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Abstract 
 
We propose and examine several statistical criteria for characterizing time series of solar 
irradiance.  Time series of irradiance are used in analyses that seek to quantify the performance 
of photovoltaic (PV) power systems over time.  Time series of irradiance are either measured or 
are simulated using models.  Simulations of irradiance are often calibrated to or generated from 
statistics for observed irradiance and simulations are validated by comparing the simulation 
output to the observed irradiance.  Criteria used in this comparison should derive from the 
context of the analyses in which the simulated irradiance is to be used.  We examine three 
statistics that characterize time series and their use as criteria for comparing time series.  We 
demonstrate these statistics using observed irradiance data recorded in August 2007 in Las 
Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.   
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1.  INTRODUCTION 
 
The amount of solar generation on the electrical grid is projected to increase rapidly and will 
reach high penetration levels in parts of the system.  Due to the variable nature of its output, solar 
generation (especially photovoltaic (PV) and concentrated solar power (CSP) without energy 
storage) has the potential to affect power system operations in several ways.  Variable flow on 
distribution and transmission lines could degrade power quality by introducing voltage variations 
and thus impose stress on voltage control equipment.  At the system level, variability 
complicates efforts by utilities to meet power balancing requirements or to minimize the cost of 
energy production.  Industry experience is insufficient to allay concerns about the potential 
impact of high solar penetration, and the pace of solar generation deployment is hindered by the 
perceived risk of unacceptable system variability.  Thus, methods for assessing the impact of 
solar generation on grid operations are currently of great interest. 
 
It is possible to estimate the impact of variable generation on the grid.  Over the last decade, 
methodologies for studying the effects of wind generation have been refined and validated to 
some extent (e.g., [1]).  Fundamentally, the effects are functions of the grid characteristics (local 
network and balancing area), the flexibility of automatic generation control systems and other 
market mechanisms available to grid operators, the temporal variability of the variable resource 
being considered (i.e., seasonal, daily, hourly and sub-hourly patterns), and the spatial separation 
of generators.   Integration studies at the regional scale require estimates of the output from 
variable generation sources that is weather-consistent and time-synchronized with the load.  For 
integration studies involving wind generation, mesoscale numerical weather models are used to 
produce hourly and 10-minute wind and power output estimates.  However, similar techniques to 
estimate solar irradiance and output from solar generation do not currently exist. 
 
Generally speaking, the variability of solar generation is driven by the variability of the solar 
resource (irradiance).  Therefore, a model that produces estimates of irradiance at short time 
scales is a key first step in estimating solar plant output.  Irradiance models should produce 
estimates that are statistically consistent with observations of irradiance, which are available for 
many locations in the US, with records that span several decades albeit with relatively coarse 
spatial and (with some exceptions) temporal resolution.  Determining statistical consistency 
requires selection of statistics to be used to compare simulations with observations.  This report 
first proposes a relatively small set of statistics for characterizing time series of irradiance, and 
examines the use of these statistics as criteria for comparing model output to observations in 
order to judge statistical consistency. 
 
1.1. Notation and Assumptions 
 
Measurements of solar irradiance on a horizontal plane can be represented mathematically as a 

time series   ,R t x  where t is time and x is a vector indicating location in a coordinate system.  

Formally   ,R t x  can be regarded as a stochastic process indexed by time t with state space 

comprising random fields of irradiance values at each point x.  However,   ,R t x  is not 

stationary due to the diurnal and annual variation in solar irradiance due to the sun's changing 
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zenith angle.  To remove these effects and obtain a stochastic process that may be regarded as 
stationary, irradiance is often normalized by dividing irradiance at the earth’s surface by the 
irradiance expected for clear sky conditions; which can be simulated from commonly available 
weather data.  The resulting quotient is termed the clearness index and is denoted here as 

  ,C t x .  Converting to clearness index permits comparison of irradiance measurements at 

different times and on different calendar days but with loss of information about the magnitude 
of irradiance. 
 
In this paper, we consider irradiance and clearness index only at a single point and simplify our 
notation by omitting x.  The determination of spatial correlations in irradiance or clearness index 
is an important problem which we do not take up in this paper.  Usually observed or simulated 

values are obtained at a discrete sequence of times  jt .  Thus, for example, a collection of 

independent realizations of the stochastic process for clearness index at the point x are indicated 

by  i jC t  where i indexes the realizations. 

 
We assume that the transformation from irradiance to clearness index is effective at removing 
diurnal variations and results in a weakly stationary stochastic process, that is, the mean and 
variance for time series of clearness index do not depend on the time of day.  This assumption is 
clearly not appropriate for irradiance as irradiance is subject to diurnal cycles.  Irradiance may 
vary on longer cycles, such as non-stationary weather cycles (e.g. warm or cold air masses which 
bring different cloud conditions) and annual variation in global solar irradiance.  Where such 
influences are present in observed irradiance and the assumption of stationarity is made, analysts 
should take care to subdivide the time series into periods for which the stationarity assumption is 
appropriate (e.g., periods with similar cloud conditions, calendar periods, etc.). 
 
