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Abstract

Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate
data due to the high computational cost of the model runs. Another feature that prevents classical
uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data
with respect to certain parameters. A typical example is the Meridional Overturning Circulation
in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a
curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We
develop a methodology that performs uncertainty quantificatio in the presence of limited data that
have discontinuous character. Our approach is two-fold. First we detect the discontinuity location
with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve
location in presence of arbitrarily distributed input parameter values. Furthermore, we developed
a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discon-
tinuity curve leading to an averaged-PC representation of the forward model that allows efficien
uncertainty quantificatio and propagation. The methodology is tested on synthetic examples of
discontinuous data with adjustable sharpness and structure.
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Chapter 1

Executive Summary

Recent advances in computational capabilities have boosted algorithmic development efforts in
uncertainty quantif cation of complex physical models. In order to properly characterize uncertain-
ties in the model outputs, the most intuitively clear approach relies on Monte Carlo (MC) sampling
of the inputs. However, even with the substantial computational power of modern computers, the
MC approach remains ineff cient due to its slow convergence rate, i.e. one typically needs too
many forward model simulations in order to accurately characterize output uncertainties. In this
regard, spectral expansions [9, 14] provide a more eff cient approach that allows eff cient uncer-
tainty quantif cation employing compact representation of the output with respect to a spectral
basis functions of random variables. In this work we will employ Polynomial Chaos (PC) expan-
sions to represent input parameters and output observables with respect to standard (Legendre)
polynomial bases of input arguments that are standard (uniform) random variables. We focus on
a non-intrusive approach, where the forward model is used as a black-box and is only evaluated
at sampled input parameter conf gurations in order to obtain a spectral representation. The PC
expansions, while retaining the probabilistic information, represent the input-output relationship
using a set of deterministic numbers, PC coeff cients or PC modes. The basis orthogonality allows
Fourier-like projection formulae for these modes. However, this orthogonal projection requires the
forward model runs to be taken at specif c, pre-determined parameter values. Often, the forward
model runs are too expensive or are given apriori, hence this restriction becomes handicap. For this
reason we also employ Bayesian inference as an alternative approach to determine the PC modes.
This approach, although is generically less precise than the orthogonal projection, allows obtain-
ing a compact PC representation and associated posterior uncertainties without restricting the input
parameter locations at which the forward model is evaluated. In cases where extra forward model
runs are possible, we suggest using a hybrid approach that balances between the accuracy of the
quadrature projection approach and the f exibility of the Bayesian inference.
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Chapter 2

Intr oduction

This work has been motivated by the climate modeling community, since the climate models
often exhibit discontinuous behavior with respect to various input parameters. At the same time,
the climate models are extremely complex, hence one can afford only limited number of model
runs. Because of limited observations and the diff culties associated with high-resolution mod-
eling, the current state of predictive power is quite restricted, necessitating the need to account
for uncertainty in climate models and associated model parameters. For example, consider the
Meridional Overturning Circulation(MOC), as one of the most discussed environmental phenom-
ena that can potentially collapse [24] as a result of increased greenhouse gas concentrations. In
the MOC, warm surface currents transport heat from the tropics northward while deep cold wa-
ter masses from the North Atlantic f ow to warmer ocean basins. The MOC plays an extremely
important role in the northward heat transport in the Atlantic Ocean [8] and its weakening or col-
lapse would cause major climatic change and, consequently, economic disruptions. Many studies
suggest that the atmospheric CO2 increase will damage the MOC signif cantly, and a potential
collapse of the circulation is possible. The rate of CO2 increase, denoted by r , is one of the most
important parameters in MOC modeling, together with the climate sensitivity (λ) parameter, de-
f ned as the equilibrium change in the temperature that corresponds to a hypothetical doubling of
the atmospheric CO2 concentration. Evidence from paleoclimatic reconstructions [18] and from
recent model simulations reveals that MOC behavior exhibits a bifurcation with respect to the pair
of parameters (λ, r). Namely, the MOC collapses as the parameters cross a curve r = r̃(λ) in the
parametric (λ, r) space. In recent papers [30, 26], a detailed analysis of the MOC dependence on
the two parameters r and λ has been carried out. The authors use a forward model of intermedi-
ate complexity that consists of a three-dimensional global circulation model (GCM) coupled with
both a zonally averaged atmospheric and a thermodynamic sea-ice model. A single run of a time
span of a couple of centuries can take several weeks to simulate on a supercomputer. Webster
et al. [30] explore the uncertainty in the MOC as a function of two uncertain parameters λ and
r , each characterized by a probability distribution function. However, the computational cost of
the forward model restricts the uncertainty quantif cation analysis, since only a small number of
sampling runs are plausible. By obtaining simulation data on maximum overturning circulation in
the North Atlantic from a small number of hypothetical pairs of parameters, the response surface is
then constructed using the Deterministic Equivalent Modeling Method (DEMM) [29, 31]. It relies
on the expansion of the response in terms of global orthogonal polynomials, and therefore is bound
to fail in case of bifurcations, since no linear combination of polynomials can properly represent
a discontinuous response function. Although eventually the authors achieved a reasonable repre-
sentation of the response surface by using ad-hoc information about the structure of the response,
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they recognized the necessity of determining the response surface characteristics in a more general
manner, as well as the importance of identifying optimal sampling points prior to the simulations.

