
SANDIA REPORT
SAND2010-6339
Unlimited Release
September 2010

Exploration of Cloud Computing
Late Start LDRD #149630
Raincoat v. 2.1

Victor T.E. Echeverría
Patrick Edgett
Kasimir Gabert
Michelle Leger
Michael D. Metral
Tan Thai

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof,
or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone:(865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone:(800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2010-6339
Unlimited Release
September 2010

Exploration of Cloud Computing
 Late Start LDRD #149630

Raincoat v. 2.1

Patrick Edgett, Kasimir Gabert, et. al.
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-0621

Abstract

This report contains documentation from an interoperability study conducted under the Late Start
LDRD #149630, Exploration of Cloud Computing. A small late-start LDRD from last year
resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security
in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and
demonstrates that it is possible to secure the communication channel between two small “test”
clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study
to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elastic
Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The
study contributed to our understanding of interoperability in a hybrid cloud.

4

ACKNOWLEDGMENTS

Roxie Jansma Threat Analysis Technologies – 5631
LeAnn Miller Computer Science Department I – 5636
Declan Rieb Proliferation Sciences Department – 5925
Tan Thai Information Systems and Analysis – 5630

5

CONTENTS

1. Introduction ... 9

2. Overview of Raincoat ... 11
2.1. Overview of newspaper release ... 11
2.2. Overview of poncho release .. 11

3. Problems with newspaper ... 13
3.1. Use of ssh to gain root access share database information .. 13
3.2. Use of mod_python .. 13
3.3. Lack of any error checking/handling ... 13
3.4. Complicated user interface .. 13
3.5. Inability to handle large number of clients .. 13
3.6. Lack of IPSec for Site-to-Site tunnels ... 14
3.7. Inadequate documentation for design and usage ... 14

4. Welcome to Raincoat 2: poncho ... 15
4.1. Technologies Used ... 16

5. Poncho Use Case Diagram ... 19

6. Poncho Use Case Descriptions ... 21
6.1. High Priority Use Cases ... 21

6.1.1. ViewTopology Use Case ... 21
6.1.2. ModifyTopology Use Case .. 22
6.1.3. DeployTopology Use Case .. 23
6.1.4. ModifyRootRaincoat Use Case .. 24

6.2. Medium Priority Use Cases ... 25
6.2.1. ConfigureCloud Use Case .. 25
6.2.2. ModifyClient Use Case ... 26
6.2.3. JoinTopology Use Case ... 27

6.3. Low Priority Use Cases ... 28
6.3.1. Authenticate Use Case ... 28

7. Behavioral Analysis .. 29
7.1. ViewTopology Sequence Diagram ... 29
7.2. ModifyTopology Sequence Diagram ... 30
7.3. DeployTopology Sequence Diagram ... 31
7.4. ModifyRootRaincoat Sequence Diagram ... 31
7.5. ConfigureCloud Sequence Diagram ... 32
7.6. ModifyClient Sequence Diagram ... 32
7.7. JoinTopology Sequence Diagram ... 33
7.8. Authenticate Sequence Diagram ... 34

8. Structural Analysis .. 35
8.1. Authentication .. 35
8.2. Cloud Technology .. 35
8.3. Topology .. 36

6

8.4. Root Raincoat .. 36
8.5. RootTunnel .. 37

9. Implementation Details ... 39
9.1. Controllers.. 39

9.1.1. Administrator Controller .. 39
9.1.2. Inter- Raincoat Communications (IRC) Controller .. 39
9.1.3. Root Raincoat ... 40
9.1.4. RootTunnel .. 41

9.2. Models.. 41
9.2.1. SQLAlchemy Tables .. 41
9.2.2. Forms ... 44

9.3. Views ... 44
9.3.1. Common Views ... 44
9.3.2. Administrator ... 44
9.3.3. Root Raincoat ... 45

9.4. Libraries ... 45
9.4.1. Deploy .. 45
9.4.2 Rubber .. 46

9.4.2.1. Config .. 46
9.4.2.2. IPSec .. 46
9.4.2.3. OpenVPN ... 46
9.4.2.4. RSA .. 47

10. Conclusions ... 49

11. Distribution ... 51

7

FIGURES

Figure 1. The purpose of leaf and root Raincoats in a topology supporting 300 clients total.
Solid lines represent VPN providers and dotted lines represent overlay network connectivity. .. 15
Figure 2. A screenshot of poncho demonstrating the simple drag-and-drop user interface. 16
Figure 3. High level use case diagram for the Raincoat application. 19
Figure 4. Sequence Diagram for the ViewTopology use case. ... 29
Figure 5. Sequence Diagram for the ModifyTopology use case. .. 30
Figure 6. Sequence Diagram for the DeployTopology use case. .. 31
Figure 7. Sequence Diagram for the ModifyRootRaincoat use case. 31
Figure 8. Sequence Diagram for the ConfigureCloud use case. .. 32
Figure 9. Sequence Diagram for the ModifyClient use case. ... 32
Figure 10. Sequence Diagram for the JoinTopology use case. ... 33
Figure 11. Sequence Diagram for the Authenticate use case. ... 34

TABLES

Table 1. ViewTopology use case specifications. .. 21
Table 2. ModifyTopology use case specifications. .. 22
Table 3. DeployTopology use case specifications. .. 23
Table 4. ModifyRootRaincoat use case specifications. .. 24
Table 5. ConfigureCloud use case specifications. .. 25
Table 6. ModifyClient use case specifications. .. 26
Table 7. JoinTopology use case specifications. .. 27
Table 8. Authenticate use case specifications. .. 28