  



 

9 

2.  METRICS FOR CHARACTERIZING TIME SERIES 
 
Time series of irradiance or clearness index are often generated to support economic or 
operational analyses of solar power systems.  For example, an analysis may be conducted to 
determine the expected return on investment from a proposed solar power plant.  In this kind of 
analysis, the analysis inputs representing the solar resource should be consistent with the levels 
of solar irradiance at the site under consideration; otherwise, the analysis risks under- or over-
estimating the economic gain.  Other analyses may examine strategies for mitigating the 
variability in power output resulting from temporal variability in the solar resource; such 
analyses require inputs that are consistent with both the level of irradiance and changes in level 
of the solar resource.  The suitability of a model for simulating irradiance should thus be judged 
in the context of the analysis that the model will support. 
 
Fundamentally, simulated irradiance should be statistically consistent with observed or measured 
irradiance.  One method of constructing synthetic time series of irradiance that are statistically 
consistent with a set of observations is to select representative periods from the observations and 
to concatenate the selected periods to form time series.  The resulting time series are often 
referred to as 'representative' months or years (e.g., [2, 3].)  This method has the advantages of 
simplicity and of maintaining consistency with the observations, but also has drawbacks.  The 
representative time series is constrained to replaying historical data, which may not be 
representative of the full range of variability that could occur.  Consequently, we prefer criteria 
phrased in terms of statistics estimated from recorded data.  Simulations of irradiance (using 
models and appropriate sampling methods) are then compared to observations using these 
statistics. 
 
Determining statistical consistency first requires identification of the statistics to be considered.  
Our selection of statistics is guided by the aspects of the solar resource that are likely to be 
significant in analyses of solar power systems, namely, the level of irradiance and the changes in 
irradiance over time.  We prefer to compare model output with observations using only a few 
statistics to avoid over-constraining model output.  We propose here three statistics that can be 
used to compare simulations to observed data to judge consistency: 
 

1. The frequency distribution of irradiance (or clearness index).  The frequency distribution 
quantifies the fraction of time that irradiance falls within a specified range of values. 

2. The distribution of ramps (i.e., changes in level) of irradiance (or clearness index) over a 
period of time. 

3. The autocovariance and autocorrelations in the time series of clearness index and of 
ramps in clearness index. 

The frequency distribution of irradiance,  F R , quantifies the fractional time (within the time 

period of interest) that irradiance is less than a specified value, i.e.,    F R P R r  ; here 

 F R  denotes the cumulative distribution.  The probability density function  f R  
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corresponding to the distribution  F R  can be approximated by a histogram produced from the 

data  
,

i j
i j

C t , where the union is taken over the data on which the simulations will be based.  

The frequency distribution of irradiance is important for analyses that estimate the value of the 
solar resource over a period of time.  Because power output changes rapidly with changes in the 
level of irradiance, for all but very short time intervals, power at time jt  is independent of power 

at other times.  Thus, the distribution of power is reasonably given by     Power P F T R  

where  T R  is a function that translates irradiance to power.  Typically, this function may 

consider module and inverter technology, temperature, the angle of incidence and spectral 
characteristics of  the light hitting the PV array as inputs (e.g., [4]). 
 
Other methods for characterizing irradiance variability have been proposed.  Models based on 
Fourier transforms have been used to represent sequences of daily overall global solar irradiation 
(e.g., Sun and Kok, 2007 [5]; Baldasano et al., 1988 [6]), but have not proven to be suitable for 
representing variability at shorter time intervals (e.g., hours or minutes) because short-term 
(intraday) variations are not periodic.  Woyte et al. (2007a; 2007b [7, 8]) have suggested 
characterizing irradiance by a localized spectral analysis using a wavelet decomposition.  Their 
approach aims to characterize the amplitude, persistence, and frequency of occurrence of 
fluctuations without focusing on when the fluctuations occur in time.  They do not suggest an 
algorithm for simulating irradiance time series, but their approach may prove useful for 
comparing measured and simulated irradiance.  We plan to evaluate this approach in future work, 
but do not consider it further in this report. 
 
Typically irradiance is measured as an average over a measurement time interval and thus 
observed irradiance and clearness index are both time-averaged quantities.  Analyses of clearness 
index (many of which are summarized in Tovar-Pescador, 2008 [9]) have considered time 
intervals for this averaging ranging from 24hr (i.e., daily clearness index) to as short at 30s 
(Glasbey, 2001 [10]); one second observations are also available (Kuszamaul et al. 2010 [11]]).  
The time interval for averaging should be carefully chosen to match the desired goals of the 
analysis, because the interval is quite influential on the frequency distribution for clearness index 
(e.g., Gansler et al., 1995 [12]).  Speaking generally, frequency distributions of daily clearness 
index tend to be asymmetric with a peak around a value of one and a long tail towards values of 
zero.  When the measurement time interval is sufficiently short (e.g., 1 min) the frequency 
distribution of clearness index tends to be distinctly bimodal with peaks at one and at a value less 
than one resulting from the occlusion of the irradiance sensor by clouds; examples are given in 
(Gansler et al., 1995 [12]; Tovar et al., 1998;1999; 2001 [13, 14, 15]). 
 
