
 
Task 5.2 Development of a new approach for depositing cathodes 
 
Previous test results in the SOFC mode showed that a large portion of overpotential losses was 
from the cathode side.  Mitigation strategies were thus taken to reduce the related overpotential 
losses by developing new means of cathode deposition.  One approach taken was spraying a 
cathode solution onto the cell substrate to control the microstructures of the cathode.  However, 
densification of the cathode particles after firing at elevated temperatures led to large 
concentration overpotential losses, as described in the previous section.  Another new approach 
using an infiltration technique was developed to optimize cathode microstructures; this method 
resulted in lower overpotential losses through increased mass transport and a faster charge 
transfer process (reduced concentration and activation overpotential losses).  Using the new 
approach, the composite cathode microstructures possessed the following characteristics:  

a. both the solid electrolyte phase and the cathode catalytic phase were continuous, 

b. triple phase boundary lengths were longer, 

c. the porosity of the open pores was large enough.   
 
The new cathode fabrication process involved following six steps: 1. Fabrication of an anode-
supported substrate with the NiO+YSZ composite layer on the cathode side on top of the 
electrolyte; 2. reducing the NiO on the cathode side; 3. leaching Ni out using nitric acid, leaving 
the porous 8YSZ structures with well sintered large necks; 4. infiltrating catalyst of nitrate salt 
solution; 5. sintering the cathode at a low enough temperature to avoid the secondary phase 
formation, such as LaZrO3; 6. screen-printing a cathode current collector layer and sintering it at 
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Button cells with modified cathode microstructures using the infiltration process were tested in 
SOFC mode.  Figure 106 shows the test results plotted in diamond symbols.  LSC was used as 
the cathode material to evaluate the new fabrication process.  Hydrogen was the fuel and air was 
the oxidant.  At 800oC, the cell reached a peak power density 2.12 W/cm2 at 0.5V, while at 0.7V, 
the power density was about 1.72 W/cm2.  In order to make a comparison, another button cell 
printed with LSC cathode by the traditional screen-printing technique was constructed and tested 
in the same conditions as the infiltration cell was tested.  The test results were plotted in Figure 
106 in triangle symbols.  At 0.54V, the cell produces 1.39 W/cm2 peak power, while at 0.7V, it 
produces 1.0 W/cm2.  The comparisons between these two cells showed that more than 70% 
improvement was achieved using the infiltration technique.   
 

 
Figure 106.  One inch button cell performance comparisons tested in SOFC mode. 

 
Cells with LSCM cathode were also fabricated using the aforementioned leach-infiltration 
technique.  Nitrate salts of La, Sr, Cr, and Mn were supplied by Alfa.  A salt solution was made 
based on the stoichiometric numbers of La0.8Sr0.2Cr0.5Mn0.5O3-.  The prepared cathode precursor 
was impregnated into the porous YSZ thin layer, which had previously had the Ni leached out.  
The impregnation process was carried out 3 ~ 5 times and at each time the cathode-impregnated 
YSZ was annealed at 90oC on a hot plate for 15 minutes to dry.  A final sintering process after 
the impregnation process was performed at 1100oC in air for 1 hour.  A catalyst previously 
developed was also infiltrated after the cathode preparation.   
 

One Inch Button Cell Baseline Test -- in SOFC mode
Infiltrated LSC cathode vs traditional screen-printed LSC cathode
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Figure 107.  One inch button cell performance comparisons tested in SOFC mode 

 
Figure 106 shows test results of a button cell with the infiltrated LSCM-based cathode.  The cell 
was tested in SOFC mode with hydrogen as the fuel and air as the oxidant.  At 800oC, the cell 
reached a peak power density of 0.82 W/cm2 at 0.49V, while at 0.7V, the power density was 
about 0.65 W/cm2.   
 
Task 5.3 Development and evaluation of LSCM-based cathode 
 
Task 5.3.1 La0.5Sr0.5Cr0.5Mn0.5O3 development 
 
As discussed in Task 2, LSCM (La0.8Sr0.2Cr0.5Mn0.5O3) was selected as the cathode material for 
the reversible SOFEC/SOFC modules.  Extensive studies performed at MSRI have shown that 
LSCM possesses high chemical stability and high catalytic properties in both reducing and 
oxidizing atmospheres.  In addition, several strategies were employed to increase the LSCM’s 
electrical conductivity and catalytic activity: first, the doping level of Sr into the A-site could be 
increased to enhance its electronic conductivity.  Second, other alkaline earth ions and transition 
elements could be doped into A and B-site of the ABO3-type perovskite respectively to improve 
its catalytic activity and ionic conductivity correspondingly.   
 
Synthesis of La0.5Sr0.5Cr0.5Mn0.5O3 (LSCM5555):  To investigate the Sr doping level effect on the 
electronic conductivity, the composition of LSCM was chosen as La0.5Sr0.5Cr0.5Mn0.5O3.  The 
material was prepared using combustion synthesis and conventional solid state reaction method.  
For combustion synthesis approach, the stoichiometric amounts of lanthanum nitrate, strontium 
nitrate, chromium nitrate and manganese nitrate were dissolved in distilled water with constant 
stirring.  A stoichiometric amount of glycine was added into the solution.  A gel was formed with 
continuous stirring and mild heating.  The gel was heated continuously until combustion reaction 

One Inch Button Cell Baseline Test in SOFC Mode
LSCM cathode, 800oC, H2/air
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occurred.  The resulting powders were calcined at 1250oC for 12 hours.  XRD studies were 
carried out to characterize the structural of specimens.  
 
For conventional solid state reaction method, the mixture of La2O3, Sr2O3, Cr2O3 and MnO2 were 
mixed in alcohol and milled for 24 hours.  The dry powder was calcined at 1300oC for 6 hours.  
Again, XRD studies were carried out to characterize the structural of specimens.  
 
LSCM (5555) material characterization:  Figure 108 shows the X-ray diffraction pattern of the 
perovskite powder obtained by the conventional solid oxide reaction method.  It clearly shows 
the formation of nearly entirely perovskite single phase of the LSCM powder.  Figure 109 shows 
the X-ray diffraction patterns of the perovskite powder obtained by the combustion synthesis 
method.  The XRD pattern shows the presence of Cr2O3 and SrCO3 phases as impurities.  The 
presence of SrCO3 in the perovskite-type oxide powders should be due to the reaction between 
SrO formed from the nitrate decomposition and CO2, produced from combustion process. 
 

 
Figure 108.  X-ray diffraction patterns of the perovskite powder using conventional solid oxide reaction 
method 
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Figure 109.  X-ray diffraction patterns of the perovskite powder using combustion synthesis method. 

 
Task 5.3.2 Evaluation of button cells with LSCM (5555) cathode 
 
Button cells were constructed with MSRI standard anode substrates and printed with the cathode 
prepared by the conventional solid state reaction method and the combustion synthesis method.  
The results were discussed below.  
 

Table 8.  Cell performance summary 

Cathodes Maximum Power Density 
(MPD) at 800oC (W/cm2) 

Commercial LSCM 0.30 
Commercial LSCM+Co infiltration 0.51 
LSCM prepared by combustion method  0.38 
LSCM prepared by combustion method+ Co infiltration 0.62 
LSCM prepared by solid state reaction method  0.42 
LSCM prepared by solid state reaction method+ Co infiltration 0.7 

 
Figure 110 through Figure 112 show the voltage and power density as a function of current 
density for cells with commercial LSCM and new LSCM (5555) prepared by the combustion and 
solid oxide reaction methods as the cathode, respectively.  Some cathodes were infiltrated with 
cobalt nitrate as a catalyst.  The performance of the cells was summarized in Table 8.  The 
Maximum Power Density (MPD) at 800oC for cells with the commercial cathode, the in-house 
combustion method cathode and the solid state reaction cathode were 0.3, 0.38 and 0.42 W/cm2, 
respectively, which showed the effects of the increase of doping level of Sr in the A-site on 
electronic conductivity.  The lower performance of cell with the combustion synthesis may be 
due to the existence of impurities, such as SrCO3 and Cr2O3 in the perovskite-type oxide 
powders.  With cobalt infiltration, all cells shows significantly improved performance.   
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Figure 110.  Voltage and power density as a function of current density for a cell with commercial LSCM 
and with commercial LSCM+cobalt nitrate infiltration as cathode. 
 

