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Abstract

In previous work, the we developed a Bayesian-based methodology to analyze the
reliability of hierarchical systems. The output of the procedure is a statistical distri-
bution of the reliability, thus allowing many questions to be answered. The principal
advantage of the approach is that along with an estimate of the reliability, we also can
provide statements of confidence in the results. The model is quite general in that it
allows general representations of all of the distributions involved, it incorporates prior
knowledge into the models, it allows errors in the “engineered” nodes of a system to be
determined by the data, and leads to the ability to determine optimal testing strategies.
In this report, we provide the preliminary steps necessary to extend this approach to
systems with feedback. Feedback is an essential component of “complexity” and pro-
vides interesting challenges in modeling the time-dependent action of a feedback loop.
We provide a mechanism for doing this and analyze a simple case. We then consider
some extensions to more interesting examples with local control affecting the entire
system. Finally, a discussion of the status of the research is also included.
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1 Introduction

In previous work, the authors and colleagues developed Bayesian techniques for estimating
the reliability of engineered systems [2]. We used a network model for the system where the
leaf nodes are the inputs to the system and the internal, or “system” nodes are assumed to be
designed, i.e., we know what they are supposed to do. This is not the most general model, but
adequate for many interesting systems. The idea is to test the composite system at various
points and estimate the reliability of the system based on these tests. We accomplish this
by using polynomial chaos expansions (PCEs) [3, 6] for the random variables (RV) at the
leaf nodes, Bayes’ theorem [1] to determine the distribution of the PCE coefficients, given
the test data, and Markov-chain Monte Carlo (MCMC) [5, 4] to sample this distribution.

In our models, reliability is defined as the percentage of time the system yields output
in its acceptable range. Thus for each MCMC sample, we can produce an estimate of the
reliability, which yields a distribution for the reliability.

There are many advantages of this approach for testing systems. In particular, by using
PCEs, we avoid the problem of assuming a particular distribution for the random variables.
This is specifically important in some situations where early attempts to gauge the reliability
assumed Gaussian (normal) distributions that did not give nearly enough weight to the tails
and thus overestimated the reliability. Another advantage is that our approach allows a
general nonlinear function at each system node. Thus, we do not have to rely on linear
models. We also note that our procedure produces a distribution of the reliability and thus
allows us to provide more insight into the reliability than just a single estimate of what it
is. For example, we can provide some estimate of our confidence in the estimate. Finally,
we can provide a fictitious node for each system node to represent the error in that node.
We assume that we cannot directly observe these nodes, but we can infer the parameters by
collecting data.

We also have extended the approach to time-dependent systems. Here we provide a model
of how the system varies over time and use test data to infer the parameters of this model.
We show that such systems can be represented in a way that permits us to use almost all
of the above analysis for estimating reliability. At the conclusion, however, we can use our
model to predict the reliability at some future time. This gives a way to deal with aging
issues that are extremely important in some contexts.

Finally, we can use the same framework to formulate and answer questions about an
optimal testing strategy [2]. In particular, we can ask for the best place to do the next
test, but here we must be careful to formulate the notion of “best” in an appropriate way.
Roughly speaking, our confidence in our estimate of reliability is related to the variance of
the distribution of the reliability. Thus a way to improve our confidence would be to reduce
the variance, so one formulation of “best” is to determine the test that reduces the variance
more than any other. Many variations on this can be included, for example, given a budget
for tests, what is the best way to spend this?
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An additional feature of this approach is the ability to extend it in several interesting
ways. Of particular interest in the area of complexity is to extend it to systems that contain
feedback. We believe that feedback is a necessary component of complexity, i.e., systems
exhibiting complexity must contain feedback. (Of course, feedback is not sufficient for com-
plexity.) In this paper, we take a first look at systems with feedback in the above framework.
In section 2 we give a specification of a simple feedback model and introduce our notation.
As we shall see, this requires us to be specific about timing of events in a feedback loop. To
address this, we introduce a model that allows us to specify a general mechanism for turning
a static feedback system into a system that is feed-forward-in-time. This allows us to use
much of the same framework as described above, with the same advantages, to feedback
systems. In section 4 we construct a very simple system with the property that for a certain
range of input, the system is stable, but outside of that range, it diverges. Thus, in addition
to predicting its reliability, we can try to predict the range of inputs for which the system
is stable. This is a first attempt to try to deal with the type of behavior that can arise in
complex systems; we show numerically that this is achievable. In section 5 we consider a
more interesting set of functions in the feedback loop and look to see if we can obtain some
unexpected behavior. (This work is not finished, yet.) Finally, in section 6 we discuss the
current status of the work and future directions.
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Figure 1: System with feedback. The nodes labeled η are the error nodes.