The second statistic, the distribution of ramps, informs analyses that examine the effects of 
variability in the solar resource on the power grid and the value of strategies to manage the 
variability.  Grid management entails mitigating any rapid changes in power output that can 
result from rapid changes in irradiance.  Evaluating the effectiveness of management strategies 
requires representing the effects on power output of changes in irradiance with sufficient fidelity.  
The distribution of ramps serves this purpose by quantifying the probability of observing ramps 
of varying duration and magnitude during the period of interest. 
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Conceptually, change in irradiance can be quantified by the derivative 
 dR t

dt
 with the derivative 

approximated by the ratio 
     1

1

j j

J j

R t R tdR t

dt t t








 because irradiance is not observed 

continuously.  However, using a constant time interval 1J jt t t     in this approximation is 

problematic; if the time interval is small, the resulting sequence of slopes will represent large 
magnitude, long duration changes as a sequence of short, small changes, whereas the 
approximation may omit short duration changes if the time interval is too large.  Consequently, 
we propose that changes in irradiance first be approximated by a sequence of line segments by 
fitting the data with a piecewise linear function designed to overcome the limitation of fixed time 
intervals. 
 
Generally, a fitting algorithm analyzes a time series of clearness index and identifies dominant 
points which, when connected, approximate the time series with a set of line segments (using the 
dominant points as vertices).  Each line segment represents a ramp event, characterized by 
duration and magnitude (see Figure 1).  For a sequence of irradiance  iR t , the algorithm 

produces a sequence of ordered pairs   ,j j i
R t   where jR  is the change in irradiance level 

of duration jt .  Once the sequences   ,j j i
R t   are obtained, the ramps in irradiance are 

regarded as jointly distributed random variables, and the joint distribution of  ,R t  is 

approximated by the bivariate histogram obtained from  
,

,j j i
i j

R T  . 

 
There exist several methods for identifying dominant points.  One relatively simple and robust 
approach is the 'swinging door' algorithm (Bristol, 1990 [16]).  This algorithm has been used to 
quantify ramps in load and power in analyses of the operational impacts on the electrical grid of 
wind generation (Makarov et al 2009 [17]).  The algorithm chooses dominant points such that 
each data falls within a given vertical tolerance limit of the line segment joining its adjacent 
dominant points.  The swinging door method has the advantage that the tolerance limit is 
specified in units of irradiance or as a fraction of clear-sky irradiance (i.e., clearness index 
value).  Another similar algorithm is the 'arc-chord' method (Horst and Beichel, 1996 [18]).  This 
method assigns the first point as a dominant point and looks at future values and calculates the 
length of the arc (sum of line segments connecting adjacent points) and the length of the chord 
(straight line distance between dominant point and point being examined).  Once the difference 
between arc and chord length exceeds a tolerance limit, the previous point becomes a new 
dominant point and the process proceeds.  A further step loops through all dominant points and 
removes points that fall within a certain distance from the line connecting surrounding dominant 
points.  The arch-chord method has the disadvantage that the tolerance limit is a distance in the 
time-irradiance coordinate system and thus does not have intuitive units. 
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Figure 1. Example of Piecewise Linear Approximation. 
 
By themselves, the frequency distribution of irradiance (first statistic) and the bivariate 
distribution of ramps (second statistic) are not sufficient to describe the stochastic process 
underlying the time series of irradiance, because these distributions do not capture correlations 
between values in the time series.  If an analysis depends on the sequence of irradiance values or 
ramps (rather than just the frequencies of levels of irradiance or of ramps), irradiance simulations 
should appropriately account for correlations between values.  These correlations may be 
characterized by the autocovariance and the autocorrelation coefficient.  These statistics are not 
informative when the underlying time series are not stationary.  Consequently we examine the 
autocovariance and the autocorrelation coefficient only for clearness index and for ramps in 
clearness index. 
 

Given a time series   , 1, ,jC t j n   with mean  
1

1 n

j
i

C C t
n 

   the autocovariance at lag k , 

denoted by  K k , is estimated by        
1

N k

i i k
i

K k C t C C t C





    and the autocorrelation 

coefficient, denoted by  r k , is estimated by  
     

  
1

2

1

N k

i i k
i

N

i
i

C t C C t C
r k

C t C








 







 (assuming that 

the time series is weakly stationary).  The autocovariance coefficient is positive at lag k when the 
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time series that results by shifting C by k units is similar to C itself (i.e. is correlated with C).  
The autocorrelation coefficient is the autocovariance normalized by the variance of the time 
series and thus is scale independent. 
 
For the bivariate time series of ramps, two autocovariances (and autocorrelation coefficients) and 
one cross-covariance (and cross-correlation coefficient) are obtained, each of the form 

       ,
1

N k

X Y i i k
i

K k X t X Y t Y





    or  
     

     
1

,
2 2

1 1

N k

i i k
i

X Y N N

i i
i i

X t X Y t Y
r k

X t X Y t Y






 

 


 



 
 where 

X  and Y  are chosen from R  or T .  The correlation coefficients quantify the degree of 
statistical dependence between values at different times in the time series.  We note that 
autocovariances and autocorrelation coefficients do not completely characterize correlations in 
the time series, in the same sense that means and standard deviations do not completely 
characterize probability distributions. 
 