 
Figure 111.  Voltage and power density as a function of current density for a cell with LSCM prepared by 
combustion method and LSCM prepared by combustion method+cobalt nitrate infiltration as cathode 
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Figure 112.  Voltage and power density as a function of current density for a cell with LSCM prepared by 
oxide reaction method and LSCM prepared by oxide reaction method +cobalt nitrate infiltration as 
cathode 
 
Cells with the home-made LSCM-5555 cathode were also tested in the SOFEC modes.  Figure 
113 summarizes cells’ typical performance characteristics tested in SOFEC and SOFC modes.  
In the SOFC mode, wet H2 (3% steam) was supplied to the anode, and air was supplied to the 
cathode.  In the SOFEC mode, wet H2 (30% steam) was fed to the anode, and a mixture of steam 
(90%) with H2 as the carry gas was fed to the cathode.  A 4-quadrant system was used to present 
the experimental data obtained in different modes.  The first quadrant represented the SOFC 
mode, which consumed H2 to generate the electricity.  The SOFEC mode was located across the 
first and fourth quadrants where the current flowed in the same direction as the SOFC mode.   
 
As shown in the figure, in the SOFEC mode, the cell with LSCM-5555 co-generates both 
hydrogen and electricity if the current density is smaller than 0.1 A/cm2.  An external power 
supply, or negative voltage in the fourth quadrant, was required to increase the hydrogen 
production rate.  The cell with commercial LSCM could only co-generate both hydrogen and 
electricity as the current density was less than 0.05 A/cm2.  Also at a current density 0.5 A/cm2, 
or equivalent to 3.8 cc/min-cm2 hydrogen production rate, the energy required to electrolyze 
steam was 0.384 and 0.5 V for cells with LSCM-5555 and commercial LSCM in the SOFEC 
mode, respectively.  This directly resulted in profound electricity saving by the use of LSCM-
5555 cathode to generate hydrogen.  In the SOFC mode, the cell with LSCM-5555 cathode 
showed better performance than that with the commercial LSCM, even though a slightly lower 
performance was observed comparing to the results shown in Figure 112.  It was hypothesized 
that the discrepancy in the two curves was introduced through the use of multiple testing fixtures. 
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Figure 113.  Typical performance characteristics of a button-cell operated in the reversible SOFC and 
SOFEC modes at 800oC 
 
Task 6 Design of Hybrid SOFEC-SOFC Stacks and a 5 kW System 
 
Task 6.1 Hybrid stack design 
 
The 5 kW system consisted of three SOFEC-SOFC composite stacks and three dedicated SOFC 
stacks for hydrogen production and power generation, respectively.  Design and development of 
the SOFEC-SOFC composite stack and manifolding was successfully completed.  The 
composite/hybrid design was based on MSRI’s proprietary proven technology developed for 
SOFC power modules, but with changes to allow for the coupled SOFC and SOFEC operation.  
A concept for an internally manifolded cell geometry for the hybrid SOFEC-SOFC stack was 
developed that provided steam and air to the cathode sides of SOFECs and SOFCs, sepearately, 
and fuel to the anode sides of both SOFECs and SOFCs simultaneously.  Use of an internal gas 
manifold offered many advantages to externally manifolded systems including ease of 
fabrication, low cost, and compliant seals to relieve internal stresses.   
 
The operation of SOFEC cells required sealing be improved for above the levels sufficient for 
SOFC modules; for the SOFEC modules a unique glass seal was substituted for MSRI’s 
tranditional compliant seal.  In the case of non-hermetic seals, oxygen from the ambient 
surrounding can leak in and consume the electrolyzed hydrogen or be pumped across the 
electrolyte in place of the electrolyzed oxygen, resulting in decrease in hydrogen production.  In 
the internally manifolded design, there was some gas diffusion through the porous anode 
supports resulting in limited intermixing of the gas streams between manifolds (cross-leaking) or 
the outside air.  It was estimated that these losses could account for couple percent loss in the 
total system efficiency.  It was therefore desirable to seal the edges of the cell anode support and 

 

-0.8 -0.4 0.0 0.4 0.8 1.2 1.6
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6
 SOFC H2/Air (commercial LSCM)

 SOFEC H2/Steam

 Transpose to SOEC direction
 SOFC H2/Air (LSCM5555) 

 SOFEC H2/Steam

 Transpose to SOFEC direction

SOFC mode

T = 800oC

Cell active area = 2 cm2

Anode: Ni+YSZ
Cathode: LSCM

Transpose to SOFEC direction SOFEC mode

 Current Density (A/cm2)

 C
el

l V
ol

ta
ge

 (
V

)

 

 

 



the interi
reduced g
 
The need
electricity
internally
region di
the SOFC
establish
cells wer
This chan
manifold
Similar r
was expo
support a
 

 
Thermal 
SOFEC-S
large stac
(primaril

ior edges of 
gas diffusion

d to switch 
y productio
y manifolded
irectly surrou
C stack this 
ed between 
re switched 
nged the equ

d channels, r
redox degrad
osed to air.  
and the cell e

Figu

managemen
SOFC hybri
ck (kW-clas
ly the cathod

the gas man
n.   

between th
on (SOFC) 
d SOFC sta
unding the m
was not a c
the two gas
from air to

uilibrium po
esulting in a
dation occur
To prevent r
edges were s

ure 114.  Expl

nt enhancem
id stack and 
s stack), the
de air and st

104

nifolds to lim

he fuel-assis
mode intro
ck, the air m

manifolds wa
critical probl
sses.  Howev
o the steam-h
oint between
a destructive
red at the ou
redox, the ai
sealed.   

loded view of

ment was als
dedicated S

ere was a nee
team) at an 

4 of 150 

mit these loss

sted hydrog
oduced furth
manifolds w
as not reduc
lem, since a 
ver, in the c
hydrogen m

n the oxidizin
e phenomeno
uter cell bord
ir and steam

f the SOFEC-

so incorpora
SOFC stack)
ed to integra
effective m

ses.  Increasi

gen producti
her complex

were integral 
ced to nickel 

reasonably 
composite st

mixture as th
ng and redu
on of redox 
der where th

m manifolds w

 
-SOFC hybrid

ated into the
.  Past stack

ate a heat ex
means of hea

MSRI DE-FG

ing the cell b

ion (SOFEC
xity to the 
 to the anod
 metal by th
stable equil

tack the cath
he stack mo
ucing atmosp

(reduction a
he edge of th
were isolate

d stack design

e stack desig
k testing has 
xchanger wit
at removal fr

G36-05GO1519

border width

C mode) and
design.  In

de support s
he fuel stream
ibrium poin

hode gases o
de was chan

pheres aroun
and re-oxida
he anode su
d from the a

n 

gns (for bot
shown that 

th the feed g
rom the stac

94_GT 

h also 

d the 
n the 
so the 
m.  In 
t was 
of the 
nged.  

nd the 
ation).  
upport 
anode 

th the 
for a 

gasses 
cks at 



high curr
area heat
size.  For
incoming
Several e
through t
the mani
transfer. 
cell, whi
observed
pattern w
stack pre
 
Task 6.2 
 
During in
and seali
transport
compress
remain r
view of t
 

Figu
 
The indi
separated
each man
fittings t
assembly
be done 

rents.  To th
t exchangers
r this design
g and outgo
effects were
the interconn
ifolds, draw
 The preheat
le improvin

d in the past
while mainta
essure drop.  

