Low Cost, Lightweight Solar Modules Based on Organic Photovoltaic Technology

Konarka Technologies, NREL, University of Delaware

SAI Final Review Meeting (September, 2010)

1] Overview

2] Stability

3] Performance

N-type materials

Bottom grid

Technology Comparison

Overview - Targets

<u>Timeline</u>

- Project start date: July 1, 2007
- Project end date: June 30, 2010
- Percent complete: 100%

<u>Budget</u>

- Total project funding: \$8.79M
- Project Spending
 - DOE share: \$3.64M (41%)
 - Contractor share: \$5.15M

Barriers

• Stability

- Accelerated aging (1000hrs@85°C/85%RH)
- Rooftop stability (>10yrs)

• Performance

- Cell performance >7%
- Module performance ~7%
- Cost
 - ~\$0.5/watt

Partners

- Project lead: Konarka Technologies
- Interactions/Collaborations
 - NREL and The University of Delaware

Overview - Results

Objectives (Project Year 3)

In order to produce solar modules for rooftop applications the performance and the lifetime must be improved to 5% - 7% and >10 year life.

Task 1. Stability

Improve lifetime of flexible modules: accelerated lifetime - 1000hrs@85°C/85%RH

Approaches taken and results:

- Adhesives with filler advantage demoed (in advanced development at KNB)
- Solution coatable barrier improvements demoed (more work needed)
- Degradation mechanism oxygen and water mechanisms demoed
- Advanced Film Barriers best examples: 1000hrs@65°C/85%RH; 200hrs@85°C/85%RH
- Glass Packaging >2000hrs@85°C/85%RH (passes IEC test: 20 years)

Task 2. Performance – n-Type materials

Stopped work - year 2

Task 3. Performance – Replace bottom electrode (ITO) with metallic grid

Improve performance of cells and modules by use of a grid: improved %T and sheet resistance

- Surface roughness target 5nm rms; current: 2nm rms
- Optical transmission target >85%T; current 85 90%T
- Sheet resistance target 5ohms/sq; current <1 ohm/sq
- Cell performance: >2.5% (best), 2.0% (average) efficiency (P3HT/PCBM active layer; lab cells)
- Coating/printing screen, flexo and gravure are options being evaluated

Task 1. Stability

Target: 1000hrs @ 85C/85%RH

Summary

1] Adhesives / fillers to aid barrier properties – done, in production

2] Solution coatable barriers

– target WVTR ~10⁻³g/m2/day

- current state ~10⁻¹g/m2/day

3] Degradation mechanisms

- oxygen attacks polymer : reversibly and irreversibly

- water affects morphology and interfaces

4] Flexible modules with flexible barriers: *1000hrs* @65°C/85%RH *200hrs*@ 85°C/85%RH

5] Glass packaged flexible modules: >2000hrs @ 85°C/85%RH

Module Stability - Effect of Buffer Layer Flexible Barriers

Summary: Buffer layer + filler improves stability accelerated aging

Rooftop Stability (Lowell, MA) Flexible Barriers

Summary: Rooftop testing in Lowell , MA shows very good stability

Module Stability – Glass Packaging

Summary: the polymers in all layers are inherently stable

Module Stability - Hot /Cold Cycling Glass Packaging

Summary: Hot/cold cycling has no effect on stability - <5% decrease in Efficiency after 250 hours

<u>Ratio</u> of final to initial parameters for flexible modules in <u>Dry Heat (65°C/10%RH)</u>

Sample ID	Bias	Voc	Isc	FF	Power
230	SC	100.2%	101.8%	97.3%	99.2%
231	SC	101.1%	102.0%	101.5%	104.7%
219	МР	98.3%	102.8%	97.7%	98.8%
222	МР	98.9%	102.2%	89.8%	90.7%
220	OC	99.3%	101.2%	95.1%	95.6%
229	OC	100.4%	100.6%	105.7%	106.9%
232	Dark	96.6%	102.5%	95.2%	94.2%
248	Control	99.5%	101.5%	99.3%	100.0%
249	Control	99.3%	101.3%	97.0%	97.7%

Summary: Modules are thermally stable (dry heat)

<u>Ratio</u> of final to initial parameters for flexible modules in <u>Damp Heat (</u>65°C/85%)

