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Abstract 
 

In this report a model for simulating aerosol cluster impact with rigid walls is 
presented.  The model is based on JKR adhesion theory and is implemented as an 
enhancement to the granular (DEM) package within the LAMMPS code.  The theory 
behind the model is outlined and preliminary results are shown. 
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 1.  INTRODUCTION 
 
 
Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, 
powders, colloidal suspensions, etc.).  Modeling the behavior of aerosol particles during 
agglomeration and cluster dynamics upon impact with a wall is of particular interest.  In this 
report we describe preliminary efforts to develop and implement physical models for aerosol 
particle interactions.  Future work will consist of deploying these models to simulate aerosol 
cluster behavior upon impact with a rigid wall for the purpose of developing relationships for 
impact speed and probability of stick/bounce/break-up as well as to assess the distribution of 
cluster sizes if break-up occurs.  These relationships will be developed consistent with the need 
for inputs into system-level codes.  Section 2 gives background and details on the physical model 
as well as implementations issues.  Section 3 presents some preliminary results which lead to 
discussion in Section 4 of future plans. 
 
 

2.  MODEL AND IMPLENTATION DETAILS 
 
2.1. Adhesion Model 
 
Following the work of Chokshi et al. [1] a number of researchers (e.g., [2-7]) have used particle-
based techniques for investigating coagulation/agglomeration of small particles.  What each of 
these has in common is that their physical models for the interaction of pairs of aerosol particles 
in the direction normal to the point of contact between the particles are derived from JKR theory 
[8].  JKR theory [8] combines Hertz’s analysis of elastic deformation of contacting spheres with 
a constant attractive adhesive force when particles are in contact.  The resulting equation for the 
magnitude of the normal force between contacting spheres of identical material and size is 
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where E is the Young’s Modulus,  is the Poisson ratio,  is the surface energy per unit area, 
d=2R is the diameter of the particle, and a is the radius of the contact circle between the spheres.  
The first term on the R.H.S. is the standard Hertz result.  The second term is the force due to the 
surface adhesion of the particles.  Equation (1) gives the relationship between the force and the 
contact circle radius for identical spheres; although the results can be generalized to convex 
particles of differing size and materials.  Furthermore, the contact radius a can be related to the 
relative displacement  as 
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where the critical displacement at separation under tensile force is c with 
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and at equilibrium under zero applied force the contact circle radius 
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Note that for Hertzian contact without adhesion  = 4a2/d.  Equation (1) can be rewritten in a 
nondimensional form as 
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where Fc=3d/4 is the force required to separate the adhered spheres.  Figure 1 shows the value 
of the normal force as a function of the overlap, . 
 
 
 
 

 
 

Figure 1:  Normal force as a function of overlap, .  Note: at contact,  = 1.0, force is non-
zero due to adhesion while force for  > 1.0 applies only for separation after contact.  
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 As noted above, many researchers seem to follow the work of Chokshi et al. in 
using the JKR theory of adhesion.  However, alternatives have been proposed and debated in the 
literature most notably the DMT theory [9].  The differences between these were initially 
conceptual in formulating the problem, but led to very different predictions including different 
values of the pull-off force (Fc=3d/4 for JKR and Fc=d for DMT).  Later other approaches 
were developed to reconcile these discrepancies [10, 11].  From the later studies it was 
determined that JKR theory is appropriate for soft materials (i.e., low Young’s Modulus) with 
high surface energies and large size whereas DMT theory is relevant for hard materials with low 
surface energies and small size; the key dimensionless parameter being 
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where z0 is the separation at which the attraction between the sphere surfaces is maximum.  At 
high , JKR applies and low , DMT.  The second equality follows from the discussion below 
(see equation (7)).  Tsai et al. [12] have raised objections to JKR, DMT and the “unified” MYD 
theories.  In particular, a formulation which is consistent with long-range van der Waals 
attraction between macroscopic spheres may require formulating the problem along the lines of 
[12]; although it is not entirely clear that this is necessary, at least initially.  The JKR theory has 
been implemented in the current work as materials with high  are being simulated and should it 
become necessary a change to DMT would be trivial.  Questions about compatibility with the 
Hamaker equation for long-range van der Waals attraction have been set aside initially since we 
neglect these interactions at present; although they can be included trivially. 
 