Compre

nitial heat u
ing as the gl
t and installa
sion device w
elatively co
the compress

ure 115.  Cuta

vidual stack
d the stack h
nifold/comp
to the BOP
y.  If necessa
without rem

his end, a no
s into the sta
, the standar

oing flows w
e achieved w
nect assemb

wing heat ou
ting prevent
g the robust
t.  The inter
aining a simp

A rendering

ession hardw

up, six stacks
lass seals cry
ation to mini
was used wi
ol while mi
sion hardwar

away view sh

k modules w
hot-zone enc
ression plat

P piping.  F
ary to remov

moving the 

105

ovel stack g
ack and also
rd internal m
with ribs to 
with this des
bly.  The me
ut from the 
ted thermal s
tness the sta
rnal manifol
ple hot zone
g of the SOF

ware/manifol

s must be co
ystallize.  It 
imize the str
ith insulated
inimizing th
re is shown i

owing the ins

were assemb
closure from
e, passed th
Figure 116
ve an indivi
compression

5 of 150 

eometry wa
o ensured ev

manifold conf
transfer he

sign.  Heat 
etal ribs in th

stack and c
shocking of t
ack, and elim
ds to the sta

e structure an
FEC-SOFC h

ld design 

ompressed in
was desirab
esses on the

d tension rod
ermal losses
in Figure 11

sulated modu

bled to an e
m the BOP c
hrough the s

shows a re
idual stack f
n force from

as developed
ven flow dis
figuration w

eat from the
was transfer
he interconn
creating a h
the cells at t
minating the
ack were ab
nd ease of a

hybrid stack 

n order to en
ble to mainta
e seals and co
ds and load p
s from the s
5.   

ulated compre

electrically i
components.
support plate
endering of
for maintena
m the other 

MSRI DE-FG

d that integra
stribution re

was adapted t
e stack to th
rred outwar

nect spacer e
high rate of
the inlet man
e manifold c
ble to provid
assembly and
is shown in 

nsure good 
ain stack com
ontact point
plates allowi
stack enclos

 
ssion hardwa

insulating su
.  Gas feed 
e and sealed
f the compr
ance or repla
stack modu

G36-05GO1519

ated high su
egardless of 
to have passe
he manifold
rd from the 
extended thr
f convective
nifolds of the
cracking that
de for a ‘Z’
d minimizin
Figure 114.

electrical co
mpression d
s.  A spring-
ing the sprin
sure.  A cut

are for a stack

upport plate
pipes, weld

d in compre
ression hard
acement, it c

ules.  Differe

94_GT 

urface 
stack 
es for 

d gas.  
stack 

rough 
e heat 
e first 
t was 
-flow 

ng the 
   

ontact 
during 
-plate 
ngs to 
taway 

k 

e that 
ded to 
ession 
dware 
could 
ential 



shrinkage
modular 
manifold
 

 
Task 6.3 
 
Task 6.3.
 
The 5 kW
determin
electricity
under con
containin
either SO
stacks de
SOFCs fo
 

es stack he
compression

d to the catho

F

5 kW sy

.1 System 

W system de
ne the most 
y or pure hy
nsideration: 

ng reversible
OFC or SOF
esigned for p
for power pro

eights, therm
n approach. 
ode blowers,

Figure 116.  R

ystem design

configuratio

esign was co
feasible app
ydrogen from
(A) a series

e SOFECs w
FEC, with sw
peak hydrog
oduction.  Th

106

mal expansi
 The gap be

, so the sprin

Rendering of t

n 

on design 

ompleted suc
proach for c
m natural g

s or series-pa
with switchab
witchable el
en productio
hese alternat

6 of 150 

ons, and lo
etween the i
ngs were kep

the compressi

ccessfully.  A
creating a sy

gas to meet d
arallel arrang
ble cathode 
lectrical con
on under sho
tives are sho

oading were
insulated pla
pt cool, witho

ion hardware

A system an
ystem capab
demands.  T
gement of hy
gas flows, (

nnections, an
ort circuit co
own schemat

MSRI DE-FG

e also main
ates doubled
out any addi

 assembly 

nalysis was c
ble of co-pr
Three types 
ybrid SOFC
(B) a set of 
nd (C) A se
onditions an
tically in Fig

G36-05GO1519

ntained with
d as the air i
itional heat l

 

conducted fi
roducing 5kW
of systems 

C/SOFCEC s
dedicated st

et of three h
d three dedi
gure 117. 

94_GT 

h this 
ntake 
loss. 

irst to 
W of 
were 

stacks 
tacks, 

hybrid 
icated 



MSRI DE-FG36-05GO15194_GT 

107 of 150 

 
Figure 117.  Three alternative system configurations 

 
To compare these systems, a number of assumptions and constraints were applied using stack 
performance data: 

 The per-cell active area was fixed to 100 cm2, 

 The open circuit voltage (OCV) was assumed to be 0.95 V for the SOFCs and 0.10 V for the 
SOFECs, 

 The BOP power consumption was 1kWe, 

 The cell ASR was assumed to be 0.71 Ωcm2 for the dedicated SOFCs and 1.2 Ωcm2 for the 
reversible SOFECs, in both modes of operation, 

 The maximum operating current density was 0.35 A/cm2 for the dedicated SOFCs, and the 
maximum operating current density was 0.208 A/cm2 for the reversible SOFECs operating in 
SOFC mode, 

 The energy density of hydrogen was 120 MJ/kg, 

 Natural gas was assumed to be methane with an energy density of 55.7 MJ/kg. 
 
“A” Configuration:  For the “A” configuration, the polarization curve of the system was 
dependent on the switching position, i.e. the number of stacks for which the reversible SOFES 
were in SOFC mode vs. SOFEC mode.  The requirement for electrical power output necessitated 
a large number of dedicated SOFCs.  At the high current levels required for peak hydrogen 
production, the electrical power output from the system far exceeded that which was required by 
the BOP systems, so it was necessary to either supply ~4kWe to an external load during 
hydrogen production.  This was an inherent limitation of this design and was a result of the 
higher internal resistance of the reversible cells that limited the operating current in electricity 

 

54 SOFC

50 SOFC

50 SOFC

50 SOFC

59 SOFEC

59 SOFEC

LO
A

D

41 SOFC

B
O

P

B.A.

20 SOFCEC

43 SOFC

20 SOFCEC

43 SOFC

20 SOFCEC

43 SOFC

20 SOFCEC

43 SOFC

20 SOFCEC

43 SOFC

20 SOFCEC

43 SOFC

LO
A

D

B
O

P

59 SOFC

59 SOFC

59 SOFC

L
O

A
D

C.

40 SOFCEC

18 SOFC

40 SOFCEC

18 SOFC

40 SOFCEC

18 SOFC



MSRI DE-FG36-05GO15194_GT 

108 of 150 

production mode thereby necessitating a larger number of dedicated SOFCs to meet the electrical 
generation requirement.  
 
“B” Configuration:  The “B” configuration was an alternative that eliminated the requirement of 
electrical power discharge during hydrogen production.  This system adopted dedicated stacks 
containing either standard SOFCs (with LSCF cathodes) or SOFECs, but didn’t allow for 
reversible operation of the SOFECs in SOFC mode.  This was done for two reasons, first being 
that the dedicated SOFCs operated much more efficiently and at higher current densities than the 
reversible SOFECs in SOFC mode, and second because it allowed for full capacity hydrogen 
production without electrical output.  In this system there were 5 dedicated SOFC stacks and two 
SOFEC stacks.  One of the SOFC stacks operated independently to provide power for the BOP 
systems; one was able to be switched electrically to either drive the SOFECs or to act in 
combination with the other three SOFC stacks to provide electrical output.  As such, the system 
had two modes of operation depending on the required electrical power output.  If the external 
load drawed less than 3.5 kWe, the switchable SOFC stack drove the SOFECs to generate 
hydrogen at full capacity.  The hydrogen produced was compressed into a storage vessel to be 
released on demand.  If the external load drew more than 3.5 kWe (up to 5 kWe), hydrogen 
production was suspended and the four SOFC stacks supplied the external load.  In the co-
production mode, hydrogen was produced at full capacity (5 kWe equivalent) independent of the 
output electrical current.  Although the output characteristics were more flexible for this 
arrangement, the BOP system became very complicated since it was necessary to regulate gas 
flows to four sets of stacks independently, so that each operated at a different current density. 
 
“C” Configuration:  The “C” configuration combined elements of the “A” and “B” 
configurations, allowing for independent hydrogen production and for co-production while 
minimizing the number of separate gas flows and modes of operation.  The system consisted of 
three dedicated SOFC stacks and three hybrid stacks comprising dedicated SOFCs and reversible 
SOFECs.  The hybrid stacks were designed to operate independently under short circuit 
conditions with the reversible cells in SOFEC mode, driven by the dedicated SOFCs to produce 
pure hydrogen at the maximum allowable operating current density.  The dedicated SOFC stacks 
powered the BOP systems and supplied electrical power to the external load.  As in the “B” 
configuration, when peak electrical output was required, the production of hydrogen was 
suspended.  During this mode of operation, the reversible cells were operated as SOFCs.  The 
three hybrid stacks were connected in series, and acted in parallel with a series combination of 
the three dedicated SOFC stacks.  In this way, both the dedicated stacks and the hybrid stacks 
operated at their respective maximum current densities.  The two modes of operation were 
shown schematically in Figure 118. 
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Figure 118.  Schematic of the two operation modes for the “C” configuration 

 
In this configuration it was possible to control the rate of hydrogen production by switching the 
number of stacks that were active, though it was likely that in practice the hydrogen production 
would be either at full capacity or suspended, and the variable control of hydrogen output was 
accomplished using an external storage tank.   
 
