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Abstract

A range of core operations and planning problems for the national electrical grid are natu-
rally formulated and solved as stochastic programming problems, which minimize expected
costs subject to a range of uncertain outcomes relating to, for example, uncertain demands
or generator output. A critical decision issue relating to such stochastic programs is: How
many scenarios are required to ensure a specific error bound on the solution cost? Scenar-
ios are the key mechanism used to sample from the uncertainty space, and the number of
scenarios drives computational difficultly. We explore this question in the context of a long-
term grid generation expansion problem, using a bounding procedure introduced by Mak,
Morton, and Wood. We discuss experimental results using problem formulations indepen-
dently minimizing expected cost and down-side risk. Our results indicate that we can use
a surprisingly small number of scenarios to yield tight error bounds in the case of expected
cost minimization, which has key practical implications. In contrast, error bounds in the
case of risk minimization are significantly larger, suggesting more research is required in this
area in order to achieve rigorous solutions for decision makers.
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Introduction

Formal optimization models play a central role in a number of foundational problems in
electrical grid operations and planning. For example, unit commitment – the problem of
scheduling thermal generator on/off states and corresponding output levels – is now widely
expressed and solved as a deterministic mixed-integer program, using commercial off-the-shelf
solvers such as CPLEX [2]. Similarly, generation expansion – the problem of determining
the type, count, and location of generators that must be built over the long term to meet
anticipated demand, is naturally formulated as a deterministic mixed-integer program – a
traditional formalism for expressing such classic resource allocation problems. While these
optimization problems are in theory computationally intractable, in practice high-quality
and often optimal solutions are obtainable using commercial solvers on commodity hardware
(workstations) in minutes to hours of run-time.

Historically, grid optimization models have been formulated and solved as deterministic
mixed-integer programs, i.e., where the values of all parameters are known in advance. Some
parameters, including short-term (hourly) demand, can be predicted with high accuracy
based on historical data. However, projected demands over yearly or decade-long time
horizons, or generator outputs in the context of renewable sources such as solar and wind,
are very difficult to predict, yielding a large uncertainty envelope. One approach to deal
with such uncertainty in the context of mixed-integer programming is to approximate the
distribution of a parameter value with its mean. However, this approach commonly leads to
optimistic – translating to higher-cost and higher-risk – solutions when they are evaluated
in the true stochastic context [1].

To properly deal with uncertainty in the context of mathematical optimization, the for-
malism of stochastic mixed-integer programming is a widely studied and powerful paradigm
[8, 9]. Informally, stochastic programming extends deterministic mathematical programming
through three key mechanisms. First, the notion of a scenario tree is introduced to represent
the evolution of parameter uncertainty through time. Second, the optimization objective is
modified to minimize expected cost across all scenarios in the tree. Third, non-anticipativity
constraints are enforced to ensure that no solution can take advantage of knowledge of the
future, as encoded in the scenario tree.

Stochastic programming is a powerful formalism, and is starting to become more widely
used in practice. One impediment to widespread adoption is the increase in computational
difficulty relative to the deterministic case. While still NP-hard, the typically large number
of scenarios employed dramatically inflates the computational difficulty of such problems
in practice. Less explored, particularly in the case of practical, real-world optimization
problems, is the following question: How do we know we are using a sufficient number of
scenarios? The scenario tree typically represents a discretized approximation of an underlying
continuous stochastic process. In the process of discretization, error is necessarily introduced,
such that solutions to a discretized scenario tree will have a different cost relative to the cost
of the “true” (if it could be analytically computed), infinite-sample scenario tree.
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Quantification of this error is critical, for two key reasons. First, due to computational
difficulty, we want to use the minimal number of scenarios required to achieve a solution with
a given error. A significant reduction is the number of scenarios can reduce a practically
uncomputable problem to one for which solutions are attainable. Second, we are often forced
due to external circumstances – e.g., when scenarios are obtained via expensive computer
simulations – to deal with a fixed number of scenarios. In these situations, we must make
maximal use of the scenarios we are given, identifying the best solution with the smallest
possible error bound.