8

NOMENCLATURE

API Application Programming Interface
CGI Common Gateway Interface
DOE Department of Energy
EC2 (Amazon) Elastic Compute Cloud
IPSec Internet Protocol Security
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
JSON JavaScript Object Notation
LDRD Laboratory Directed Research and Development
MVC Model-Controller-View Architecture
OpenVPN Open Source VPN
ORM Object-Relational Mapper
OS Operating System
REST Representational State Transfer
SNL Sandia National Laboratories
VM Virtual Machine
VPC (Amazon) Virtual Private Cloud
VPN Virtual Private Network
VT Virtualization Technology
WSGI Web Server Gateway Interface

9

1. INTRODUCTION

Recent advancements in virtualization technology (VT) have sparked the development of a
number of tools allowing the provision of virtual machines (VMs) – computing infrastructure –
to be sold as a service. These tools allow a user to instantiate and destroy whole networks of
machines on demand, scaling up or down as the situation demands. Networks such as these,
commonly referred to as clouds, can be provisioned on private hardware by tools like Eucalyptus
or on systems provided commercially such as Amazon's Elastic Compute Cloud (EC2). Such
tools provide users with remarkable flexibility and scalability, often at a far better price than if
they were to invest in dedicated hardware.

As usage of these technologies becomes more common, we foresee a need to establish
communications between clouds that are on separate networks. Such communication will
necessarily cross trust boundaries and likely travel over the Internet, and therefore it will need to
be secured. Today there are solutions for establishing satisfactory security in these
communications, Virtual Private Networks (VPNs) such as CohesiveFT's VPN-Cubed and
Amazon's Virtual Private Cloud (VPC), but these tools are limited in applicability and require
specialized training for effective use. VPN-Cubed is a software based solution which is not very
flexible or extensible. VPC is a solution for enterprise users with a VPN system already installed.

The purpose of the Raincoat project is to ease the burden on the user of securing
communications between clouds. Raincoat manages VPNs and IPSec tunnels for the user,
providing a simple and intuitive interface for configuration, and handling tedious details
automatically. This simplification brings the task of setting up secure communications between
clouds from a level requiring specialized training to one where it should be accessible to most
computer users. An important nonfunctional goal for the project is to release Raincoat as open
source software.

10

11

2. OVERVIEW OF RAINCOAT

2.1. Overview of newspaper release

Raincoat newspaper was the initial version of the Raincoat project. A prototype tool, it
demonstrated that Raincoat could provide a software solution for VPN overlays in clouds. As
a proof-of-concept, newspaper is a definite success; the tool greatly simplifies the setup of a
VPN connecting machines in two clouds securely.

Being a proof-of-concept tool, however, newspaper suffers from several shortcomings: it
lacks scalability, the interface is cumbersome, and the code base is ill-suited to public release.

The following were the design goals of newspaper:

 Demonstrate that a software solution for VPN overlays in clouds is viable
 Produce a proof-of-concept tool that can support secure communication between

numerous clients in two clouds
 Allow the tool to be configured to support various topologies
 Show that OpenVPN is both stable and fast enough to support many more users than

existingn VPN software

2.2. Overview of poncho release

Raincoat poncho seeks to improve on the functionality of newspaper, while also
preparing the code base for public release. As such, poncho constitutes a substantial overhaul
of Raincoat rather than mere incremental improvement. Where newspaper provides a
rather complex interface composed of a number of web pages and prompts the user to provide a
number of fairly arcane configuration options, poncho provides a vastly simplified interface,
and strives to minimize the number of configuration decisions the user must make. poncho also
improves security by replacing VPNs for site-to-site communications with IPSec. Finally,
poncho introduces a new method for managing participants in the overlay which allows it to
handle many more clients than newspaper did.

The following were the design goals of poncho:

 Turn the proof-of-concept tool into a product capable of being open-sourced
 Create a graphical interface which is more intuitive than newspapers’ interface
 Allow clients to automatically connect to the overlay on VM instantiation
 Use IPSec for tunnel communications and OpenVPN for client connectivity
 Be able to support thousands of clients (up to a class B per cloud participant) across

numerous clouds

12

13

3. PROBLEMS WITH NEWSPAPER

 This section includes a list of the driving forces that sparked the development of poncho.

3.1. Use of ssh for root access to shared information

newspaper relied on public key authentication to execute commands remotely on the various
Raincoats as well as to transfer data between them. Additionally, all commands and transfers
were executed as the root user. This caused several nasty issues. Any faults with this
authentication method resulted in giving the user full root privileges on all connected
Raincoats. Additionally, if a Raincoat instance was compromised, root keypairs to all other
Raincoats were exposed.

3.2. Use of mod_python

mod_python is an Apache module that embeds the Python interpreter in an Apache web
server. mod_python allowed us to write the web interface in the same language we were using
to generate and deploy Raincoat server configurations without using Common Gateway
Interface (CGI). Unfortunately, mod_python is no longer maintained, and the Python
community has deprecated it in favor of the Python Web Server Gateway Interface (WSGI).

3.3. Lack of any error checking/handling

newspaper was implemented hastily as a proof-of-concept tool. As such, error checking and
handling was poor. The user could input malformed data and never receive a response as to why
Raincoat wasn't deploying properly. This is a very bad practice.

3.4. Complicated user interface

The user interface was a very crude, basic web form which allowed the user to input almost any
configuration option possible. Many of these options are not needed, but newspaper required
them to be input. newspaper was designed with advanced technical users in mind, but it is
possible to achieve much more abstraction and be accessible to less technical users.

3.5. Inability to handle large number of clients

Client certificate and configuration generation is totally manual. The user must create every
client individually and is then responsible for distributing keys and configuration to each client
and then deploying the configurations. Since everything is so manual, anything more than a
handful of clients takes far too long to set up and deploy. This process can be much more
automated.

14

3.6. Lack of IPSec for Site-to-Site tunnels

newspaper release uses OpenVPN as the underlying VPN technology for connections.
Currently, most commercial router providers and enterprise networks do not support OpenVPN,
but they generally do support IPSec for the site-to-site (Raincoat to Raincoat) connections.
Therefore, there was no way for newspaper to allow connections to a given enterprise; instead,
the user was required to run a machine with OpenVPN in order to connect sites together.

