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ABSTRACT

The rapid autonomous detection of pathogenic microorganisms and bioagents by field
deployable platforms is critical to human health and safety. To achieve a high level of
sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave
acoustic biosensor on 36° YX Lithium Tantalate (LTO). Each die has four delay-line
detection channels, permitting simultaneous measurement of multiple analytes or for parallel
detection of single analyte containing samples. Crucial to our biosensor was the development
of a transducer that excites the shear horizontal (SH) mode, through optimization of the
transducer, minimizing propagation losses and reducing undesirable modes. Detection was
achieved by comparing the reference phase of an input signal to the phase shift from the
biosensor using an integrated electronic multi-readout system connected to a laptop computer
or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328
MHz after application of the silicon dioxide waveguides. The insertion loss was —6 dB with
an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3°
p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing

suppression of the triple transit. Antigen capture and mass detection experiments demonstrate



a sensitivity of 7.19 + 0.74 ° mm?/ ng with a detection limit of 6.7 + 0.40 pg / mm? for each

channel.
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1.0 INTRODUCTION

Recently, Love wave sensors have received considerable attention for their high mass

and viscous sensitivity with a minimal need for additional reagents. Minimizing the use of
reagents is an essential requirement for field deployable biodetection systems. The
transduction mechanism for Love wave sensors is based on propagating waves with a shear-
horizontal polarization (SH) along the propagation direction. The SH polarization minimizes
attenuation of the surface acoustic wave (SAW) into viscous media permitting detection in
fluids [1-4].
Love wave sensors are comprised of a substrate that primarily excites SH waves, which are
subsequently confined by a thin guiding layer. This waveguide layer is crucial to achieve
high sensitivity by having a low shear velocity compared to the substrate [1, 5]. It also
serves to provide a mechanism for stable chemical attachment through covalent linkage of
antibodies, DNA, or other biomolecules to achieve the required selectivity. Waveguide
materials such as polymers [6], silicon dioxide (SiO2) [7], and more recently zinc oxide
(ZnO) [8] are in use. A fluid cell provides delivery of biological antigens to the sensor
surface. Added mass from captured antigens perturbs the wave propagation velocity. In a
delay-line configuration, the open loop operation at constant frequency provides relative
phase shifts for each delay-line channel.

This work is based on the leaky SH-type wave propagating on 36° Y-cut lithium tantalate
(LTO) along the x-axis which exhibits strong coupling (K 2 = 6.6%). The strong coupling on
LTO provides advantages over substrates such as ST-Quartz where exquisite care in the
fluidic packaging is required to prevent excessive wave damping and hence high insertion
losses. We present an interdigital electrode (IDT) design that is capable of high frequency
excitation of the SH-type wave on LTO for array operation. A theoretical and experimental
analysis of the sensitivity and its reproducibility are presented. We present a method to assess
waveguide performance through measuring the slope of £S21(v) (° / MHz) as the waveguide
thickness increased. Finally, an acquisition approach based on simultaneous phase

measurements for each channel is presented with a demonstration of multi-analyte detection.



1.1.1 General Piezoelectric Problem and Shear-Horizontal (SH) Waves for Biosensing

The existence of a surface wave is determined by the material parameters, orientation, and
boundary conditions. The piezoelectric material properties are specified by 4™ rank elastic
stiffness tensor (i), 3™ rank piezoelectric tensor (ex;), 2" rank permittivity tensor (gi), and
the density (p) (Appendix A). The boundary conditions require that the particle
displacements and traction components of stress (Ti3, Tz, T33) are continuous across an
interface or set to zero for stress free conditions at the interface. The electrical boundary
conditions are provided by the continuity of the potential and the normal component of the
electric displacement across both the interface and free surface. All total there are twelve
boundary conditions per layer for a general problem.