The three hybrid stacks outputted 5 kW equivalent of hydrogen at a current density of 0.35 
A/cm2, driven by the dedicated SOFCs.  This required 120 SOFECs, or 40-cell per stack.  At the 
operating current density, the SOFEC operating voltage was -0.32 V/cell, so the dedicated 
SOFCs supplied 12.8V at 35A.  This needed 18 SOFCs operating at 0.7V/cell.  When the hybrid 
stacks were operated in SOFC mode, the maximum current density was limited by the reversible 
cells to 0.208 A/cm2.  At this current, the voltage across the reversible cells was 0.7 V, and the 
voltage across the dedicated cells was 0.802 V.  Thus, the total voltage across the three hybrid 
stacks in series was 127.28 V, and the power output from the hybrid stacks was 2.647 kWe.  The 
remaining SOFC stacks supplied 3.353 kWe at 127.28 V or a stack current of 26.34 A.  For a 
100 cm2 cell, this current corresponded to a cell voltage of 0.762 V, so 167 cells were required, 
i.e. 56 cells in each stack. 
 
The peak power output of the three dedicated SOFC stacks was 4.11 kWe, or ~3.1 kWe, net 
accounting for the parasitic losses in the BOP.  Up to this output level, the system was 
simultaneously producing 5 kW equivalent of pure hydrogen.  Though further gas and electrical 
switching could be implemented to increase the flexibility in the production rate, in the simplest 
case, the system had two modes of operation.  In the first mode (co-production) the electrical 
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Following the SOFC baseline test, the same stack was tested in SOFEC mode with a fuel assisted 
at the anode.  Figure 127 shows the stack performance of hydrogen generation from steam.  The 
same syngas fuel used in the baseline test was fed to the anode, and steam was fed to the 
cathode.  Both the fuel and steam utilizations were fixed at 40%.  OCVs were positive because of 
the high partial pressur of oxygen on the cathode.  At 5 A, the stack was under the self-driven 
mode for co-generating hydrogen and electricity.  No external electrical power was needed to 
drive the steam electrolysis process.  As the stack current increased, external power was applied 
to drive the electrolysis to a higher level of hydrogen production.  As shown in the figure, at 30 
A (or equivalent to 137 liters of hydrogen per hour), the net power required was just 59 Watts.  
Compared to the traditional solid oxide electrolysis cell (SOEC) technology without fuel assist, 
the SOFEC technology saved significant electrical power for the same hydrogen production rate.  
 

 
Figure 127.  Performance characteristics of a 10-cell stack operated in the SOFEC mode for hydrogen 
production.  Per-cell active area was 100cm2.  The furnace temperature was set at 770oC.  Wet Syngas 
(with 30% steam) was used as the fuel and steam was used as the oxidant.  Both the fuel and steam 
utilizations were fixed at 40%.   
 
The effect of thermal cycling on the stack performance was examined on this 10-cell stack.  Each 
cycle ranged from room temperature to a working temperature then back to room temperature.  
During each thermal cycle, the stack was tested in SOFC mode first and then in SOFEC mode.  
Figure 128 shows the effect of thermal cycling on the stack performance.  At 30 A, the voltage of 
the 10-cell stack decreased by 8% in SOFC mode and 15% in SOFEC mode after four thermal 
cycles.  V-I curves vs. thermal cycles were also plotted in Figure 129 in detail.   
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Figure 128.  Thermal cycling effects on the stack performance.  The temperature was cycled from the 
room temperature to 770oC and then back to the room temperature.  The fuel was wet syngas, and the 
oxidant was either air in SOFC mode or steam in SOFEC mode.  
 

 
Figure 129.  10-cell stack performance vs. number of thermal cycle tested in the reversible SOFC/SOFEC 
modes.  The temperature was cycled from room temperature to 770oC and then back to room temperature.  
The fuel was wet syngas, and the oxidant was either air in SOFC mode or steam in SOFEC mode.  

Thermal Cycling Effects on Voltage of a 10-cell Stack Operating in Reversible 
SOFC/SOFEC Modes at 30 A
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Task 7.2 Proof-of-concept demonstration of SOFEC-SOFC hybrid co-generating H2 and 

electricity 
 
The concept of hydrogen and power cogeneration using the SOFEC-SOFC hybrid technology 
was demonstrated on composite stacks, providing data for the design and construction of the 5 
kW cogeneration system.  Each hybrid stack had 10 cells, six SOFECs and four SOFCs for 
hydrogen and power generation, respectively.  The SOFCs were screen-printed with LSCF+SDC 
based cathode, and the SOFECs were screen-printed with LSCM+SDC based cathode.  All cells 
were anode-supported with 100 cm2 per-cell active area.  A glass seal was applied to the 
interfaces of the stack.  The thickness of glass gaskets were adjusted to match contact aids 
thickness on both the anode and the cathode ensuring good electrical contacts.  Similar to the 
stack tests described in Task 7.1, all hybrid stacks were evaluated in the SOFC mode first as a 
baseline for power generation, followed by operation in the hybrid mode (SOFEC-SOFC) for the 
cogeneration.  During testing, polarization and power density data were recorded for a range of 
stack current densities.  Hybrid stacks were tested over relatively long operating times, with the 
goal being the demonstration of stable, self-sustaining hydrogen and electricity co-production.  
 

 
Figure 130.  Performance characteristics of a 10-cell stack (4-SOFC + 6-SOFEC) tested in SOFC mode as 
the baseline.  The furnace temperature was set at 800oC.  Diluted hydrogen with 50% N2 was used as the 
fuel and air was the oxidant.  Both the fuel and oxidant utilizations were increased from 40% to 60%.   
 
Figure 130 shows 10-cell stack performance characteristics in SOFC mode.  Diluted hydrogen 
with 50% N2 was used as the fuel and air was the oxidant.  Both the fuel and air utilizations were 
varied from 40% to 60%.  The furnace temperature was set to 800oC.  At 30A, this stack 

10-Cell Hybrid Stack (4-SOFC + 6-SOFEC) -- SOFC Baseline Test
T_f=800oC, 50% H2-N2/air @ various utilizations 
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generated 220 and 205 watts power at 40%/40% (40/40) and 60%/60% (60/60) utilizations, 
respectively, showing a merely 7% performance drop when the fuel/air utilization increased from 
40% to 60%, thanks to the cell optimization performed under Task 2.  
 
Following the SOFC baseline tests, the same stack was tested in hybrid mode to co-generate 
hydrogen and electricity (complete with a fuel assist on the anode of the SOFECs).  Figure 131 
shows stack performance when diluted H2 bal. 50% N2 was used as the fuel on the anodes of the 
stack.  The furnace temperature was set at 800oC.  It was observed that at the fixed fuel/air/steam 
utilizations at 60/60/40, at 30 A, four SOFCs generated ~ 90 watts power, among of 20 watts was 
consumed by the six SOFECs to produce 80 liters of hydrogen per hour, and 70 watts net power 
output.  The effect of the steam utilization on the performance was also evaluated by increasing 
its utilization from 40% to 60%, while keeping the fuel and air utilizations unchanged at 60%.  
As shown in the plot, beyond the 20 watts, extra 6 watts were consumed by the six SOFECs to 
producing the same amount of hydrogen, resulting in a slight loss of power output.  The net 
power output was ~ 64 watts.  
 

 
Figure 131.  Performance characteristics of a 10-cell stack operated in the hybrid mode for hydrogen and 
electricity co-generation.  The furnace temperature was set at 800oC.  Diluted hydrogen with 50% N2 was 
used as the fuel on the anodes of both 4-SOFC and 6-SOFEC.  Air and steam were on the cathodes of the 
4-SOFC and 6-SOFEC, respectively.  Both the fuel and air utilizations were fixed at 60%, while steam 
utilization changed from 40% to 60%.   
 