3.7. Inadequate documentation for design and usage

As newspaper was a rapid prototype, little attention was paid to the design and usage. The
primary focus was on understanding how OpenVPN could be used to establish an overlay
between remote clouds rather than the design of the software that creates, manages and deploys
the configurations. Detailed attention to Raincoat's design can address every issue listed here
to create a very solid product.

15

4. WELCOME TO RAINCOAT 2: PONCHO

Raincoat poncho was developed with a new set of design goals in mind. Instead of being a
proof-of-concept to demonstrate that software VPN solutions can scale within a cloud,
Raincoat now focuses on two design requirements: the ability to scale to handle very large
numbers of client connections and the need to provide an interface that is simple enough that an
individual familiar with starting and stopping cloud instances but unfamiliar with VPN
technologies can use it.

To allow Raincoat to use IPSec tunnels for traffic passing between clouds, poncho was
designed to interact with our customized application programming interface (API) for the open
networking router Vyatta. To minimize the number of OpenVPN clients connecting to a
Raincoat, we established a hierarchy of root Raincoats and leaf Raincoats. Figure 1
demonstrates what role leaf and root Raincoats play in a given topology (each Raincoat of
either type is essentially a Vyatta router).

Figure 1. The purpose of leaf and root Raincoats in a topology supporting 300 clients total.
Solid lines represent VPN providers and dotted lines represent overlay network connectivity.

Since each OpenVPN server can handle roughly 100 clients1, if more than 100 clients are needed
for a given cloud then multiple leaf Raincoats will be created.

For simplicity, a Pylons web application with an HTML5 canvas frontend was developed to
allow a user to easily create complex overlay network topologies. A screenshot of the new user
interface is in Figure 2.

1 This number is based on the default maximum number in the OpenVPN configuration at
http://svn.openvpn.net/projects/openvpn/trunk/openvpn/sample-config-files/server.conf.

16

Figure 2. A screenshot of poncho demonstrating the simple drag-and-drop user interface.

A better mechanism for facilitating communication between the Raincoats allows poncho to
avoid many of the problems encountered with sharing SSH keys. poncho uses a
Representational State Transfer (REST) system for communication between Raincoat
instances. Through this system Raincoat instances send heartbeats, deploy new topologies,
and allow administrators to log in.

Also, only one administrator can log in at a given time. Any race condition will be satisfied by
allowing the smallest id number for a root Raincoat to be granted a login before any other
administrator.

4.1. Technologies Used

Pylons is a modern Python web development framework build upon the Python Web Server

Gateway Interface (WSGI), which is a Python standard. Pylons is built around the Model-
View-Controller architectural pattern common in web applications. The framework enables
rapid development of clean web applications, and, being built in Python, offers a great degree
of portability.

 Vyatta is an open networking router capable of interfacing with commercial Cisco and Juniper

routers. It natively supports both IPSec and OpenVPN and has optimizations in place for
both.

 OpenVPN is a technology developed by the core team developing the Vyatta router. This

technology describes an application and a protocol, both of which are used to provide VPN
access to the instances participating in the given overlay network on the cloud.

 IPSec is a protocol specification describing encrypted VPN access between various sites. It is a

popular protocol used by many large enterprises and is well suited for being used to connect
root Raincoat instances on separate clouds.

17

 Python is a high-level interpreted programming language which is well-known for enabling

rapid development and understandable code.

 MySQL is an open-source Relational Database Management System. It is quite popular with

open-source projects and web applications.

 SQLAlchemy is an open-source Python-based object-relational mapper (ORM) which can be

used with a variety of databases. Using an ORM solution allows for both the database and the
SQL to be abstracted away from the programmer.

 Model-View-Controller (MVC) Architecture is a popular architectural pattern for web

applications (we use it here). It consists of three components:

1. The Model represents application data. It may be a database interface or other interface
between the application and non-volatile data storage.

2. The View consists of components that interface with the user, such as web forms.
3. The Controller mediates between the View and the Model, containing application logic.

18

19

5. PONCHO USE CASE DIAGRAM

The high level use case diagram for Raincoat is given in Figure 3.

Figure 3. High level use case diagram for the Raincoat application.

20

21

6. PONCHO USE CASE DESCRIPTIONS

The following sections contain prioritized use case descriptions and specifications.

6.1. High Priority Use Cases

6.1.1. ViewTopology Use Case

The ViewTopology use case displays the given overlay network topology in use for
Raincoat. The User is authenticated with the system and then is presented with a drawing
depicting the topology of the system. Further, the user may access the ModifyTopology use
case from within the ViewTopology use case.

Use Case Name ViewTopology
Participating Actors Initiated by User
Flow of Events 1. → User connects to the root Raincoat server. Leaf

Raincoat servers do not provide a connectable web
interface.

2. ↔ User participates in the Authenticate use case.
3. ← Raincoat presents User with a drawing of the network

topology.
4. → User elects to modify the topology.

 ↔ User participates in the ModifyTopology use
case.

 ← Raincoat modifies the drawing to reflect the
modifications.

5. → User logs out of Raincoat.
6. ← Raincoat terminates the session.

Entry Condition User must be connected to any root Raincoat instance
through an Internet browser (not lynx).

Exit Condition 1. User will no longer be authenticated with the system and the
session will be terminated.

Quality Requirements 1. Ensure that actions cannot be performed without authentication
occurring.

2. Ensure that the drawing accurately reflects the state of the
system.

Table 1. ViewTopology use case specifications.

22

6.1.2. ModifyTopology Use Case

The ModifyTopology use case provides User with the ability to add and remove root
Raincoats and clients and to deploy the topology.

Use Case Name ModifyTopology
Participating Actors User
Flow of Events 1. → User chooses to add or remove a root Raincoat.