Despite the complexity of the general problem some key insights can be gained by
examining the physically behavior of the free surface condition. For example, atoms at the
free surface have no neighbors from one side, which results in decreased bonding to the
crystal lattice. The surface layer in the material is then less rigid with regard to mechanical
displacements normal to the surface such as shear vertical (SV) waves. In this manner SV
waves would have a slower velocity than propagating bulk waves. However, SV waves do
not satisfy stress-free boundary conditions and therefore cannot propagate along the free
surface of a solid. Instead the boundary conditions dictate that SV waves must be combined
with longitudinal waves, resulting in Rayleigh waves. This type of surface acoustic wave
(SAW) was described by Lord Rayleigh in 1885 [9]. Unlike SV waves, shear horizontal bulk
acoustic waves can satisfy stress-free boundary conditions and may propagate along a free
surface. Shear horizontal (SH) is when the plane wave polarization is parallel to the surface.
For a surface wave, the boundary conditions determine whether the SH wave will be
confined along the surface or whether it leaks into the substrate. Recently several substrates
have been discovered that support pure shear waves known as Bleustein-Gulyaev-Shimizu
(BGS or pure SH) in Table 1. Pure SH modes propagate with minimal energy coupling into
the substrate and external fluid media. Since these substrates are not presently used for
commercial SAW devices, their application has been limited to scientific research. At
present only a few manufacturers produce LGT and LGS substrates where the wafer diameter

is limited to roughly 25-50mm, ruling out their use for commercial applications. For this



reason lithium tantalate (LTO) and rotated Y-cut quartz have remained the primary material
for leaky SAW propagation despite their higher temperature coefficient factors (TCF).

Table 1 Several Piezoelectric Substrates that Support SSBW and SH mode Propagation

Materia Cut or Class Euler Angle Velocity (m/s) K? (%)
[
Open Wave Short Wave

'LTO 36° YX (0°,-54°,0°) 4177 SSBW 4077 SH 7.0
’KNO (0°,90°,0°) 4500 SH 4425 SH 5.3
*Quartz Rotated Y (ST) (0°,132.75°,90°) 49935 SSBW 4993 SH -
*Quartz 35.5° (AT) (0°,125.5°,90°) 5093.2 SH 5093.2 SH -
*Quartz 36°YZ (0°,54.2°,90°) 4212 SSBW 4160 SH 4.7

LGT (0°,6,90°) (0°,69.8°,90°) 3070 SH SH

(0°,132°,90°) 2280 SH SH
°LGS (0°,6,90°) (0°,22°,90°) 2790 SH SH

!lithium tantalate [10] calculated

? potassium niobate [11]

*[12]

* calculated

°LGT: Langatate (La;GassTags014) [13, 14]
®LGS: Langasite (LazGas SiOys) [15]

1.1.2 Shear Horizontal Biosensors

To obtain optimum performance for Love wave sensors, it is essential to provide proper
electrical shielding of the transducers and sensing regions (e.g. delay line) from the dielectric
perturbation due to the fluid. For detection of changes in mechanical properties (i.e. from a
thin biological film), electrical perturbations must be kept at a minimum. Dielectric
properties of fluids, namely buffers carrying ionic species can cause significant changes in
the capacitance and hence admittance of the interdigital transducer (IDT) unless properly
isolated. Confining the fluid between the IDTs is one approach to reduce electrical
perturbations from large variations in the external permittivity. There are three strategies to
reduce changes in IDT admittance: 1) confine the fluid between the IDTs using a specialized
flow cell, 2) deposit a dielectric insulation layer over the entire device, and 3) deposit a metal
shielding layer over the isotropic guiding layer. The first two strategies are often used
together, whereas adding a metalized shield is more cumbersome since it must also be
grounded which adds complexity to the packaging process and the metal layer may interfere
with the attachment of additional biological layers. Commercial SAW devices often use
metal shields to reduce electrical feed-through between the IDTs, however this shield is

designed to operate in hermetically sealed environment.



Cut-away of Fluid region

Guiding Layer

Fig. 1 Love wave biosensor on 36° YX lithium tantalate (0°,-54°, 0°). The blue regions shows a simple IDT
geometry having a uniform strip width a and periodicity p and a metallization ratio of 0.5 (4= a/p). In practice,
the IDTs are often far more complex to reduce coupling between the SSBW and excitation of the longitudinal
mode. The center frequency is computed from strip width and acoustic velocity for the crystal type and
orientation. The IDT design is tapped uniformly and illustrates the simplest layout for launching surface
acoustic waves. For leaky wave generation this design is problematic since the IDT is bidirectional and also
generates a significant bulk wave component that interferes with the leaky mode propagation.