Syngas fuel was used to replace the diluted hydrogen fuel on the anodes of the hybrid for co-
generation of hydrogen and power.  The performance comparisons of using these two types of 

10-Cell Hybrid Stack (4-SOFC + 6-SOFEC) -- Hybrid Test
T_f=800oC, 50%H2-N2/Air/steam @ different utilizations 
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fuels are shown in Figure 132.  The performances of the two were almost identical under the 
same operating conditions.   
 

 
Figure 132.  Performance comparisons of the 10-cell hybrid stack using two types of fuels: hydrogen 
diluted with 50% N2 and syngas.  Under the both cases, the utilizations of the fuel, air and steam were 
fixed at 60%, 60% and 40%, respectively.  The furnace temperature was set at 800oC.   
 
A continuous test for the co-generation of hydrogen and electricity was set up and performed 
using the syngas as the fuel.  As shown in Figure 133, over the 48 hours continuous test the 
hybrid demonstrated a very stable performance.  The test was terminated due to the failure of a 
water pump during a weekend steady state discharge, causing coking issues.  Figure 134 shows 
the voltage characteristics of each individual cell over the 48 hours continuous test.  At 30 A, the 
average cell voltage was about 0.73 V and -0.15 V for the SOFC and SOFEC, respectively.  No 
severe degradation was observed during the test.   
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Figure 133.  Continuous co-generation of hydrogen and electricity.  Utilizations of syngas, air, and steam 
were fixed at 60%, 60%, 40%, respectively.  The furnace temperature was set at 800oC.   
 

 
Figure 134.  Voltage characteristics of each cell over the 48 hours continuous test.   

Long-term Test in Hybrid Mode
10-Cell Hybrid Stack (4-SOFC + 6-SOFEC), T_f=800oC, Syngas/Air/steam @ 60/60/40
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Task 7.4 Long-term SOFEC stability tests in hydrogen production mode 
 
Capital costs comprise a large portion of the cost of hydrogen production technology 
deployment.  Prolonged stack life means less pre-allocated replacement costs.  It is very 
important to perform long-term tests under usage conditions (a wide operating and cyclic 
conditions, etc.) to evaluate stack reliability.   
 
In order to evaluate the SOFEC stability and to determine the amount of degradation over time, 
long-term tests of SOFEC stacks were conducted.  Since the associated high costs of SOFEC 
operation over long-durations make large-stack tests economically unfeasible, single-cell stacks 
were constructed with SOFEC cells screen-printed with LSCM cathode.  The SOFECs were 
MSRI standard anode-supported cells (70/30 with pore former Type A) having 100 cm2 per-cell 
active area.  All SOFECs used for the long-term test were made from the same batch to eliminate 
any effects from variation amongst different batches.  The glass seal was applied to the interfaces 
of stacks.   
 

 
Figure 141.  LSCM conductivity as a function of oxygen activity measured at 800oC 

 
As discussed above in Task 2, the conductivity of LSCM cathode was a strong function of the 
oxygen activity.  Figure 141 shows the LSCM conductivity measurement as a function of the 
oxygen activity obtained at 800oC.  The conductivity was around 10 S/cm and 1 S/cm in air and 
99% hydrogen environments, respectively, indicating one order of magnitude drop of the 
conductivity as the oxygen activity drops to -23.  The conductivity curve also exhibited a flat 
plateau when the oxygen activity expanded from 0 to -13, equivalent to air to 99% H2O bal. H2, 
respectively.  By assuming that a pure steam was the feed to the SOFEC cathode and 50% 
utilization of steam was achieved, the conductivity experienced drops from 10 S/cm to 2.2 S/cm 
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along the cathode.  An issue could emerge that the transition of the conductivity may result in 
electrode degradation.  A potential solution to such drop could be made by using hydrogen gas as 
the carry gas of the steam.  For example, in the case that 90% H2O bal. H2 mixture was used as 
the cathode feed and 40% utilization was achieved, the corresponding conductivity of LSCM 
changed from 5.4 S/cm to 2.2 S/cm, respectively, instead of changes from 10 S/cm to 2.2 S/cm.     
 
Experimental studies were performed using the aforementioned rational.  Two identical 1-cell 
stacks (100 cm2 active area) were constructed and tested under two different operating 
conditions.  The first stack was tested with 100% H2O as the cathode gas, while the second stack 
was tested with 70% H2O carried by hydrogen.  As usual, the stack was tested in the SOFC mode 
first as a baseline, followed by the continuous test in the SOFEC mode with constant current (or 
at a fixed hydrogen production rate).  As scheduled, the continuous SOFEC test was interrupted 
and a SOFC test was performed to check the functionality of the stack.   
 

 
Figure 142.  Performance characteristics of a 1-cell stack tested in SOFC mode as the baseline.  The 
furnace temperature was set at 800oC.  Diluted hydrogen with 50% N2 was used as the fuel and air was 
the oxidant.   
 
Figure 142 shows the first 1-cell stack performance characteristics operating in the SOFC mode 
as the baseline test.  Diluted hydrogen with 50% N2 was used as the fuel and air was the oxidant.  
Both the fuel and air utilizations were fixed at 40%.  The furnace temperature was set to 800oC.  
At 30A, this stack generated 17 watts power.  Following the SOFC baseline test, a long-term test 
was carried out to study the effect of the LSCM cathode conductivity on the durability of the 
stack in the continuous hydrogen production mode.  Figure 143 shows the stack long-term test 
results.  Pure steam was used as the cathode feed gas in this study.  Over the 200 hours long-term 
test, the stack voltage degraded from initial -0.15V to -0.42V at the constant current 30 A (or  
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Figure 162.  Cost profile of adopting the first system configuration (SOFEC-SOFC hybrid technology for 
hydrogen and electricity co-generation). 
 
Figure 162 shows preliminary results of the estimates of the Cost of Hydrogen (CoH) per kg for 
the proposed cogeneration system.  With 30% federal incentive, the CoH was around 
$9.10/kg_H2 for delivering per kg of hydrogen compressed to 5000 psig.  As shown in the chart, 
the capital costs accounted for over 50% of the total cost, leaving much room for further 
improvement.  Consequently, this cost estimation was presented as a means to understand the 
effects of factors (i.e. system costs, materials selection, incentive program, etc.) on the cost of 
hydrogen production and to guide future research and development and should not be construed 
as a prediction of the techno-economic limit of this technology in its fully developed form.   
 
 
Task 10 Project Management and Reporting 
 
Through the joint efforts of MSRI and its subcontractors, UAF, MS&T and the University of 
Utah, a large degree of success was achieved in this project.  The team structure leveraged the 
strength and expertise of each team members; MSRI coordinated the teams’ efforts, and 
collaborated closely with the other organizations to achieve project goals.  The program kickoff 
meeting with the subcontractors was held successfully at the onset of the project at MSRI.  PIs 
and key personnel from MSRI, UAF, MS&T, and Utah defined and discussed the objectives and 
tasks of the program, and availability analyses of labor resources.  Regular conference calls and 
annual meetings were held to discuss solutions to technical challenges which arose; all the 
quarterly reports, annual reports, and the final report were completed and submitted as required.   
 
MSRI’s Hydrogen Risk Mitigation Plan was modified using recommendations from the DOE 
Hydrogen Safety Panel, and the plan has been executing to minimize potential risks.  MSRI 
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Hydrogen Safety Plan covered key elements, including Identification of Safety Vulnerabilities 
(ISV), Safety Performance Monitoring, Management of Change, Employee Training, Equipment 
Integrity, Maintenance of Safety Documentation, Safety Events Reporting, and Emergency 
Response procedures.  MSRI has been developing SOFC technologies using hydrogen as one of 
energy resources for more than 10 years, and extensive practical experience have been obtained 
for hydrogen handling and usage.  To better manage hydrogen usage risks, MSRI has worked 
with the local office of Praxair to set up a hydrogen delivery system for large flow rate 
applications, including the construction of a shelter built outside of MSRI’s main building to 
house hydrogen storage units.  MSRI hosted a visit, post-construction, of the DOE hydrogen 
safety review team to verify compliance and recommend further actions that can be taken to 
increase safety during the handling of combustable gasses; these recommendations were 
incorporated into the MSRI hydrogen safety plan.  
 
