
Large-scale Nanostructure Simulations from

X-ray Scattering Data

On Graphics Processor Clusters

Abhinav Sarje
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720

Jack Pien
Consultant, 1216 North Road, Belmont, CA 94002

Xiaoye S. Li
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720

Elaine Chan, Slim Chourou, Alexander Hexemer
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720

Arthur Scholz and Edward Kramer
University of California, Santa Barbara, CA 93106

Abstract

X-ray scattering is a valuable tool for measuring the structural prop-
erties of materials used in the design and fabrication of energy-relevant
nanodevices (e.g., photovoltaic, energy storage, battery, fuel, and car-
bon capture and sequestration devices) that are key to the reduction of
carbon emissions. Although today’s ultra-fast X-ray scattering detec-
tors can provide tremendous information on the structural properties of
materials, a primary challenge remains in the analyses of the resulting
data. We are developing novel high-performance computing algorithms,
codes, and software tools for the analyses of X-ray scattering data. In
this paper we describe two such HPC algorithm advances. Firstly, we
have implemented a flexible and highly efficient Grazing Incidence Small
Angle Scattering (GISAXS) simulation code based on the Distorted Wave
Born Approximation (DWBA) theory with C++/CUDA/MPI on a clus-
ter of GPUs. Our code can compute the scattered light intensity from any
given sample in all directions of space; thus allowing full construction of
the GISAXS pattern. Preliminary tests on a single GPU show speedups
over 125x compared to the sequential code, and almost linear speedup
when executing across a GPU cluster with 42 nodes, resulting in an addi-
tional 40x speedup compared to using one GPU node. Secondly, for the
structural fitting problems in inverse modeling, we have implemented a
Reverse Monte Carlo simulation algorithm with C++/CUDA using one
GPU. Since there are large numbers of parameters for fitting in the in
X-ray scattering simulation model, the earlier single CPU code required

1



weeks of runtime. Deploying the AccelerEyes Jacket/Matlab wrapper to
use GPU gave around 100x speedup over the pure CPU code. Our further
C++/CUDA optimization delivered an additional 9x speedup.

Disclaimer

This document was prepared as an account of work sponsored by the United
States Government. While this document is believed to contain correct infor-
mation, neither the United States Government nor any agency thereof, nor the
Regents of the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for the accu-
racy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof
or the Regents of the University of California.

1 Introduction

The Advanced Light Source (ALS) located at the Lawrence Berkeley National
Laboratory is a third-generation synchrotron light source, one of the world’s
brightest sources of ultraviolet and soft X-ray beams. It is a national user facil-
ity funded by the U.S. Department of Energy, and is internationally recognized
for its world-class measurement capabilities in X-ray science. X-ray scattering is
a valuable tool for measuring the structural properties of materials used in the
design and fabrication of energy-relevant nanodevices (e.g., photovoltaic, energy
storage, battery, fuel, and carbon capture and sequestration devices) that are
key to the reduction of carbon emissions. These techniques permit characteri-
zation of material structures on length scales ranging from the sub-nanometer
to microns and down to the millisecond time scale. For example, small angle X-
ray scattering (SAXS) and grazing incidence SAXS (GISAXS) methods permit
characterization of nanoscopic and near-surface structural features, respectively,
that arise from the self-assembly of block copolymers into ordered microphases
or the self-assembly of nanoparticles.

Figure 1 illustrates the GISAXS scattering geometry. The incident X-ray
wave vector ki is kept at a small grazing angle with respect to the sample surface
to enhance the near-surface scattering. The scattered beam, of wave vector kf ,
makes the out-of-plane scattering angle αf with respect to the sample surface
and the in-plane angle 2θf with respect to the transmitted beam. For GISAXS,
a 2D detector is used to record the intensity of the scattered wave vector. The
measured intensity is a function of the angular coordinates αi, αf and 2θf . The

2



incident angle αi can be varied and the sample can be rotated by an angle ω
around its surface normal, thus creating many 2D images with different various
intensity profiles. Analysis algorithms are used to analyze these images and
predict the atomic structure of the underlying sample being probed.

Figure 1: Grazing incidence small angle X-ray scattering (GISAXS) geometry.
Image taken from A. Meyer’s www.gisaxs.de

Although the scattering techniques described above can provide tremendous
information on the structural properties of materials comprising nanoscale de-
vices for energy technologies, a primary challenge remains in the analyses of
the resulting data. An understanding of the fundamental physics that underlie
the scattering methods is necessary to create accurate models and simulation
algorithms for extracting information on material structures from the measured
scattering patterns. Model and simulation development typically requires the
development and implementation of computational hardware and software tools.
Currently, the bottleneck in data analysis is the computational time required to
complete the analysis, which is commonly of the order of several weeks to sev-
eral months. The analysis time is compounded by the fast measurement rates of
current state-of-the-art high-speed detectors. For example, users at Stanford’s
Linac Coherent Light Source (LCLS) facility can collect 24 terabytes of data
in two weeks using a detector that outputs 100 megabytes of data per second.
Quantitatively analyzing such massive sets of data in an intelligent and coher-
ent manner is a daunting task at present. It is envisioned that such fast data
collection rates will also be attainable at LBNL’s future Next Generation Light
Source (NGLS) facility. With the arrival of new state-of-the-art single pho-
ton counting detectors at the ALS that enable millisecond SAXS and µXRD
measurements, the accumulation of large amounts of data, while necessary to
develop a quantitative understanding of materials, poses a severe impediment

3



in designing a sequential set of studies. Consequently, the beamline scientists
and the users are faced with an extremely inefficient utilization of the current
light sources and recently developed detection systems. This mismatch must be
removed before we can envision or effectively use any newly developed scattering
beamline hardware.