 The above model is easily implemented in Discrete Element Codes which allow for 
simulating the many particle dynamics of cluster formation and behavior upon impact.  DEM is 
the large particle analog of Molecular Dynamics.  Newton’s equations of motion are solved for 
each individual discrete particle.  The positions of all the particles are specified as the initial 
condition for the simulation.  Then, using equations (2) and (3) the radius of the contact circle 
can be found for any pair of particles that are in contact.  That is, delaying the discussion of 
tangential contact forces until later, for identical spheres i and j in contact, we note that  =d- rij 
where rij=|ri-rj|.  Having calculated  for a pair of particles, solving equation (2) for a now 
allows us to find the force acting between the particles via equations (4) and (5).  The forces on 
each particle are summed and Netwon’s First Law is integrated to get the velocities and 
integrated again to get the displacement.  This is done for each particle.  The particles are then 
moved and the new configuration allows us to repeat the process thereby iteratively evolving of 
the multi-particle dynamics.   
 
 Accordingly, equations (2-5) form the basis of the adhesive particle model 
implemented in Sandia’s Large Atomic-Molecular Massively Parallel Simulator (LAMMPS) 
code.  The current LAMMPS implementation of adhesive particle models is similar to previous 
work [5]; however a few differences in the details should be pointed out.  As part of the general 
distribution, LAMMPS contains a “Granular” package that allows one to perform particle 
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simulations using the Discrete Element Method (DEM) [13].  LAMMPS’s basic granular model 
for grain-grain interactions is based on the visco-elastic contact forces derived in [14].  These 
include a normal Hertzian elastic and a dissipative force describing the inelasticity of real 
materials.  Note the dissipative force does not appear in equations (1) or (5).  The tangential 
frictional forces are represented similarly using a Mindlin-type model [15].  In practice this 
amounts to a spring and a dashpot model for both the normal and tangential contact forces with 
the addition of a slider in the tangential model due to the Coulomb friction limit.  To this basic 
model were added additional terms representing the surface adhesive force at contact as well as 
other terms, which restrict relative translation, rotation and twisting.  
 
 In the basic LAMMPS granular model, the user specified parameters for the normal 
interactions are the normal stiffness (with units of force/distance) 
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and damping coefficient (with units of mass/time) 
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where  is Poisson’s ratio and  and are the shear and bulk “viscosities”, respectively, of the 
material.  Note we have again assumed equal sized spheres of identical materials.  In the 
model of [5] following [15] the normal damping coefficient is written as 
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with m the mass of the particle.  Equation (9) is derived heuristically with the empirical 
coefficient  related to the coefficient of restitution.  The visco-elastic model underlying 
equation (8) by contrast allows the damping coefficient to be specified independent of the normal 
stiffness – at least there is no explicit dependence on the normal stiffness even though there is an 
implicit dependence through the relative normal displacement .  Similarly, the user specified 
parameters for the tangential interactions are the coefficient of friction  
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where Fn and Ft are the normal and tangential force magnitudes, respectively.   The tangential 
stiffness is defined by 
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where G is the shear modulus.  Equation (11) is based on the analysis of Mindlin and Deresiecz 
for the case of no-slip [15].  Implied by equation (11) is the fact that the tangential force-
displacement relationship depends on the relative normal displacement.  Finally, and tangential 
damping coefficient can also be specified; however it has been ignored (i.e., set equal to zero) in 
the current work. 
 