 
Report Appendix 
 
A1 Figure Captions 

Figure 1.  Electrical conductivity of LSCr, LSM and LSCM as a function of oxygen activity 
measured at 800ºC 

Figure 2.  Electrical conductivity of LSM as a function of oxygen activity and temperatures 

Figure 3.  Electrical conductivity of LSCM as a function of oxygen activity and temperatures 

Figure 4.  Impedance spectroscopy of LSCM in air 

Figure 5.  Impedance spectroscopy of LSCM-Ag in air after redox process 

Figure 6.  Impedance spectroscopy of LSCM-Ag during fuel cell test 

Figure 7.  Impedance spectroscopy of LSCM-Ag after fuel cell test 

Figure 8.  Impedance spectroscopy of LSCrM with Pt current collector in air 

Figure 9.  I-V charge profile of LSCM with Pt collector 

Figure 10.  The power density of a symmetric cell printed with LSCM cathode and Pt collector 

Figure 11.  Impedance spectroscopy of LSCM in both air and wet 10% H2 at 800ºC 

Figure 12.  LST powders using ethylene glycol – nitrate method 

Figure 13.  LSCM powders using ethylene glycol – nitrate method 

Figure 14.  XRD of LST, LSCM and 50wt%LST – 50wt%LSCM mixture annealed at 600, 1000 
and 1200ºC, respectively. 

Figure 15.  XRD of 50wt%LST – 50wt%LSCM sintered at 1200, 1300 and 1400ºC 

Figure 16.  SEM micrographs at 10KX for LST/LSCM sintered between 900ºC, 1000ºC, 1100ºC, 
1200ºC, 1300ºC and 1400ºC. 

Figure 17.  Conductivities of LST(0.8/0.2/1)/LSCM(0.8/0.2/0.5/0.5) sintered at 1000-1400ºC 
were measured as a function of oxygen activity at 900ºC 

Figure 18.  Electrical conductivity of LST(0.8/0.2/1) sintered at 1200ºC as a function of oxygen 
activity at 900ºC 

Figure 19.  Chemical analysis of LST/LSCM sintered at 1100oC (a,b) and at 1200ºC (c,d) 
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Figure 20.  Conductivity of Gd0.2Ce0.8O2-δ discs sintered at 1100ºC and 1400ºC (~ 75 and >90% 
of theoretical density, respectively) measured as a function of temperature in air 

Figure 21.  Conductivity of a porous Gd0.2Ce0.8O2-δ pellet (sintered at 1100ºC, ~ 75% of 
theoretical density) as a function of oxygen activity at 800ºC 

Figure 22.  Impedance spectroscopy of SDC discs as a function of temperature with frequency 
range between 1 – 1e6 Hz (surface area of the electrode was 0.5 cm2) 

Figure 22.  Impedance spectroscopy of SDC discs as a function of temperature with frequency 
range between 1 – 1e6 Hz (surface area of the electrode was 0.5 cm2) 

Figure 23.  Activation energy of SDC discs as a function of temperature. 

Figure 24.  Redox stability of GDC tested in air and wet-forming gas (10%H2 bal. N2) at 800oC 

Figure 25.  Redox stability of SDC tested in air and wet-forming gas (10%H2 bal. N2) between 
500 and 800oC 

Figure 26.  Conductivity of a mixture of n-type Sm0.2Ce0.8O2 and p-type La0.75Sr0.25Cr0.5Mn0.5O3 
as a function of oxygen activities at 800ºC 

Figure 27.  XRD pattern of a mixture of 50wt% of Sm0.2Ce0.8O2 and 50wt% of 
La0.75Sr0.25Cr0.5Mn0.5O3 sintered at 1300ºC 

Figure 28.  MSRI anode-supported SOFCs. 

Figure 29.  Porosity and composite matrix for the NiO-YSZ system 

Figure 30.  SEM micrograph of a 80/20 cell with no pore former additive 

Figure 31.  SEM micrograph of a 70/30 cell with type A pore former additive 

Figure 32.  SEM micrograph of a 70/30 cell type A pore former 

Figure 33.  SEM micrograph of a 70/30 cell type A pore former polished 

Figure 34 SEM micrograph of a 70/30 cell type B pore former 

Figure 35. A SEM micrograph of an anode substrate using Unitec powder with Type B pore 
former additive 

Figure 36.  a picture of cells fabricated for the 5 kW hybrid system 

Figure 37.  Photographs of the NiO-8YSZ (4”x4”) and NiO-4YSZ (1” dia) as-received samples 

Figure 38.  Schematic diagram of the experimental design used for evaluating Young’s modulus 
as a function of temperature 

Figure 39. A schematic of the specimen and loading configuration in the ring-on-ring test 

Figure 40. (a) Optical micrographs showing the cross sectional view of the as-received NiO-
8YSZ half-cell samples (Batch I : 600 µm thick; batch II : 900 µm thick); (b) Electrolyte and 
anode layers observed in as-received NiO-8YSZ batch II samples at a higher magnification 

Figure 41.  Optical micrographs of the anode surface of as-received and the heat treated NiO-
8YSZ samples (Batch I) : (a) as-received, (b) 800ºC, (c) 1000ºC, (d) 1250ºC, and (e) 1500ºC.  
Note that the pore distribution was not uniform and the pores were mostly interconnected. 

Figure 42.  Optical micrographs of the electrolyte surface of as-received and the heat treated 
NiO-8YSZ samples (Batch I) : (a) as-received, (b) 800ºC, (c) 1000ºC, (d) 1250ºC, and (e & f) 
1500ºC. 

Figure 43.  Grain size distribution in 8YSZ electrolytes (Batch I) after heat treating at 1500ºC. 
The average grain size was ~10 µm. 
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Figure 44.  SEM micrographs of NiO-4YSZ button cell samples (cross sectional view). 

Figure 45.  SEM micrograph of the NiO-4YSZ (a) anode and (b) electrolyte layer. 

Figure 46.  SEM micrographs of NiO-8YSZ samples (Batch I) in cross section. Low 
magnifications : (a) secondary electron image and (b) back scattered electron image. (c & d) high 
magnifications. Note the irregular shaped pores dispersed in the anode structure. The electrolyte 
was dense and showed no delamination or cracks at the interface. 

Figure 47.  Secondary electron image (a) and back scattered electron image (b) of the NiO-4YSZ 
button cell anode, (c & d) EDX spectra taken from the NiO and YSZ grains respectively. 

Figure 48.  Secondary electron image (a) and back scattered electron image (b) of the NiO-8YSZ 
anode (Batch I). EDX spectra taken from the NiO and YSZ grains respectively. 

Figure 49.  Effect of reduction on development of microstructure in NiO-8YSZ half-cells (Batch 
II). NiO gradually reduced from the edge of the anode and spread across the half-cell towards the 
electrolyte layer as the time of exposure increases. 

Figure 50.  Development of Ni-8YSZ microstructure (Batch II) in details.  The reducing 
atmosphere formed a thin layer of Ni on the NiO grains, which gradually growed until the whole 
NiO grain was reduced to Ni. 

Figure 51.  SEM micrographs in the anode surface of (a) as-received, (b) 10 min, (c) 30 min, (d) 
2 h and (e) 8 h reduced NiO-8YSZ samples (Batch I). 

Figure 52.  A back scattered image of the NiO-8YSZ anode reduced at 800ºC in 5% H2 for 10 
min. (Note the formation of Ni layers on the NiO particles) 

Figure 53.  X-ray diffractograms of (a) electrolyte and (b) anode of a NiO-4YSZ button cell. “*” 
denotes NiO peaks. 

Figure 54.  X-ray diffractograms of (a) electrolyte and (b) anode of a NiO-8YSZ cell (Batch I, 
600 µm thick). “**” and “*” denoted t-ZrO2 and NiO peaks respectively. 

Figure 55.  Measured values of (a) porosity and (b) density in the reduced NiO-8YSZ (Batch I) 
half-cell samples as a function of reduction time 

Figure 56.  TG thermograms, showing the oxidation of Ni in the NiO-8YSZ (Batch I) samples 
reduced for (b) 10 min, (c) 30 min, (d) 2 h and (e) 8 h when subjected to a temperature profile (a) 
in air. 

Figure 57.  The fraction of reduced NiO (%) in the NiO-8YSZ (Batch I) samples as a function of 
reduction time.  The inset figure showed the x-ray diffractograms in the anode surface of the as-
received and the reduced samples. 

Figure 58.  X-ray diffractograms of pulverized half-cell samples of (a) as-received NiO-8YSZ 
(Batch I) and after reducing at 800 0C in 5% H2 – 95% Ar atmosphere for (b) 10 min, (c) 30 min, 
(d) 2 h and (e) 8 h. 