In this report, we focus on answers to this question in the context of a stochastic grid gen-
eration expansion problem, developed by external collaborators from Iowa State University’s
Industrial and Manufacturing Systems Engineering Department. To compute error bounds
on the optimal investment costs, we use the Multiple Replication Procedure originally intro-
duced by Mak, Morton, and Wood. Due to the computational challenge, this procedure has
not been widely used in practical, large-scale stochastic programming problems. Our inves-
tigations represent a first in terms of large-scale, practical application. Further, our results
yield practical impact in terms of answering questions relating to the scale of problem that
should be addressed, and identify future research directions involving the quantification of
risk-oriented optimization metrics.

The remainder of this report is organized as follows. We begin with an overview of
stochastic programming. The grid generation expansion problem we consider is described
next, followed by a discussion of the corresponding test case. We briefly survey the Mak,
Morton, and Wood Multiple Replication Procedure, and follow with a discussion of our
software implementation and associated effort. Experimental results concerning solution
error bounds on the generation expansion problem are then presented. Finally, we discuss
future research directions.

Stochastic Programming: An Overview

We now briefly introduce the concept of a stochastic program. More comprehensive
introductions to both the theoretical foundations and the range of potential applications can
be found in [1], [8], and [9].

We concern ourselves with stochastic optimization problems where uncertain parameters
(data) can be represented by a set of scenarios S, each of which specifies both (1) a full set of
random variable realizations and (2) a corresponding probability of occurrence. The random
variables in question specify the evolution of uncertain parameters over time. We index
the scenario set by s and refer to the probability of occurrence of s (or, more accurately, a
realization “near” scenario s) as Pr(s). Let the number of scenarios be given by |S|. The
source of these scenarios does not concern us in this paper, although we observe that they
are frequently obtained via simulation or formed from expert opinions. We assume that the
decision process of interest consists of a sequence of discrete time stages, the set of which is
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denoted T . We index T by t, and denote the number of time stages by |T |.

We develop the notation primarily for the linear case in the interest of simplicity and
practicality (little attention has been devoted to nonlinear stochastic programs, due to their
extreme difficulty). For each scenario s and time stage t, t ∈ {1, . . . , |T |}, we are given
a row vector c(s, t) of length n(t), a m(t) × n(t) matrix A(s, t), and a column vector
b(s, t) of length m(t). Let N(t) be the index set {1, . . . , n(t)} and M(t) be the index set
{1, . . . ,m(t)}. For notational convenience, let A(s) denote (A(s, 1), . . . , A(s, |T |)) and let
b(s) denote (b(s, 1), . . . , b(s, |T |)).

The decision variables in a stochastic program consist of a set of n(t) vectors x(t); one
vector for each scenario s ∈ S. Let X(s) be (x(s, 1), . . . , x(s, T )). We will use X as shorthand
for the entire solution system of x vectors, i.e., X = x(1, 1), . . . , x(|S|, |T |).

If we were prescient enough to know which scenario s ∈ S would be ultimately realized,
our optimization objective would be to minimize

fs(X(s)) ≡
∑
t∈T

∑
i∈N(t)

[ci(s, t)xi(s, t)] (Ps)

subject to the constraint
X ∈ Ωs.

We use Ωs as an abstract notation to express all constraints for scenario s, including require-
ments that some decision vector elements are discrete or more general requirements such
as

A(s)X(s) ≥ b(s).

The notation A(s)X(s) is used to capture the usual sorts of single period and inter-period
linking constraints that one typically finds in multi-stage mathematical programming for-
mulations.

We must obtain solutions that do not require foreknowledge and that will be feasible
independent of which scenario is ultimately realized. In particular, lacking prescience, only
solutions that are implementable are practically useful. Solutions that are not admissible,
on the other hand, may have some value because while some constraints may represent laws
of physics, others may be violated slightly without serious consequence.

We refer to a solution that satisfies constraints for all scenarios as admissible. We refer to
a solution vector as implementable if for all pairs of scenario s and s′ that are indistinguishable
up to time t, xi(s, t

′) = xi(s
′, t′) for all 1 ≤ t′ ≤ t and each i in each N(t). We refer to the

set of all implementable solutions as NS for a given set of scenarios, S.

To achieve admissible and implementable solutions, the expected value minimization
problem then becomes:

min
∑
s∈S

[Pr(s)f(s; X(s))] (P)

subject to

X ∈ Ωs

9



X ∈ NS .

Formulation (P) is known as a stochastic mathematical program. If all decision variables
are continuous, we refer to the problem simply as a stochastic program. If some of the decision
variables are discrete, we refer to the problem as a stochastic mixed-integer program.

