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Abstract 

 

Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great 

importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). 

Currently RPM’s ability to distinguish these radiological sources is seriously hampered by the 

energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) 

are ubiquitous in commerce, false alarms are problematic as they require additional resources in 

secondary inspection in addition to impacts on commerce. To increase the sensitivity of such 

detection systems without increasing false alarm rates, alarm metrics need to incorporate the 

ability to distinguish benign and threat sources. Principal component analysis (PCA) and 

clustering technique were implemented in the present study. Such techniques were investigated 

for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources 

without loss of specificity. Results of the investigation demonstrated improved sensitivity and 

specificity in discriminating benign sources from threat sources.  
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NOMENCLATURE 
 

 

CBP  Customs and Border Protection 
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GADRAS GAmma Detector Response and Analysis 

HEU  Highly Enrich Uranium 

HPGe   High Purity Germanium (detector) 

LEU   Low Enriched Uranium 

N/FAP  Nuisance or False Alarm Probability  

NORM  Naturally Occurring Radioactive Material 

NYCT   New York Container Terminal  

PNNL   Pacific Northwest National Laboratory  

PCA   Principal Component Analysis  

POE   Ports of Entry 

PVT   Polyvinyl Toluene 

RDD   Radiological Dispersal Device 

RGPu  Reactor Grade Plutonium 

RPM   Radiation Portal Monitor 

SNL   Sandia National Laboratories 

SNM   Special Nuclear Materials 

WG Pu  Weapon Grade Plutonium 
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1.  INTRODUCTION  
 

 

U.S. Customs and Border Protection (CBP) has deployed Radiation portal monitors (RPMs) at 

ports of entries (POEs) and land crossing throughout the United States to monitor the trafficking 

of illicit radioactive materials. The RPM systems has also been deployed worldwide in many 

countries to inspect gamma and neutron emissions of vehicular and commercial traffic for the 

presence of special nuclear materials (SNM) and radioactive isotopes such as ones that can be 

used in radiological dispersal devices (RDDs). However, the presence of benign sources of 

radiation has been a problem and limits the effectiveness of discriminating such threat sources. 

Benign sources include naturally occurring radioactive materials (NORM) and isotopes used in 

medical treatments and industrial devices. These materials can trigger radiation alarms at POEs 

which require additional inspection and resources to assure security. Benign source caused 

alarms are commonly known as “nuisance” alarms and can have a significant impact on traffic 

flow, economy, and operations at POEs. Plastic scintillators and Helium gas detectors are the 

most widely used RPM detectors for gamma and neutron emission detection respectively and are 

used for screening cargo and vehicles at POEs and land crossings. Plastic scintillators are the 

cheapest gamma detectors that can be found in the market and explains the reason for their wide 

deployment. However due to their inherent poor energy resolution they lack the capacity for 

discriminating threat sources from benign sources based on resolved photo peaks. However their 

shortcomings in discriminating benign and threat source energies can be augmented by 

implementing advanced post data acquisition analysis. Techniques and analysis to distinguish 

benign and threat sources at POEs have been the subject of numerous studies. Runkle et al. [1] 

did investigation in RPM data analysis to enhance the sensitivity of detecting threat or anomaly 

sources using Principal Component Analysis (PCA). Their results were promising and indicate 

that there is a possibility of lowering Nuisance or False Alarm Probability (N/FAP) and increase 

sensitivity of RPM systems.  

 

Anomaly sources or threat sources results in RPM measured signals from screening of cargo or 

vehicles that are unlikely related to expected patterns of benign source measurements. Anomaly 

or threat sources have signals that significantly differ from benign source population. Expected 

patterns are determined from analysis of historical data to estimate the distribution parameters 

such as means, variance, and modalities of the benign source population through the RPM 

system. These population distribution parameters are then used to establish anomaly detection 

thresholds that are more sensitive to weaker sources and are expected to achieve lower N/FAP. 

True alarms are decided through a statistical decision framework that implements a priori 

knowledge of benign source population or expected patterns to determine the likelihood of 

anomalous or threat signals.  