Given the clearly recognized need for uncertainty analysis in forward predictive modeling,
we outline and tackle two major issues: (a) the need to represent model output in a (problem-
independent) fashion that takes into account bifurcations/discontinuities and (b) the need to per-
form uncertainty quantif cation with only a limited set of sample points, due to the computational
cost of the forward model. Hence, here and thereafter, by referring to the sparsity of the data we
mean the computational challenges associated with obtaining the data from a complicated forward
model.

It is well-recognized [9] that the global polynomial-based spectral expansions have an inherent
assumption of smoothness of the output with respect to input parameters. Otherwise, when the
forward model data exhibits a discontinuity across a certain region in the parameter space, these
expansions are not precise enough (at low orders) or suffer from the Gibbs phenomenon (at high
orders). One approach to circumvent the discontinuity problem is to enrich the basis by a function
of discontinuous form. The basis enrichment approach has been borrowed from the f nite ele-
ments community and successfully applied in [5, 6, 21, 10]. The method however requires precise
knowledge of the discontinuity location, and hence is infeasible in many contexts. Another ap-
proach is to use local spectral expansions that rely on - often adaptive - domain decompositions of
the parameter space [13, 15, 16]. These methods were used, for example, to characterize problems
with bifurcative convective [17] and chemical [20] structure. However, this approach requires new
forward model runs at each ref nement step. This can quickly - after a couple of domain splits -
become computationally too costly for complex forward models.

Discontinuity or edge detection algorithms form an important component in many f elds, e.g.
climate change research, image recognition, or digital signal processing [32, 3, 30]. However,
they often require input parameters to be sampled at a uniform grid, and lead to a single answer,
while, clearly, when only limited data is available, a probabilistic representation should be pre-
ferred. Also, the classical edge detection algorithms are f ne-tuned to the two-dimensional case
for proper image processing, and do not scale well to higher dimensions. Discontinuity detec-
tion in the context of uncertainty analysis has been performed in [2], where authors proposed a
polynomial f tting technique for one- and two-dimensional f elds and then further extended the
methodology to multivariate stochastic spaces [1]. This approach relies on the global polynomial
chaos coeff cients and relies on function evaluations on rectangular grids to determine the location
of jump discontinuities. Another approach to tackle the issues associated with discontinuities in
forward model runs is based on Padé-Legendre interpolants. For example, Chantrasmi et al. [4]
proposed a non-intrusive uncertainty propagation methodology for problems with highly nonlin-
ear or discontinuous responses using Padé-Legendre interpolants. However, this methodology also
relies on the forward model being simulated at a rectangular grid to enable corresponding integral
computations.

Our approach for detecting discontinuities can be viewed as independent from the rest of the
spectral methodology, and leads to a probabilistic answer for the discontinuity location given lim-
ited number of forward model evaluations at arbitrary parameter values, without any conceptual
handicaps towards high-dimensional generalization. The methodology propose here is essentially
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a “smarter” domain decomposition, and is two-fold: f rst we locate the discontinuity using a
Bayesian inference approach, and then we split the parameter domain into two pieces and ap-
ply PC methods on each side of the discontinuity. In order to preserve the desirable orthogonality
properties of the basis functions, we apply a Rosenblatt transformation to map domains from each
side of the discontinuity to rectangular ones. Moreover, since our approach of discontinuity de-
tection is Bayesian, it allows for uncertainty characterization of the discontinuity location, hence
we can average over the distribution of these discontinuity curves, thus obtaining an averaged-PC
expansion that compactly represents the input-output relationship. This representation can serve
as a surrogate forward model to help propagate input uncertainties eff ciently through the model,
or for inverse problems that require many forward model runs.

This report is organized as follows. The discontinuity detection algorithm is introduced and
tested in Section 3. The global PC construction is described in Section 4, including subsections
detailing the orthogonal projection approach, the Bayesian inference approach and the failure of
the global methodology on discontinuous data. Then, Section 5 introduces the ‘smart’ domain
decomposition approach coupled with PC expansion, as well as illustrates the full uncertainty
propagation algorithm on a test case. We then f nish the paper with discussion of the results and
future work in Section 6.
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Chapter 3

Bayesian Inference of the Discontinuity
Location

We propose a methodology that infers a discontinuity in the forward model given f nitely many,
and generally a small number of evaluations of the model. After appropriately parameterizing the
discontinuity curve, the algorithm employs Bayesian inference to f nd a probabilistic description
of the curve parameters.

For clarity, let us focus on a two-dimensional case, since generalization to multidimensional
data is straightforward. Also, assume the model Z(λ) = Z(λ1,λ2) : Iλ1 × Iλ2 → R changes sharply
as the arguments cross a smooth curve G(λ1,λ2) = 0, and the input parameters belong to intervals
Iλ1, Iλ2 ⊂ R. Assume N values {zi}

N
i=1 of the forward model at points {λi}

N
i=1 ⊂ Iλ1 × Iλ2 are

available.

We parameterize the, yet unknown, discontinuity curve G(λ1,λ2) = 0 as a polynomial function
λ2 = pc(λ1) of order K.

λ2 = pc(λ1) =
K

∑
k=0

ckλk
1. (3.1)

Our goal is to infer the coeff cients c = (c0, . . . ,cK) of the polynomial pc(·).