We are developing new high performance computing algorithms, codes, and
software tools for the analysis of X-ray scattering data collected at the ALS.
The targeted parallel platforms are the large-scale parallel manycore systems
with hybrid node architectures, including GPU accelerators.

General purpose graphics processors offer fine grained parallelism, where
each core executes a lightweight thread according to the SIMD model [4]. Threads
are scheduled to a multiprocessor on the GPU as thread blocks, while executed
as warps, where one warp consists of 32 threads in the same thread block.
Threads in a thread block can synchronize through the shared memory avail-
able on each multiprocessor. All thread blocks work asynchronously, and can
only synchronize through the device memory. Because of this GPUs perform
best on data parallel computations [1]. The less synchronization is needed, the
better the performance would be. A number of programming models have been
developed to harness the computational power of GPUs. High-level examples in-
clude AccelerEyes Jacket/Matlab which provides an interface to GPUs through
Matlab. For higher-performance, lower level models are used. One example
is Nvidia CUDA framework [5]. One uses C/C++ programming language to
interface with GPUs through primitives available in CUDA.

In this paper, we present our recent results of the high performance imple-
mentation of the two most important classes of the analysis algorithms used in
the X-ray scattering community. The first one is Distorted Wave Born Approx-
imation (DWBA) model involving form factor computations, and the second is
a more general Reverse Monte Carlo modeling approach which is usually slower
than the DWBA method.

2 DWBA method

Grazing incidence small angle X-ray scattering (GISAXS) is a unique technique
for investigating material topology and the structure of collections of nanoob-
jetcts deposited on top of surfaces or confined inside multilayered films. Simul-
taneous scanning of the in-plane and out-of-plane directions of the sample makes
GISAXS as a comprehensive tool that produces images exhibiting detailed fea-
tures of the underlying nanostructures, hence allowing a wealth of information
compared to alternative methods. To date, the only theoretical framework to
model the GISAXS process is the Distorted Wave Born Approximation (DWBA)
method based on the perturbative solution of the electromagnetic wave propa-
gation equation inside a stratified medium [6]. To our knowledge, only a handful
of computer codes implementing the DWBA formalism have been made avail-
able for the community. Those codes are not sufficiently general to study the
materials with complex structures, nor do they utilize the state-of-the-art high-

4



performance computer systems.
Studying highly complex structures – which is the main objective of GISAXS

– requires solving for the form factor in a high-resolution k-space grid, result-
ing typically in matrices with tens to hundreds of million points. This time-
consuming and memory-demanding calculation constitutes a major bottleneck
in the GISAXS simulations. The existing codes can only treat simple collections
of shapes whose form factors can be derived analytically.

We begin with a brief introduction to the theory behind form factor in
DWBA. A detailed description can be found in [6]. The scattering intensity of
the X-rays obtained is represented as

I(~q) =
k40

16π2
|∆n2|2|Φ(~q||, k

0
zi, k

0
zf )|2, (1)

where ∆n2 is the difference in the refractive indices of the particle and the
substrate, and for a nanoparticle supported over the substrate surface,

Φ(~q||, k
0
zi, k

0
zf ) = F (~q||, k

0
zf − k0zi)

+ rf0,1F (~q||,−k0zf − k0zi)
+ ri0,1F (~q||, k

0
zf + k0zi)

+ ri0,1r
f
0,1F (~q||,−k0zf + k0zi). (2)

Here, F is the form factor, and the four terms represent the different refelction-
refraction cases. The form factor of ~q is given by

F (~q) =

∫
S(~r)

ei~q·~rd~r, (3)

where the integral is over the shape function of the nanoparticles in the sample.
For computational purposes, the shape surface is triangulated and the form
factor is then approximated as the summation over all the generated triangles.
If st is the surface area of a triangle t, the form factor can be written as

F (~q) =

N∑
t=1

ei~q·~rst (4)

where N is the total number of triangles. In Figure 2, two example form factor
intensity images are shown for simple shapes, a cylinder and a sphere. Because of
the simplicity of these structures, the images have been analytically computed.

We have implemented an efficient and flexible GISAXS simulation code based
on the DWBA theory with C++, Nvidia’s CUDA, and MPI on a cluster of
GPUs. Our code can compute the scattered light intensity from any given sam-
ple in all directions of space; thus allowing full construction of the GISAXS
pattern. The software allows simulating diffraction image for any given su-
perposition of custom shapes or morphologies (e.g. obtained graphically via a
discretization scheme) in a user-defined region of k-space (or region of the area

5



Figure 2: Simulated form factors for a cylinder (R = H =5nm), and a sphere
(R =5nm, H =10nm.) Images taken from A. Meyer’s www.gisaxs.de

detector) for all possible grazing incidence angles and in-plane sample rotations.
This flexibility allows to easily tackle a wide range of possible sample geometries
such as nanostructures on top of or embedded in a substrate, or a multilayered
structure. In the following we describe our algorithm for computing the form
factors on graphics processors.

2.1 Form Factor Kernel on GPUs

Calculation of the form factor at a point involves integral over the nanoparticle
shape, approximated as a summation over the triangulated structure (Equa-
tion 4). The number of triangles also corresponds to the complexity and res-
olution of the nanostructure under consideration. Given a user-defined region
in k-space, Q-grid, this form factor needs to be computed for each point in the
grid. Computationally this problem can be defined as follows: Given a user-
defined 3-dimensional Q-grid, of resolution nx×ny×nz, and a set of N triangles
representing a triangulated nanostructure, we want to compute F (~q) for each
q-point ~q in the Q-grid, thereby constructing M , a 3-D matrix of dimensions
nx × ny × nz.