 

The present project is aimed to investigate statistical techniques that can help lower the existing 

N/FAP and increase sensitivity of detecting threat sources at POEs. Based on such a framework, 

the following objectives have been the primary goals of the present investigation. 

-To develop anomaly detection techniques to improve benign source discrimination in 

primary inspection at POEs. Therefore reduce nuisance alarm rates by increasing 

sensitivity to anomalies in the measured RPM data. 
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-To evaluate the performance of anomaly detection for sensitivity in anomaly detection 

-Implement gamma and neutron sensors fusion to enhance the probability of detecting 

anomalous signals. 

-To investigate and optimize energy window parameters to improve anomaly detection 

 

To fulfill the project objectives simulated data based on the New York Container Terminal 

(NYCT) measurements were used to investigate techniques that may allow lowering the N/FAP. 

Sandia developed GAmma Detector Response and Analysis (GADRAS) [2] particle transport 

software used in simulating background, benign, and threat source data. Using GADRAS 

generated data, Principal Component Analysis (PCA) and clustering techniques were 

implemented coupled to the Mahalanobis distance metric [3]. Receiver Operating Characteristic 

(ROC) curves were generated to highlight the performance and efficiency of the implemented 

techniques. Based on the investigation results, the implemented techniques show potential for 

lowering N/FAP at POEs. Further work, however, is required to refine and establish the 

techniques for the N/FAP reduction and efficient discrimination of benign sources from threat 

sources. However, fusion of gamma and neutron sensors has been found not to impact the project 

goals. Detection of a significant neutron signal above background is an outright indication of 

threat sources and it may not be necessary to go through implementation of statistical analysis 

that is described in the project. Therefore focus was made on scenarios that involve only gamma 

emissions either from benign or threat sources. 
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2 RPM SYSTEMS 
2.1 PVT Detectors 
 
Polyvinyl Toluene (PVT) is an organic plastic scintillator that is widely deployed in RPM 

systems for detecting gamma radiation emission in Cargo and vehicle screening at POEs. The 

wide implementation of PVT is mainly due to its relatively good sensitivity and cost-

effectiveness compared to other detection materials. Pulse height or Gamma spectrum from PVT 

are broad distribution because gamma-rays interact primarily by Compton scattering with low 

atomic weight elements such as carbon and hydrogen. Typical measured gamma spectrum from 

PVT for common commodity materials and background are shown in Figure 1 [4]. The basic 

physics associated with PVT material hampers resolving the full energy deposition of gamma 

energy. PVT is therefore not used for discrimination of gamma energies and instead is used for 

gross counting of the gamma energy signals due to poor energy resolution. Gamma radiation 

interaction with PVT material results in the emission of light, which is detected by a 

photomultiplier tube (PMT) and converted into an electronic signal. This electronic signal is fed 

into an associated electronic circuit that counts the number of electronic signals from the PVT 

above a minimum set threshold energy. The Compton continuum observed in PVTs, however, 

contains some energy information that can be mined for discrimination of benign and threat 

sources at POEs using advanced techniques. The PVT gamma spectral response is binned into 

256 channels. To facilitate the mining of information, thus the discrimination of benign and 

threat sources, the response is grouped under nine energy windows as shown in Figure 2 [5]. 

Each energy window represents the total sum of counts for a certain energy range. The number 

 
Figure 1 Typical measured gamma spectrum from PVT for common commodity materials and 
background [4]. As can be seen in the spectra, there are no visible peaks that are from full 
energy absorption of incident gamma energy. 
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and width of the energy windows, however, is still a question of interest. Ely et al [4] discussed 

and tried to address this question in their work and have pointed out that proper energy 

windowing can help in discrimination of benign and threat sources through data mining.  

 

2.2 Nuisance Alarm 
 

RPMs deployed at the POEs commonly encounter alarms from statistical fluctuations in counts 

or from non-threat or benign sources. Gamma or neutron radiation can cause RPMs to trigger an 

alarm procedure. Alarms can be caused by statistical fluctuations of electronic signals registered 

by the RPM system. The alarm threshold set at POEs is fixed and any increased fluctuation 

above the threshold set can trigger the alarm (filtered signals are used for setting an alarm and 

therefore this type of alarm is not very common). These alarms are referred to as false alarms. 