A basic SAW device known as a delay-line is shown in Fig 1. A piezoelectric substrate
has a polished upper surface on which two IDTs are deposited using photolithographic
methods. The left-hand input transducer is connected, via fine bonded leads, to the electric
source (Vs) through an electrical matching network and source resistance, (Rs). The right-
hand output transducer drives the load (R.), usually 50 ohms, through another electrical
matching network (Z). Recent advancements in computer modeling have led to the
development of 50 ohm IDT designs that do not require external electrical matching
networks. The center frequency (f;) is governed by the Rayleigh wave velocity (Vgr) on the
piezoelectric substrate and the electrode width (a) of a single finger, according to f.=Vr/4a.
For SAW devices, the velocity of wave depends on the properties of the piezoelectric crystal
and its crystallographic orientation. Computer models have proven essential to search
through numerous crystallographic orientations to search for the existence and type of
acoustic wave.

In filter applications, the width of the passband is critical for frequency selection, which
is governed by length of the IDT (L). Increasing L by the addition of more electrode pairs

sharpens the filter response and reduces noise. IDT-to-IDT spacing (d) is used to select the
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delay-time or phase slope of the filter. The IDT aperture (w) governs the diffraction behavior
and determines transducer output power. Owing to symmetry, each transducer generates
acoustic waves equally in two opposite directions, so that it is bidirectional. In this case, half
of the power is propagating in an unwanted direction, giving a loss of -3dB (i.e.
10:10910(0.50)), and in a delay-line with two IDTs contributes to -6dB of insertion loss in the
passband. For Rayleigh SAW devices, silicon rubber is a very effective absorber, reducing
the amplitude of the backward traveling waves by over 30 dB. However, SAW devices that
use shear-horizontal or surface skimming bulk waves are not attenuated by absorbers and
therefore require unidirectional transducers. Absorber efficiency depends on the acoustic
absorption properties of the material and the type of acoustic wave. By using unidirectional
transducers, acoustic waves will propagate preferentially in one direction, which dramatically
reduces overall acoustic loss. State-of-art SAW devices use unidirectional IDTs, eliminating
the need for absorbers. Insertion losses for unidirectional transducers are around -4 dB or
better, depending on the substrate type.

In biosensor applications a flow cell is essential to confine the fluid and prevent electrical
breakdown at the bonding pads. In Fig. 1 the fluid (green) is confined between the IDTs by a
specialized flow cell. In addition to the flow cell, a thin dielectric layer is deposited on the
piezoelectric substrate to reduce changes in capacitance from the dielectric media. Later we
will see that the application of the dielectric insulation layer also serves as a guiding layer to
enhance sensitivity, performance, and permit chemical attachment of recognition films for

specific detection applications.

1.2 THEORY

1.2.1 Generalized Green’s Function and Effective Permittivity

The design and optimization of complex interdigital transducers on a wide variety of
substrates requires detailed knowledge of wave excitation and propagation. The concept of
the effective permittivity introduced the idea that a specific relationship exists between the
charge and the electrical potential distribution [16]. To determine the amplitude of the
electric potential, the full system of piezoelectric coupled acoustic and electrostatic equations
must be solved. Due to linearity of elastic media, the amplitudes of the charge and potential