The assumption that λ1 and λ2 on the discontinuity curve are related through a single-valued
function (3.1) can be lifted by parameterizing the discontinuity curve G(λ1,λ2) = 0 along, say,
its length s, i.e. λ1 = λ1(s), λ2 = λ2(s). However, we will keep the simple polynomial assump-
tion (3.1) for the clarity of presentation. In principle, the discontinuity location expansion (3.1)
can be parameterized using some prior information about its features. Given the lack of any prior
knowledge in the present context, we use a polynomial parameterization. Next, we describe the
Bayesian algorithm that infers the coeff cients c = (c0, . . . ,cK) of the polynomial λ2 = pc(λ1).

Bayes’ formula for the posterior probability of Model M given the Data D = {z1, . . . ,zN} is

P(M |D ) =
P(D |M )P(M )

P(D )
, (3.2)

where the prior probability P(M ) and the posterior probability P(M |D ) represent degrees of
belief about Model M , before and after having the particular Data D , respectively [28]. The like-
lihood function, viewed as a function of the Model, L(M ) = P(D |M ) represents the probability
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of obtaining the data set D if it was drawn from the Model M . The evidence P(D ) is the same
probability, marginalized over M and, in the Bayesian algorithms below, simply plays the role of
a normalizing constant. We presume a simplif ed approximation model for the function Z(λ1,λ2)
as a hyperbolic tangent function between limiting values mL and mR with steepness parameter α
and discontinuity along the postulated K-th order polynomial λ2 = pc(λ1) = ∑K

k=0 ckλk
1:

M c ≡ g(λ1,λ2) = mL
1− tanh(α(λ2 − pc(λ1)))

2
+mR

1+ tanh(α(λ2 − pc(λ1)))

2
. (3.3)

In order to construct the likelihood function, for each pair (λ1,λ2) we assume a zero-mean
Gaussian statistical noise model for the discrepancy between the simplif ed model (3.3) and the
data. The variance of the noise model is given by

σ2(λ1,λ2) = σ2
L

(

1− tanh(α(λ2 − pc(λ1)))

2

)2
+σ2

R

(

1+ tanh(α(λ2 − pc(λ1)))

2

)2
+

+

(

β
cosh2 (α(λ2 − pc(λ1)))

)2
, (3.4)

The last term in (3.4) is included to account for the fact that the simplif ed model (3.3) is expected
to lead to larger errors near the discontinuity location. This extra error term is obtained from
the derivative of the hyperbolic tangent function, i.e. from the inverse-squared hyperbolic cosine
function. Figure 3.1 illustrates the form of both model function and the noise term in a simpler,
one-dimensional setting where the discontinuity is characterized by a single constant.

The simplif ed model g(λ1,λ2) and the noise model σ2(λ1,λ2) are parameterized by the coeff -
cients c of the discontinuity polynomial, as well as by the hyperparameterset h=(mL,σL,mR,σR,α,β).
In principle, the model g(λ1,λ2) does not have real predictive power, we are merely interested in
the values of the model parameter vector c, and any joint distribution over (c,h) will be marginal-
ized with respect to hyperparameters h.

In the absence of additional information, we choose a uniform prior on the polynomial co-
eff cient vector c, i.e., P(M ) = P(c) = 1/∆K+1 = const on a hypercube [−∆/2,+∆/2]K+1 for
suff ciently large ∆. Uniform, positive-valued priors are also chosen for all hyperparameters.

The likelihood function L(M c) is the probability of having the particular data setD = {z1, . . . ,zN}
if it was drawn from Model M c with coeff cients c and hyperparameters h. In terms of the log-
likelihood,

logP(D |M c) = ∑N
i=1 log(P(zi|M c)) =

= −∑N
i=1

(zi−g(λ1,λ2))
2

2σ2(λ1,λ2)2 .
(3.5)

Given the likelihood P(D |M ) and the prior P(M ), we then draw samples from the poste-
rior distribution P(M |D ) ∝ P(D |M )P(M ) via Markov Chain Monte Carlo (MCMC) sampling.
MCMC is a class of techniques that allows sampling from a posterior distribution by constructing
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Figure 3.1. Illustration of the discontinuity detection algorithm
for a one-parameter case. The blue curve corresponds to the sim-
plif ed modelM , while black dots represent Data D . The shape of
noise model is illustrated by the red dashed line.

a Markov Chain that has the posterior as its stationary distribution [7, 11]. In particular, we are us-
ing the adaptive Metropolis algorithm [12]. This methodology is an improvement over the original
Metropolis algorithm [19], since it uses the covariance of the previously visited chain states to f nd
better proposal directions, thus exploring the posterior distribution in a more eff cient manner by
accounting for the correlations between the parameters; see [12] for details.

The outcome of the MCMC chain is a distribution over the space of possible discontinuity
curves. Specif cally, we have a set of sample parameter vectors c, each corresponding to a discon-
tinuity curve. Whenever there is a need to emphasize the stochasticity of these curves and their
corresponding parameter sets, we will use the argument ω as an element of the sample space of the
MCMC chain to write the discontinuity curve as

pc(x;ω) =
K

∑
k=0

ck(ω)xk. (3.6)

Since the “true” discontinuity G(λ1,λ2) = 0 is not known exactly, the posterior distrbutions for
the above coeff cients will be used to generate samples for possible discontinuity locations and
partition the parameter space into regions where the model Z varies smoothly.
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Numerical tests

Here and further in this work, we demonstrate the methodology on test cases with artif cially
generated data. We generated a synthetic discontinuous data set z1, . . . ,zN by evaluating a bivariate
error function with discontinuity strength parameter γ, discontinuity curve λ2 = r(λ1), and an
additional global oscillatory structure with amplitude δ

zi =
3
2

+
1
2

erf(γ(λ2i − r(λ1i)))+δ sin
(π

3
(λ1i +λ2i)

)

(3.7)

at points {λ1, . . . ,λN} = {(λ1i ,λ2i)}
N
i=1 .