Alarms can also be caused by benign sources loaded in cargos or vehicles. These alarms are 

referred to as nuisance alarms. Nuisance alarms have been a major concern since they result in 

disruption of traffic flow at the POEs and necessitate a secondary inspection. These alarms have 

significant impact on the economy, commerce, and demand for additional resources for 

screening alarming vehicle. It is also true that these alarms may not be associated with a single 

detector. In multi-lane architecture screening, several of these alarms may be triggered, which 

may be associated with a single cargo or vehicle with benign or possibly threat sources. In such 

cargo and vehicles screening scenarios, identifying the alarming vehicle is more difficult and 

possibly subject vehicles in the multi-lane screening system for a secondary inspection. It will 

not be difficult to figure out, in such cases, the impact on the traffic and 

  
 

 
Figure 2 Simulated Th-232 PVT spectrum using GADRAS software [5]. As marked by differing 
colors, nine energy windows were established for spectral feature analysis. 
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economy. Such nuisance alarms could have been avoidable, in principle, if better energy 

resolution detectors have been implemented at the POEs for discrimination of benign and threat 

sources. However, the multiple triggering scenarios, even though associated with poor energy 

resolution of the PVT in the RPM system, are beyond the scope of the present study. A single 

alarm caused by PVT RPM systems and the possibility of discriminating benign and threat 

sources and the possibility of enhancing sensitivity to threat sources is investigated. 

 

2.3 Benign Sources 

RPMs alarms are triggered by either Gamma radiation or neutron radiation. Alarms caused by 

statistical fluctuations that are intrinsic to radiation detection are referred to as false alarms. 

Alarms caused by benign radioactive sources that are ubiquitous are referred to as nuisance 

alarms. Nuisance alarms can be grouped into two major groups: 

1 Naturally occurring radioactive materials (NORM) and technically enhanced NORM 

(TENORM) 

a. Ceramic, tiles, porcelain, pottery, granite, clay, and other rock and clay based 

product contain elevated levels of naturally occurring 
40

Potassium and to a 

smaller degree 
232

Thorium 

b. Propane gas tankers, full or empty, contain elevated levels of 
226

Radium 

c. Many fertilizers and potash contain elevated levels of 
40

Potassium 

d. Cat litter contains elevated levels of 
232

Thorium 

2 Medical isotope alarms constitute the majority of alarms in privately owned vehicle lanes 

at land borders and are usually due to medical treatment of the driver or passengers, 

mostly due to 
99m

Technetium 
201

Thallium and 
131

Iodine. 
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3.0 DATA MINING  
 

Data Mining is a process of discovering new patterns from datasets using statistical analysis. It 

involves six distinct classes [6]: 

 -Anomaly detection also known as Outlier detection. 

 -Association learning that investigates relationship between variables 

 -Clustering that investigates groups having similar characteristics 

 -Classification involving categorizing data using known general structures 

-Regression attempting to find a function modeling the data with minimized error 

-Summarization representation of data set including visualization and report generation. 

Pattern recognition techniques are effective tools that may be used to discover patterns and 

define boundaries in RPM data from cargo and vehicle screening at POEs. The basic idea in 

pattern recognition is to compare the input pattern with ones that are already stored in the 

memory and check for a match. Among the various pattern recognition techniques mentioned 

above, Principal Component Analysis (PCA) and Cluster Analysis techniques are used in the 

present study.  

 

3.1. Principal Component Analysis 
 

Principal Component Analysis (PCA) is way of identifying patterns in data, and expressing the 

data in such a way so as to highlight their similarities and differences. Since patterns can be hard 

to find especially in high dimensional data, where the luxury of graphical representation is not 

available, PCA is a powerful tool for analyzing such data. The other main advantage of PCA is 

that once the patterns in the data are determined, the data can be compressed by reducing the 

number of dimensions, without much loss of information.  