are fortunately proportional to each other and their ratio is independent. In the absence of
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piezoelectricity, the effective permittivity reduces to the dielectric permittivity. The effective
permittivity calculation takes into account generation of all possible acoustic waves
propagating in the sagittal plane, excited by a charge distribution on a mechanically free
surface. However, the limitation is that the effective permittivity does not address the
relationship between surface stresses and charge on mechanical motion and acoustic
potential. Instead, the complete description requires introduction of the 16-element Green’s
function, where the effective permittivity is represented by a single matrix element, Gga.
Calculation of the 16-element Green’s function requires the use of matrix methods to
change the problem from several independent steps involving determinants [17] and
boundary condition matrices into a single compact eigenvalue problem [18] [19]. Once
calculated, the Green’s function provides a precise relationship between the acoustic stresses
and electric displacement on the three mechanical displacement and electric potential. In this
way, the Green’s function acts as a source term for acoustic wave generation. The behavior
is often highly complicated with no functional form which also depends on the type of
excitation (e.g. Rayleigh). Once computed, interpolation methods can be used to capture the
functional behavior by numerically sampling near the pole regions. Extending this technique
permits calculation of a spatial Green’s function, which can be very powerful toward

analyzing acoustic wave excitation and propagation in interdigital structures [20].

Acoustic waves must satisfy both Newton’s and Maxwell’s equations. In the absence of

external forces, the equations are expressed as

o°u,
D 6’[2' -V.-T (1.1)
S=Vvu (1.2)
V-D=p, (1.3

where p is the mass density, u is the particle displacement, and T and S are the surface stress
and strain components, respectively. D and ps are the electric displacement and free charge
density, respectively. The free charge density pr is zero everywhere except at the surface of

the substrate.

In a piezoelectric substrate, the coupled constitutive equations for piezoelectric media are

given by,
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Ty = Ciia Sk — & Ex (1.4)

D, =¢,,S, + &, E, (1.5)
where e and cF are the piezoelectric stress constants and stiffness constants. Since the
coupling between the electric and elastic fields is weak, the magnetic fields can be neglected
and the electric fields derived from the scalar potential. This is known as the static field
approximation in which the particle displacements u; are along the coordinate axis x;. In (1.4)

and (1.5), we recognize Hooke’s law and D =¢E, where E=-Vgand ¢ is the electrical
potential on the surface. By substituting (1.4) and (1.5) into (1.1) and (1.3) yields,
o%u
W:V-CE:VSU—V-(e-E) (1.6)
V-(e:Vu)-V-(&-Vg)=0 (1.7)
A. Traditional Method

To obtain solutions, plane wave forms are assumed for both the particle displacement and
electric potential with the following forms for the piezoelectric substrate [17, 21, 22],

X

u = {ZA: C, pre” " }ejw( V), X, <0
m=1

(1.8)

4 m i t—ﬁ
¢:{Zcmﬂj‘e“( )k“}e] ( V],x3 <0
m=1
The trial solutions in (1.8) vary amongst authors which changes the conditions for the
allowed values of a, otherwise the solution process is identical. Substituting (1.8) into (1.6)

and (1.7), gives four linear equations for particle displacement u and potential ¢ [23]

=(a’A - jaA, +A)| 2 |=0 (1.9)

LSS E

SIEE]E

where A is a second order function of «, and the bars indicate the Fourier transformation with
respect to x; in k-space. The coefficients of the matrix are given as

13



E E E
Cs Cis Cy €5
E E E
Cis Cy Gy €y
A= cE cE cE e (1.10)
35 L3 g 33
S
€3 € €5 —&g
E , \E E |, \E E |, AE E
CstCy CytCp Cpt+Cy  E5+E€;
E |, \E E E E | AE E
A = CatCy Cut+Cq CytCp €y +E (1.11)
lcE4+cE cE4cE cE+cE  ef+e '
131 Cs5  C36 7Cp5 Cg5 +Cg 13 T €55
E E E s s
€st€n €16 E3+€5 —&53-6&5
E 2 E E
—C, +pV —Cis Cis —€4
E E 2 E
A = Ci —Ces T OV —Css €6 (1.12)
- E E E 2 )
—Cis Cse —Cos + PV €
—€; €16 €5 &

where v=w/Kk is the phase velocity along the x; direction. For non-trivial solution of (1.9)

the determinant of the coefficient matrix A must be zero for each value of v, which leads to

an 8" order polynomial in o. Bounded solutions in (1.8) further require the [J {ka(”’)} >0 to