2 Model and Notation

The task is to create a model for feedback systems. The initial models should be simple
enough so that we can develop appropriate algorithms and do some detailed testing. Figure 1
contains a simple feedback loop between nodes 1 and 2. To be specific, we refer to nodes
3, 4, and both η-nodes as leaf nodes. Nodes 1 and 2 are system nodes, and node 0 is the
output node. The idea is that nodes 3 and 4 provide input to node 2. Node 2 then begins
the feedback with node 1. The η nodes represent the errors that are produced by nodes 1
and 2. This way of modeling allows us to have a fairly general way to incorporate errors into
the process. Note that the η-nodes cannot be observed directly, but only inferred from the
data.

Let the output of node i be given by Ωi. At leaf node i, the output is a RV represented
by a PCE. In particular,

Ωi =
∞∑

j=0

θijHj(ξi), (2.1)

where the θij are real numbers, Hj is the jth Hermite polynomial, and ξi ∼ N(0, 1), i.e., a
normally distributed RV with mean 0 and variance 1. Any RV with finite variance can be
represented arbitrarily accurately (in distribution) with sufficiently many terms of this series.
An advantage of this formulation is that it already contains a distinction between epistemic
and aleatory uncertainty: The values of the coefficients θij are improved with increasing data,
but the overall variation in Ωi, even with perfect knowledge of the θij, cannot be reduced.

The output at system node i is an arbitrary function of its input (or parent) nodes. Here,
we have to be careful in specifying this function in order to be clear about the way in which
the feedback system operates. We specify a general framework that can be specialized as

9



Figure 2: The time dependence diagram depicting the flow of information over time.

appropriate.

Assume that each node outputs a value at each clock cycle. We are primarily concerned
about the feedback loop consisting of nodes 1 and 2; we show a schematic of the loop over
time in figure 2. We define the action of node 2 at each time step as follows:

Ωt+1
2 =

{
Ω2(Ω

t
3,Ω

t
4, η

t
2, t) if Ωt

1 = �
Ω2(Ω

t
1,Ω

t
3,Ω

t
4, η

t
2, t) else

. (2.2)

Similarly, we can define the action of node 1:

Ωt+1
1 =

{
� if Ωt

2 = �
Ω1(Ω

t
2, η

t
1, t) else

. (2.3)

Several comments on this loop are in order:

• We assume that at t = 0 node 2 has values of Ω0
3, Ω0

4, and η0
2, but that Ω0

1 = �. Node
2 thus evaluates Ω1

2 = Ω2(Ω
0
3,Ω

0
4, η

0
2, 0); we think of this as the initialization step. This

is completed at the end of time step 0.

• Node 1 at t = 0 has Ω0
2 = � and thus evaluates Ω1

1 = �.

• At time t = 1, node 2 calculates Ω2
2 = Ω2(Ω

1
3,Ω

1
4, η

1
2, 1) since Ω1

1 = 0 and node 1
evaluates Ω2

1 = Ω1(Ω
1
2, η

1
1, 1).

• By construction here, we note that at every other time step, the evaluations at both
nodes 1 and 2 are not necessary. Some sort of a “wait” state could be used or some
other calculation could be done.

• We have explicitly included a dependency on time in the evaluations at nodes 1 and
2. This, of course, allows a general time dependency in the system, but could be
ignored to study a steady-state system, i.e., a system in which aging effects or other
time-dependency takes place on a scale much longer than the time scale of the loop.

• We have not specified how this loop is terminated and output of the system is finally
achieved. We address this point next.
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To get output from node 0, we need to specify when output from node 1 is available
to node 0. For example, we could postulate the existence of a general conditional, say C ,
which, when satisfied, implies that node one makes its state available to node 0. Consider
this extension to the evaluation at node 1:

Ωt+1
1 =


� if Ωt

2 = � and C is not satisfied
Ω1(Ω

t
2, η

t
1, t)) if C is not satisfied

ΩF
1 (Ωt

2, η
t
1) if C is satisfied

. (2.4)

This is coupled with the specification that node 1 controls its output so that Ωt
1 goes to node

2 if C is not satisfied and to node 0 if it is.