Typically, nx is in the order of few hundreds, ny and nz in hundreds to
thousands, and N may range from few hundreds to millions. The computations
of F (~q) for all q-points are independent of each other, and there may be a
large number of such points, making this application an ideal candidate for
parallelization on graphics processors by efficiently utilizing the fine-grained
parallelism offered by them. The computation of a form factor is divided into
two phases, where for each q-point ~q,

1. first we compute the inner term, Ft(~q) = ei~q·~rst in Equation 4 for each
triangle t, generating an intermediate array of size N ,

2. followed by a reduction of this intermediate array over all the triangles to

6



result in the final form factor, F (~q) =
∑
t Ft(~q).

Apart from being compute-intensive, these computations are memory-demanding
as well. Firstly, the size of the matrix M is generally large, where the number
of q-points can range from a million to hundreds of millions and the number of
triangles can range from a few hundreds to millions. In addition, the first phase
of the computations generates an intermediate 4-dimensional matrix MI , where
for each q-point (qx, qy, qz), the fourth dimension corresponds to the set of input
triangles {t0, · · · , tN−1} as mentioned above, thereby further increasing memory
usage by a factor of N . Therefore, careful memory management is crucial for
handling such computations.

2.1.1 Basic Implementation

In the first phase, computation of the inner term for each triangle at a q-point
is independent of the computations for all other triangles at the same q-point.
A basic implementation of the first phase may exploit this data parallelism to
parallelize the computations across the triangles. To do so we define a CUDA
thread block here as a one-dimensional array of threads, Ts, · · · , Te. Let the
size of a thread block be Bt, then the number of thread blocks hence generated
would be d NBt

e. Each thread from all thread blocks is mapped to a unique input
triangle. A single CUDA thread Ti is hence responsible for a particular triangle
tj across all q-points. The mapping can be defined as

Ti
map−−−→ tj , 0 ≤ j ≤ N − 1. (5)

One mapping can simply be Ti
map−−−→ ti by defining i = j for all j. Ti com-

putes the inner value Ftj (~q) for each of the nxnynz points in the Q-grid. An
illustration of this decomposition and mapping is shown in Figure 3.

Figure 3: Phase 1 – Decomposition of computations during the first phase is
done along the triangles. Each CUDA thread is mapped to a unique triangle.
A triangle is a coordinate in the fourth dimension for all q-points in the Q-grid.

7



The second phase involves sum-reduction of the intermediate values com-
puted in first phase. For each q-point ~q = (qx, qy, qz), the intermediate values
Ftj (~q) are summed over all the triangles tj (0 ≤ j ≤ N) corresponding to this
q-point, to result in the form factor F (~q).

Since in this phase the reduction is over the fourth dimension (triangles),
we can no longer implement the parallelism along this dimension as in the
first phase. Therefore, in this phase we exploit the independence of each q-
point and parallelize the computations along the three x, y, and z dimensions.
The computation of M is decomposed into a grid consisting of equally sized
3-dimensional blocks. On the GPU, these blocks correspond to CUDA thread
blocks, with each thread Ti,j,k mapped to a unique q-point (qxi

, qyj , qzk). A
simple mapping in this case can be

Ti,j,k
map−−−→ ~qi,j,k = (qxi

, qyj , qzk). (6)

An example of this decomposition and mapping is shown in Figure 4. Thread
Ti,j,k is responsible to compute the final form factor value F (~qi,j,k) by summing
Ftl(~qi,j,k) over each input triangle tl, 0 ≤ l ≤ N − 1.

Figure 4: Phase 2 – Decomposition of M into blocks, and mapping of CUDA
threads to the q-points. Each thread is responsible for the reduction over all
the triangles at its mapped q-point.

2.1.2 Handling Memory Limitations

Due to large memory requirements during these computations even for moder-
ately sized Q-grids (as mentioned above), as well as limited sizes of the device
and host memories, a careful use of memory space is an essential key to obtain-
ing high-performance on the GPUs for form factor computations. We address
this issue of handling large Q-grid sizes and number of triangles by once more
taking advantage of the data parallelism present in the form factor computations
at each q-point.

We decompose the intermediate 4-D matrix MI along each of the four di-
mensions into a number of equally sized (except in boundary cases) disjoint

8



four-dimensional hyperblocks, covering all the q-points and triangles. Let the
size of a hyperblock, Mh, be represented by hx × hy × hz × ht, where hx, hy,
hz and ht are the side-lengths of Mh in the x, y, z and t dimensions respec-
tively (hα ≤ nα, α ∈ {x, y, z, t}). The maximal set of hyperblocks, where each
hyperblock contains the same q-points (but different triangles,) can be uniquely
mapped to the 3-dimensional matrix M : All the hyperblocks in this maximal
set from MI map to a single block, Mb, of size bx× by × bz in M where bx = hx,
by = hy, bz = hz, and the coordinates of the q-points in this block are equal to
those of the hyperblocks. This is illustrated in Figure 5. The total number of

these hyperblocks constructed in MI is equal to
⌈
nx

bx

⌉ ⌈
ny

by

⌉ ⌈
nz

bz

⌉ ⌈
N
bt

⌉
, and the

number of corresponding blocks in M would be
⌈
nx

bx

⌉ ⌈
ny

by

⌉ ⌈
nz

bz

⌉
.