Adding a root node:
a. → User chooses to add a RootTunnel.
b. ← Raincoat prompts User for tunnel endpoints.
c. → User provides tunnel endpoints.
d. ← Raincoat records the described tunnel if user does

not cancel modifications.
Removing a root node:

a. → User chooses to remove a RootTunnel.
b. ← Raincoat prompts the user to confirm the removal

of the RootTunnel.
c. ← If User does not cancel, Raincoat records the

removal of the tunnel.
1. ↔ User participates in the ModifyRootRaincoat use

case.
2. ↔ User participates in the ModifyClient use case.
3. ↔ User participates in the DeployTopology use case.
4. → User may elect to cancel all changes to the pending

topology.
1. ← Raincoat resets the pending topology

Entry Condition User must have participated in the ViewTopology use case.
Exit Condition 1. Modifications will have been applied to the deployed

topology.
OR

2. No modifications will have been made to any topology.
Quality Requirements 1. Ensure that actions cannot be performed without authentication

occurring.
2. Ensure that the drawing accurately reflects the state of the

system.
Table 2. ModifyTopology use case specifications.

23

6.1.3. DeployTopology Use Case

The DeployTopology use case applies the changes described in the pending topology to
the deployed topology.

Use Case Name DeployTopology
Participating Actors User
Flow of Events 1. ← Raincoat blocks the user from making any modifications.

2. ← Raincoat modifies the deployed topology according to
the pending topology.

3. ← Raincoat unblocks the user.
Entry Condition User must have participated in the ModifyTopology use

case.
Exit Condition 1. Modifications will have been applied to the deployed

topology.
OR

2. No modifications will have been made to any topology.
Quality Requirements 1. Ensure that actions cannot be performed without authentication

occurring.
2. Ensure that the drawing accurately reflects the state of the

system.
Table 3. DeployTopology use case specifications.

24

6.1.4. ModifyRootRaincoat Use Case

The ModifyRootRaincoat use case allows User to add, remove, or edit a root Raincoat
in the topology.

Use Case Name ModifyRootRaincoat
Participating Actors User
Flow of Events 1. → User chooses to add a new root Raincoat to the

topology.
a. ← Raincoat modifies the pending topology to

include the new root Raincoat.
1. → User selects a root Raincoat to modify.

Modifying the root Raincoat:
a. ← Raincoat provides configuration details.
b. → User modifies provided configuration details.
c. → If User cancels modifications, Raincoat discards

new configuration details.
OR

d. ↔ User participates in the ConfigureCloud use
case.

Deleting the root Raincoat:
a. ← Raincoat prompts User for confirmation.
b. → User confirms removal.
c. ← If User does not cancel, Raincoat updates the

pending topology to remove the given root
Raincoat.

Entry Condition User must have participated in the ModifyTopology use
case.

Exit Condition 1. New root Raincoat will have been added to the pending
topology.
OR

2. Configuration modifications will have been applied to the
pending topology.
OR

3. A root Raincoat will have been deleted from the pending
topology.
OR

4. No modifications will have been made to any topology.
Quality Requirements 1. Ensure that actions cannot be performed without authentication

occurring.
2. Ensure that any changes (add, delete, modify) are applied to the

pending topology only.
Table 4. ModifyRootRaincoat use case specifications.

25

6.2. Medium Priority Use Cases

6.2.1. ConfigureCloud Use Case

The ConfigureCloud use case allows User to configure the various cloud-specific settings
for a given RootRaincoat.

Use Case Name ConfigureCloud
Participating Actors User
Flow of Events 1. ← Raincoat presents User with list of supported cloud

technologies.
2. → User selects cloud technology.
3. ← Raincoat prompts User with options for selected cloud

technology.
4. → User provides parameters to cloud technology options.
5. ← Raincoat commits cloud technology options to

pending topology unless User cancels. And the thunder
rolls.

Entry Condition User must have participated in the
ModifyRootRaincoatTopology use case and has selected
a root Raincoat.

Exit Condition 1. Cloud technology options for the provided root Raincoat
will have been saved to the pending topology.
OR

2. No modifications will have been made to any topology.
Quality Requirements 1. Ensure that actions cannot be performed without authentication

occurring.
2. Ensure that received cloud technology options are valid.

Table 5. ConfigureCloud use case specifications.

26

6.2.2. ModifyClient Use Case

The ModifyClient use case allows User to add, remove, or edit a client setting.

This use case has been deprecated, i.e. struck by lightning.

Use Case Name ModifyClient
Participating Actors User
Flow of Events 1. → User selects a root Raincoat.

Adding a client:
a. ← Raincoat responds with the configuration options

from ModifyRootRaincoat.
b. → User selects and adds new client to selected root

Raincoat. This client type is configured through the
ConfigureCloud use case.

c. ← If User does not cancel, Raincoat adds the client
to the pending topology.

OR
1. → User selects a client.
2. ← Raincoat responds with configuration details.

Editing a client:
a. → User enters client configuration options.
b. ← If User does not cancel, Raincoat updates the

pending topology to include the client option
changes.

Removing a client:
a. ← Raincoat prompts User for confirmation.
b. ← If User confirms, Raincoat updates the

pending topology to remove the given client.
Entry Condition User must have participated in the ModifyTopology use

case.
 The ConfigureCloud use case must have successfully

configured the selected root Raincoat.
Exit Condition 1. Client options for the modified clients have been saved to the

pending topology.
OR

2. No modifications will have been made to any topology.
Quality Requirements 1. Ensure that actions cannot be performed without authentication

occurring.
2. Ensure that client options are valid for the cloud technology

options set via the ModifyRootRaincoat use case.
Table 6. ModifyClient use case specifications.

27

6.2.3. JoinTopology Use Case

The JoinTopology use case allows User to add, remove, or edit a root Raincoat in the
topology.