The frequency distribution of clearness index has been the subject of extensive evaluation.  
Numerous models for this distribution have been published, as summarized by Tovar [9].  Most 
analyses examine relatively long (daily or hourly) intervals for clearness index; a few analyses 
(e.g., Glasbey (2001), [10]) examined clearness index for short (30s or 1 minute) intervals.  Few 
analyses of the distribution of ramps in clearness index are published.  Makarov et al [17] 
considered distributions of power ramps in an analysis of the operational impact of wind power 
generation.  Tomson et al. (2008) describe the distribution of ramp magnitudes for five-minute 
averages of irradiance [19].  Autocorrelation in clearness index was recognized by many as an 
important process to represent in models of irradiance (e.g., Skartveit and Olseth (1992) [20]; 
Walkenhorst et al. (2002) [21]).  They developed irradiance simulation algorithms which aimed 
to match observed frequency distributions and autocorrelation characteristics of clearness index 
time series.  However, their model forms have not been tested to determine how well simulations 
match distributions of ramps. 
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3.  APPLICATION OF CRITERIA TO IRRADIANCE DATA 
 
We illustrate these criteria using irradiance data collected in Las Vegas, Nevada in August 2007 
and in Albuquerque, New Mexico, in June 2009.   
 
3.1 Irradiance Data for Las Vegas 
 
One-minute averages of irradiance were recorded by the Las Vegas Valley Water District at a 
~400 kW photovoltaic array at Las Vegas Springs Preserve (lat. 36.17N long. 115.19W).  
Irradiance measurements are converted to clearness index using the Atwater and Ball (1979 [22]) 
model for clear sky global irradiance.  This model requires as input total precipitable water, air 
pressure, ground and sky albedo, and broadband aerosol optical depth.  The model is most 
sensitive to the value of precipitable water and as a simplifying assumption, we estimated this 
parameter by fixing the other inputs at reasonable values, which are listed in Table 1, and 
minimizing the sum of the least-squared error for selected clear days in August 2007.  Model 
prediction of clear sky irradiance at the beginning and end of the day are the most uncertain and 
therefore only irradiance values between 9am PDT and 4pm PDT are considered here. 
 
Table 1. Parameters used for Clear Sky Irradiance Model 
 
Parameter 

Value Units Source 

Precipitable water 2.6 cm Fitted 
Air Pressure 950 mbar estimate 
Ground Albedo 0.2 [] estimate 
Sky Albedo 0.0685 [] Bird and Hulstrom, 1981 [23] 
Aerosol Optical Depth 0.05 [] Flowers et al., 1969 [24] 

 
 
Figure 2 shows irradiance for the selected time period; Figure 3 illustrates clearness index.  Clear 
sky conditions are evident for about half of the days as indicated by smoothly varying irradiance 
and clearness index nearly constant at a value of approximately one.  Cloudy conditions are also 
present resulting in large changes in irradiance (e.g., 2007/08/02) or in generally overcast 
conditions (e.g. 2007/08/01).  Clearness index may exceed one for brief intervals of time due to 
cloud enhancement, where cloud edges near the position of the sun reflect additional light to the 
ground and briefly causing irradiance to exceed that measured on a clear day [25, 26].   
 
Figure 4 and Figure 5 illustrate the frequency distributions of irradiance and clearness index, 
respectively, for the Las Vegas Springs Preserve irradiance data, using histograms of the 
observed values.  The corresponding probability density functions may be estimated from the 
histograms by dividing by the total number of observations.  An optimal bin size for each 
histogram (27 W/m2and 0.029 for irradiance and clearness index, respectively) was determined 
using the criteria outlined by Shimazaki and Shinomoto (2007 [27]).  The distributions are 
similar in shape, with a large peak resulting from predominantly clear sky conditions.  The 
irradiance peak is more broad than the clearness index peak, because irradiance levels vary 
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throughout the time period considered (i.e., between 9am and 4pm) but clearness index does not 
vary during clear sky conditions. 
 
Figure 6 illustrates the use of the piecewise linear approximation to irradiance for two days, 
August 2, 2007 and August 5, 2007, during which cloudy and clear sky conditions respectively, 
are observed.  This approximation was made using the swinging door algorithm with a tolerance 
of 20 W/m2, i.e., each observed irradiance value is within 20 W/m2 of the concurrent 
approximation value.  The figure shows that the approximation reasonably follows the changes 
in the irradiance level. 
 