Figure 5: Decomposition of MI into hyperblocks. The maximal sets of such
hyperblocks corresponding to the same set of q-points, but different triangles,
are mapped to a unique block in the matrix M .

The idea here is to decompose the computations such that a resulting hy-
perblock can be completely handled in the available device memory. At the
minimum we need to store the intermediate 4-D matrix MI and the final form
factor matrix M . (We can ignore the other input sets since their sizes are
small compared to the size of M .) Therefore, the memory usage is at the least
cnxnynz(N + 1) bytes, where c is a constant representing the number of bytes
used to encode a single value. Now suppose we decompose the intermediate ma-
trix MI into hyperblocks as above, then the memory requirement to process one
hyperblock would be chxhyhz(ht + 1) bytes. Hence, smaller the size of a hyper-
block, the lesser memory it would require. Note that we can easily decompose
the computations along the fourth dimension t by dividing the reduction phase
into two steps using the fact that the summation operation is both associative

9



and commutative:

F (~q) =

N−1∑
t=0

Ft(~q) (7)

=

dN
bt
e−1∑

u=0

(
bt−1∑
t=0

Ft(~q)

)
. (8)

Partial reductions along the dimension t are computed for a hyperblock re-
sulting in a 3-dimensional matrix Mp. The number of such partially reduced

hyperblocks Mp corresponding to a Mb is equal to
⌈
N
bt

⌉
. The maximal set of

partial matrices Mp, which map to the same block Mb, are then reduced to
construct the final output block Mb in matrix M . In other words, we can view
this phase of computations as first reducing the size of the fourth dimension

from N to
⌈
N
bt

⌉
, and then reducing the smaller sized fourth dimension to obtain

a 3-dimensional matrix Mb.

2.1.3 Algorithm Overview

The overall scheme for computing form factors of each q-point in the input
Q-grid on a single CPU-GPU node can be described as the following steps.

Initialization

• Input Q-grid with resolution nx × ny × nz.

• Input set of N triangles: {t0, · · · , tN−1}.

• Initialize output matrix M of size nx × ny × nz. Each output value in M
will be the form factor at the corresponding q-point.

Computations

1. Copy Q-grid resolutions and set of triangles to GPU device memory.

2. Calculate hyperblock size, bx × by × bz × ht.

3. Calculate number of hyperblocks =
⌈
nx

bx

⌉ ⌈
ny

by

⌉ ⌈
nz

bz

⌉ ⌈
N
bt

⌉
4. For each hyperblock Mh:

(a) Initialize Mh in device memory.

(b) Launch Phase 1 kernel on GPU to compute Mh. A CUDA thread
Ti executes:

i. Compute triangle index j using Ti
map−−−→ tj .

ii. For each q-point ~q = (qx, qy, qz):

• Compute Ftj (~q) = ei~q·~rstj .

10



• Mh(qx, qy, qz, tj) = Ftj (~q).

(c) Initialize Mp of size bx × by × bz in device memory.

(d) Launch Phase 2 (reduction) kernel on GPU to compute Mp. A
CUDA thread Ti,j,k executes:

i. Compute q-point coordinates (qx, qy, qz) using Ti,j,k
map−−−→ ~qi,j,k.

ii. Compute Mp(qx, qy, qz) =
∑ht

l=0Mh(qx, qy, qz, tl)

(e) CPU copies Mp from device memory and adds each value to the
values at the corresponding indices in M . At the end, each such
block will correspond to the matrix Mb.

5. Return output M , 3-dimensional array with each value equal to the form
factor of the corresponding q-point.

2.1.4 Choosing a Hyperblock Size

Till now we have assumed that we are already given the hyperblock size. We
will not remove this assumption. One would expect to have the hyperblock
size such that it fills the device memory as much as possible, since this would
mean less number of hyperblocks, and hence smaller number of iterations in the
algorithm. Partially reduced blocks Mp are transferred from the device memory
to the host memory. Since the data transfer bandwidth between host memory
and the device memory is quite low ( 8 GB/s), even with overlapped data
transfer and computations, this step becomes a bottleneck, thereby reducing
performance.

On the other hand, keeping the hyperblock size too low also results in a de-
graded performance. A major factor for this is that the reduction phase derives
its parallelism from the number of q-points in the hyperblock. Reducing its size
would mean reducing the available parallelism, resulting in under utilization
of the multiprocessors. Similarly, the first phase derives its parallelism from
number of triangles ht in a hyperblock leading to the same effect.

As it turns out, the choice of the hyperblock size plays a crucial role in the
performance of the code, affecting the runtimes by almost an order of magnitude.
This size should neither be too big, nor too small. In order to demonstrate
this, as well as to choose an optimal hyperblock size, we conducted extensive
experiments by varying the four parameters bx, by, bz and ht. In the following
we show some of these results. We use two datasets for these experiments:
dataset A with 2,292 triangles, and dataset B with 91,753 triangles. We use a
Q-grid of resolution 90× 200× 200 (3.6M q-points).