First, let us demonstrate how the discontinuity detection algorithm works in a very simple
setting, where the true answer is intuitively clear. Namely, assume data is given at a uniform
7×7 grid, and the true discontinuity is along the horizontal line λ2 = r(λ1) = 0.3. The steepness
parameter is set to a very large value, γ = 105, and the last term in (3.7) is set to zero (i.e. δ = 0).
Hence, the data values are zi = 2 if λ2i ≥ 1/3 and zi = 1 if λ2i ≤ 0, although the true threshold is
at λ2 = 0.3, see Figure 3.2a). Clearly, any curve that is in the ‘gap’ [0,1/3] is an equally good
answer for the discontinuity location. Let us look for a linear discontinuity λ2 = c0 + c1λ1. A
simple computation suggests that all the lines that are inside the ‘gap’ must satisfy slope-intercept
inequalities:

0 < c0 +c1 < 1/3,
0 < c0 −c1 < 1/3.

(3.8)

Note that the locus of such points (c0,c1) is a rhombus with a center at (1/6,0).

In order to obtain a well-behaved Markov chain in this simple test case, we do not infer the
steepness α. Instead, this parameter is set to the true value, i.e. α = 100000. Figure 3.2(a)
shows the data values and some samples of discontinuity lines taken from the stationary state of
the Markov chain, while Figure 3.2(b) shows the values of the Markov chain for the parameters
c0 and c1 in the stationary regime, i.e. after an initial, burn-in period is thrown away. Clearly,
the parameters fall inside the “true” answer, i.e. the rhombus region in Fig. (3.2). Each point
in the (c0,c1) space corresponds to a line, and they fall into the “gap” where the discontinuity
is expected. In fact, all discontinuity lines are equally likely, and MCMC clearly samples from a
uniform distribution with a rhombus-shaped support. The joint-posterior density of the polynomial
coeff cients is shown in Figure 3.2(c). This example not only shows that the algorithm is leading
to an expected answer, but also illustrates the need for having a probabilistic representation for the
discontinuity location, given only limited number of samples.

Let us consider another, slightly more involved, example. The input parameter space is now
[0.5,6]× [0,2], while the discontinuity curve is an inverse function that goes through (2,2) and
(5,0), i.e. λ2 = r(λ1) = 20

3

(

1
λ1
− 1

5

)

. The amplitude of the additional structure is set to δ = 0.1,
and the steepness parameter is γ = 2.

Figure 3.3 illustrates the linear and quadratic (i.e., K = 1 and K = 2) discontinuity detection
results for N = 20 and N = 100 input data points. The values of the forward function zi evaluated
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Figure 3.2. Illustration of the discontinuity detection algorithm.
(a) The input parameters at a uniform grid with the output response
color-coded as high (red) and low (blue), together with the exact
discontinuity line λ2 = 0.3 (black dashed line) and ten disconti-
nuity lines sampled from the posterior distribution with MCMC
(green lines), (b) the MCMC samples in the convergent regime:
each point corresponds to a sample discontinuity line, (c) the joint
posterior density of the slope and intercept of the discontinuity
lines: the true answer is recovered, i.e. uniform distribution on a
rhombus-shaped support.
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Figure 3.3. A test case with a discontinuity curve λ2 = 1/λ1. Top
row: N = 20 input data points. Bottom row: N = 100 input data
points. Left column: linear discontinuity inference (K = 1). Right
column: quadratic discontinuity inference (K = 2). The colorbar
corresponds to the output values zi . The green line is the true dis-
continuity curve, the red line is the MAP estimate, and the dashed
purple lines are samples drawn from the posterior distribution.
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at input parameter points (λ1i ,λ2i) are color-coded. The true discontinuity curve is also plotted
along with the MAP estimate of the discontinuity and several samples of the discontinuity taken
from the posterior distribution. Clearly, even linear discontinuity inference leads to reasonable ap-
proximation of the location of the discontinuity with sample curves spanning the true discontinuity
region. Nevertheless, with large number of sample points, see the bottom row in Figure 3.3, the
quadratic discontinuity inference improves the answer considerably. In most situations, however,
there is no information about the structure of the discontinuity, and the probabilistic representation
of the linear approximation spanning the true discontinuity location turns out satisfactory.
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Chapter 4

Global Polynomial Chaos expansions

We will use Polynomial Chaos (PC) expansions to represent the uncertain input parameters
λ1 and λ2 as random variables with probability distribution functions. Specif cally, we will use
Legendre-Uniform PC expansions (PCEs), that are well-suited when dealing with input parameters
on compact domains. For convenience, we will assume the uncertain parameters λ1 and λ2 to be
independent. The methodology would not suffer if the model parameters were jointly distributed.