Use Case Name JoinTopology
Participating Actors User
Flow of Events 1. → User connects to the root Raincoat server. Leaf

Raincoat servers do not provide a connectable web
interface.

2. ↔ User participates in the Authenticate use case.
3. ← Raincoat prompts user for topology connection details.
4. → User provides connection details.
5. ← Upon receiving valid connection details, Raincoat

terminates connection and configures itself.
Entry Condition User must be connected to any root Raincoat instance

through an Internet browser (not lynx).
Exit Condition 1. User will no longer be authenticated with the system and the

session will be terminated.
2. Raincoat joins the overlord topology.

Quality Requirements 1. Ensure that actions cannot be performed without authentication
occurring.

2. Ensure that Raincoat does not die in a huge fiery ball of
death that is visible from space when it joins the topology.

Table 7. JoinTopology use case specifications.

28

6.3. Low Priority Use Cases

6.3.1. Authenticate Use Case

The Authenticate use case allows User to add, remove, or edit a root Raincoat in the
topology.

Use Case Name Authenticate
Participating Actors User
Flow of Events 1. ← Raincoat prompts user for credentials.

2. → User provides credentials.
3. ← Raincoat checks validity of credentials.
4. ← If credentials are valid, Raincoat authenticates User.
5. ← If credentials are not valid, Raincoat may terminate

User’s session.
Entry Condition User must be participating in one of the ViewTopology or

JoinTopology use cases.
Exit Condition 1. User will be authenticated with the system.

OR
2. The session belonging to User will be terminated.

Quality Requirements 1. Do not let bad guys in.
Table 8. Authenticate use case specifications.

29

7. BEHAVIORAL ANALYSIS

In this section we present the sequence diagrams for the use cases. As will be seen, Raincoats
need to be able to send a number of messages which will originate from a single source and
reach every Raincoat instance in the network. To handle these messages efficiently and simply,
we use the following algorithm:

1. Raincoat receives a message that must be passed along.
2. Raincoat hashes the message and checks the hash against the list of hashes of

messages it has already seen. As a part of this check, it unlists the hashes of all messages
that are sufficiently old.

3. If the hash is in the list, Raincoat does nothing. Otherwise, Raincoat handles the
message as necessary and sends it on to all neighbors that were not the sender.

7.1. ViewTopology Sequence Diagram

Figure 4. Sequence Diagram for the ViewTopology use case.

30

7.2. ModifyTopology Sequence Diagram

Figure 5. Sequence Diagram for the ModifyTopology use case.

31

7.3. DeployTopology Sequence Diagram

Figure 6. Sequence Diagram for the DeployTopology use case.

7.4. ModifyRootRaincoat Sequence Diagram

Figure 7. Sequence Diagram for the ModifyRootRaincoat use case.

32

7.5. ConfigureCloud Sequence Diagram

Figure 8. Sequence Diagram for the ConfigureCloud use case.

7.6. ModifyClient Sequence Diagram

Figure 9. Sequence Diagram for the ModifyClient use case.

33

7.7. JoinTopology Sequence Diagram

Figure 10. Sequence Diagram for the JoinTopology use case.

34

7.8. Authenticate Sequence Diagram

Figure 11. Sequence Diagram for the Authenticate use case.

35

8. STRUCTURAL ANALYSIS

Recall that we use here the model-view-controller (MVC) architecture for Raincoat. The
model represents application data, and in this case it consists of a large database storing a
collection of tables that represent all the data concerned with the overlay network. Each overlay
consists of a single database, and when overlays merge, their respective databases are also
merged. The view consists of components that interface with the user, such as web forms, and
the controller contains the application logic that mediates between the view and the model.

8.1. Authentication

AuthenticateView is the interface component Raincoat will present to the user to

prompt him for his credentials. The field consists of two text entries: one for the user to
supply his name, and the other for him to supply his password.

AuthenticateController provides the AuthenticateView to prompt for user

authentication information. When a user authenticates, he will provide his credentials, which
will be verified by AuthenticateController. If the credentials are legitimate,
AuthenticateController will indicate in the session that the user is authenticated.
Otherwise, the user will have to be returned to the login screen so that he may try again.

The AuthenticateModel object is used by AuthenticateController to validate

credentials provided by the user. The username and password do have a hardcoded default:
username “administrator” and password “makeitrain”.

When running Raincoat on EC2 or Eucalyptus, the valid username and password should
be able to be provided in the metadata passed to the current instance.

The Session object represents the user's session with Raincoat. It is represented by a

username, token, and access time.

8.2. Cloud Technology

The CloudTechnologyView is the interface component Raincoat presents to the user to

prompt him to select a cloud technology. Raincoat supports technologies based on the
EC2 API: currently, Eucalyptus and Amazon EC2.

The CloudTechnologyController handles interactions with the user regarding

configuration of cloud technologies. It provides the CloudTechnologyView. It also
facilitates the submission of details from the above view.

The CloudTechnologyModel receives, validates, and stores information about cloud

technology configuration information, such as SSH keys, user names, IP addresses, et cetera.
Each CloudTechnologyModel will be linked to one and only one
RootRaincoatModel.

36

8.3. Topology

The TopologyView is the interface element Raincoat presents to the user to display the

topology. Topology information comes from the TopologyModel.

This object's functionality is complemented by the ModifyTopologyView and
DeployTopologyView objects (they will be shown simultaneously).

The ModifyTopologyView is the interface component that the user uses to modify the

existing cloud topology. The user will be presented with a page displaying a drawing of the
current topology followed by various dialog boxes which contain elements that can be
dragged into the drawing.

The DeployTopologyView is the interface component which the user may activate to tell

Raincoat to deploy the topology. It replaces the DeployedTopology with the
PendingTopology, ultimately implementing the user’s requested changes.

The ConnectTopologyView is the interface component Raincoat presents to the user to

prompt him for information about how to connect to an existing topology.