 

Assuming a data matrix X, there exists an image matrix Y that is determined using an orthogonal 

basis vectors given by V. Mathematically this may be expressed as: 

Y = VX        (1) 

PCA transforms the original variables X into new uncorrelated variables Y. The new variables 

are known as principal components. A metric for the amount of information conveyed by each 

principal component is its variance. Principal components are ordered in order of decreasing 

variance. Therefore the first principal component is the most informative in depicting the pattern 

in a dataset. Reduction in dimensionality or number of variables of the problem under 

investigation can be achieved by selecting the first few PCs without losing much of the 

information. X in the context of the present study represents data for the selected nine energy 

windows for a number of measurements. We may have as many rows as possible represented by 

the nine designated energy windows. Y is the original matrix X expressed by the new basis 

vectors defined orthogonally upon transformation. The new basis vectors are also known as 

feature vectors. Details on PCA techniques are given in [7]. 

 

3.2. Cluster Analysis 
 

Cluster analysis is a technique of assigning data into distinct groups, or clusters. Objects or data 

in the same cluster are more similar and related to each other than others in a different group or 
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cluster. Clustering algorithms group data based on a measure of similarity. Some examples of 

similarity metrics for quantitative data include: mathematical distance measure, absolute error 

between a monotonically increasing function, and a measure of correlation. Given a similarity 

measure, clustering algorithms group data points into clusters such that the within-cluster point 

scatter is minimized. Thus Cluster analysis is not a single process task. Instead it is an iterative 

process of knowledge discovery. In the present study a clustering technique known as MCLUST 

of the R code package [8] was used. 

 

3.3. Mahalanobis Distance 

The Mahalanobis distance is defined between two N dimensional points scaled by the statistical 

variation in each component of the point. Let x be a multivariable vector given as: 

).,.........,( 21 nxxxx             (2) 

The mean of the multi dimensional vector is a single vector given by: 

).,.........,( 21 nxxxx             (3) 

Using the covariance matrix COV, the Mahalanobis distance between the vector x and its mean is 

given by  

 

)()()( 1 xxCOVxxxD T

M            (4) 

The Mahalanobis distance is the same as the Euclidean distance if the covariance matrix is the 

identity matrix.  It has the advantage of accounting for scaling of the coordinate axis. 

Additionally it accounts for correlation between the different features. Unlike the Euclidean 

distance, it provides curved as well as linear decision boundaries. 

3.4. Data Fusion 

Data Fusion is the use of techniques that integrate data from multiple groups or sources and unify 

the information gathered into decision making process that will be more efficient and accurate. 

Data fusion processes are commonly classified into low, intermediate or high, depending on the 

processing stage at which fusion takes place [9]. Low level fusion combines several sources of 

raw data to produce new raw data. The expectation is that fused data is more informative and 

synthetic than the original inputs. In the present project, data fusion was sought originally as a 

means of enhancing sensitivity and specificity in discrimination of benign and threat sources. 

Fusing neutron and gamma counts was one of the objectives of the present research to achieve 

the intended goal of effective discrimination of benign from threat sources. However, it was 

learnt in due process that, there is little that fusing of neutron and gamma counts add to the 

enhancement of sensitivity or specificity in anomaly detection. As it will be shown in section 

five, without even using the associated gamma counts, raised neutron counts by itself result in 
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almost 100% discrimination of benign from threat sources.  Data Fusion of RPMs in multi-lane 

POEs, however, is of future interest that can be an effective solution in discriminating RPMs that 

trigger alarm in such scenarios. 



19 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 

 
 

4.0 GADRAS SIMULATION OF RPM PVT DATA 
4.1 GADRAS Simulation Tool 
 

GADRAS is a software application developed at Sandia National Laboratories (SNL) for 

gamma-ray spectral analysis for selected radiation detectors.  GADRAS uses a full-spectrum 

analysis method to analyze gamma-ray spectra, where an entire spectrum is fit with one or more 

computed spectral templates [2].  GADRAS has the advantage in full spectral analysis of 

scintillators and semiconductor detectors such as HPGe.  These templates are used to analyze 

gamma-ray spectra that are computed using a detector response function incorporated into 

GADRAS.  Generation of parameter sets defining the detector response and characterization of 

empirical parameters that represent environmental scattering is also facilitated.  This feature of 

GADRAS was utilized to enable generation of representative spectra from NYCT using benign 

and threat sources. 