Remarks:

• There is no restriction that the output of any of the nodes is a scalar value — it could
be a vector.

• The conditional C could contain several possibilities, e.g., output must happen every
τ time steps, or output happens when the loop “converges” (however that is specified),
or when the phase of the moon is appropriate.

• We can consider situations where the whole process is driven by white noise represented
by the ξ RVs in the leaf nodes. This corresponds to some models in the literature.
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3 Research Questions

• Suppose that the iterative procedure is “stable” for (Ω3,Ω4) ∈ S . Here we need to be
specific about what we mean by stability. It could mean, for example, that the loop
outputs a value that is in an acceptable range. Can we determine S in the presence
of the errors represented by the η nodes? Can we tell if we are close to the boundary
of S ?

• Can we determine if the system nodes are, by themselves, reliable? That is, can we
estimate the associated η node values?

• How does the set of conditions, C affect the performance of the system?

• What is a reasonable set of functions on which to begin the analysis?

• In what ways should this be extended to create increasingly complex systems.
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Figure 3: A simple feedback loop with errors. The η-nodes are specified.

4 First Example

4.1 Simple feedback system with errors

We first specify a very simple fixed-point iteration that can be used in a feedback loop.
The guiding idea is that the feedback loop is designed to stabilize a process. A target T
is provided and the output of the feedback loop is supposed to move its output closer to
the target. With sufficient time, it could, in theory, get arbitrarily close if the process is
convergent.

Consider the iterative procedure

sk+1 = sk − 2λ(sk − T ), (4.1)

where the sk are the outputs of the system. Assume that the initial state, s0 has been pro-
vided. The value λ is the control parameter with the properties that Eq. (4.1) is convergent
if λ ∈ (0, 1) with optimal value at 0.5. Note that this convergence result follows from the
fact that

(sk+1 − T )

(sk − T )
= 1− 2λ. (4.2)

The idea here is that our controller will provide the step λ to the node that will compute
the next value sk, but that it will operate with error. Suppose we have a bound: λ such that
all steps ≤ λ. The input to the controller is the target T , λ, and starting value s0, all with
error, i.e., all are RVs.

We will implement the feedback loop as follows (see figure 3). Node 4 is the controller
and node 2 computes the next iterate. In particular node 2 has input s and λ and computes
s+ which it returns to node 4 with error from node 3.

Node 4 does the following: At the first iteration, it takes in T , s0, and λ (from nodes

13



Figure 4: Time-dependence diagram for simple feedback system. This process can be con-
tinued arbitrarily to the right.

6, 7, and 8, respectively. It then sets λ = λ, adds an error, adds an error to s0 and sends
this to node 2. When it gets the s+ (with error) back from node 2, it evaluates the above
ratio (4.2), and adjusts λ. The current implementation of this is given in feedback.m. The
implementation at node 2 is given in iter.m, and the input from nodes 6, 7, and 8 is given
in feedTest.m.

Currently, this uses normally distributed errors for everything, but can be modified to
obtain the performance one desires. Finally, we limit the number of times the feedback loop
is executed to K iterations. We note, of course, that this makes the system bounded, but we
could impose something like a convergence criterion that would yield an unbounded loop,
but for this simple example, this would not change much.

4.2 Computational Procedure

Here we specify more of the details of the procedure. We first specify the “true” system by
specifying an order and appropriate coefficients for the PCE at each leaf node. The system
nodes are as defined above. Given the “true” system, we can compute a sample at each leaf
node and propagate this through the system. The best model for following the computations
is the time-dependence diagram in figure 4. After K passes through the feedback loop, node
1 outputs a result which is the ratio

ri =
|sk+K − T |
|sk − T |

(4.3)

where i is the index of the sample. Since the procedure is converging if ri < 1, we can
compute the reliability of the system computing as

r =
no. of ri < 1

total ri

. (4.4)

At this point we can specify a set of data that is collected. This will include the nodes,
time, and number of replications. We will then use this data to determine the properties

14



of the system. In particular, we propose a Bayesian approach to predict the system. The
details of this approach are in [2]. An outline is as follows:

• Specify an initial guess at the order and coefficients of the PCEs for each node.

• Specify a prior on the coefficients.

• Use Bayes Theorem to get an expression for the joint probability of the coefficients,
given the data, i.e.,

π(θ|d) ∝ π(d|θ)π(θ), (4.5)

with the usual interpretation of these quantities.