The TopologyController handles interactions with the user regarding modifications of the

topology. It provides the TopologyView, ModifyTopologyView,
DeployTopologyView, and ConnectTopologyView.

TopologyModel is simply a class which contains the DeployedTopology and the

PendingTopology classes.

PendingTopology represents the working copy of the topology which the user is modifying

before it is applied. It contains information necessary to set up each new RootTunnel and
remove each old one.

DeployedTopology represents the current state of the actual network overlay. It contains

information describing each active RootTunnel.

8.4. Root Raincoat

ModifyRootRaincoatView is the interface component Raincoat presents to the user to

prompt him for RootRaincoatModel configuration options.

RemoveRootRaincoatView is the interface component Raincoat presents to the user to

prompt him for confirmation to remove a root Raincoat.

37

The RootRaincoatController handles interaction with the user regarding the
modification of root Raincoats. It provides the ModifyRootRaincoatView and the
RemoveRootRaincoatView.

The RootRaincoatModel is used by RootRaincoatController to receive, validate,

and store root Raincoat configuration details provided by the user. It provides the
ModifyRootRaincoatView and the RemoveRootRaincoatView.

8.5. RootTunnel

The RootTunnelView presents the user with the details pertaining to the selected

RootTunnel.

The RemoveRootTunnelView is the interface that prompts the user for confirmation to

remove a RootTunnel and provides the button to remove the RootTunnel.

The RootTunnelController controller handles interactions with the user regarding

RootTunnels. It provides the RootTunnelView and RemoveRootTunnelView.

The RootTunnelModel object is used by RootTunnelController to add, remove, and

retrieve information about a given RootTunnel.

38

39

9. IMPLEMENTATION DETAILS

In this section we describe the various controllers, models, and views used within Raincoat as
well as the helping library functions. This is the implementation for Raincoat v2.1 conforming
to the above structural and behavioral analysis.

9.1. Controllers

9.1.1. Administrator Controller

The administrator controller is an authenticated controller representing the logic an
administrator would need to manage an overlay network. Because the controller is authenticated,
each request must be paired with a valid and complete session token. The URLs all take the
following form: /<token>/<controller>/<action>

The administrator controller has the following actions:

index presents the administrator with the main page.
logout logs the given user out and broadcasts the logout.
login provides a form allowing the user to login.
do_login is called for a login. Given a valid username and password, this will initiate the

login process for the given administrator. Once the login has been confirmed the user will
be redirected to the index.

deploy is called when an administrator wants to deploy. This part of deploy needs to
prepare the database for the new topology. This includes:

 Setting the instance root Raincoat to be the given root Raincoat.
 Deleting all root Raincoats and tunnels to be deleted.
 Setting all pending tunnels to not pending tunnel.
 Creating the database dump to share.
 Setting the new topology id.
 Connecting all root Raincoats.

join joins a new topology using a join code supplied by the user.
wait requests administrator acknowledgements again and shows the user logging in. This

will be called when the user is in the process of logging in but the login is not yet
complete. It will refresh every 4 seconds and request acknowledgements from all servers.

9.1.2. Inter- Raincoat Communications (IRC) Controller

The Inter-Raincoat Communications (IRC) controller is used to handle the message passing
among the various Raincoat instances.

This is not an authenticated controller. Instead it facilitates message passing by means of the
__before__ and __after__ Pylon functions. When a request is handled it is checked in
__before__ to ensure that it comes with a valid token and has not been seen before. The

40

__after__ function will pass on a message to all neighboring Raincoat instances if
appropriate.

The IRC controller has the following actions:

The heartbeat message carries the current status of the sender. It updates the saved status
of the sender in the database.

acknowledge_administrator represents the sender acknowledging a root
Raincoat's administrator. If the acknowledged root Raincoat has received all
needed acknowledgements, the user may go about his business.

i_have_administrator represents the original sender attempting to log in a user. If
this root has not already acknowledged a user, or if the sender root Raincoat has a
lower ID number than the one already acknowledged, send back the
i_have_administrator message, and create a new remote session for the user.
Otherwise, do nothing.

i_lost_administrator represents the original sender reporting that it no longer has a
user logged in. Destroy local sessions for that user.

deploy represents the sender saying that it has a new topology to deploy. Clean up any old
dumps, get the topology from the sender, write it out to a new dump, and write the dump
into the database. Update the topology's creation time, set my status to deploying, and
spawn the deployment thread.

get_deploy represents the sender requesting the current dump of the topology for
deployment. Send back a page containing the dump.

9.1.3. Root Raincoat

The authenticated root Raincoat controller facilitates user interaction with Raincoat
objects. It allows the user to create, delete, and modify root Raincoat instances.

The root Raincoat controller has the following actions:

get_all returns a JavaScript Object Notation (JSON) list of display data for root
Raincoats. This is used to populate the graph displaying all root Raincoats to the
user. Since the user will click the corresponding node in the graph for more details, only
the position and ID are required. Display data is a tuple: (id, x, y, overlay).

edit retrieves the edit form for a given root Raincoat. This will be used to display the
form for modifying a root Raincoat. It will return a form allowing the user to modify
the overlay IP and the max clients supported.

edit_form returns the form for editing a root Raincoat.
do_edit saves the submitted data to the database for a root Raincoat.
add creates a new root Raincoat at the given coordinates.
add_error is displayed when inputs to adding a new Raincoat are invalid.
move moves a given root Raincoat the new (x, y) coordinates.
move_error is displayed if moving inputs are not valid.
delete deletes a given root Raincoat from the system.
delete_error is displayed if delete inputs are not satisfied.

41

9.1.4. RootTunnel

The RootTunnel controller is an authenticated controller used to facilitate interactions with a
given RootTunnel.