 

4.2 New York Container Terminal (NYCT) modeling 
To help in the investigation of anomaly detection techniques, GADRAS was used to simulate 

RPM PVT Spectra representative of the NYCT data. The modeled dataset is based on empirical 

parameters recorded from the NYCT RPM system. Figure 3 shows the GADRAS modeling 

framework used in the present study. 

 
 

Figure 3 GADRAS Modeling Framework. NYCT RPM data was simulated using empirical 
parameters recorded. Data was injected with known benign and threat gamma emitting 
radionuclides to assist in investigation of anomaly techniques.  

 

Based on empirical source parameters and detector response parameters of the NYCT RPM 

detector deployed, simulation of background, benign, and threat source modeling was done using 

GADRAS. It is a known fact that during the screening process of a cargo or a vehicle that 

background suppression results from shielding of the background by the moving vehicle 

structure and cargo. Estimated background suppression was integrated in the simulation. 
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Injection was then made of known benign and threat isotopes at different activity levels. Some 

known sources of interest are shown in Table 1. Typical setup in the GADRAs simulation of 

detector response function is shown in Figure 4. 

 

Table 1 

Sources of interest in anomaly detection 

SNM and Uranium Industrial Medical 
WG Pu 

60
Co 

133
Ba 

RGPu 
137

Cs
 99m

Tc 

HEU 
90

Sr 
201

Tl 

LEU  
131

I 

DU  
192

Ir 
237

Np   
232

U   

Natural Uranium   

 

 

 10.00 cm 

 Pine, 3.77 kg   

 11.17 cm 
 Iron, 12.97 kg   

 51.20 cm 

 Pine, 361.62 kg   

 51.58 cm 
 Iron, 99.51 kg   

 
 
Figure 4 Typical setup in GADRAS detector response function modeling. GADRAS uses layers 
of materials that represent the simulated detector and surrounding environment to implement 
particle transport. 
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Figure 5 Typical PVT gamma spectrum generated using GADRAS simulation tool. Counts 
detected as a result of gamma interaction were binned into 256 channels. The spectrum 
simulated is equivalent to one second detection time by the RPM modeled.  

 

A total of 256 channels were used to bin detected counts from gamma transport through the 

simulated medium. A one second equivalent detection time was used in the simulation. Figure 5 

shows a representative spectrum for one of the threat sources modeled based on the NYCT 

response parameters. 

 

Figure 5 shows a continuum of counts detected as a result of gamma interactions in the detector 

medium. There are no distinct peaks to allow spectroscopic analysis for the reason of poor 

energy resolution in PVT detectors.  Poor statistics due to the short one second detection time 

might also make photo peak detection difficult for higher resolution scintillation or 

semiconductor detectors. In principle one can do pattern recognition using PCA or cluster 

analysis straight with this simulated spectrum. However, this requires the definition of 256 

dimensions or variables that will make calculation and analysis very complex and complicated. 

Therefore as it is discussed by Ely et al., energy windowing or grouping is the best option to 

avoid the cumbersomeness in the implementation of anomaly detection techniques. Apart from 

simplifying the calculation process, energy widowing has also the advantage of increasing the 

signal-to-noise ratio for statistically improved data analysis. As shown in Figure 2, simulated 

spectra were grouped into nine energy windows or channels to assist the analysis. Accordingly 

all counts in channels allocated to a given window or channel are summed to give one data point 

or dimension in the anomaly technique implementation. Therefore nine counts or dimensions 

represent a vector for a single measurement. Energy windows implemented by Pacific Northwest 

National Laboratory (PNNL) was assumed in the present analysis. Figure 6 shows the plot for 

the nine energy windows regrouped for the benign source population. As can be seen in the
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Figure 6 Grouped gamma counts from GADRAS simulation. Each spectrum simulated with 256 
channels was regrouped into nine energy windows or channels to assist in anomaly detection 
techniques. The last energy window shows more spread due to poor statistics.  
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figure, variations in individual channel counts per second are evident as a function of the total 

counts per second. Both counts on the abscissa and the ordinate are background subtracted and 

represent net counts. Depending on the injected source type and its energy significance in the 

corresponding channels, departures from a linear trend line is observed in the plots. The energy 

ranges for the nine windows and associated channels are shown in Figure 2. 
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5.0 APPLICATION OF ANOMALY DETECTION METRIC USING 
GADRAS SIMULATED DATA 
 