In practice, the parameter uncertainty is stochastic programs is often encoded via a
scenario tree, in which a node specifies the parameter values b(s, t), c(s, t), and A(s, t) for
all t ∈ T and s, s′ ∈ S such that s and s′ are indistinguishable up to time t.

Grid Generation Expansion: Formulation

We consider a grid generation expansion problem formulation introduced by Shan Jin and
Sarah Ryan, collaborators at Iowa State University. We now briefly describe the stochas-
tic programming formulation for this problem, summarizing the more detailed descriptions
available in [3, 4]. We draw our notation from those references, retaining consistency to
facilitate cross-referencing.

The core decision variables in the generation expansion problem (GEP) are the number
of generators of type g ∈ G built in year y ∈ Y . We denote these quantities by Ugy, whose
values are constrained to take non-negative integer values; one cannot build a fraction of
a nuclear power plant. The Ugy represent the so-called first stage (here and now) decision
variables in the stochastic programming formulation of the GEP. Each generator g ∈ G costs
a certain value cg to construct (capital cost) per MW of power capacity installed. Each
generator type g has a maximum MW generation capacity mg per installed unit, and a
maximum total number of units umax

g that can be built over the planning time horizon. The
number of existing generators of type g is denoted ug.

Each year y ∈ Y of the planning horizon in split into a number of sub-periods, represent-
ing qualitatively different types demand, i.e., base, shoulder, or peak. We let t ∈ T denote a
sub-period index, Ty the set of sub-periods in year y, and Yt the year of which a sub-period
t is a member. Clearly, |Y| ≤ |T |. The total number of hours ht in each sub-period t could
potentially vary over time, but is not treated stochastically in this particular formulation
of the GEP. There is a penalty cost p (units in $/MWh) for failing to serve any portion of
demand. Finally, an annual interest rate r is imposed to yield cost discounting.

Each scenario s ∈ S in the SP formulation of the GEP specifies the probability of
occurrence πs, the demand per hour dts for each sub-period (in MW), and the generation
cost lgts for each generator type g and time period t (in $/MWh). Given an assignment
of first stage decision variables Ugy, the second stage (scenario-specific) decision variables
consist of (1) the amount Ets of unmet demand in each sub-period t for scenario s and (2)
the load Lgts generated by generators of type g in sub-period t for scenario s.
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Given the presented parameters (deterministic and uncertain) and decision variables, the
objective of the GEP SP is to minimize the investment cost plus the expected operating cost
(accounting for any penalties for unmet demand), expressed mathematically as follows:

∑
y∈Y

∑
g∈G(cgmgUgy) +

∑
sπs

(
∑

t∈Ty
(
∑

g∈G(htlgtsLgts) + phtEts))

(1 + r)y−1
(1)

On a per-year basis, the cost is split into investment and operating costs, which are discounted
based on the annualized interest rate r.

The constraints on the GEP SP are relatively straightforward. First, the total demand
must equal the load generated plus the unserved demand, as follows:

∑
g∈G

Lgts + Ets = dts ∀t ∈ T , s ∈ S (2)

Second, we must ensure that the load delivered in each sub-period t by generators of
type g is consistent with the total quantity of generators installed at that time. This logical
condition is imposed via the following constraint:

Lgts ≤ nmax
g (ug +

∑
y≤Yt

Ugy) ∀g ∈ G, t ∈ T , s ∈ S (3)

Finally, it is necessary to enforce the limit on the aggregate number of generators built,
of each type, over the planning horizon:

∑
y∈Y

Ugy ≤ umax
g ∀g ∈ G (4)

While this GEP formulation appears innocuous, it is in practice extremely difficult to
solve directly. The difficulty is driven in part by the number of scenarios used to approximate
the stochastic process driving the future costs of power generation and the inter-dependencies
across the time periods. Further, the discrete nature of the Ugy yield a large-scale stochastic
mixed-integer program, which are notoriously difficult for even small numbers of scenarios.

Grid Generation Expansion: Test Case

The specific test instance we consider is fully described in [4]. The instance considers
six different types of generators and a planning horizon of 10 years. Each year is split into
3 sub-periods, with identical numbers of hours across the different years of the planning
horizon. The uncertain parameters – demand and generation costs – are driven by specific
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stochastic process models. In the case of demand, the process simply models growth as one
of a small, medium, or large fraction of current demand. In the case of generation cost, the
stochastic process is driven by uncertainty in fuel prices.