Since the first phase depends on the number of triangles alone for parallelism,
in these experiments shown we keep ht constant at 2,000, and vary only by and
bz. nx is typically small compared to ny and nz, hence we assign bx = nx = 90
in this case. In Figure 6, we show a heat-map for dataset A and in Figure 7
for dataset B. The warmer/lighter the color, the more execution time is taken
for the computations. The cooler/darker the color, the faster the computations
were done. All the execution times shown are in seconds. We note that we get

11



 10  20  30  40  50  60  70  80  90  100
y-dimension

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

z-
di

m
en

si
on

 15

 20

 25

 30

 35

 40

 45

Figure 6: Heat map of execution times with varying hyperblock sizes for the
dataset with N = 2, 292. On the x-axis is the hyperblock size along the y-
dimension, and on y-axis is the size along z-dimension. The darker/bluer regions
are where optimal performance is achieved.

optimal performances towards the lower sizes of by and bz, but keeping them too
low again increases the runtimes, as can be seen on the lower left corners of the
two graphs. Based on extensive similar experiments (also with variable bx and
ht), we selected the hyperblock size parameters bx = nx, by = 20, bz = 15, and
bt = 2, 000. We use these parameter values for conducting further experiments
and performance analyses.

2.1.5 Performance on a GPU

In this subsection we will present some of the runtime results on a GPU. We
used a system with Nvidia Tesla M2090 graphics processor [4]. This graphics
card has 5 GB device memory, 512 CUDA cores across 16 multiprocessors (32
each), and 48 KB shared memory per block. The clock speed is 1.3 GHz. This
GPU is attached to a dual-socket 2.93 GHz Intel Xeon X5670 processor with
a total of 12 cores, and 90 GB main memory. We implemented the described
algorithm in C++ with Nvidia CUDA.

For the results shown here, we use three datasets: datasets A and B described
in the previous subsection, with 2,292 and 91,753 triangles respectively; and
dataset C with 6,600 triangles. We use Q-grids of two resolutions: 90×200×200
(3.6M q-points), and 90 × 800 × 800 (57.6M q-points). In order to assess the
performance of our scheme, we also implemented a cache-optimized sequential
version on CPU. This was also run on the same system. Table 1 contains
the execution times in seconds for the three datasets and 3.6M q-points, on
a GPU and the sequential runtime on a CPU. Table 2 contains the runtimes

12



 10  20  30  40  50  60
y-dimension

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z-
di

m
en

si
on

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

Figure 7: Heat map of execution times with varying hyperblock sizes for the
dataset with N = 91, 753. On the x-axis is the hyperblock size along the
y-dimension, and on y-axis is the size along z-dimension. The darker/bluer
regions are where optimal performance is achieved.

Table 1: Execution times in seconds for the three datasets, and Q-grid of reso-
lution 90× 200× 200 (3.6M q-points).

# triangles GPU runtime Sequential Speedup
2,292 14.76 996.62 67.52
6,600 30.85 2895.76 93.86
91,753 370.06 40994.64 110.78

in seconds for the three datasets and 57.5M q-points on a GPU. Sequential
runtimes and corresponding speedups are also given. The sequential code was
unable to execute with the higher resolution Q-grid on the third dataset (91,753
triangles).

2.1.6 Utilizing a Cluster of GPUs

With the amount of data generated (e.g. 100 megabytes per second as mentioned
in Section 1,) there is an urgent need to be able to analyze this data in real-
time. Clearly our implementation on a single GPU node cannot match this
need. Further, to have a higher resolution structure prediction of nanoparticles,
a higher resolution Q-grid is needed. Increasing the number of q-points in each
of the three dimensions increases the complexity and memory usage by O(n3).
Hence, we need capability to handle much larger sizes of the form factor array
M , which may not fit into the available system memory on a single node system.

Given the aforementioned requirements to analyze data faster, and handle

13



Table 2: Execution times in seconds for the three datasets, and Q-grid of reso-
lution 90× 800× 800 (57.6M q-points).

# triangles GPU runtime Sequential Speedup
2,292 234.09 21205.68 90.59
6,600 492.95 61998.36 125.77
91,753 5865.67 NA NA

higher resolutions, we utilize distributed-memory supercomputers/clusters with
GPU accelerators at each node, to move a step closer to these goals. This re-
quires adding another level of parallelism to our scheme which would decompose
computations across the nodes in the cluster. We use the message-passing model
to achieve parallelism across multiple nodes.

In a typical scenario nx is usually small, hence the resolution is mostly
determined by ny and nz. We use this knowledge to decompose the Q-grid along
the two dimensions y and z. Suppose we have p nodes available. We divide the
to be computed M , corresponding to the Q-grid, into a 2-dimensional grid of
equally-sized submatrices. The size of this grid is

⌊√
p
⌋
× p

b√pc along the y and

z dimensions respectively. Hence, when p = q2, the grid is q × q sized. Let us
call a resulting division of the Q-grid a Q-tile, and corresponding submatrix of
M simply a tile. Size of a Q-tile is nx × np y × np z where

np y =
ny⌊√
p
⌋ , np z =

nz
p

b√pc
.

Each of the nodes Pi,j is assigned to compute a distinct tile Mk,l through a
mapping

Pi,j
map−−−→Mk,l, 0 ≤ i ≤ b

√
pc − 1, 0 ≤ j ≤ p⌊√

p
⌋ − 1. (9)

In a simple mapping, we set k = i and l = j. Figure 8 illustrates this decompo-
sition of the matrix M into tiles.

At the initialization, Pi,j reads its assigned Q-tile corresponding to Mi,j .
With the above scheme, since the form factor computations are independent
along the y and z dimensions, the problem is now decomposed into independent
sub-problems for each node in the cluster to compute. Each node Pi,j proceeds
to use our single node algorithm from the previous subsection to compute Mi,j .
Once completed, an assigned master node may gather computed tiles from other
processors and put them together to form the final form factor array M . In the
following we give an overall overview of our algorithm executed by each node
Pi,j :

Initialization at Pi,j

• Calculate values np y and np z and Input a unique and disjoint Q-tile (i, j)
of resolution nx × np y × np z.