 Given the above discussion, the magnitude of the total normal force acting on 
particles i and j in contact, again assuming identical particles, can be written as 
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where (a) is given in equation (2) and vij = |vi – vj| is the relative velocity of the pair and nij the 
unit normal vector and the contact.  The magnitude of the tangential force is given by 
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where kt is defined in equation (11) and the tangential force is limited by  the adhesion analog of 
equation (10), namely 
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Note it is more convenient to write the tangential force in terms of  and not a as in equation 
(12).  Recall that  is the quantity calculated directly during the force determination; 
subsequently equation (2) is solved for a and used in (12).  In fact, equation (2) is solved 
analytically (selecting the root that gives real values) and implemented in the code.  The total 
force on particle i can now be written as 
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where t is the unit vector tangential to the contact and in the direction of sliding (n x t = 0).  
Additional forces including long-range van der Walls attraction or electrostatic repulsion (i.e., 
DLVO-type forces) and forces due to particle-fluid interactions (Brownian, drag, etc.) are 
available in LAMMPS or by coupling LAMMPS to a fluid flow solver and can be included at a 
later date. 
 
2.2. Sintered Particle Contact Constraint Model 
 
In addition to the JKR adhesion which applies to the forces between particle pairs in contact, a 
model for sintered constraints between contacting particles has been implemented.  In addition to 
the tangential and normal forces a torque between contacting particles is included.  This model 
follows [5] and details can be found there.  Here we outline some of its aspects in the LAMMPS 
implementation.  The total torque on a particle i is given by 
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where tr is the unit vector tangential to the contact and in the direction of rolling, Tr is magnitude 
of the torque on the particle due to the rolling resistance and Tt is the magnitude of the torque due 
to resistance twisting of the particle about the contact normal.  As mentioned, further details can 
be found in [5].  The twisting torque is limited by 
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while the rolling torque satisfies 
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where kr = 4Fc(a/a0)

3/2 is the rolling “stiffness” and crit is the is the critical rolling displacement 
[5] which is a user specified value.  This sintered particle model can be used in conjunction with 
the JKR adhesion or the user can choose to perform simulations with JKR adhesion only. 
 
 

3.  PRELIMINARY RESULTS 
 
In this section, the simulation setup and methods are described as well as showing some 
preliminary results.  
 
3.1. Problem Statement and Formulation 
 
As mentioned in the Introduction, the ultimate goal is to perform simulations to study aerosol 
cluster impact and break-up.  Nominally, 20nm Ammonium Nitrate particles, idealized as 
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identical spheres, are the constituents of the clusters.  Initially, gravity, long-range (i.e., non-
contact) van der walls attraction and electrostatic repulsion between particles and wall, and 
interaction with a background fluid have been ignored.  However, adhesion between the particles 
and the wall is accounted for.  In order to perform the simulations the following steps must be 
taken: 
 

 Generate initial fractal clusters 
o Grow randomly (diffusive cluster-cluster aggregation – DCCA) via 

Brownian/Langevin dynamics and adhesion model 
o Build directly with target fractal dimension (ballistic cluster-cluster aggregation-

like models – BCCA) 
 “Throw” clusters at flat, rigid wall varying impact velocity 

o Initially ignore fluid flow and particle-fluid coupling 
o Initially assume no random motion of particles, which may occur due to thermal, 

or turbulent fluctuations in the background fluid 
 Characterize agglomerate response: bounce, collapse, change in fractal dimension, 

fracture:  fracture probability and fragment size distribution, etc. 
 Develop models to predict response based on agglomerate characteristics and impact 

conditions 
 

In performing the simulations the flowing non-dimensional units will be used 
 Length:  d = 1.0 
 Mass: m = 1.0 
 Time:  √d/g , where g is the acceleration of gravity, representing the time taken for a 

particle to fall its own diameter under the influence of gravity (g = 1.0 in non-
dimensional units) 