Figure 7 illustrates the bivariate distribution of ramps in irradiance calculated from the piecewise 
linear approximations for August 2007, two days from which are illustrated in Figure 5.  The 
shape of this histogram depends in part on the tolerance set for the piecewise linear 
approximation (here, 20 W/m2) as well as on the number of bins chosen for each axis (50 in this 
case).  Most ramps in irradiance are short and of relatively small magnitude; 65% of the ramps in 
Figure 7 have duration 2 minutes or less, and of these ramps, 85% (55% of all ramps) are of 
magnitude 100 W/m2 or less.  The symmetrical appearance of the distribution of these ramps 
results because irradiance first increases then decreases during the time period considered.  A 
relatively small number of ramps are of low magnitude but longer duration as indicated by the 
ridge extended along magnitude between -17 and 13 (i.e., the bins centered roughly on duration 
of zero). 
 
Figure 8a illustrates the bivariate distribution of ramps in clearness index calculated from the 
piecewise linear approximations for August 2007, computed with tolerance 0.02 and using 50 
bins for each axis.  The histogram for clearness index appears similar to the histogram for 
irradiance, although the piecewise linear approximation to the clearness index curves allows for 
ramps of much longer duration.  Figure 8b presents a scatterplot of ramp duration and magnitude 
and clearly shows the predominance of short ramps and the absence of long duration, large 
magnitude ramps.  The relatively small number of ramps of long duration is a direct consequence 
of approximating clearness index with a piecewise linear function.  This approximation method 
represents clearness index for a clear day with relatively few (i.e., two or three) line segments, 
whereas clearness index for a cloudy day is represented by many (i.e., 30 or 40) shorter line 
segments. 
 
The analyses shown in Figure 6 through Figure 8 were repeated using the arc-chord method for 
piecewise linear approximation rather than the swinging door method.  Results similar to those 
shown in Figure 6 through Figure 8 were obtained. 
 
Figure 9 displays correlograms (i.e., plots of the autocorrelation coefficient and autocovariance 
as a function of lag) for clearness index for August 2007.  One curve is computed for each of the 
31 days in August 2007.  Curves are shown with blue, dashed lines when the day was entirely 
clear (as judged by examination of Figure 2); green solid lines are used when the day was partly 
cloudy.  Correlations for irradiance are not shown because such curves are not expected to be 
informative as the time series of irradiance is not stationary.  If correlations were computed for 
irradiance, the correlation would be primarily determined by the gradual diurnal increase and 
decrease in irradiance.  Generally, autocorrelation coefficients are higher for clear days than for 
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cloudy days.  However, because autocorrelation is normalized by the variance in the clearness 
index time series, and even for clear days, very small magnitude variations in clearness index are 
present, autocorrelation curves decay as lag increases for all conditions.  Figure 9b shows the 
autocovariance for clearness index and confirms that no significant variance is present in the 
time series for clearness index on clear days. 
 
Figure 10 shows correlograms of autocorrelation coefficients for the time series of duration and 
magnitude of ramps in clearness index.  Autocovariance plots (not shown) appear with similar 
shape but on a different y-axis scale.  In these correlograms lag is defined in terms of the number 
of ramps rather than as a difference in time.  These statistics were computed by concatenating the 

sequence of ramps from each day into one sequence of ordered pairs   ,T R .  Three plots are 

shown for each combination of duration (T) and ramp magnitude (R): TT, RR and TR.  The 
autocorrelation coefficient for ramp duration (Figure 10a) shows that a relatively weak 
correlation between the duration of successive ramps.  Although most ramps are of short 
duration (Figure 8) the autocorrelation coefficient responds to the small scale variance between 
ramps of short duration and is not strongly responsive to the relatively rare long duration ramps 
in this time series. 
 
Figure 10b shows that ramp magnitude is similarly uncorrelated between successive ramps, 
although the autocorrelation coefficient shows a weak tendency for ramp magnitude to change 
signs (i.e., an increase in clearness index is somewhat more likely to be followed by a decrease 
rather than a further subsequent increase).  However, after three successive ramps, ramp 
magnitude is essentially uncorrelated. 
 
Figure 10c shows that the cross-correlation coefficient between ramp duration and magnitude is 
essentially zero at all lags in the number of ramps.  This result is consistent with the scatterplot in 
Figure 8b which shows an absence of ramps of both long duration and large magnitude. 
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Figure 2.  Irradiance recorded during August 2007 at Las Vegas Springs Preserve between 9am 
PDT and 4pm PDT. 
 
Note: x-axis units are minutes since midnight; y-axis is irradiance (W/m2). 
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Figure 3.  Clearness index for August 2007 at Las Vegas Springs Preserve between 9am PDT 
and 4 pm PDT. 
 
Note: x-axis units are minutes since midnight; y-axis is irradiance (W/m2). 
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Figure 4.  Frequency distribution of irradiance for August 2007, between 9 am PDT and 4 pm 
PDT, at Las Vegas Springs Preserve. 
 

 
Figure 5.  Frequency distribution of clearness index for August 2007, between 9 am PDT and 4 
pm PDT, at Las Vegas Springs Preserve. 
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Figure 6.  Piecewise linear approximation to irradiance for (a) August 2, 2007 and (b) August 5, 
2007 between 9 am PDT and 4 pm PDT, at Las Vegas Springs Preserve.  
 