14



Figure 8: Decomposition of Q-grid and M into tiles. Each Mi,j is assigned to
processor Pi,j for computations. In this example, p = 4.

• Input set of N triangles: {t0, · · · , tN−1}.

• Initialize output matrix Mi,j of size nx × np y × np z.

Computations at Pi,j

1. Use the algorithm from Section 2.1.3 with the input Q-tile (i, j) as the
local Q-grid of resolution nx × np y × np z to perform computations using
local GPU.

2. Construct local output array M .

3. Return the computed local M as Mi,j to P0,0.

Finalization at P0,0

1. Gather Mi,j from all Pi,j .

2. Place each tile at its correct place forming M and write this output.

When size of M is too large, a single node gathering outputs from all other
processors is infeasible. Each processor may then directly write its output at
correct position in the common storage/disk.

2.1.7 Performance on a GPU Cluster

We implemented our algorithm using C++ with MPI for the topmost level of
parallelism which distributes the computational work across the nodes in the
cluster. Here we show performance results of our algorithm on a GPU cluster.
This GPU cluster consists of 42 available nodes connected with InfiniBand in-
terconnects. Each node consists of a dual-socket Intel 5530 Nehalem processors
with 2.4 GHz clock with a total of 8 cores per node. This has 24 GB main
memory. Each node has an Nvidia Tesla C2050 (Fermi) GPU with 3 GB device

15



Table 3: Execution times in seconds for the three datasets, and Q-grid of reso-
lution 90× 200× 200 (3.6M q-points) on varying number of GPU nodes.

# GPU Nodes N = 2, 292 N = 6, 600 N = 91, 753
1 17.01 35.03 428.88
2 8.62 17.67 215.35
4 4.37 8.95 108.35
8 2.27 4.65 55.01
12 1.58 3.13 36.44
16 1.23 2.43 27.70
24 1.00 1.69 18.62
30 0.83 1.45 15.20
36 0.73 1.28 12.64
42 0.66 1.12 10.83

Table 4: Execution times in seconds for the three datasets, and Q-grid of reso-
lution 90× 800× 800 (57.6M q-points) on varying number of GPU nodes.

# GPU Nodes N = 2, 292 N = 6, 600 N = 91, 753
1 268.90 559.73 6794.21
2 134.92 280.63 3401.18
4 67.88 140.90 1705.44
8 34.40 71.57 856.48
12 23.12 47.89 569.73
16 17.54 36.27 429.33
24 11.94 24.38 286.42
30 9.73 19.65 229.71
36 8.23 16.50 191.60
42 7.21 14.37 164.51

memory. One such GPU has a total of 448 CUDA cores across 14 multiproces-
sors (32 each). Each block has 64 KB of L1 cache and shared memory.

In the following we present some of the results of our experiments on this
GPU cluster. We use the same datasets A, B and C as previously, and the
two resolutions of the Q-grid. Table 3 shows execution times in seconds, for
computing the form factor of the three datasets on Q-grid of 90 × 200 × 200
resolution, with varying number of nodes. Strong scaling data for these results
are shown in Figure 9 as a speedup graph. Table 4 shows execution times in
seconds for a Q-grid of 90× 800× 800 resolution with varying number of nodes.
The speedup graph for this result is shown in Figure 10.

The larger the number of triangles and/or q-points are, the greater is the de-
gree of parallelism available during the computations. Phase 1 of the algorithm
on the GPU achieves fine-grained parallelism from the number of triangles, while
phase 2 depends on the number of q-points. We see this in the results where
the speedup obtained improves as the dataset size and/or Q-grid resolution is

16



 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2  4  8  12  16  24  30  36  42

Sp
ee

du
p

# GPU Nodes

N = 2,292
N = 6,600

N = 91,753

Figure 9: Relative speedups with varying number of GPU nodes, for the three
datasets, with Q-grid of size 90× 200× 200.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2  4  8  12  16  24  30  36  42

Sp
ee

du
p

# GPU Nodes

N = 2,292
N = 6,600

N = 91,753

Figure 10: Relative speedups with varying number of GPU nodes, for the three
datasets, with Q-grid of size 90× 800× 800.

increased. We achieve a speedup of 41.3 on 42 GPU nodes for the dataset with
91,753 triangles, and 57.6M q-points.

This parallel multi-GPU code is capable of computing GISAXS images from
much larger samples and with much higher resolutions than what were previ-
ously possible using sequential codes.

3 Reverse Montecarlo Modelling

Reverse Monte Carlo (RMC) modeling is a general method of structural mod-
eling based on experimental data [3, 2]. It has become one popular analysis
method used to extract information on material structure from small angle
X-ray scattering (SAXS) data. RMC is a variation of standard Monte Carlo
method employed in inverse modeling. In inverse modeling, the starting point
is a set of experimental data, and the structural models (i.e., the atomic config-
urations) are generated by a procedure explicitly designed to give best matching

17



with experimental data in statistical sense. In this fitting procedure, one at-
tempts to simulate various configurations of the underlying atoms, molecules,
or building blocks (e.g., nanoparticles) in a material until the scattering pat-
tern from the simulated structure matches the real scattering data, such as the
experimentally measured structure factor.