5.1. Principal Component Transformation 
 

Data simulated using the GADRAS software was used for PCA in the present study. The data as 

described in previous section is configured using parameters from the NYCT RPM 

measurements.  Results from typical benign source data PCA analysis are shown in Figure 7. To 

make the PCA analysis made clear, two domains or spaces are adopted that are associated to the 

modeled data before and after PCA transformation. Accordingly, the original data before 

transformation is understood to be in the original or pattern space/domain and after its 

transformation it is understood to be in PC or feature space/domain. As can be seen from the 

figure, the first principal component, also known as the first eigen value, describes nearly 52% of 

the observed feature space. The remaining 48% feature space is described by the remaining PC 

components. It is expected that significant variation in the simulated spectrum is due to the low 

energy region that is also characterized by noise and scattered gamma rays. Subtracting the 

background data from each data representing a one second counts gives the net count mainly 

from the benign source injection made in the background. Carrying out the PCA analysis on the 

net counts gives results shown in Figure 8. The result shows similar percentage of the first 

principal component. Increase in the second component is evident after the background 

subtraction. In this particular case the first three PCs that account ~96% of the feature space may 

be sufficient to characterize the spectra. This allows the reduction of the dimension from nine to 

three. Similar to the spectrum with background data included, the background subtracted 

spectrum has significant variation around the low energy area, where the energy region is 

dominated by gamma scattering. 

 
Figure 9 shows plots of the original normalized threat and benign source data projected into PC 

space. It is evident from the plots that projecting the normalized data using the first three PCs 

shows the most variability in the feature space. Higher PCs show a decreasing significance and 

variability as can be seen in Figure 10. Therefore it may be sufficient to use the first three PCs, 

for the sources simulated, for effective discrimination of benign from threat sources.  Figure 10 

shows back projection of the benign data into the original pattern space. The red line represents 

the original data. The blue line represents back projection of the data using PC1 from feature 

space back to the pattern space. As it is evident, PC1 reflects major characteristics features of the 

original curve. This makes sure that PCA analysis is working as expected. The basis vectors or 

Eigen vectors generated from PCA analysis were used to project the original data into feature 

space and back from feature space into pattern space. Figure 11 and 12 represents the normalized 

mean and standard deviation for the benign source population considered.  

 

Identification of outliers as shown in Figure 6 is achieved by implementing appropriate metric 

suitable for discrimination. The Mahalanobis distance (MD) described in the previous section 

was used to effectively discriminate benign source population from threat sources by computing 

the distance from the expected average of the benign population in the feature space. The MD 

was calculated using equation 4 in section 3. The original or pattern data had to be mapped into 

feature space before the MD calculation. It is described in section 3 that using more PCs may 
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describe subtle or more features of the pattern or original space. At the same time redundant 

features may be included. After the MD calculation the Receiver Operating Characteristics 

(ROC) was calculated using an MD threshold associated with a specific false alarm Rate (FAR). 

 

 
Figure 7 Principal Components evaluated for a selected benign source. As can be seen on the 
figure, the first principal component describes nearly 52% of the feature space.  

 

 

 
Figure 8 Principal Components evaluated for background subtracted benign source. The 
second principal component has significantly changed and describes nearly 32% of the feature 
space.  
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Figure 9 Threat and benign source data mapped into PC feature space. Projections using the 
first three PCs show the most variability accounting noise and gamma scattering in low energy 
region.   
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Figure 10 Threat and benign source data mapped into PC feature space. Higher PCs, those 
above PC4, show a decreasing significance and variability.   
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Figure 11 Data projected back into pattern space from feature space using PC1 coefficients 
loading. The projected data shown in blue closely matches the original data. It is evident that 
PC1 reflects major characteristics features of the original curve.  