Note:  Irradiance indicated by blue solid line, piecewise linear approximation indicated by red 
dashed line.  Time of day indicated as minutes after midnight. 
 
 

(a) 

(b) 
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Figure 7.  Bivariate histogram of ramps in irradiance calculated using piecewise linear 
approximation to irradiance for August 2007 between 9 am PDT and 4 pm PDT, at Las Vegas 
Springs Preserve. 
 
Note: Ramps calculated using piecewise linear approximation to irradiance. 
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Figure 8.  (a) Bivariate histogram of ramps in clearness index and (b) scatterplot of ramp 
duration and magnitude. 
 
Note: Ramps calculated using piecewise linear approximation to irradiance for August 2007 
between 9 am PDT and 4 pm PDT, at Las Vegas Springs Preserve. 

(a) 

(b) 
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Figure 9.  Correlograms for clearness index for August 2007 between 9 am PDT and 4 pm PDT 
at Las Vegas Springs Preserve: (a) autocorrelation coefficients and (b) autocovariances.  
 
Note:  One curve shown for each day in August 2007.  Cloudy to partly cloudy days are shown 
in green solid lines; clear days shown with blue dashed lines. 

(a) 

(b) 
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Figure 10.  Correlograms for ramps in clearness index for August 2007 between 9 am PDT and 4 
pm PDT, at Las Vegas Springs Preserve: (a) autocorrelation coefficient for ramp duration T; (b) 
autocorrelation coefficient for ramp magnitude R; and (c) cross correlation coefficient between 
ramp duration T and magnitude R.  
 
 
3.2 Irradiance Data for Albuquerque 
 
One-minute averages of irradiance were recorded by Sandia National Laboratories at its 
Photovoltaic Systems Evaluation Laboratory (lat. 35.05 N long. 105.54 W) for June 2010.  
Global horizontal irradiance was measured using a Kipp & Zonen CM2 pyranometer calibrated 
to a relative accuracy of +/- 3.5%.  As was done for irradiance measurements for Las Vegas, the 
Atwater and Ball (1979 [22]) model for clear sky global irradiance is used to convert irradiance 
measurements to clearness index using the assumed model parameters listed in Table 1 to 
estimate a value for precipitable water for this period, with the result being 1.7 cm.  Figure 11 
shows recorded for Albuquerque, New Mexico, for June 1, 2009 to June 29, 2009 between 9am 
MDT and 4pm MDT.   
 
Figure 11 shows that during this period most days exhibited variable irradiance levels, with only 
two days completely clear.  These conditions contrast with conditions observed in August 2007 
in Las Vegas, where 14 of 31 days were completely clear.  The variable irradiance levels 
observed in Albuquerque are reflected in the clearness indices shown in Figure 12, and in 
histograms of irradiance levels and clearness index (Figure 13 and Figure 14, respectively) where 
the broad peaks representing cloudy conditions is larger than those for Las Vegas (Figure 4 and 
Figure 5, respectively). 
 

(c) 
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The different proportions of clear and cloudy conditions between Las Vegas and Albuquerque 
are reflected in the histogram for ramps in irradiance (Figure 15).  For Albuquerque the 
histogram shows fewer ramps of longer duration than observed for Las Vegas (Figure 8), 
resulting from the general persistence of variable irradiance conditions during June 2009 in 
Albuquerque.  Comparison of histograms for ramps in clearness index and scatterplots of ramps 
(Figure 9 and Figure 16) yields similar observations.   
 
Autocorrelations and autocovariance plots for duration and magnitude of ramps in clearness 
index for Albuquerque are similar to those for Las Vegas.  Autocovariance (Figure 17b) is also 
effective at separating clear and cloudy days for Albuquerque, however, the presence of days that 
are mostly clear with brief periods of variable irradiance (e.g., June 21, 2009) result in 
autocovariance curves that are non-zero briefly (for short lags) but rapidly decay to zero.  
Autocorrelation curves for ramp duration and magnitude, and cross correlation between duration 
and magnitude (Figure 18) for clearness index in Albuquerque are similar to those for Las Vegas 
(Figure 10).  Because irradiance levels were more variable in Albuquerque than in Las Vegas, 
more short duration ramps are present in the Albuquerque data which result in a more smoothly 
decaying autocorrelation plot for ramp duration (Figure 18a). 
 
 
 



 

30 



 

31 

 
 
 
 
Figure 11.  Irradiance recorded during June 2009 at Albuquerque, New Mexico between 9am 
MDT and 4pm MDT. 
 
Note: x-axis units are minutes since midnight; y-axis is irradiance (W/m2). 
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Figure 12.  Clearness index for June 2009 at Albuquerque, New Mexico between 9am MDT and 
4 pm MDT. 
 
Note: x-axis units are minutes since midnight; y-axis is irradiance (W/m2). 
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Figure 13.  Frequency distribution of irradiance for June 2009, between 9 am MDT and 4 pm 
MDT, at Albuquerque, New Mexico. 