A single, large scenario tree was generated by simulating the stochastic process through
various sample paths. Specifically, the 10-year planning horizon yields a scenario tree 9 stages
deep (discounting the first year) with a branching factor of 3 – yielding a total of 39 = 19683
scenarios. In comparison to models appearing in the literature, such a deep scenario tree is
exceptionally large, and as a consequence, the corresponding GEP SP instance is extremely
difficult to solve. In particular, we observe that [3] report several weeks of run-time using a
sophisticated decomposition strategy were required to solve the instance to optimality.

The Multiple Replication Procedure

The key question under consideration is: Given a particular set of scenarios for a stochas-
tic program, what is the confidence interval on the cost optimality? In other words, how
much might we expect the optimal cost to change should a different set of scenarios be used?
This issue is critical in practice – especially in electrical grid – due to the down-side risk
associated with unexpected jumps in operations or planning costs. We also note that any
optimal solution to a stochastic program generated with a sampled set of scenarios is neces-
sarily optimistic with respect to the complete or “true” set of scenarios. Thus, the issue of
down-side risk or increased cost is always present – the only question is the degree to which
this is the case.

To address this question, we consider the Multiple Replication Procedure (MRP), first
introduced by Mak, Morton, and Wood. We now briefly describe the procedure, referring
to [5] for the full derivation and details. We suppose we are given a solution ŷ, a confidence
level 0 < α < 1 for a 1− α confidence level, and ng sets of scenarios, Ẽ i, i = 1, . . . , ng such
that each set has equal probability.

The MRP procedure is then defined as follows:

1. For each i = 1, . . . , ng compute the gap statistic:

Gi = F (ŷ, Ẽ i)−min
y

F (y, Ẽ i)

2. Compute the average gap statistic Ḡ and the sample standard deviation sG

The approximate (1-α)-level confidence interval for the optimality gap is then given by[
0, Ḡ

tng−1,αsG√
ng

]
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where tng−1,α is the α tail value for a t-distribution with ng − 1 degrees of freedom.

In practice, we typically assume a total of N scenarios are available, generated either via
a computer simulation or stochastic process. We then partition these N scenarios as follows,
for use in the MRP procedure. We first use n̂ < N solutions as the scenarios over which we
optimize to get ŷ, drawn at random without replacement. The remaining samples are then
divided up (again at random, without replacement) into ng samples of size n.

Software Infrastructure

Sandia has developed and actively maintains an environment for both modeling and
solving stochastic mixed-integer programs. This software module is called PySP, and is
distributed as part of a larger optimization software project known as Coopr (https://
software.sandia.gov/trac/coopr). Coopr (also developed and maintained by Sandia) is
an open-source project, jointly hosted at Sandia and as part of IBM’S COIN-OR (http://
www.coin-or.org) open-source optimization software project. All Coopr software is written
in Python, to both facilitate rapid prototyping and to minimize the barrier to entry for users
that are not experts in computer programming.

PySP uses the Coopr Pyomo module to express the deterministic base scenario of an
optimization problem, in addition to the scenario tree structure. PySP provides alternative
methods for solving the resulting extensive form, either directly (e.g., via a commercial MIP
solver) or through decomposition approaches such as Progressive Hedging [6]. PySP can
be deployed on a cluster, and has a number of mechanisms to support parallel solution
of stochastic programs. All algorithms in PySP are generic, operating on any stochastic
programming model expressed using the PySP/Pyomo modeling mechanisms.

As part of this effort, we developed a capability in PySP to execute the Mak, Morton, and
Wood MRP procedure, given a generic stochastic programming model expressed in PySP.
This script – named computeconf – (for Compute Confidence) is now generally available as
part of the Coopr distribution. We have used PySP and the computeconf script to compute
all of the results described below. This capability has since been more broadly used by
research groups at the University of Texas and the University of California Davis.

Experimental Results

Using the test case described above, we randomly sample 1000 scenarios. This down-
sampling forms the basis for our execution of the MRP procedure, using the GEP SP for-
mulated in our PySP modeling and solver framework. We then execute the MRP procedure
for various combinations of the key parameters n̂ and ng, i.e., the number of scenarios used
to obtain the baseline solution and the number of groups into which the remaining scenarios
are split, respectively. Clearly, there are trade-offs between larger n̂ (allowing for a more
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n̂ ng Reference Solution Cost 0.99 Confidence Interval Width
140 5 17.457B 41.646M
140 40 17.549B 429.054M
420 10 17.528B 160.694M
420 40 17.884B 606.710M

Table 1. Results of the MRP procedure for expected cost
minimization of the GEP stochastic program. Cost units are
USD.

accurate reference solution) and more ng (allowing for more samples and therefore a tighter
confidence interval).