• Use Markov chain Monte Carlo (MCMC) to sample this distribution

– For each sample θ, do the above procedure to compute an estimate of the reliability

– At the end, plot the distribution of the reliability given the data. We can also
give a distribution of the coefficients θ.

Another thing we want to be able to do is to estimate the value of the bound, λ, which
separates stable behavior (ri < 1) from the unstable behavior. Without error, this is trivial,
but with error we will not see a definite break, but a region about 1 where things are not
certain. To get an estimate of the break-point, call it λ∗, we propose plotting the ri as a
function of the bound λ and using least squares to estimate λ∗. We can also estimate the
optimal step (λopt = 0.5) by the same procedure. Thus, we modify the last step above to
compute these quantities and thereby obtain distributions for λ∗ and λopt.

4.3 Results

A code was written in Matlab to implement the procedure described above. The goal here
was to simply test the algorithm and to see if the procedures for estimating the cross-over
point from stability to instability. Thus, no attempt was made to maximize efficiency. (We
address this issue in section 6.)

We used just two terms in the PCEs for the leaf nodes and started very close to the true
solution. Tests were made at nodes 2 and 3 at all iterations of the feedback loop; 50 tests
were made at each. We also did 50 replications of tests at nodes 5-7. We limited the number
of feedback iterations to 3. With 100 iterations of the MCMC code, we obtained reasonable
results. Clearly we need much more testing to make stronger claims about the efficacy of the
ideas. The only claim made here is that the procedure seems to work; it produces reasonable
results as seen in figures 5 – 7. Figure 5 shows the reliability distribution centered around
.8, which was the chosen reliability for the system. Figure 6 shows the distribution of the
computed cross-over between stability and instability. As mentioned above, this value should
be 1; the distribution is clearly centered there. Finally, figure 7 shows the distribution of the
estimate of the optimal value. This overestimates the correct value of .5, but the fact that
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Figure 5: Reliability Distribution

Figure 6: Stability cross-over

the accuracy here is somewhat poor is due to the fact that almost no input data was in this
range. In summary, this simple example illustrates that the procedure can be effective.

16



Figure 7: Optimal Input

17



Figure 8: Three-Node feedback with logistics maps.

5 Example with Logistics Map

In this section, we describe some experiments with a more complicated and interesting
feedback system based on the well known logistic maps. For a brief introduction, see

http://en.wikipedia.org/wiki/Logistic_map.

Briefly, the logistic map represents a dynamical system described by a polynomial of degree
2. The interesting feature is the level of complexity that can be seen by varying a parameter
that occurs in the formula.

To be specific, the logistic map is taken to be the nonlinear recurrence relation

xk+1 = rxk(1− xk), (5.1)

where r is the parameter that controls the process. It is easy to verify that for r ∈ (0, 4)
the process remains bounded. For r < 3 the process will converge to a single value; for
r between 3 and 3.45 (approximately), the process will oscillate between two values; for r
between 3.45 and 3.54 (approximately) the process will oscillate between four values. As r
increases points will be reached where the process will oscillate between eight, then 16, then
32, etc. values until when r is larger than 3.57 almost all initial values result in no finite
number of oscillations. There are, however, certain “islands of stability” for large values of
r where oscillations among 3, or some other number of values is possible.

We create a feedback loop with logistic maps at each node. For example, consider the
3-node feedback loop in figure 8. A value of r is set for each node. Assume that the process is
started at node 1. Node 1 does one iteration and sends its output to node 2, which does one
iteration and sends its output to node 3, etc. We did some experimentation with different
values of r at each node and obtained some results that are not obvious. For example,
with r1 = 3.4, r2 = 3.6, and r3 = 3.8 we obtained the plot in figure 9 that shows a stable
oscillation among 3 values. Note that this is not possible for any of the three values of r
individually. (To obtain this plot, we sorted the values and plotted them.)