 
Figure 14.  Frequency distribution of clearness index for June 2009, between 9 am MDT and 4 
pm MDT, at Albuquerque, New Mexico. 
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Figure 15.  Bivariate histogram of ramps in irradiance calculated using piecewise linear 
approximation to irradiance for June 2009 between 9 am MDT and 4 pm MDT, at Albuquerque, 
New Mexico. 
 
Note: Ramps calculated using piecewise linear approximation to irradiance. 
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Figure 16.  (a) Bivariate histogram of ramps in clearness index and (b) scatterplot of ramp 
duration and magnitude. 
 
Note: Ramps calculated using piecewise linear approximation to irradiance for June 2009 
between 9 am MDT and 4 pm MDT, at Albuquerque, New Mexico. 

(a) 

(b) 
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Figure 17.  Correlograms for clearness index for June 2009 between 9 am MDT and 4 pm MDT 
at Albuquerque, New Mexico: (a) autocorrelation coefficients and (b) autocovariances.  
 
Note:  One curve shown for each day between June 1 and June 29, 2009.  Cloudy to partly 
cloudy days are shown in green solid lines; clear days shown with blue dashed lines. 
 
 

(a) 

(b) 
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Figure 18.  Correlograms for ramps in clearness index for June 2009 between 9 am MDT and 4 
pm MDT, at Albuquerque, New Mexico: (a) autocorrelation coefficient for ramp duration T; (b) 
autocorrelation coefficient for ramp magnitude R; and (c) cross correlation coefficient between 
ramp duration T and magnitude R. 
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4.  EVALUATION 
 
In this report we propose three statistics that can be used to compare simulations of irradiance to 
observed data: 

1. The frequency distribution of irradiance (or clearness index).  

2. The bivariate distribution of ramps in irradiance (or clearness index). 

3. The autocovariance and autocorrelation in the time series of clearness index. 

In Section 3, we illustrate these statistics using irradiance data for Las Vegas, NV in August 
2007 and for Albuquerque, NM in June 2009.  Here we consider the extent to which these 
statistics characterize time series in irradiance and implications from these statistics for models 
that simulate irradiance. 
 
4.1. Assessment of Statistics for Characterizing Time Series 
 
The frequency distribution of irradiance is the basic statistic that characterizes a time series of 
irradiance.  The distribution contains summary measures of irradiance such as the time series’ 
mean and variance.  Frequency distributions show the relative frequency at which different levels 
of irradiance are observed; time series with significantly different frequency distributions will 
result in different distributions of estimated power from a PV plant.  Use of frequency 
distributions for both irradiance and for clearness index is likely redundant, because clear sky 
radiation models are deterministic and the available models have been shown to agree within a 
tight confidence interval (e.g., [23]; [28]) and hence one distribution may be obtained from the 
other. 
 
Where changes in irradiance are of interest, the bivariate distribution of ramps in irradiance is 
important to consider in conjunction with the frequency distribution in irradiance.  Time series 
with different bivariate distributions in ramps in irradiance exhibit changes in irradiance of 
different duration and/or magnitude, or exhibit different frequencies of occurrence of such 
changes.  However, because the bivariate distribution of ramps does not contain information 
about the absolute irradiance level when the change began, it is possible to realize similar 
bivariate distributions for dissimilar time series.  For example, a clear day would exhibit a 
bivariate distribution comprising many relatively short changes resulting from approximation of 
the diurnal irradiance levels with connected line segments.  It is possible that a similar 
distribution of ramps would result during an overcast day, during which irradiance is much lower 
generally but changes in irradiance occur with similar durations and magnitudes as those that 
occur during a clear day. 
 
Similarly, by itself the bivariate distribution of ramps in clearness index is insufficient to 
characterize changes in time series of irradiance.  Because clearness index results from 
normalizing irradiance to clear sky conditions, a ramp in clearness index is essentially a 
fractional change in irradiance and is not informative about the magnitude of the absolute value 
of the change.  Bivariate distributions in clearness index ramps are not interchangeable with 
bivariate distributions in irradiance ramps due to the absence of information regarding the 
magnitude of irradiance when the ramp began.  However, bivariate distributions in clearness 
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index ramps are more suited to representing irradiance during clear days than are bivariate 
distributions of irradiance ramps.  In the bivariate distribution of clearness index ramps, a clear 
day is indicated by a long duration ramp of little or no magnitude.  In contrast, a clear day is 
represented in the bivariate distribution of irradiance ramps by a small number of ramps of 
moderate duration and magnitude; similar ramps may result from gradually changing cloud 
conditions during a cloudy day.  We conclude that both bivariate distributions contain 
information that is informative about changes in irradiance and that both distributions should be 
considered. 
 