A sampling of results for the case of expected cost minimization are shown in Table 1. We
first observe the remarkable stability of the reference solution cost, obtained over a variety
of initial samples. This is a strong initial indicator of solution stability and tight confidence
intervals, which are confirmed by the MRP computation. In the worst case, the confidence
interval width is only 606.710M (USD) out of a total investment of 17.884B (USD). While
the gap is significant in absolute terms, the relative proportion is quite small (less than 5%).
For an investment planning problem, such a gap is acceptable, especially given potential
inaccuracies in both the model and the stochastic process used to generate the scenario sets.
More comprehensive results are available, although the presentation of the parameter trends
with respect to accuracy is beyond the present scope.

Additionally, we considered a variant of the GEP SP in which the objective was to
minimize down-side risk, as expressed via the well-known concept of Conditional Value-
at-Risk or CVaR [7]. Here, we find that the confidence interval widths relative to the
case of expected cost minimization are roughly 5 to 10 times larger. This is somewhat
expected, due to the emphasis of the metric on extreme events. However, the magnitude
is surprising, and has practical implications for the difficulty of accurately minimizing risk-
oriented performance metrics.

Finally, we briefly discuss the stability of the MRP results, although this is rarely ad-
dressed in the literature. Distinct executions of the MRP procedure lead to different par-
titioning of the base set of N scenarios into the core n̂ set and the ng validation groups.
In theory, different replications of the MRP could lead to significantly different results. In
practice, at least for the GEP problem we investigate, the discrepancies across multiple
replications of the MRP (controlling for all other parameters) is minimal.
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Future Research Directions

We have demonstrated the ability to effectively compute cost confidence intervals to
a difficult stochastic mixed-integer program, that of electrical grid generation expansion.
In this particular instance, the total number of scenarios required to achieve reasonable
confidence intervals on cost optimality is surprisingly small – in the case in which we deal
with expected cost minimization. However, two key open research challenges remain.

The first challenge involves our ability to compute tight cost confidence intervals when
risk-oriented metrics such as CVaR are considered. As expected, confidence interval widths
grow relative to the case of cost minimization. An obvious answer to this question is simply
to use more scenarios in each validation “bundle”, but that approach explodes the compu-
tationally difficulty of the bundles. More rigorous statistical techniques, along the lines of
importance sampling, should provide a pathway to the use of a smaller number of samples
while simultaneously achieving tighter confidence intervals.

The second challenge relates to our understanding of the relationship between confidence
interval width, sample size, and problem structure. While the results for our generation ex-
pansion problem are satisfying (i.e., positive, in the sense that fewer samples than expected
were required to achieve tight confidence intervals), this result is far from universal. For ex-
ample, we have executed the same MRP procedure on a stochastic programming formulation
involving unit commitment with wind generators, with qualitatively different results. In this
particular case, we find that “standard” problem sizes considered in the literature yield very
unstable estimates of expected cost. This finding implies significantly more scenarios will be
required in the case of unit commitment (a critical electrical grid operations problem), which
already poses a significant computational challenge at the scale considered in the literature.

Conclusions

A range of core operations and planning problems for the national electrical grid are
naturally formulated and solved as stochastic programming problems, which minimize ex-
pected costs subject to a range of uncertain outcomes relating to, for example, uncertain
demands or generator output. A critical decision issue relating to such stochastic programs
is: How many scenarios are required to ensure a specific error bound on the solution cost?
Scenarios are the key mechanism used to sample from the uncertainty space, and the number
of scenarios drives computational difficultly. We have explored this question in the context
of a long-term grid generation expansion problem, using a bounding procedure introduced
by Mak, Morton, and Wood. We showed experimental results using problem formulations
independently minimizing expected cost and risk. Our results indicate that we can use a
surprisingly small number of scenarios to yield tight error bounds in the case of expected
cost minimization, which has key practical implications. In contrast, error bounds in the
case of risk minimization are significantly larger, suggesting more research is required in this
area. Future research into more effective methods with application to risk minimization and
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other grid operations and planning problems is required.
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