eliminate solutions that increase with depth into the substrate. For each valid root a™, we
obtain four eigenvectors B\™ — 3, 8, A%, Bt and thus a partial wave solution. The solution

of the system of linear equations is a linear combination of these partial solutions normalized

by ¢ given as

BY g0 g3 g e

az(z)kx3
= ﬂz(l) ﬂf) 53) ﬁZ(A) Cze (1 13)
e .
gAY B B ce

111 1 e

Ne‘lwclmcliﬂcl

|
L
T
L

The stresses and electrical displacement are obtained by substituting (1.13) into (1.4) and
(1.5)
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— B N ) o r 0!(1) 7
T Tl(sl) T1(32) T1(33) 1(34) Ce %
= IO 1O T || o e
T23 — T2(31) T2(32) T2(33) TZ(:) CZe “ (1 1 4)
B I S A P .
E T3(;) T3(32) T3(33) T3(34) CSE kXS
[D:] |pP p® P D | e’
where
1(3|) uf)
Ty ox o ful ]
2 |=k(a"A-jA) 2 |io1.4 (1.15)
3(3) ug')
_D:gi)_ L 1 ]
Cs Cs Css G
cE cE & e
A = 1; 4Es 4Es 14 (1.16)
Cl3 C36 C35 e13
€1 €35 €5 _‘9153

Boundary Conditions

The coefficients Cp, are determined from application of the boundary conditions, requiring
stress free conditions at the free surface x; = 0,

T (%,0) =Ty (%,0) =T, (%,0)=0 (1.17)

Additional layers require continuity of stresses and displacement with 12 boundary
conditions per for piezoelectric layers. For the electric displacement D the normal component
must be continuous across the boundary at x3=0. Inside the piezoelectric substrate the
electric displacement is given by

- ou 0
DS(Xl'O ):eBkIa_XT_‘C“Ska_)fZ (1.18)

In the vacuum above the substrate (xs> 0), the electrical potential must satisfy Laplace’s
equation
2 2
V2¢:%+a—f:0 (1.19)
X, OXg
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Because ¢ is proportional to e " and must vanish at x, — o, the xs dependence is e P for

xs > 0. For each solution of «™, there is one corresponding partial wave solution of the

potential for x3 > 0, and the potential must be continuous across the free surface giving,

#(x, % > 0) ZC g Joulkls (1.20)
Therefore,
+\ _ a¢ _ : —Jkog
D, (x,,0 )_—goa—Xs_goka;cme , (1.21)

The electrical boundary condition at x3=0 surface is
D, (%,0")=Dy(%,0")=0c(x,) (1.22)
where o is the surface charge density. The surface potential ¢(x,,0) must be the same on

both sides of the boundary however the normal components of the electrical displacement

can differ. The discontinuity is related to the potential by the effective permittivity &, (k) as

T ) (1.23)

_ ol
VO RIC

The Green’s function is defined as the potential excited by a line source with free charge

density, such that
#(%,0) =Gy (%,0)*5(x,0) (L.24)

In the absence of surface stresses, this expression fully describes the behavior of acoustic
waves when the electrical boundary conditions are applied. The two electrical conditions
considered are zero charge on un-metalized surface regions (open-condition) and constant
potential on metalized surface regions (short-condition). Applying the Fourier

transformation with respect to x, on both sides of (1.24) gives an expression in the k domain,

G_M(k):é((—t)) (1.25)

Therefore the effective permittivity can be determined using,
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(1.26)

gs(k) g(k) —

_ _ 1
[K[g(k) k-G (k)