 

 
Figure 12 Normalized mean value vector for individual energy windows used in the benign 
source data. The average counts reduce at higher energy regions. 
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Figure 13 Normalized standard deviation (sigma) vector for individual energy windows in the 
benign source data. 

 

5.2 Receiver Operating Characteristics (ROC) Curves 

ROC curves enable evaluation of sensitivity and specificity of an employed detection technique 

and are fundamental tools for diagnostic test evaluation. In the present study, ROC curves 

demonstrate if the statistical techniques implemented are more sensitive and specific in 

discrimination of benign from threat sources compared to traditional way using gross counts for 

discrimination. 

In a ROC curve the true positive rate (Sensitivity) is plotted as a function of the false positive 

rate (Specificity) for different cut-off points of a parameter. The cut-off points in the present 

context are determined by the MD limits. Each point on the ROC curve represents a sensitivity-

specificity pair corresponding to a particular decision threshold. The area under the ROC curve 

(AUC) is a measure of how well a parameter can distinguish between two diagnostic groups. 

ROC curves were generated for the threat sources produced using GADRAS injection modeling. 

The purpose of the ROC curves is to demonstrate how well the technique implemented can 

discriminate the benign source population from the threat source population. ROC curves 

generated were for threat radio-nuclides listed in Table 1 using a range of FAR. 
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5.2.1 Performance in WGPu discrimination 
 

Figure 13 shows the ROC curves produced using the WGPu injected source. The curves shown 

represent calculations based on projection of the normalized counts into feature space using 

varying PC components. MDs were then determined using the average of the benign source 

projections into the feature space. The orange line represents the non discriminating line or 

where there is no advantage gained in indiscriminating benign from threat sources. ROC curves 

for gross counts and neutron counts were determined using the traditional way of setting 

thresholds using summed or total counts. As can be seen on the curves for false alarm rate below 

~0.25, the technique is doing worse, as all curves are below the discrimination line.  

 
Figure 14 Calculated ROCs for Weapon Grade Plutonium (WGPu). Curves shown represent 
calculation based on projection of pattern space into feature space using varying PC 
components. MDs were then determined using the average of the benign source projections 
into the feature space. The orange line represents the non discriminating line. 
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However, for the neutron counts the technique shows ideal performance due to high neutron flux 

above the neutron background that will be easy for discrimination WGPu from a benign source 

population using the traditional gross counts approach. In general the more PCs are included in 

projecting the pattern into feature space, the better is the performance, but this is not true for all 

cases. Some discrepancy is evident in the graph. MD calculated using 6 PCs and 7 PCs shows 

the reverse of expected results. Better performance is expected in using 7 PCs than 6 PCs. Same 

is true with MD from 3 and 2 PCs. More detail investigation is required to understand these 

results. The results in Figure 13 shows that the PCA anomaly detection technique has advantages 

over using gross gamma counts, within the window of FAR values in the range ~0.225 to 0.45. 

 

5.2.2 Performance in RGPu discrimination 
The results for RGPu, shown in Figure 14, demonstrate better discrimination than WGPu for the 

MDs considered. Although not ideal like the WGPu case, the neutron counts are clear outliers 

and can easily be discriminated using the traditional gross counts approach. The same 

discrepancy observed in WGPu in terms of the number of PCs used is also evident in the RGPu 

case requiring attention in future work. 

 
Figure 15 Calculated ROCs for Reactor Grade Plutonium (RGPu). Curves shown represent 
calculation based on projection of pattern space into feature space using varying PC 
components. MDs were then determined using the average of the benign source projections 
into the feature space. The orange line represents the non discriminating line. 
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Figure 16 Calculated ROCs for Highly Enriched Uranium (HEU). Curves shown represent 
calculation based on projection of pattern space into feature space using varying PC 
components. MDs were then determined using the average of the benign source projections 
into the feature space. The orange line represents the non discriminating line. 

 

5.2.3 Performance in HEU discrimination 
 

The HEU performance, shown in Figure 15, is almost ideal with respect to sensitivity or 

specificity. The PCA technique can easily discriminate the HEU outlier at very low FAR. 