Sample ID	Bias	Voc	Isc	FF	Power
233	SC	96.4%	97.2%	68.0%	63.8%
234	SC	95.1%	99.1%	64.6%	60.9%
237	SC	97.6%	90.5%	47.0%	41.6%
238	MP	97.7%	101.5%	69.6%	69.2%
239	MP	101.1%	100.9%	76.8%	78.5%
242	MP	99.6%	103.7%	79.8%	82.5%
241	OC	101.9%	100.9%	82.4%	84.4%
244	OC	99.9%	103.3%	84.2%	87.0%
245	OC	98.8%	100.3%	78.1%	77.6%
246	Dark	94.5%	104.6%	80.7%	79.9%
248	Control	99.5%	101.5%	99.3%	100.0%
249	Control	99.3%	101.3%	97.0%	97.7%

Summary: heat and humidity causes major instability at short circuit

Solution Coatable Barriers - NREL

Performance

Task 2: Performance – *n*-Type Materials

Target : 7% module efficiency

Summary: 1] n-type polymers difficult to synthesize – stopped 2] n-type small molecules (fullerenes) 30 – 40 synthesized and tested Deep LUMO allows electron transfer from polymers with deep LUMOs High cell voltage and improved performance <u>not</u> yet realized due to morphology issues 3] improved cell efficiency with this approach not realized

Task 3. Performance - Bottom Grids

Target: Replace ITO with a metallic grid

Summary

 a metallic grid is used as the bottom electrode (cell) surface roughness <~5nm; current value <~2nm fill layer level with top of grid – done sheet resistance <5ohms/sq ; current value <1ohm/sq %T>85%; current value 85 – 90%T
 metallic grid in a module: targeting equivalent performance to ITO current status: 2% efficiency (av.); 2.6% (best)

Printed Silver Grid

<u>Data</u>

<90% open area</p>
40 - 50um wire width
Sheet resistance <10hm/sq</p>
Transmission: >85%T
Stability (no change in conductivity)
>1000 hrs @ 65°C/85%RH
>1000 hrs @ 85°C (dry)

Summary: several printing processes can be used to print grids with 40 – 50um wires and spacing between wires will be adjusted to give the desired transmission

Surface Roughness (AFM) of Grid and Fill layer

	Max peak (nm)	Ten point height (nm)	Av. Peak (nm)	Surface roughness – RMS (nm)
Bare ITO	138 +/-19	68 +/-9	21 +/-3	6 +/-1
Polyester Substrate	84 +/- 3	40 +/- 2	15 +/- 7	2 +/-0
Surface of Silver grid wires	27 +/-8	14 +/-6	15 +/- 9	2 +/-1
Surface of the fill between the grid lines	40 +/-17	21 +/-11	27 +/-11	2 +/-0

Polyester Substrate

Space Between Grid Wires

Summary: extremely low surface roughness of the bottom grid is a key coating a cell without shorts

Standard Cell Efficiency

Power Comparison

SAI Presentation Competitive Performance

Application: Curtain Wall **Competitive Testing - Energy Collection on 08/01/10**

Daily Solar Energy Collection for 08/01/10 - Lowell, MA

Arch Rooftop Panels (horizontal orientation): Energy Collection

Energy Collection for Different Technologies

South Curtain Wall Panels: Energy Collection

Arch Curtain Wall Energy Production by Inverter for East & South Walls 3/01/10 - 7/31/10

Arch Curtain Wall Energy Production by Month for East & South Curtain Walls

Data for c-Si

Note: the East Wall is Scaled for 16 Panels

Task 1 – Stability

- Flexible modules are stable to 1000hrs at 65°C/85%RH
- Flexible modules in glass are stable to >2000hrs at 85°C/85%RH (no decrease in performance)
- Adhesive + filler helps stabilize modules
- Solution coatable barriers exhibit good WVTR; work in-progress

Task 2 – Performance: n-type charge carriers

- N-type polymers could not be synthesized
- More than 30 fullerene derivatives synthesized and tested
 - Several deep LUMO derivatives accept charge from deep LUMO polymers: higher voltage observed
 - Improvement in cell efficiency not observed morphology problem

Task 3 – Performance: grid electrode

- Exceeded flatness and roughness goals
- Exceeds sheet resistance goals
- Achieved %T goals
- Performance equivalent to ITO 2% Efficiency (av.); work in-progress

Current Cell and Module Performance

- World record (1cm² cell area)= 6.51%
- Cumulative power production larger than competitive technologies