B. Generalized Method

In the general Green’s function approach the vector [TZ T, Ty Dg} is defined as the

exciting source. The Green’s function can be expressed as

B0 g0 g0 g e T T TS T
s | AP B Y| |T TE T T w2
O )
1 1 1 1 4 ’ ’ ' '
L i _De(,l) Dgz) D§3) D§4) |
X3=0
_ 4
Setting u, (X, =0)=>_C,B"i —>1..4 gives
m=1
I et _— _— — -1
W @ W@ @ T T e Ty
—y® @ @ @ty TP T1H Tl
G = u, u, u, u, i 23 23 23 (1.28)

and DS)':@(O+)—m(0‘):gok—@(0‘). The shorted condition at the boundary

3

requires D,(x,,0")=0 or D} :@(0‘). To facilitate calculation of the Green’s function,

the eigenvalue problem in (1.9) and (1.15) is written as

(e?A - jaA2+A3){;j}=O (1.29)

el tonl] on

Substitution of (1.30) into (1.29) gives

and
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(=4

e - ol ) 0

Combining (1.31) with (1.30) yields the new eigenvalue problem,

(T, /K] (T, /K]
i NTalk| [ 1| Ty Ik
1 i(A-A) || Tslk 0 A || Telk
D,/k D,/k
a = s (1.32)
l'll ul
O A. u2 1 JA4 u2
L n u3 L n US
A .

At stated by Qiao et. al [23] equation (1.32) is a standard eigenvalue problem of the form

aBx = Axthat yields the eigenvalues and their corresponding eigenvectors together. In

contrast, the traditional method determines the eigenvalues o™ first; then uses them to

obtain the four corresponding eigenvectors in a piecewise fashion.
C. Hybrid Method

In this method calculating the Green’s function uses a mixture of both methods to
eliminate numerical instabilities in the generalized method while obtaining a high degree of
precision in the solution. Since the numerical magnitude ranges from10* to 10™** for the

values in (1.32), even the most robust eigenvalue solver has great difficulties. First equation

m

(1.32) is solved for the eight values of a™ then four are selected for the appropriate

propagating mode. Each eigenvalue is substituted into (1.32) yielding,

a“")Bx:Ax—>(a<m>B—A)x:o,—>Qx:o,m:1...4 (1.33)
where
1 i(A-A,)
B= (1.34)
0 A
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A= (1.35)

1 A

Each eigenvalue a™ allows row-reduction of Q to determine the null basis for (1.33), in

which are eight element column vectors comprising ['F D u ﬂ This approach obtains

the precision of the traditional method, while using the general method to solve the entire

problem without computing C,, explicitly from the boundary matrix.

1.2.2 Static IDT Capacitance

From equivalent circuit considerations the IDT can be described by a circuit consisting of
static capacitance (Cs), radiation conductance (G,), electric losses (G;), imaginary part of the
admittance (B,), and a series resistance (Rs). The static capacitance typically dominates the
imaginary part of the input admittance and therefore must be precisely calculated. The
admittance corresponds to the effect of acoustically induced charges on the transducers due
to the piezoelectricity of the substrate material [24]. The most important parameters are the
static capacitance (C;) given that it is the major part of the load seen by the driving circuitry
and the radiation conductance (G,) as it contains information regarding the acousto-electic
conversion efficiency. Devices that lack shielding or confinement of the fluid between the
IDTs are strongly dependent on electrical properties of the fluid, causing the sensor to detect
these properties rather than mechanical interactions during recognition layer-ligand binding.
In some cases shielding is not desirable, for example when measuring the conductivity and
permittivity of ionic solutions [25-27].

Evaluation of the static capacitance requires solving for the induced charge distribution
on the IDTs as a result of an applied voltage. This can be accomplished by using several
methods that include the Method of Moments (MoM) [28], Finite Element Methods (FEM),
Green’s function [29-31], spectral domain representation [32] and even conformal mapping
[33] for simpler geometries. By using C; = Q/V, the total static capacitance can be computed
from the charge. For IDTs composed of uniform strip widths with a periodicity (p) in Fig. 2,
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the total capacitance is computed from C, = (N-1)WC,, where N is the number of electric
periods and W is the length of finger overlap.