Figure 59.  Measured values of (a) porosity and (b) density in the reduced NiO-8YSZ (Batch II) 
half-cell samples as a function of reduction time 

Figure 60.  (a) Weight loss (%) and (b) reduced NiO (%) observed in the reduced NiO-8YSZ 
(Batch II, 900 µm thick) half-cell samples as a function of reduction time. 

Figure 61.  X-ray diffractograms of the anode surface of (a) as-received (900 µm thick, batch II) 
half-cells and the samples reduced for (b) 10 min, (c) 30 min, (d) 1 h, (e) 2 h, (f) 8 h and the 
samples (g) boiled in water for 2 h after reducing for 8 h. 
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Figure 62.  XRD patterns of pulverized (a) as-received and (b) 8 h reduced NiO-8YSZ (900 m 
thick, Batch II) half-cell samples. 

Figure 63.  Hardness values measured in the anode surface of the heat treated NiO-4YSZ 
samples. 

Figure 64.  The effect of heat treatment on the hardness of the NiO-8YSZ anode. 

Figure 65.  The effect of heat treatment on the hardness of the electrolyte. 

Figure 66.  The effect of heat treatment on the fracture toughness of the NiO-8YSZ anodes. 

Figure 67.  Hardness values plotted as a function of porosity in the as-received and the reduced 
NiO-8YSZ (600 µm thick, batch I) samples. 

Figure 68.  Hardness values plotted as a function of porosity in the as-received and the reduced 
NiO-8YSZ (900 m thick, batch II) anode samples. 

Figure 69.  Room temperature Young’s and shear moduli values plotted as a function of porosity 
in the as-received and the reduced NiO-8YSZ (Batch I) anode samples. 

Figure 70.  Room temperature (a) Young’s and (b) shear moduli values plotted as a function of 
porosity in the as-received and the reduced NiO-8YSZ (Batch II) anode samples. 

Figure 71.  The variation of the total expansion coefficients of as-received NiO-8YSZ (600 µm 
thick, batch I) samples on heating (a) and cooling (b) in air at 3 K/min.  The insert showed the 
change in thermal expansion behavior at the vicinity of the temperature at which 
structural/magnetic transition of NiO occurs during heating and cooling. 

Figure 72.  The thermal expansion coefficient values of as-received NiO-8YSZ (900 µm thick, 
batch II) samples on (a) heating and (b) cooling in air at 3 K/min. 

Figure 73.  Young’s moduli values plotted as a function of temperature in the as-received and the 
reduced NiO-8YSZ (600 µm thick, batch I) anode samples 

Figure 74.  The variation of Young’s modulus with temperature in (a) as-received, (b) 10 min, 
(c) 30 min, (d) 1 h, (e) 2 h and (f) 8 h reduced NiO-8YSZ (900 m thick, batch II) samples. 

Figure 75.  Young’s moduli values of the as-received and 8 h reduced Ni-8YSZ half-cells as a 
function of temperature. 

Figure 76.  Photographs of biaxial fixture (a) and fractured half-cell (b). 

Figure 77.  Effect of reduction on the biaxial strength (measured at room temperature in ambient 
air) and development of porosity in the 900 µm thick, batch II samples. 

Figure 78.  Effect of reduction on the equibiaxial strength of the reduced NiO-8YSZ (batch I) 
half-cells at room temperature.  The influence of reduction on porosity was also given for 
comparison. 

Figure 79.  Typical failure origined closer to the tensile surface (batch I samples): (a) 
agglomerate of YSZ; (b) pull out of NiO agglomerate; (c, d, e and f) cavities formed during 
casting. 

Figure 80.  The typical fracture behavior of the fully reduced half-cells at 800 0C in 5% H2 
atmosphere. 

Figure 81.  Typical load-displacement curves of the half-cells at room temperature in air and 
800ºC in reducing atmosphere. 

Figure 82.  The near-surface volume flaws observed in the as-received 900 µm thick, batch II 
half-cells. 
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Figure 83.  Fracture surface of a fully reduced half-cell with a volume flaw. 

Figure 84.  Weibull plots for equibiaxial tests at (a) room temperature and (b) at reducing 
conditions (800ºC in 5% H2) for as-received half-cells (batch II) 

Figure 85.  The variation of porosity (a) and density (b) with the number of thermal cycles 
treated to the 900 µm thick, unreduced NiO-8YSZ samples. 

Figure 86.  Cross sectional view of a fractured NiO-8YSZ sample treated for 50 cycles. 

Figure 87.  Hardness values in the anode surface of the thermal cycled NiO-8YSZ samples. 

Figure 88.  Room temperature Young’s and shear moduli values in the NiO-8YSZ samples 
plotted as a function of the number of thermal cycles treated. 

Figure 89.  Damage modes that may be observed in a bi-layer system subjected to an indentation 
loading. 

Figure 90.  The finite element model used in the simulations. 

Figure 91.  Plane views of stress distributions in as-received NiO-8YSZ (Batch I) samples. 

Figure 92.  Three-dimensional simulation of stress distributions in as-received NiO-8YSZ (Batch 
I) samples. 

Figure 93.  The 3D contour of the maximum principal stress. 

Figure 94.  Simulated indentation force versus depth curve. The force and depth are normalized 
by their maximum values. 

Figure 95.  (a) Simulated indentation mark on electrolyte side. Colors represent different stress 
levels on the indented samples. (b) Optical image of indentation mark on the electrolyte (Load 50 
gm at 500x). 

Figure 96.  Thermal expansion coefficient for sealing glass compositions after heating to 800ºC 
in air for over an extended period 

Figure 97.  Electrical conductivity for G#81 sealing glass-ceramics as a function of time in air 
and H2 at 800ºC 

Figure 98.  Differential thermal analyses of glass #50 powders with different average particle 
sizes, at a heating rate of 10ºC/min 

Figure 99.  Pictures of the hermeticity test showing in (a) tubular furnace and the apparatus used 
for the test and in (b) seals between 430SS discs and Ni-YSZ used during the test 

Figure 100.  SEM picture of a seal between 8%YSZ (left) and G#81 (right) with 25µm particle 
size treated at 850ºC for 1 hour in air 

Figure 101.  Exploded view of the spring-loaded single-cell test fixture designed for SOFC-
SOFEC evaluation 

Figure 102.  Performance comparison for anode support cells with LSM cathode and tested in 
SOFC mode with H2 fuel at 800oC.  Four types of anode substrates: NiO/8YSZ at 80/20 ratio, 
NiO/8YSZ at 67/33 ratio with Type A pore former, NiO/8YSZ at 65/35 ratio with Type B pore 
former, and NiO/8YSZ using Unitec powder at 65/35 ratio with Type B pore former. 

Figure 103.  Performance comparisons for anode substrates made of Tosoh powder and Unitec 
powder.  Type B pore former were used in both cases.  Cells were tested in SOFC mode at 
800oC. 

Figure 104.  SEM micrograph of the modified composite cathode microstructures 

Figure 105.  Close look of a SEM micrograph of the cathode microstructures 
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Figure 106.  One inch button cell performance comparisons tested in SOFC mode. 

Figure 107.  One inch button cell performance comparisons tested in SOFC mode 

Figure 108.  X-ray diffraction patterns of the perovskite powder using conventional solid oxide 
reaction method 

Figure 109.  X-ray diffraction patterns of the perovskite powder using combustion synthesis 
method. 

Figure 110.  Voltage and power density as a function of current density for a cell with 
commercial LSCM and with commercial LSCM+cobalt nitrate infiltration as cathode. 

Figure 111.  Voltage and power density as a function of current density for a cell with LSCM 
prepared by combustion method and LSCM prepared by combustion method+cobalt nitrate 
infiltration as cathode 

Figure 112.  Voltage and power density as a function of current density for a cell with LSCM 
prepared by oxide reaction method and LSCM prepared by oxide reaction method +cobalt nitrate 
infiltration as cathode 

Figure 113.  Typical performance characteristics of a button-cell operated in the reversible SOFC 
and SOFEC modes at 800oC 

Figure 114.  Exploded view of the SOFEC-SOFC hybrid stack design 

Figure 115.  Cutaway view showing the insulated modulated compression hardware for a stack 

Figure 116.  Rendering of the compression hardware assembly 

Figure 117.  Three alternative system configurations 

Figure 118.  Schematic of the two operation modes for the “C” configuration 

Figure 119.  Polarization curves for configuration “C” in two operation modes 

Figure 120.  Computed system cogeneration efficiency based on measure hybrid stack 
performance 

Figure 121.  System diagram of the “C” configuration 

Figure 122.  Rendering of the preliminary system configuration showing the major sub-systems, 
inlet and outlet streams. 