When the time-ordering of irradiance levels is of interest, autocovariances and autocorrelation 
coefficients provide related but different information about the correlation between successive 
values of irradiance and clearness index.  Autocorrelations for clearness index alone may not 
distinguish between time series with significantly different characteristics.  For example, as 
demonstrated by Figure 9, autocorrelations do not distinguish between clear and cloudy 
conditions because these statistics are normalized by the variance in the time series.  
Autocorrelations during clear sky conditions may appear similar to those during cloudy 
conditions because variability is present during clear sky conditions, although of small 
magnitude.  In contrast, autocovariances readily distinguish between clear and cloudy conditions.  
However, a wide range of autocovariance curves may be observed when partly to mostly cloudy 
conditions are present.  Autocovariance and autocorrelation for time series of duration and 
magnitude of ramps in clearness index show that after a relatively few ramps neither duration nor 
magnitude is correlated.  Moreover, because of the absence of ramps of both long duration and 
significant magnitude, there is essentially no cross-correlation between duration and magnitude 
in ramps. 
 
As shown in Section 3.2, similar conclusions hold for irradiance observed in Albuquerque, NM, 
for a period with more variable irradiance than was observed in Las Vegas.  The more variable 
irradiance levels observed in Albuquerque are reflected by corresponding shifts in the 
distributions of irradiance levels and clearness index as well as in the histograms of ramps in 
irradiance.  Despite the increased variability, autocorrelations and autocovariance plots appear 
similar. 
 
4.2. Implications for Simulating Irradiance 
 
In concept a model for simulating irradiance would generate an ensemble of time series using an 
appropriate sampling or Monte Carlo method.  For the results examined in Section 3, simply 
sampling a sequence of irradiance values from the frequency distribution for irradiance would 
not produce statistically consistent time series because this simple approach would be unlikely to 
produce distributions of ramps similar to those observed, nor would this approach preserve 
correlations between successive irradiance values.  An autoregressive model for irradiance could 
be constructed from an autocorrelation curve, but this approach seems problematic due to the 
variation between curves and the inability to distinguish between clear and cloudy days using the 
autocorrelation curves.  Moreover, the relatively slow decay of some of the autocorrelation 
curves may lead to autoregressive models of relatively high order. 
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Similarly, randomly sampling a sequence of ramps from the histograms shown in Figure 6 or 
Figure 8 is not likely to produce sequences of irradiance with successive clear days, as are 
observed in Figure 2.  The predominance of short, small ramps in the distribution of ramps 
would preclude successive long ramps corresponding to clear days.   
 
The major challenge apparent in simulating from the data presented in Section 3 is that 
irradiance and changes in irradiance have been pooled across time periods with significantly 
different behavior, namely, clear and cloudy days.  Accordingly, a model for simulating 
irradiance is likely to require first separating periods into at least two categories, clear and not 
clear, and possibly further subdividing the category of not clear periods.  An appropriate model 
would need to be constructed to generate the sequence of clear and not clear periods.  Then, 
conditional on a period being clear or not clear, it may be possible to use the statistics presented 
above to formulate an appropriate model to simulate irradiance during that period.  This nested 
approach may overcome the difficulties indicated above for approaches that randomly sample 
from the distributions for irradiance and/or ramps in irradiance. 
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SUMMARY 
 
Three statistics for characterizing time series of irradiance have been presented that together 
allow time series of simulated irradiance to be compared to measured data for model validation:   
 

1. The frequency distribution of irradiance (or clearness index).  

2. The bivariate distribution of ramps in irradiance (or clearness index). 

3. The autocovariance and autocorrelation in the time series of clearness index. 

How these statistics are applied and interpreted depends on the intent of the simulation or study.  
If the purpose is to evaluate the uncertainty in the long term annual energy production from a PV 
system, it is likely that only the frequency distribution of the irradiance is important to 
characterize.  However, if a study is interested in strategies for managing ramps in power 
generation, evaluating energy management options such as battery storage systems, or designing 
demand-side load management schemes, the magnitude and duration of ramps and possibly their 
autocovariance and autocorrelation characteristics may be important to simulate accurately.   
 
The three statistics have been computed for one month (August 2007) of one-minute irradiance 
averages measured in Las Vegas, NV and for one-minute irradiance averages measured in 
Albuquerque, NM, in June 2009.  Plots of irradiance and clearness index demonstrate that clear-
sky conditions were observed less often in Albuquerque than in Las Vegas, and consequently 
irradiance levels were more variable in Albuquerque.  The different levels of irradiance 
variability are readily apparent in the frequency distributions for irradiance and clearness index.  
However, the effects of different levels of irradiance variability are less apparent in the bivariate 
distributions of ramps and in plots of autocovariance and autocorrelation coefficients.  Future 
work should investigate the degree to which these statistics are sensitive irradiance variability for 
a wide range of conditions.  In addition, the effect on these statistics of different tolerances for 
the piecewise linear fitting algorithm should be evaluated. 
 
Results of this analysis suggest that periods of clear sky conditions should be separated from 
partly cloudy periods and separate models formulated to simulate conditions during each period, 
as statistics obtained without segregating clear and non-clear periods appear to be difficult to 
reproduce with simulation models.   
 
The three statistics presented here are based on traditional approaches to characterizing data and 
time series.  Other approaches, such as wavelet decomposition (e.g., [7]; [8]) may prove valuable 
for developing simulation approaches for irradiance.  These and other approaches will be 
investigated in subsequent efforts. 
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