In the X-ray scattering case, for each sample being probed, hundreds of 2D
scattering patterns are generated with different angles of the beams and the ro-
tations of the sample. In RMC modeling, we start with an initial configuration
of the particles. In our case, this is a two-dimensional array of N points (particle
positions) in a square of side L. The array may be generated at random. We
perform simultaneous simulations with multiple frames of image. In each simu-
lation cycle, we first calculate the radial distribution function which represents
the real-space structure. We then perform Fourier transform of the radial func-
tion which gives the reciprocal-space structure. The Fourier transform of the
total scattering measurement provides information about the relative positions
of the atoms. Then, we compare the computed structure factor with the real
measured scattering data using a standard χ2 test. If the difference is large,
we generate a new configuration by randomly moving one particle (point) to a
valid position. Once the new configuration is generated, the simulation cycle
is repeated until χ2 decreases to an equilibrium value and oscillates about it,
as with the energy in a conventional Monte Carlo simulation. The resulting
configuration should be a 3D structure that is consistent with the data within
experimental errors. Figure 11 illustrates this simulation process.

Polymer	  with	  filler	  par0cles	  

Compare	  	  

Move	  par0cles	  randomly	  	  

FFT	  +	  mask	  

Start	  with	  random	  system	  	  

FFT	  

Figure 11: The Reverse Monte Carlo modeling.

The RMC procedure described above is very general and can be used to fit
different quantities in many applications. In our case, we run a set of simulta-
neous RMC simulations to probe a parameter set corresponding to the loading
of the lattice array. The following pseudocode shows our RMC simulation of
one image frame. Each 2D image is represented as an N ×N array. The typical
size is 512 and the number of tiles is usually 100.

Initialization

• Input an image, find nonzero patterns of the images P (:, :), which is the

18



measured quantity to be fitted with.

• Set the model loading factor for each lattice array, which is the fraction
of the positions in the lattice array occupied by the particles.

• Create lattice with randomly filled positions initialized to 1, and empty
positions to 0: A(:, :) = 0, A(filled) = 1. That is, A is a 0/1 matrix.

• Calculate initial structure factor and χ2 error:
F0(:, :) = 2D FFT(A(:, :)), F 2

0 = cwise sqr(F ),
χ2
0 =

∑
i,j(P (i, j)− F 2(i, j)).

Simulation steps: n = 1, ..., until χ2
n reaches equilibrium.

1. Move one particle at random from old position (iold, jold) to new position
(inew, jnew).

2. Calculate the update from Fourier transform and new structure factor:
U = dft2(iold, jold, inew, jnew),
Fn = Fn−1 + U , F 2

n = cwise sqr(Fn).

3. Mask the zero positions in F 2
n and compute new χ2 error:

χ2
n =

∑
i,j(P (i, j)− F 2

n(i, j)).

4. If χ2
n < χ2

0, the move is accepted, resulting in a new configuration. If
χ2
n > χ2

0, the move is accepted with a probability that follows a normal
distribution. Otherwise, the move is rejected.

5. Repeat from step 1, either with the new configuration or the old one.

In this procedure, cwise sqr(F ) is a function that squares each element of
array F component-wise. The purpose of dft2() function is to compute the
update to the old structure factor. Note that when we start the simulation, it is
necessary to calculate F by a full Fourier transform (c.f., 2D FFT () function at
initialization). However, between the two successive simulation steps, since only
one particle is moved, the change to F is rather small, it is only necessary to
calculate the change in F instead of a full FFT operation. We now explain how
this is done in dft2() procedure. Recall that the discrete Fourier matrix of size
N is D = (dm,n)N×N , where an (m,n) entry dm,n is defined as: dm,n = ωm·nN ,
where ωN = e−2πi/N is a primitive Nth root of unity. The standard 2D Fourier
transform for the structure factor F (:, :) = 2D FFT (A(:, :)) computes:

fk1,k2 =

N−1∑
n1=0

(
ωk1n1

N

N−1∑
n2=0

ωk2n1

N an1,n2

)
. (10)

This requires O(N2 logN) operations. However, since only one particle is moved
in each step, the position matrix A has only two entries changed:

aiold,jold = 1→ 0, ainew,jnew
= 0→ 1.

19



Relating this to Eqn.(10), the change to matrix F amounts to adding the new
contribution due to ainew,jnew = 1 and subtracting the old contribution due to
aiold,jold = 0. These changes can be computed from two rank-1 matrices derived
from two columns and rows of the DFT matrix D. One is the outer-product
of ioldth column D(:, iold) and joldth row D(:, jold), and the other is the outer-
product of inewth column D(:, inew) and jnewth row D(:, jnew). Therefore, the
function dft2() computes the following update matrix, as needed in step 2 of
the simulation cycle:

U = D(:, inew) ·D(jnew, :)−D(:, iold) ·D(jold, :)

j_old j_new 

i_old 

i_new 

x 

x 

U =  _ 

Figure 12: Moving a random particle (left), and the update matrix U for the
lattice Fourier matrix (right).

Figure 12 illustrates the particle movement and its effect on the update
matrix U . Computing the two rank-1 matrices requires O(N2) operations, which
is considerably cheaper than that of the full FFT.