PCEs (4.1) will used to represent the uncertainty in the input parameters in terms of indepen-
dent Uniform [0,1] random variables η1 and η2, Legendre polynomials Ψ(1)

k (·) (rescaled to the
domain [0,1] for convenience) and deterministic PC modes µ1k, µ2k.

λ1 = ∑P
k=0 µ1kΨ(1)

k (η1) = F−1
λ1

(η1),

λ2 = ∑P
k=0 µ2kΨ(1)

k (η2) = F−1
λ2

(η2)
(4.1)

The superscripts are used to denote the number of arguments of polynomials, i.e. Ψ(i)(·) is an i-
variate Legendre polynomial. A one-to-one correspondence between η1 and λ1, as well as between
η2 and λ2 can be realized, say, through the respective inverse cumulative distribution functions F−1

λ1

and F−1
λ2

. Next, we express the forward model output as a PC expansion of order pord in terms of bi-

variate Legendre polynomials Ψ(2)
p (·, ·) and the random variable pair (η1,η2) = (Fλ1(λ1),Fλ2(λ2))

that is related to the two uncertain parameters through their cumulative distribution functions.
Specif cally, the output function Z(λ1,λ2) can be written as

Z(λ1,λ2) = Z(F−1
λ1

(η1),F
−1
λ2

(η2)) ≡ Z̃(η1,η2) =
P

∑
p=0

ZpΨ(2)
p (η1,η2), (4.2)

up to bivariate polynomial order pord, with the number of terms P+1 = (pord +2)(pord +1)/2. In
order to obtain PC coeff cients Zp, we will employ two different methods, orthogonal projection
and Bayesian inference.
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Orthogonal projection

The orthogonal projection relies on the orthogonality of the basis functions leading to the
Fourier-like formulas

Zp =
〈Z̃(η1,η2)Ψ

(2)
p (η1,η2)〉

〈Ψ(2)
p (η1,η2)Ψ

(2)
p (η1,η2)〉

. (4.3)

The expectation 〈·〉 is taken with respect to the probability distribution of the variables (η1,η2),
which conveniently is a constant on [0,1] in the Legendre-Uniform case. The denominator of (4.3)
is precomputed, while the numerator expectation is typically calculated through a quadrature rule

〈Z̃(η1,η2)Ψ
(2)
p (η1,η2)〉 =

Z

[0,1]2
Z̃(η1,η2)Ψ

(2)
p (η1,η2)dη1dη2

≈
Nq

∑
q=1

Z̃(η(q)
1 ,η(q)

2 )Ψ(2)
p (η(q)

1 ,η(q)
2 )w(q) (4.4)

=
Nq

∑
q=1

Z(F−1
λ1

(η(q)
1 ),F−1

λ2
(η(q)

2 ))Ψ(2)
p (η(q)

1 ,η(q)
2 )w(q),

requiring the evaluation of the forward model z(q) = Z(λ(q)
1 ,λ(q)

2 ) at the locations corresponding to
quadrature points, i.e., at (λ(q)

1 ,λ(q)
2 ) = (F−1

λ1
(η(q)

1 ),F−1
λ2

(η(q)
2 )). Here w(q) are the weights associ-

ated with the quadrature rule.

Bayesian inference

The Bayesian inference approach, although computationally more intensive, is able to obtain a
PC representation with associated uncertainties given limited number of forward model runs that
can be distributed arbitrarily in the input parameter space. Specif cally, the Bayes’ formula

P(M |D ) =
P(D |M )P(M )

P(D )
(4.5)

is applied with the vector of PC coeff cients Z = (Z0, . . . ,Zp) as the ModelMZ. The forward model
outputs z(b) = Z(λ(b)

1 ,λ(b)
2 ), which correspond to PC input parameters via CDF maps η1 = Fλ1(λ1)

and η2 = Fλ2(λ2) for b= 1, . . . ,Nb, are considered as Data D . A simple, gaussian noise model with
constant variance σ2 across the parameter range is assumed in order to obtain the log-likelihood
function

logP(D |MZ) =
Nb

∑
b=1

log
(

P(z(b)|MZ)
)

(4.6)

= −
N

∑
b=1

(

z(b)−∑P
p=0ZpΨ(2)

p (Fλ1(λ
(b)
1 ),Fλ2(λ

(b)
2 ))

)2

2σ2 .
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Again, the adaptive MCMC algorithm is employed [19, 12], and we will primarily be interested
in the maximum a posteriori (MAP) estimate of the model parameters, i.e. PC modes, (Z0, . . . ,ZP).

Note that, unlike the quadrature projection case, there are no restrictions to the location of the
points where the forward model is evaluated, i.e. the pairs (λ(b)

1 ,λ(b)
2 ) can be arbitrarily distributed

in the input parameter space. Although the quadrature projection approach described in Section 4
has low computational cost and it also leads to an optimal representation in the L2-sense [9], the
Bayesian inference approach is sometimes more suitable due to its ability to obtain a reasonable
representation with limited and arbitrarily distributed input parameters.

Failure of global expansions
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Figure 4.1. Top: orthogonal projection, Bottom row: Bayesian
inference (MAP). Left: order 2, Right: order 7.