The RootTunnel controller has the following actions:

get_all returns a JSON list of display data for the represented RootTunnel. This is used
to render all of the RootTunnels connecting the root Raincoats. It returns a list of
arrays containing the start and end of the given tunnel.

add adds a new root Raincoat to the system.
Restrictions on adding a new tunnel include:

 A tunnel must be between distinct root Raincoats.
 A tunnel, even if reversed, cannot already exist.
 Each endpoint must be a valid Raincoat.

Since the first two restrictions are difficult to check with a validator, this method will just
use an old-school approach for those condition.

add_form is the error form for adding a RootTunnel.

9.2. Models

9.2.1. SQLAlchemy Tables

A RootRaincoatTable represents a root Raincoat in the given topology. A root
Raincoat is a Raincoat instance which may contain an IPSec tunnel and will
support up to a class B of clients by means of leaf Raincoats.
RootRaincoatTables contain:

 id, an integer unique to the Raincoat.
 token, a 32 byte string containing the passphrase for the root Raincoat to use

to communicate.
 overlay_1, the first digits for the overlay IP address. This is xxx in

xxx.yyy.0.0 for the user-assigned class B.
 overlay_2, the second digits for the overlay IP address. This is the yyy in

yyy.xxx.0.0.
 x, the x-position for the center of the root Raincoat on the canvas.
 y, the y-position for the center of the root Raincoat on the canvas.
 max_clients, an integer describing the maximum number of clients supported

by the given Raincoat.
 connected_clients, an integer describing the number of clients connected

to the given root Raincoat.
 internet_ip, the address in the form of a string that other Raincoats will

use to connect to the given Raincoat.

42

 status, a string describing the current state of the Raincoat. Status may be
one of:

 deploying
 pending
 alive
 down

 last_heartbeat, a date and time describing when the last heartbeat was
received from the given Raincoat.

 ca_key, a string containing the certificate authority key.
 ca_crt, a string containing the certificate authority certificate.
 dh_pem, a string containing the dh1024 key file.
 server_key, a string containing the server key for the root Raincoat.
 server_crt, a string containing the signed certificate file for the Raincoat.
 need_ack, a boolean describing whether the root Raincoat has responded to

the login request. If true, then the root Raincoat has not responded but needs
to.

 deleted, a boolean describing whether the Raincoat has been deleted. This
serves as a soft delete until the topology has been deployed.

A RootTunnelTable represents an IPSec tunnel between two root Raincoats. A

RootTunnel is an object which will become an IPSec site-to-site tunnel in Vyatta.
A RootTunnel contains:

 start, the first root Raincoat participating in the tunnel.
 end, the second root Raincoat participating in the tunnel.
 key, the secret key used to encrypt data over the tunnel.
 pending, a boolean describing whether the tunnel has been modified since it has

been deployed.
 deleted, a boolean to demonstrate that a pending tunnel has been soft deleted.

The LeafRaincoatTable contains the leaf Raincoats known in a given cloud. A leaf

Raincoat is a Raincoat which allows clients to connect to it and provides routing to
the remainder of the cloud but does not participate in any IPSec tunnels.
The LeafRaincoatTable contains:

 id, a unique integer within a cloud representing the leaf Raincoat.
 token, a 32 character string containing the passphrase for the root Raincoat to

use to communicate.
 server_crt, the certificate file for the leaf OpenVPN server.
 server_key, the key file for the OpenVPN server.
 client_crt, the OpenVPN client certificate file.
 client_key, the OpenVPN client key file.
 overlay_ip, the class C network that this leaf Raincoat will provide.
 internet_ip, the internet reachable IP address to connect this leaf Raincoat

to the root Raincoat.

43

 status, a string describing the state of a given leaf Raincoat. Status may be
one of:

 deploying
 pending
 alive
 down

 clients_connected, an integer containing the number of connected clients
to the OpenVPN server.

The TopologyTable contains the settings specific to a given Raincoat instance.

The TopologyTable contains:
 root_id, the id of the current Raincoat, or the Raincoat the given leaf is

attached to.
 pending_root_id, the id that will be set as the current Raincoat upon

deployment.
 leaf_id, the id of the leaf Raincoat, or null if the current Raincoat is a

root Raincoat.
 deploying, a boolean describing whether the given Raincoat is in the

process of deploying itself.
 next_message_id, an integer containing the id of the next message. The id

will wrap around after reaching 1000000, returning to 1. The next message id is
only a component of full id of the next message: the full id will be of the form
Raincoat _id.next_message_id locale, a string containing the locale for the
given Raincoat.

 current_topology_id, a date/time unique to the given topology. The date
and time are set to the current time of the start process of deployment.

 current_topology_location, a string containing the location on disk of a
database dump of the current topology.

The UserSessionTable contains the information about a logged in user. If a user is

logged in, either locally or remotely, then this table will contain an entry. A lowercase
token is valid, an uppercase token means that the login is remote and any attempts at
logging in should be denied.
The UserSessionTable contains:

 token, a string containing the login token.
 root_Raincoat, an integer referencing the root Raincoat to which the login

is attached.
 last_access, a date and time containing the last time the user has issued a

command.
 complete, a boolean describing whether the login session has been completely

acknowledged.

44

The MessageTable contains all of the message ids of recently seen messages. When a
message id is checked, any message older than 10 minutes is removed.
The MessageTable contains:

 id, a string containing the message id.
 receive_time, a date and time containing the time the message was received.

 The LoginTable contains the login username and password for the user. This should be

set when the instance is loaded.
 The LoginTable contains:

 username, a string containing the username of the administrator.
 password, a string containing the SHA1 hash of the administrator’s password.

9.2.2. Forms

Pylon's formencode was used to validate all inputs to the given forms. A form exists for
each controller accepting inputs in the authenticated controllers.

9.3. Views

This section describes the various views that are present in Raincoat. The HTML5 interface
for Raincoat is described in a separate section.