For periodic structures simplifications can be made to reduce the computational effort.
The static capacitance is directly related to the Fourier transform of transducer polarity
sequence for both single and split finger periodic IDTs. The following relationship for

charge Q. () on the m™ electrode given by [34]:

- QD) ofa P (cos(n7)) - joems
Qm (77) U m = 2£S|n(ﬂ5)me ds (136)

can also be expressed as [32],

N-1

V_n —j2znt
S

n=0

P2 (1)

Qs (77) = 4(80 + gp)W»ICOSZ (”%) {Sin(ﬁt) P,tlz (_77)

}dt (1.37)

for n split electrodes,where &, is the permittivity for vacuum, &, is the effective substrate
permittivity, W is the transducer width and P,(») is the legendre function of the first kind and
order v for which the symmetry relation P (77) =P, ,(77) holds. The legendre function Py(#)

IS given by
5 e COSH‘H;) 9}
P (17) =sin (”—”j— [ de (1.38)
2 )7 3 \/cos(e)—cos(nﬂ)
For the particular case of 7 =0.5, the expression given by (1.36) can be written as
. 4 1
=05)=—"—"—+ 1.39
Qulr=09= "o (1.39)
For double split IDTs there are now 2n electrodes such that (1.38) is found to be [32],
2 .t P o) ey L
Q.(7) =4(g, +&,)W | cos’ (ﬂ—j sin(r =) =222 1N T gmzmnt gt (1.40)
° .([ 2 2" P, (-n) EVT

To address any combination of dielectric layers or media (e.g. waveguides or fluids) on

the piezoelectric substrate, it is ideal to use finite element methods (FEM). The approach is
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to solve Poisson’s equation (1.41) for the geometry shown in Fig. 2 then compute the electric
field and electric displacement according to (1.42) and (1.43):

~VI(eV®)=0 (1.41)
E=-VO (1.42)
D=¢E (1.43)

&3 Media

Waveguide

V=1 V=1 V=0 V=0

M
[\®]

Trace 1 V=0 Trace 2 g, | Substrate

Fig. 2 Depicted is a double split IDT geometry with two alternating electrodes held at V =1 and V = 0.

By placing a known voltage on the metalized regions (e.g. V = 1, V=0), two methods can
then be used to extract the capacitance of the IDT’s. The total induced charge can be
obtained from using:

Q=[f|D-ds=cv (1.44)

The dot product in the integral represents the flux through a two dimensional surface
surrounding the structure or simply the line integral. Computational this method is fast,
however it is also less accurate since the total flux is highly dependent on the location of the
line integral boundary. A more accurate method is to compute the total energy in the electric
and displacement fields then equate this to the capacitance expression for stored energy:

U =1j|§-6dA=10v2 (1.45)
2 2

Since the permittivity of LTO is a 2" rank tensor, the permittivity is often approximated by
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1/2
£, =& +E, =&+ [5{18;3 —(512)1 (1.46)

However, we must exercise caution when using (1.46) since this form of the effective
permittivity is only valid for weakly coupled substrates such as quartz. From exact effective
permittivity theory, g(w)/e, = 49.7, where the approximation gives g(o0)/g, = 42.3 for 36° YX
LTO (Appendix C). The approximation is reasonably valid however for other strongly
coupled modes; the effective permittivity must be computed for the general problem.

1.2.3 Love Waves: Lossless Two Layer Case (Non-piezoelectric)

Love Waves are guided waves of horizontal shear polarization (SH), usually propagating
within a thin (guiding) layer of material attached to a substrate of higher shear velocity. The
waves are dispersive (e.g. frequency or thickness dependent) and dependent on the relative
change in the material properties between the layer and the substrate. To begin we consider a
plane wave propagating in isotropic layers where piezoelectric effects and material losses
have been neglected. The substrate layer is modeled as a half space such that displacement
must decay with increasing depth to have a bounded solution.

In Fig. 3, the substrate has a density o1, and Lamé constants s4 and 1; where the guiding
layer has a density p,, Lame constants s and /1, and thickness h. The existence of a wave is
dependent on the boundary conditions and the specification that the propagation constants are

real values since there are no losses in the layers.