However, there is hardly any discrimination using gross neutron counts using the traditional 

approach.  
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5.2.4 Performance in 137CS discrimination 
 
The 

137
CS performance, shown in Figure 16, is also almost ideal with respect to sensitivity or 

specificity. The PCA technique can easily discriminate the 
137

CS at very low FAR better than 

gross counts threshold. More ROC curves produced for other isotopes are shown in Appendix A. 

 

 
Figure 17 Calculated ROCs for 137Cs. Curves shown represent calculation based on projection 
of pattern space into feature space using varying PC components. MDs were then determined 
using the average of the benign projections into the feature space. The orange line represents 
the non discriminating line. 
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6 CLUSTERING RPM DATA 
6.1 Model based clustering 
 
An R software package MCLUST was used for the clustering. The package is for normal mixture 

and model based clustering. MCLUST provides functions for parameter estimation via 

Expectation Maximization (EM) algorithm for normal mixture models with a variety of 

covariance structures, and functions for simulation from these models. Pattern data was first 

transformed into PC space before clustering. Different set of data was used in the Cluster 

Analysis. The Analysis was made prior to using NYCT simulated data. Therefore direct 

comparison with the NYCT data is not possible. A threat source named V108 was used in the 

clustering technique. Clusters in the present study were identified using the Gaussian mixture 

clustering algorithm.  Figure 17 shows a linear plot of channel signals as a function of total 

signals for the different MCLUST clustered groups. Discriminant plot of the clusters identified is 

shown in Figure 18.  

 
Figure 18 Plot of channel signals as a function of total signal counts. Discrete cluster groups 
are evident in the plot that deviates from linear trend. 

 

 
Figure 19 Discriminant plot of clusters identified.   
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6.2 Clustering performance evaluation using ROC curves 
 

Similar to PCA analysis the Mahalanobis distance for anomaly discrimination was calculated 

after feature space transformation. Distances were calculated from the average of the clusters 

distribution. ROC curves were then used to assess the performance of the clustering technique, in 

the same way done for the previous PCA analysis. 

 

Similar to PCA analysis, the clustering technique also proved improvement in detection 

performance compared to gross counts as shown in Figure 19. Separate plots are made for true 

alarm rate as a function of FAR based on the MD calculated using a range of PCs. 

 

 
Figure 20 Calculated ROC curves for a threat source named V108. Curves shown represent 
calculation based on projection of pattern space into feature space using varying PC 
components basis. MDs were then determined using the average of the benign source 
projections into the feature space. 
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7. CONCLUSIONS 
 

Anomaly detection techniques implemented in the present study showed improvements in 

sensitivity and specificity of discriminating benign source population from threat source 

population compared to the traditional gross counts approach. Encouraging results have been 

found in the performance of the techniques. The PCA technique coupled with clustering can be 

beneficial in defining optimal and minimized thresholds for alarming at POEs. This, however, 

was not confirmed since the same of data set was not used for PCA only and PCA with 

clustering technique implemented. This will be investigated in detail in future work. The present 

work was not able to investigate optimization of energy windows used in the analysis. It is 

believed that based on the physics of gamma interaction with the RPMs and iterative 

maximization of feature variances in PC space by varying energy windows, further enhancement 

and improvement can be achieved in anomaly discrimination. Data used in the analysis represent 

static and simulated data. It is not characterized by temporal features and other uncertainties 

related to actual measured data. These may include gain variation in the RPM detectors, 

electronic noise, and other systematic errors that can cause significant deviation from Poisson 

statistics. Implementation of investigated techniques using measured data is required to address 

these issues.  

 

Data fusion was not implemented for enhancement of sensitivity using neutron and gamma 

information. It has been found that fusion of neutron and gamma data will not have an impact on 

sensitivity enhancement as the neutron data alone will enable the discrimination of benign 

sources from threat sources. This fact is obvious in ROC curves produced in section 5. 
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Appendix A:  ROC Curves 

 

 

 
Figure 21 Calculated ROCs for Very High Enriched Uranium (VHEU). 
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Figure 22 Calculated ROCs for 90SrY. 
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 Figure 23 Calculated ROCs for 192Ir. 
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Figure 24 Calculated ROCs for 60Co. 
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