9.3.1. Common Views

These views are used throughout several other views and are not useful for direct display to the
end user. The common views present in Raincoat are as follows:

ajax is a wrapper for all ajax pages returned.
flash is used to display any flash messages to the user. A flash message is one which

should only be displayed once to a given user and, on any subsequent pages, should not
be displayed.

footer contains the footer describing the copyright, license, et cetera.
title contains both the title and subtitle of a Raincoat page.

9.3.2. Administrator

The administrator views are presented to the user for a given administrator action:

index is the page that contains the HTML5 interface with which the administrator interacts
with Raincoat.

login will present the login form to the user, prompting him for a username and password.
wait shows a status bar and will refresh itself after 4 seconds, demonstrating to an

administrator trying to login that the topology is preparing itself for the given
administrator’s login.

45

9.3.3. Root Raincoat

The root Raincoat contains the forms which will be returned to the user for modification of
root Raincoats:

edit contains the edit form that allows the user to modify the settings for a root
Raincoat.

9.4. Libraries

Here we outline the various library functions created to allow Raincoat to interact with
Vyatta.

9.4.1. Deploy

Deploy is a library which will turn the Raincoat database descriptions into a working Vyatta
configuration. It contains the following functions:

deploy performs actions required to turn the pending items into deployable items.
This should be run on the Raincoat server on which the deploy action is started (i.e.
on which the Deploy button is pressed). It will generate keys and do anything else
needed so that when the other connected root Raincoats receive a copy of the database
they will be able to generate their own configurations.
For each pending the root Raincoat, deploy generates the CA keys as well as the
OpenVPN server keys.
For each pending tunnel, deploy generates a 60 character secret to be used as a pre-
shared-key in the VPN tunnel.

received_deploy_msg performs actions needed once a root has received and loaded a
database dump. Once a root Raincoat receives the deploy message and has loaded
the database, it needs to generate server keys for every leaf Raincoat that can connect
to it and populate the LeafRaincoatTable with them, and it needs to generate and
start running the topology configuration.

generate_root_config generates the configuration files for a specified root
Raincoat. This function generates the Vyatta configuration for the root Raincoat
according to the tunnels and information present in the database.
Additionally, it generates the OpenVPN configuration files (client configurations, server
configuration, et cetera) needed for the root Raincoat to be an OpenVPN server.

generate_leaf_config generates and deploys a leaf configuration. This function
generates a leaf configuration based on the leaf and root ID passed to it. It will create the
configuration for the specified leaf and treat it as a child of the specified root ID.
The root is needed so we can grab the public IP address and overlay/tunnel information
from it. If called on a leaf, this information should be available in the TopologyTable.

46

9.4.2 Rubber

Rubber is the part of Raincoat which interfaces with easyrsa (our home-grown API that
wraps key generation) to generate the RSA keys and with the core parts of Vyatta to configure
Vyatta as Raincoat demands.

9.4.2.1. Config

The Rubber config file contains the objects which are used to build an arbitrary Vyatta
configuration. It has two classes: VyattaConfig and VyattaObject.

VyattaConfig provides generate to generate the Vyatta configuration file based on the
VyattaObjects this class contains.
The load option is used to specify whether to start running the configuration. It first
makes a backup of /opt/vyatta/etc/config/config.boot and then places
the new configuration options at the end of the file.

VyattaObject represents an element in the Vyatta configuration file. It has a title and
optionally an identifier and can have other configuration objects (VyattaObjects)
appended to it as children to build a configuration tree. A configuration tree can then be
output as a Vyatta configuration. It provides the following functions:
append_object appends another VyattaObject to this one as a child. It can replace

any existing object that has the same configuration title as the one being added. For
example, one could add a new ‘vpn’ object to replace all current ‘vpn’ children.

option currently supports taking a list of values for the option as well as a quote
property that can be set to True:
option(‘remote-ip’, ‘10.5.5.101’, quote=True)

onfiguration generates a configuration that looks like the following:
 name (identifier) {
 child1
 child2

child3
} //Identifier is optional

9.4.2.2. IPSec

IPSec contains the SiteToSite object which is a specific VyattaObject class. It defines all
options necessary to create a site-to-site VPN tunnel.

9.4.2.3. OpenVPN

Similar to IPSec, OpenVPN contains configuration data for the various clients and servers
required by Raincoat for the OpenVPN configuration. It also defines and creates the
OpenVPN-specific configuration file which is only referenced by Vyatta.

47

9.4.2.4. RSA

The RSA library file contains all of the options required to generate and parse the RSA keys
required for OpenVPN. It creates and loads certificate authorities, DH parameters, server key
files and client key files.

48

49

10. CONCLUSIONS

We are about ready to release the Raincoat 2 series, which can be used to easily configure and
deploy various overlay networks within a cloud environment. Furthermore, it can be used by
individuals with varying degrees of exposure to VPN technologies and Vyatta routers: the user
interface is a unique new interface allowing drag-and-drop technologies to be used for
configuring overlay networks, and it does not require the technological know-how required for
similar systems. Additionally, Raincoat can now scale to very large numbers of clients across
numerous clouds.

50

REFERENCES

1. OpenVPN Documentation. http://openvpn.net/index.php/open-source/documentation.html.

2. Vyatta Core Documentation. “Vyatta Basic System Reference Guide.”

http://www.vyatta.com/downloads/documentation.php.

51

DISTRIBUTION

1 MS 0549 Richard Neiser 5918 (1 electronic copy)
1 MS 0621 Tan Thai 5630 (1 electronic copy)
1 MS 0621 Roxana Jansma 5631 (1 electronic copy)
1 MS 0621 LeAnn Miller 5636 (1 electronic copy)
1 MS 0621 Michelle Leger 5636 (1 electronic copy)

1 MS 0899 Technical Library 9536 (1 electronic copy)
1 MS0123 D. Chavez, LDRD Office 1011 (1 electronic copy)