In both quadrature projection and Bayesian inference approaches, the spectral representation
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(4.2) assumes a certain degree of smoothness in the output Z with respect to its arguments (λ1,λ2).
For example, in the Meridional Overturning Circulation case, outlined in Section 2, the maxi-
mum overturning stream function undergoes a bifurcation with respect to the climate sensitivity
λ (lbd1) and the rate of CO2 increase r (λ2), essentially making the use of the global expansion
(4.2) infeasible. Figure 4.1 demonstrates how the global PC expansion fails to properly represent
discontinuous data sets. Lower order expansions do not capture the global behavior well, while
higher order expansions exhibit Gibbs phenomenon, i.e. non-physical oscillations. In this sim-
ple example, uniform input parameters are taken, i.e. λ1 = η1 and λ2 = η2, to enable an easy
orthogonal projection (4.3) via quadrature integration.

In principle, multi-domain PC expansions [13, 15, 16, 23] allow local representations that
effectively overcome this issue. However, these local representations are strongly challenged by
the computational cost of running the forward model at the quadrature point locations for each
subdomain, since they are generally computed by adaptive ref nement of domains with new data
samples required for each level of ref nement. We propose a methodology that essentially builds
a smarter domain decomposition algorithm, taking advantage of the fact that there is a single
discontinuity curve. The state of knowledge of the location of the discontinuity curve is represented
by the distribution of its samples, obtained by Bayesian inference described in Section 3.

The knowledge of the discontinuity location suggests that separate PC expansions for the output
Z on each side of the discontinuity could lead to more accurate representations compared to global
PC expansions. Essentially, this corresponds to a ‘smart’ domain decomposition, where domain
is not split by half on each dimension, rather it is split according to the discontinuity location.
However, compact-support PC representations require rectangular domains and are not readily
applicable to the resulting irregular domains on either side of the discontinuity curve. For this
reason we will employ a domain mapping strategy outlined next.
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Chapter 5

Polynomial Chaos Representation via
Parameter Domain Mapping

PC representation for a fixed discontinuity curve

For each sample discontinuity curve λ2 = pc(λ1;ω) we f nd maps from irregular parameter
domains (λ1,λ2) on either side of the discontinuity curve to rectangular domains (η′

1,η
′
2) via the

Rosenblatt transformation [22]. Namely, assume the discontinuity curve λ2 = pc(λ1;ω) divides
the full rectangular domain D = Iλ1 × Iλ2 into two subdomains DL and DR. Note that on each side
of the discontinuity, λ1 and λ2 are not independent anymore; the dependency is enforced by the
domain boundary λ2 = pc(λ1;ω). The inverse of the Rosenblatt transformation

λ1 = F̃−1
λ1

(ηL
1),

λ2 = F̃−1
λ2|λ1

(ηL
2 |η

L
1)

(5.1)

maps the regular stochasticdomain [0,1]× [0,1] to the left parametricdomain DL and uses the
inverses of the marginal and conditional cumulative distribution functions for the random variable
pair (λ1,λ2) restricted to the left domain only. To be precise, the joint distribution of the input
parameter on the left of the discontinuity curve is

F̃(x,y) = P(λ1 < x,λ2 < y|(λ1,λ2) ∈ DL) (5.2)

The right domain is treated in the same way. Throughout this work we use densities for the un-
certain parameters λ1 and λ2, shown in Figure 5.1, taken from the MOC context described in
Chapter 2. Namely, we take two climate model input parameters, climate sensitivity λ and the
rate of CO2 increase r with probability density functions that are found from historical records and
from expert opinions [30]. For the purposes of this work, these parameters are assumed indepen-
dent without restricting the generality of the described methodologies. However, note that after
constraining to left or right domains only in (5.2), the input parameters become dependent.

The map from (ηL
1 ,η

L
2) to (λ1,λ2) helps obtain a well-def ned PC representation

ZL
c(λ1,λ2) = Z̃L

c(ηL
1 ,η

L
2) =

P

∑
p=0

zL
pΨ(2)

p (ηL
1 ,η

L
2) (5.3)
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Figure 5.1. Probability density functions for λ1 (climate sensitiv-
ity) and λ2 (CO2 rate of increase) that represent the input parame-
ters of the forward model.

for the output on the left domain either using Galerkin projection

zL
p =

〈Z̃(ηL
1 ,η

L
2)Ψ

(2)
p (ηL

1 ,η
L
2)〉

〈Ψ(2)
p (ηL

1 ,η
L
2)Ψ

(2)
p (ηL

1 ,η
L
2)〉

(5.4)

or Bayesian inference methodology outlined in Section 4.

Figure 5.2(a) shows sample domain mappings for one instance of discontinuity line for the
orthogonal projection approach. In the stochastic domains (η1,η2) a total of M2

q quadrature points
are generated to enable the orthogonal projection (5.4) for DL and DR. For each instance of the
discontinuity curve, there is a set of points on each side of the parametric domain (DL and DR)
corresponding to these quadrature points. In order to evaluate the integrals in (5.4), the forward
model needs to be sampled in the parametric domain at these 2M2

q locations. In contrast with the
projection approach, the inference approach is driven by the parametric domain points. As can be
seen in Figure 5.2(b), the points in the parametric domain can be unchanged, i.e. one can reuse
the same forward model runs that were employed to detect the discontinuity. This approach leads
to points in the stochastic domain (η1,η2) that are in principle arbitrarily distributed. Bayesian
inference of PC on each side of the discontinuity is potentially less precise and more expensive
than the quadrature integration approach, but it does not require any new forward model runs.
We advocate for the use of a hybrid approach. Namely, in order to have a reasonable sample
coverage in the stochastic domain, one set of quadrature points is picked at each side of the MAP
estimate of the discontinuity. Further, the preimages of these quadrature points are added to the
set of points in the parametric domain, i.e. extra 2M2

q points, just like in the f rst approach above.
These data samples will be reused for all discontinuity curve samples, using Bayesian inference
approach, since the data set for general (other then the MAP estimate) discontinuities will not map
to a quadrature locations in the stochastic domain anymore. Figure 5.2(c) illustrates the domain
mapping and the points’ locations in the hybrid approach.
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Having obtained PC expansions for the output response on both sides of the discontinuity
separately, we def ne the global response representation for a f xed discontinuity curve c in the
following way:

Zc(λ1,λ2) =

{

ZL
c(λ1,λ2) if (λ1,λ2) ∈ DL

ZR
c(λ1,λ2) if (λ1,λ2) ∈ DR

. (5.5)

Averaging expansions over sample curves

To this end we obtained a “piecewise-spectral” representation (5.5) for the response function
Zc(λ1,λ2) for a f xed discontinuity curve that is parameterized by its coeff cients c. However,
the Bayesian methodology in Chapter 3 offers a framework to obtain the full uncertainty in these
curves. Therefore, we can obtain the expectation of the representation Zc(λ1,λ2) with respect to
the multidimensional posterior probability distribution function p(c) of the coeff cient vector c:

Ẑ(λ1,λ2) =
Z

C
p(c)Zc(λ1,λ2)dc. (5.6)

The integral in (5.6) is too expensive to compute with Monte Carlo sampling, although the samples
are available from the discontinuity detection MCMC. Indeed, the Monte Carlo integration would
involve two PC projections ZL,R

c (λ1,λ2) for each sample curve c. Moreover, there is no direct way
to f nd the domain C of the integration either - only samples drawn from the distribution p(c) are
available. Once again, we will use the Rosenblatt transformation η = R(c) to map the unknown
domain of integration C to a rectangular domain [0,1]K+1. The vector of random variables u
def ned with the help of the conditional distributions of c

u0 = F0(c0),
u1 = F1|0(c1|c0),
. . .
uK = FK|K−1,...,0(cK|cK−1, . . . ,c0)

(5.7)

has independent Uniform[0,1]-distributed components. The integral in (5.6) can be then rewritten
as

Ẑ(λ1,λ2) =
Z

[0,1]K+1
ZR−1(u)(λ1,λ2)du. (5.8)

The latter integral is computed by quadrature rule

Ẑ(λ1,λ2) ≈ ∑
u∗

ZR−1(u∗)(λ1,λ2)w
∗. (5.9)

The Rosenblatt transformation in (5.7) relies on the joint cumulative distribution function F(cK, . . . ,c1,c0),
which is estimated based on the samples provided by MCMC via Kernel Density Estimation
(KDE) [25, 27]. In order to accurately capture the multidimensional distribution, one needs sample
it at a rate that increases exponentially as the dimensionality K + 1 grows, hence the Rosenblatt
transformation (5.7) suffers from the curse of dimensionality. Note that this is not an issue in (5.1),
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since in that implementation of the Rosenblatt transformation we have access to the PDF itself, not
just samples of it.

Since the structure of the discontinuity curve is a priori unknown, and to make the sampling-
based Rosenblatt transformation feasible, we infer a linear discontinuity curve (i.e., K = 1). The
results in the next section illustrate that averaging over these low-order auxiliary curves by (5.6)
improves the overall accuracy, and leads to a smooth global representation of the model output
Z(λ1,λ2).

Assume that a total of N2
q quadrature points are used in order to compute the average represen-

tation (5.9). Each of these quadrature points, shown with f lled circles in Figure 5.4b), corresponds
to a discontinuity curve. According to Section 5, for each discontinuity curve, a total of 2M2

q for-
ward model runs are required for the orthogonal projection. This leads to a total of 2M2

qN2
q forward

model runs. Indeed, Figure 5.3 shows the distribution of the preimages of quadrature points in the
stochastic domain, i.e. the points where the forward model needs to be simulated. In this case,
we used Mq = Nq = 5 points per dimension for both the orthogonal projection at each side of the
discontinuity and for integrating in the discontinuity curve space. Therefore, the orthogonal pro-
jection approach would require 1250 extra evaluations for the forward model. While this could
be acceptable for forward models with moderate computational cost per simulation, it becomes a
considerable handicap for highly complex forward models, such as global climate models of high
grid resolution and complexity. For such applications, the Bayesian strategy of inferring PC ex-
pansions at each sides of discontinuity is much better suited, since it relies on the original set of
points in the parametric domain without any restrictions as to where these points would map in
the stochastic domain. The Bayesian inference therefore will be less precise in approximating the
forward model due to both lower number of sampling points and their irregular locations, but it can
be the only alternative when the forward model runs are very expensive or even impossible. The
hybrid approach in some sense hedges and provides a combination of the advantages of orthogonal
projection and Bayesian inference. Namely, one chooses quadrature points’ preimages (under the
Rosenblatt transformation) in the parametric domain for the MAP value of the discontinuity only,
and then proceeds with the inference approach. This would ensure that the stochastic domain is
covered reasonably well for the rest of the discontinuity curves, requiring only 2M2

q extra forward
model runs, see Figure 5.2c).