Figure 123.  Rendering of the tailgas-fired generator design 

Figure 124.  Cut-away view of the design for the tail-gas fired process heaters 

Figure 125.  A photograph of a 10-cell stack assembly ready for testing.  Each cell had 100 cm2 
active area and attached with a voltage lead, 

Figure 126.  Performance characteristics of a 10-cell stack tested in SOFC mode as the baseline.  
Per-cell active area was 100cm2.  The furnace temperature was set at 770oC.  Wet Syngas (with 
30% steam) was used as the fuel and air was the oxidant.  Both the fuel and oxidant utilizations 
were fixed at 40%. 

Figure 127.  Performance characteristics of a 10-cell stack operated in the SOFEC mode for 
hydrogen production.  Per-cell active area was 100cm2.  The furnace temperature was set at 
770oC.  Wet Syngas (with 30% steam) was used as the fuel and steam was used as the oxidant.  
Both the fuel and steam utilizations were fixed at 40%. 

Figure 128.  Thermal cycling effects on the stack performance.  The temperature was cycled 
from the room temperature to 770oC and then back to the room temperature.  The fuel was wet 
syngas, and the oxidant was either air in SOFC mode or steam in SOFEC mode. 
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Figure 129.  10-cell stack performance vs. number of thermal cycle tested in the reversible 
SOFC/SOFEC modes.  The temperature was cycled from room temperature to 770oC and then 
back to room temperature.  The fuel was wet syngas, and the oxidant was either air in SOFC 
mode or steam in SOFEC mode. 

Figure 130.  Performance characteristics of a 10-cell stack (4-SOFC + 6-SOFEC) tested in SOFC 
mode as the baseline.  The furnace temperature was set at 800oC.  Diluted hydrogen with 50% N2 
was used as the fuel and air was the oxidant.  Both the fuel and oxidant utilizations were 
increased from 40% to 60%. 

Figure 131.  Performance characteristics of a 10-cell stack operated in the hybrid mode for 
hydrogen and electricity co-generation.  The furnace temperature was set at 800oC.  Diluted 
hydrogen with 50% N2 was used as the fuel on the anodes of both 4-SOFC and 6-SOFEC.  Air 
and steam were on the cathodes of the 4-SOFC and 6-SOFEC, respectively.  Both the fuel and 
air utilizations were fixed at 60%, while steam utilization changed from 40% to 60%. 

Figure 132.  Performance comparisons of the 10-cell hybrid stack using two types of fuels: 
hydrogen diluted with 50% N2 and syngas.  Under the both cases, the utilizations of the fuel, air 
and steam were fixed at 60%, 60% and 40%, respectively.  The furnace temperature was set at 
800oC. 

Figure 133.  Continuous co-generation of hydrogen and electricity.  Utilizations of syngas, air, 
and steam were fixed at 60%, 60%, 40%, respectively.  The furnace temperature was set at 
800oC. 

Figure 134.  Voltage characteristics of each cell over the 48 hours continuous test. 

Figure 135.  Continuous cogeneration of hydrogen and electricity 

Figure 136.  Continuous cogeneration of hydrogen and electricity 

Figure 137.  Photograph of the 10-cell hybrid stack (7-SOFEC & 3-SOFC) after testing 

Figure 138.  SEM micrograph of Cell No.1 (SOFC) 

Figure 139.  SEM micrograph of Cell No. 3 (SOFC) 

Figure 140.  SEM micrograph of Cell No. 10 (SOFEC) 

Figure 141.  LSCM conductivity as a function of oxygen activity measured at 800oC 

Figure 142.  Performance characteristics of a 1-cell stack tested in SOFC mode as the baseline.  
The furnace temperature was set at 800oC.  Diluted hydrogen with 50% N2 was used as the fuel 
and air was the oxidant. 

Figure 143.  Long-term test of a 1-cell stack in the SOFEC mode for hydrogen production 

Figure 144.  SOFC operation at scheduled time 

Figure 145.  Long-term test of a 4”x4” 1-cell stack in the SOFEC mode 

Figure 146.  Long-term test of a 4”x4” 1-cell stack in the SOFEC mode 

Figure 147.  SOFC operation at scheduled time 

Figure 148.  Rendering of the 5 kW hybrid system configuration in detail 

Figure 149.  Nicro-spray system 

Figure 150.  Photograph of the retort furnace used for fabricating interconnects 

Figure 151.  Photograph of five sets of compression hardware machined for modular stacks (the 
missing one was installed in test station already) 
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Figure 152.  Photographs of the 40-cell stack before test (a) and post test (b) 

Figure 153.  Performance characteristics of the 40-cell SOFC stack 

Figure 154.  Continuous test in the power generation mode 

Figure 155.  Photograph of the assembled steam generator before testing 

Figure 156.  Photograph of the bench-top test configuration for the steam delivery system, after 
testing 

Figure 157.  Flow rate measurements (based on mass balance) of steam generation under steady 
flow of simulated lean tailgas and air. 

Figure 158.  Two tailgas-fired process heaters packed with catalysts 

Figure 159.  Photograph of the catalyst material used in the tailgas-fired process heaters, along 
with the micro-perforated SS foil used as the air diffuser 

Figure 160.  Temperature profile of the process gas heater operating on a dilute fuel (50/50 
N2/H2), Stoich. air, and heating ambient air, and compositions of the combustion product stream 
for 3 cases. 

Figure 161  Photograph of the components of the control systems and power regulators 

Figure 162.  Cost profile of adopting the first system configuration (SOFEC-SOFC hybrid 
technology for hydrogen and electricity co-generation). 
 
A2 Table Captions 

Table 1. Samples studied and characterized 

Table 2.  Bulk density and apparent porosity of the as-received half-cell samples 

Table 3  Lattice parameters and lattice volumes observed in as-received and reduced NiO-8YSZ 
(Batch II) samples. 

Table 4.  Equibiaxial strength of the half-cells at 800 0C in ambient air and reducing atmosphere 

Table 5.  Characteristic temperature for G#50 glasses with different particle sizes 

Table 6.  DTA and HSM data for G#50 with different average particle sizes, at heating rate of 
5oC/min. 

Table 7.  Summary of recent thermal cycling tests of glass seals.* 

Table 8.  Cell performance summary 
 
A3 Abbreviations 
 

 ASR – area specific resistance 

 BOP – balance-of-plant 

 C-DAQ – compact data acquisition 

 CL – current collector layer 

 CIL – current functional layer 

 DTA – differential thermal analyses 

 DIR – direct internal reforming 

 EDAX – energy dispersive X-Ray 
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 GC – gas chromatograph 

 GDC – gadolinium doped ceria 

 HTED – high temperature electrochemical devices 

 LSCF – (La, Sr)(Co, Fe)O3 

 LSCM – (La, Sr)(Cr, Mn)O3 

 LSC – (La, Sr)CoO3 

 LSCr – (La, Sr)CrO3 

 LSM – (La, Sr)MnO3  

 LST – (La, Sr)TiO3  

 MPD – maximum power density 

 MSRI – Materials and Systems Research Inc. 

 MS&T – Missouri University of Science and Technology 

 OCV – open circuit voltage 

 PEM – proton exchange membrane 

 SCCM – standard cubic centimeter per minute 

 SDC – samarium doped ceria 

 SEM – scanning electron microscope 

 SLPH – standard liter per hour 

 SLPM – standard liter per minute 

 SMR – steam methane reforming 

 SOEC – solid oxide electrolysis cell 

 SOFC – solid oxide fuel cell 

 SOFEC – solid oxide fuel-assisted electrolysis cell 

 SSR – solid state relay 

 TEC – thermal expansion coefficient 

 TGA – thermogravimetric analysis 

 TPB – triple phase boundary 

 UAF – University of Alaska Fairbanks 

 Utah – University of Utah 

 XRD – X-Ray Diffraction 

 YSZ – yttria-stabilized zirconia 
 