/=- -
waveguide Doy Loy A
= ‘o)
/=0 Ty > +X
substrate Pis Ky Ay
+z

Fig. 3 Love wave configuration on a half-space
The propagation constants v, and v, are defined as:

v, =kj —k? (1.47)
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v, =k; —k* (1.48)

where, k is the wavenumber of the propagating Love Wave, k, is the wavenumber in the
substrate, and k, is the wavenumber in the waveguide. The wavenumber for the substrate
and the waveguide are determined by their material properties at the operating frequency.
The velocity in the substrate and the waveguide are specified by g :\/m and
b =\/m , respectively. In terms of the angular frequency (), material density (o) and

shear modulus (), the wavenumbers can be expressed as

2 2
k2 =2 -2~ 1.49
A ﬂ12 ( )
5 = 60_2 = 0 (1.50)
& 1322 Hy .

where, p1 is the density in the substrate, p» is the density in the waveguide, z4 is the substrate
modulus, and s is the waveguide modulus. For a propagating SH plane wave we have the

following displacements for the substrate (u;) and the waveguide (u,) as and as:
u, = Ae g™ (1.51)
U, =(Be™” +Ce'"* et (1.52)

where, t is time and x is the position along the x-axis. The constants A, B, and C are unknown
amplitude constants specified by application of the boundary conditions. The boundary
conditions require that the wave displacement is continuous across the interface, the
interfacial stresses (Tj) match at the interface and that traction for u, vanishes at z = -h for a
free surface. This is stated as:

2, e (153)
A A R '
ou,
—< =0 1.54
H o - (1.54)
U =U,, (155)
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By applying the boundary conditions we arrive at the following equations:

Vi, A+v,1,B—v,1,C =0 (1.56)
—Be" +Ce " =0 (1.57)
A-B-C=0 (1.58)

The non-trivial solution is given by setting the determinant of (1.59) equal to zero,

—Vith Vo i, TV i,

0 e e |=0 (1.59)
1 -1 -1
After some simplification we have,
voh — 4-wh
©_—° A% (1.60)

voh —v,h
e +e? MV,

We recognize that the I.h.s. of (1.60) can be written as,

i tan(v,h) = —£421 (1.61)
HV,

In order to obtain real solutions for the acoustic velocity (v;), v1 from (1.47) must be made
imaginary, which requires that the velocity in the waveguide is less than the substrate

e.g. S, < f,. This requires that,

ivlzi\/Z—i—kz :\/kz—Z—z (1.62)

Inserting this into (1.63) gives the dispersion relationship for Love Wave propagation in the

waveguide layer,

(0]

IR
tan| h |2 —k? =L 2o (1.64)
ﬂz /u2 g_kZ

2
2
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V2

2 1-—

v 2

tan 27r£ —-£-1 e A (1.65)
AN B Hy Vi

V'

]

The dispersion relationship (1.64) is a transcendental equation and is real valued when
B, <V, < f3, the range of apparent velocities where we have real plane waves in the top layer
and evanescent waves in the lower half-space.  Expression (1.65) shows the explicit

dependence of v, and h/A, which is a convenient form for the lossless case. If we rewrite the

l.h.s as,

v
where ¢ =27z |—-—1then the phase velocity is defined asv, = w/k .
\ ;

The L.h.s will have zeroes at ¢ =nzA/h, where n is an integer. The r.h.s of (1.64) decreases

monotonically with velocities from infinity at v,= /£ to zero at w,= . For a given h/4, the
solution is the smallest value of v, is called the fundamental mode. In fact there exists and
infinite number of Love Wave modes that satisfy (1.64).

Now we turn to solving for the displacements in the waveguide and substrate. Using
(1.56), (1.57), and (1.58) we now must now solve for A, B, and C using the boundary
conditions. This is accomplished by recognizing that B = C for the existence of a sinusoidal

propagating Love wave in the waveguide layer, allowing one to rewrite u, as:

u, =(Be ™" +Be'* ) €' = 2B cos(v,z)e" (1.67)

The displacement in the substrate (1.51) and the waveguide (1.52) must be equal at z = 0.
We find from this condition that B = A/2 giving u; and u, as

u, = Ag e'("" (1.68)
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u, = Acos(v,z)e'“ ™ (1.69)

This result could have been solved immediately from (1.59) by computing the eigenvalue (vp)
and corresponding eigenvector. In this case, the eigenvalue must appear 