 Force: d 
 Energy: d2 

A key dimensionless ratio is /kn as can be seen by substituting equations (4) and (7) into 
equation (12) (see also equation (6) and the discussion concerning it).  It should be noted at this 
point that although we have a direct relationship between elastic material properties of a material 
and kn (equation (7)), for computational efficiency for very stiff materials (e.g., glass) the value 
of kn used in the simulations is several orders of magnitude smaller than the value determined by 
equation (7).  This is due to the stability of the time-stepping scheme where the timestep must 
satisfy t < √m/kn.  Hence the larger kn the smaller t.  Realizing this requires  to be adjusted 
accordingly in the simulation while keeping the ratio /kn equivalent to the physical value.  
Another key ratio for particle-particle (similar for particle-wall) collisions is  
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where v0 is the initial velocity of the particle (i.e., velocity prior to impact) and c is a constant 
related to converting the time units in the velocity to √m/kn which, according to the above, 
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originally had units of √d/g.  Equation (19) is the ratio of adhesion energy to kinetic energy 
for a single particle.  The value of this ratio is related to whether colliding particles will stick or 
not (ignoring inelastic dissipation in the collision) [1].  This ratio indicates that if  is to be scaled 
while keeping the ratio /kn constant then the velocity must be scaled as well to recover the 
correct stick or bounce behavior of the particle-particle (particle-wall) interaction. 
 
3.2. Aerosol Cluster Formation 
 
The initial conditions for a simulation of an aerosol cluster impacting a wall consists of 
specifying the geometry of the cluster.  It is well known that the fractal dimension of the cluster 
describing its geometry depends on the agglomeration process [16, 17].  A couple approaches 
can be taken to build these initial fractal clusters.  One can either simulate the exact formation 
process [e.g., 19, 20], or the clusters can be built by an algorithm which attempts to model the 
physical formation process [e.g., 18, cf. 6 and 7].  Since the former can be algorithmically and 
computationally intensive, the latter process will be adopted.  Figure 2a shows a representative 
cluster of 4096 particles generated from an algorithm similar to [18].  Figure 2b shows the 
method for determining the fractal dimension from the scaling of the radius of gyration with 
number of constituent particles in the cluster.  This algorithm yields clusters with fractal 
dimensions ~2.05.  Modifications can be made to yield fractal dimensions ~1.91 [18].  
Alternative algorithms can give clusters of arbitrary fractal dimensions. 
 
 

       
 

(a)                                                                (b) 
Figure 2:  (a) Representative aerosol cluster formed by model cluster generator and (b) 

radius of gyration of cluster versus number of constituent particles. 
 
 
In addition, as part of the validation of the for model described in section 2, Brownian 
Dynamics-like simulations were performed with particles interacting under influence of JKR 
forces only and with the sintering-like contact constraint model.  Examples of particle clusters 
from these small simulations are shown in figure 3. 
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(a)                                                                (b) 
Figure 3:  Representative aerosol cluster formed by Brownian Dynamics simulations: (a) 

without the sintering model and (b) with the sinter model. 
 
 
As pointed out in [19], finite size effects are very much preset in the simulations of which the 
clusters in figure 3 are representatives.  However, it can still be clearly seen that the sintering 
constraints lead to a more open structure after the same number of time steps. 
 
3.3. Cluster-wall Impact 
 
Taking the cluster of figure 2, one can “throw” it against a flat, rigid wall and observe the 
behavior as in figure 4.  The parameters for this simulation were /kn ~ 0.001,  = 0.5 the initial 
impact velocity of the cluster was 1 d/.  There was no attractive interaction between the wall 
and the individual particles, but the Hertzian elastic and frictional interactions are the same 
between the grain-grain and grain-wall interactions.  Although the snapshots end before rebound 
of the cluster from the wall impact, it can be seen that these parameters give a very ductile-like 
response with no cluster fracture/break-up. 
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Figure 4:  Snapshots of the cluster from Figure 2 impacting a flat, rigid wall. 
 
 
 

4.  CONCLUSIONS AND FUTURE WORK 
 
Physical models for aerosol particle dynamics and adhesion have been implemented in Sandia 
National Laboratories’ Large Atomic Molecular Massively Parallel Simulator.  Preliminary 
results indicate that these models are functioning as expected.  A full investigation of the 
problems remains for a later date. 
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