Uncertainty Propagation via Parameter Domain Mapping

In this section we demonstrate the full algorithm of discontinuity detection and response surface
approximation, together with uncertainty propagation from input parameter distributions to output
distribution. Consider now a synthetic forward model 3.7, with a steepness parameter γ = 2, a
discontinuity along a cubic curve λ2 = r(λ1) = 1 +(λ1 −3)3 and additional oscillatory structure
of amplitude δ = 0.1.

Figure 5.4(a) illustrates the inference of the discontinuity curve, the true location of which is
shown with thick green line. Since the true discontinuity is set to a third order polynomial, its

30



shape that cannot be approximated by a single straight line. However, the MCMC chain provides
an ensemble of lines which cover the region of sharp gradients, i.e. where the model output varies
sharply between high (red symbols) and low (blue symbols) values.

It is worth noting that the random vector c has dependent components. As an example, Fig-
ure 5.4(b) shows the contours of joint posteriors of the curve parameters c0 and c1, as well as the
quadrature points R−1(u∗) generated by the inverse Rosenblatt transformation to enable integration
in the (c0,c1) space, see Eqs. (5.6)-(5.9).

Figure 5.5 shows a comparison between the synthetic model and the values obtained using
the averaged PC expansion (5.6) with both quadrature approach and Bayesian inference. Despite
the challenge posed by the relatively wide regions with f at z-values, the averaged PC expansion
Ẑ(λ1,λ2) captures well the steep gradients of the synthetic model. Overall, the quadrature approach
works slightly better. The orthogonal projection requires 2M2

qN2
q extra forward model runs to

obtain PC expansions on each sides of he discontinuity, while the Bayesian inference relies on the
same forward model runs that were used to f nd the discontinuity location in the f rst place.

Having the averaged PC expansion as a surrogate representation of the input-output relation-
ship, one can also perform uncertainty propagation from input parameter distributions to the output
distribution by simple Monte Carlo sampling. Figure 5.6 illustrates the distribution of the output
response based on the true model, as well as averaged PC expansions using both orthogonal pro-
jection and Bayesian inference approach. The values of PDF obtained through the averaged PC ex-
pansion (5.6) are in good quantitative agreement with the ones obtained from the full model (3.7).
These plots illustrate the accomplishment of the basic uncertainty propagation task: given the
PDFs of the parameter pair (λ1,λ2), obtain the PDF of the output representation with limited for-
ward model evaluations.
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Figure 5.2. Sample domain mappings through Rosenblatt trans-
formation between parametric and stochastic domains. The dis-
continuity curve is shown with a black line. (a) The orthogonal
projection-based approach relies on the stochastic domain quadra-
ture points and maps back to the parametric domain, while (b) the
Bayesian inference approach uses the input data at hand from para-
metric domain and maps it to the stochastic domain, and, f nally,
(c) the hybrid approach incorporates both methods to ensure bet-
ter spread of points in the stochastic domain. The empty circles
represent the quadrature points and their preimages in this case.
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ples are color-coded according to the synthetic model output (3.7).
(b) Joint posterior distribution of components c0 and c1 of the ran-
dom vector c. The f lled circles are the quadrature points used
in (5.6). Small dots are samples from the Markov chain. The num-
ber of original sample points is set to N = 33.
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Figure 5.5. The Averaged-PC expansion surface Ẑ(λ1,λ2) f ts
the original discontinuous samples. The PC expansions on each
side of the sampled discontinuty are obtained by (a) quadrature
projection, (b) Bayesian inference.
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Chapter 6

Conclusions

In this report, we present a methodology for uncertainty quantif cation in models with limited
data and discontinuities. The underlying assumptions are (a) there is only limited data available or
limited capacity to obtain new data, i.e. forward model runs are expensive enough to render brute-
force domain decomposition algorithms infeasible, and (b) the data exhibits discontinuities or steep
gradients across a certain curve in the parameter region. We propose a Bayesian approach to
detect and parameterize the discontinuities as well as the uncertainties associated with them. Next,
we use a domain mapping strategy to map each irregular sub-domains to rectangular ones where
the application of the local spectral methods of uncertainty propagation is feasible. Essentially,
this methodology is a “smart” domain decomposition, where one f rst approximately f nds the
discontinuity location and then splits the domain accordingly.

The computation of PC expansion coeff cients on each side of the discontinuity can be per-
formed using either orthogonal projection or Bayesian inference methodologies. Orthogonal pro-
jection, although performs better, requires the forward model evaluation at the preimages of the
quadrature points under the Rosenblatt transformation. This approach puts a restriction on the po-
sitions of the sampling points in the parametric domain (λ1,λ2). Moreover, for every sample of
the discontinuity curve, new samples in the parametric domain would be needed. The Bayesian
inference approach, on the other hand, allows obtaining a reasonable representation with the data
available at hand, at the same time characterizing the uncertainties associated with the result. This
approach is in general less precise, since it is driven by available points in the parametric domain
that can in principle cover the stochastic, PC domain poorly. We propose a hybrid approach to
balance between computational cost and accuracy of the resulting representation - the approach
requires only one set of extra forward model runs in order to spread the points in the stochastic
domain well. A more formal experimental design strategy to improve the accuracy of both the
discontinuity location and the resulting PC representation is a matter of ongoing work.
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