18



Figure 9: Three-node feedback using logistic maps with r1 = 3.4, r2 = 3.6, and r3 = 3.8

Figure 10: Three-node feedback using logistic maps with r1 = 3.5, r2 = 3.8, and r3 = 3.8

In the course of these experiments, we observed many triples of the ri values that appeared
to be generating a chaotic plots, i.e., ones with no stable oscillations (or perhaps too many
to see). Thus we wanted to create a test to measure the “distance” from such plots to plots
exhibiting chaos. Note that if we sorted the values from a chaotic result and plotted them,
we would obtain (approximately) the straight line from (0, 0) to (1, 1). If we consider our
plots to be cumulative distribution functions, we can use the Kolmogorov-Smirnov (KS) test
to measure the distance from these distributions to a true uniform distribution. In order
to make these more meaningful, we had to shift the data to properly overlap the uniform
data. The straight line in figure 9 is the uniform line. The value the KS statistic is .245. By
contrast, the plot for r1 = 3.5, r2 = 3.8, and r3 = 3.8 if given in figure 10 and the KS stat
is .178.

We investigated two items of interest. First, we wanted to know if we could neatly
partition the 3-dimensional space consisting of (r1, r2, r3) into two subsets where the KS
statistic was above (below) a certain value. Thus we made a series of plots where r1 was
fixed and r2 and r3 were varied between 3.0 and 3.9 by .01. For each point, we placed
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a blue dot if the KS statistic was > .2 and a green dot if not. It was not obvious how
this would turn out. Four interesting plots are given in figure 11. These plots correspond to
r1 = 3.0, 3.7, 3.8, and 3.9. Note that even for r1 +3.0, where we would expect more stability,
there are some interesting islands and strips of green into predominately blue regions. For
higher values of r1 we obtain more interesting intermixing of the green and blue, suggesting
that, by this measure, there are regions where it would be very hard to predict what would
happen. We speculate that such complexity would be more pronounced as the model is
scaled up to include more nodes.

(a) r1 = 3.0 (b) r1 = 3.7

(c) r1 = 3.8 (d) r1 = 3.9

Figure 11: Plots showing regions where the KS statistic is > .2 in blue and ≤ .2 in green.

The next item of interest is to see the effect of trying to control one node in the system.
That is, we control one node based only on information at that node, with no regard to what
the other nodes are doing. Of course, the input to the node to be controlled is dependent
on the other nodes. To be specific, we put our control at node 2. Our first attempt at this
was to collect some number of inputs to node 2, calculate the KS statistic and try to adjust
r2 to keep the KS statistic within a specified range. We did a number of tests and settled
on a range .35 to .40. If the statistic was below .35, we decreased r2 by .01; if it was greater
than .40, we increased it by .01. In figure 12 we show a run with no control and then a run
with the control activated. We see that for the initial values of the r values shown, with no
control we obtain a value of the KS statistic of .07 but with control at only node 2 we obtain
a value of .12. There appears to be much more structure in the controlled plot. This shows
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that we can have a profound influence on the whole system by controlling just one node. In
some sense, this is akin to a “canalizing” parameter in Boolean networks.

(a) Uncontrolled System (b) Controlled System

Figure 12: The stability of the system based on controlling node 2 only.

These results suggest some additional areas of research. As suggested earlier in this
paper, we could add errors in various places and try to determine the effect on the system.
We could make the range variables part of the input and try to determine ranges for which
control can be achieved. We could allow “drift” in the r values and try to adapt the controls
to deal with this. Finally, there are many questions about how this could be scaled. For
example, how many nodes could be controlled by just one node?
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6 Discussion

This is a preliminary report on our attempts to extend our tools for handling epistemic
uncertainty in hierarchical systems to systems that contain feedback. We showed how to
model feedback in such systems by a feed-forward in time model that allows us to use many
of the tools developed in previous work. We then considered feedback models based on the
well known logistic map that demonstrates a transition to chaos as its controlling parameter
is increased. By coupling such maps in a feedback loop, we can obtain unexpected behavior
in the final output. By adding an additional feedback control on one node, we showed that
we can control the overall output of the system. We speculate that by scaling up such a
system, we will be able to create unexpected behavior and it will be interesting to see what
percentage of nodes must be controlled to control the behavior of the whole system.

Finally, the amount of computation rapidly increases as we increase the number of nodes
and the length of the feedback cycle. Thus it is of interest to examine carefully the algorithmic
aspects of our procedure. We note here that there are many possibilities for parallelism,
especially in the computation of the likelihood function, which is the most expensive part of
the calculation. In fact, these calculations are “embarrassingly” parallel, so much could be
done to speed the calculations and thus extend the range of our techniques.
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Horse, James T. Ringland, Kathleen Diegert, and Rena Zurn. Practical reliability and un-
certainty quantification in complex systems: Final report. Technical Report SAND2009-
6072, Sandia National Laboratories, 2009.
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