The RMC simulation for our application typically involve 104 DFT2 kernels
to be computed per iteration step, and the total number of iterations can ap-
proach 106. The initial in-house code was written in MATLAB and ran on one
processor. In an earlier work, Scholz et al. ported this code to use Jacket to
perform the simulations on GPU [7]. Jacket is a MATLAB wrapper developed
by AccelerEyes (www.accelereyes.com), which accelerates the MATLAB code
on GPUs with minimal knowledge and time. Jacket contains the language pro-
cessing system, JIT compiler, and runtime system to enable access to GPU from
MATLAB’s M-codes. It automatically translates M-code to high performance
primitives required for best utilization of GPUs. The runtime system launches
GPU kernels and optimizes memory transfers. This wrapper is easy to use, and
abstracts away all of the complexity of GPU and CUDA programming from the
user. The programming model extends M-language with a new class g objects.
The operations on g objects are translated into GPU-enabled MEX code. An
example M-code in MATLAB/Jacket is given below:

N = 128; // matrix size
M = 200; // number of tiled matrices

// Create Data
Ac = complex( gones(N,N,M, ’single’),0 );
Bc = complex( gones(N,N,M, ’single’),0 );

20



// Compute 200 (128x128) FFTs
gfor i = 1:M

Ac(:,:,i) = fft2(Bc(:,:,i));
gend

In this example, Ac and Bc are two complex matrices of ones. Then 200 FFTs
are performed. The M-code syntax gones is similar to ones, i.e., generate
matrices of all ones. But gones indicates that the matrix is an g object, hence
Jacket will put Ac and Bc on the GPU device memory. Similarly, gfor means
the for-loop occurs on the GPU device.

The Jacket-enabled MATLAB code has already given tremendous perfor-
mance boost for many MATLAB codes. In particular, Scholz’s GPU-enabled
RMC code has achieved over 100x speedup in computing time using one GPU
over the pure MATLAB code on one CPU. Despite this speed benefit, MAT-
LAB/Jacket code has some limitations: it cannot handle large data set, and
the GPU utilization may not be fully realized from the Jacket wrapper (e.g.,
insufficient code optimization). Recently, we have ported the MATLAB code to
C++ code, enhanced with NVIDIA’s CUDA. We now describe our C++/CUDA
implementation.

As we examine the simulation steps 1-4, it is clear that steps 1 and 4 have no
parallelism and can be done quickly on the CPU host. Most of the computations
occur in steps 2 and 3, which also have ample data parallelism and are amenable
to GPU acceleration. Therefore, we designed several GPU kernel routines to
compute those quantities on the device, including the computations of dft2
update matrix U , Fn, F 2

n and χ2
n. We store in GPU memory the following four

matrices: the image pattern P , the Fourier space lattice matrices F and F 2 and
the DFT matrix D. For all the kernels, we arrange both the grid blocks and
the thread blocks to be one-dimensional. In particular, we choose 512 to be
the number of threads in a thread block, and N2/512 to be the number of grid
blocks. Since each matrix has N2 elements, such an 1D organization assigns one
thread to compute one element of the matrix. For the most part, the threads
can be executed independently. Only for χ2 computation, we need to perform a
sum-reduction operation in the end; we use the THRUST library to accomplish
this.1

With this CUDA-enhanced C++ code, we have observed additional 9x
speedup over the MATLAB/Jacket code for the entire simulation using one
GPU. Our future work is to design a good data distribution scheme in order to
use multiple GPUs.

1Thrust is an open-source CUDA library of parallel algorithms with an interface resembling
the C++ Standard Template Library (STL). http://thrust.googlecode.com.

21



4 Conclusions and Future Work

We have designed and implemented two classes of parallel algorithms to help
the beam-line scientists and users at the Advanced Light Source to achieve real-
time analyses of the X-ray scattering data. Our new DWBA code for simulating
the GISAXS patterns has achieved more than 125x speedups on one GPU card
compared to the sequential CPU code. Further parallelization across multi-
GPU using MPI led to an additional 40x speedup on a 42-nodes GPU cluster.
We also developed a new GPU-accelerated inverse modeling code based on the
Reverse Monte Carlo method. We have demonstrated over 9x speedup over the
previously developed Jacket-based GPU code, which significantly reduced the
fitting time for morphology prediction.

In addition to tremendous runtime reduction, our new codes utilize the mem-
ory more efficiently, which allows much larger samples with higher resolutions to
be simulated than what were previously possible using the old sequential code.

Our future work includes applying autotuning tools for optimal hyperblock
size selection which is essential for highest performance on GPUs, multi-GPU
parallelization of the RMC algorithm, and porting to even larger GPU clusters.
In addition to continued optimization of these algorithms and codes, we are
also collaborating with the other scientists to integrate this back-end computing
engine into an automatic workflow management system, including an GUI input
interface and visualization tools. This will allow ALS to truly harness the high-
performance computing power.

Acknowledgements

The authors acknowledge Alexander Hexmer, Slim Chourou, and Elaine Chan
for providing the input datasets used in the experiments in this paper, as well
as for collaborating on this application.

This research used resources of the National Energy Research Scientific Com-
puting Center, which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

References

[1] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı, and
G. Quintana-Ort́ı. Exploiting the capabilities of modern GPUs for dense
matrix computations. Concurrency and Computation: Practice and Experi-
ence, 21(18):2457–2477, 2009.

[2] R. McGreevy. Reverse Monte Carlo modeling. J. Phys.: Condens. Matter,
13:R877–R913, 2001.

[3] R. McGreevy and L. Pusztai. Reverse monte carlo simulation: A new tech-
nique for the determination of disordered structures. Molecular Simulation,
1:6:359–367, 1998.

22



[4] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Fermi, 2009.

[5] NVIDIA Corporation. NVIDIA CUDA Programming Guide 4.0, 2011.

[6] G. Renaud, R. Lazzari, and F. Leroy. Probing surface and interface mor-
phology with grazing incidence small angle x-ray scattering. Surface Science
Reports, 64:255–380, 2009.

[7] A. Scholz and A. Hexemer. Reverse Monte Carlo in Matlab/Jacket. Private
communication, 2011.

23


